

### **Industrial Automation Headquarters**

Delta Electronics, Inc. Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

### Asia

Delta Electronics (Jiangsu) Ltd. Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, P.R.C. 215200 TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

**Delta Greentech (China) Co., Ltd.** 238 Min-Xia Road, Pudong District, ShangHai, P.R.C. 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc. Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. 1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

**Delta Electronics Int'I (S) Pte Ltd.** 4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd. Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas Delta Products Corporation (USA) Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A. Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: 55 11 3568-3855 / FAX: 55 11 3568-3865

### Europe

Delta Electronics (Netherlands) B.V. Eindhoven Office De Witbogt 20, 5652 AG Eindhoven, The Netherlands TEL : +31 (0)40-8003800 / FAX : +31 (0)40-8003898

AH-0256920-01

\*We reserve the right to change the information in this manual without prior notice.

 $\triangleright$ Ī Moti 0 3  $\mathbf{\cap}$ 0 ontro н. Ζ 0 Ť. 0 3  $\mathbf{\cap}$ ontrol ы SU tructio SC Ma **N**C Q



# AH Motion Controller -Motion Control Instructions Manual

2017-09-20



# AH Motion Controller Motion Control Instruction Manual

# **Revision History**

| Version         | Revision                         | Date       |
|-----------------|----------------------------------|------------|
| 1 <sup>st</sup> | The first version was published. | 2017/09/20 |

# AH Motion - AH Motion - Motion Control Instructions Manual Contents

### Preface

| P.1   | Introduction               | II |
|-------|----------------------------|----|
| P.1.1 | Applicable Products        | II |
| P.1.2 | Related Manuals            | II |
| P.2   | Navigation between Manuals |    |

### **Chapter 1 Introduction**

| 1.1   | Motion Control Instructions                      | 1-2   |
|-------|--------------------------------------------------|-------|
| 1.1.1 | 1 Fundamentals of Motion Control Instructions    | . 1-2 |
| 1.2   | Points to Note about Motion Control Instructions | 1-6   |
| 1.3   | Categories of Motion Control Instructions        | . 1-7 |

### Chapter 2 Devices, Symbols and Instructions

| 2.1    | Common Devices2-3                    |
|--------|--------------------------------------|
| 2.1.1. | Functions of Common Devices2-3       |
| 2.1.2. | Common Device List 2-3               |
| 2.1.3. | Latched Devices2-4                   |
| 2.1.4. | Input Relays (X)2-6                  |
| 2.1.5. | Output Relays (Y)2-6                 |
| 2.1.6. | Auxiliary Relays (M)2-7              |
| 2.1.7. | Special Auxiliary Relays (SM)2-7     |
| 2.1.8. | Data Registers (D)2-7                |
| 2.1.9. | Special Data Registers (SR)2-7       |
| 2.1.10 | ). Link Registers (L)2-8             |
| 2.1.11 |                                      |
| 2.1.12 |                                      |
| 2.1.13 | 3. Counters (C)                      |
| 2.1.14 | 4. 32-bit Counters (HC/AC)           |
| 2.1.15 | 5. Values and Constants (K, 16#) 2-9 |
| 2.1.16 |                                      |
| 2.1.17 | '. Strings (``\$") 2-10              |
| 2.1.18 | 3. Pointers (PR) 2-10                |

| 2.1.18 | 3.1 Pointer Registers of Timers (T_Pointer) (TR)            | 2-10  |
|--------|-------------------------------------------------------------|-------|
| 2.1.18 | 3.2 Pointer Registers of 16-bit Counters (C_Pointer) (CR)   | 2-11  |
| 2.1.18 | 3.3 Pointer Registers of 32-bit Counters (HC_Pointer) (HCR) | 2-111 |
| 2.2    | Motion Control Devices                                      | 2-12  |
| 2.2.1  | Parameters for Motion Axes: Structure                       | 2-12  |
| 2.3    | EtherCAT Symbols                                            | 2-15  |
| 2.4    | Symbols                                                     | 2-15  |
| 2.4.1  | Application of Symbols                                      | 2-15  |
| 2.4.2  | Classes                                                     | 2-15  |
| 2.4.3  | Data Types                                                  | 2-16  |
| 2.4.4  | Using instructions, Devices and Symbols                     | 2-17  |
| 2.4.5  | Modifying a Symbol with an Index Register                   | 2-18  |
| 2.5    | Data Type Unit (DUT): ENUM                                  | 2-20  |
| 2.6    | Instructions                                                | 2-21  |
| 2.6.1  | Categories of Motion Control Instructions                   | 2-21  |
| 2.6.2  | List of Motion Control Instructions                         | 2-21  |

# Chapter 3 Product Specifications

| 3.1   | Applying This Chapter                                          | 3-3  |
|-------|----------------------------------------------------------------|------|
| 3.1.1 | The Interface of a Motion Control Function Block               | 3-3  |
| 3.1.2 | PDO Mapping                                                    | 3-6  |
| 3.1.3 | List of Motion Control Related Instructions (Sort by function) | 3-6  |
| 3.2   | PLCopen-based Motion Control Instructions                      | 3-10 |
| MC_P  | ower                                                           | 3-12 |
| MC_H  | ome                                                            | 3-24 |
| MC_S  | top                                                            | 3-32 |
| MC_H  | alt                                                            | 3-38 |
| MC_M  | oveAbsolute                                                    | 3-43 |
| MC_M  | oveRelative                                                    | 3-53 |
| MC_M  | oveAdditive                                                    | 3-61 |
| MC_M  | oveSuperimposed                                                | 3-71 |
| MC_H  | altSuperimposed                                                | 3-77 |
|       | oveVelocity                                                    |      |

| MC_VelocityControl                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| MC_TorqueControl                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-95                                  |
| MC_SetTorqueLimit                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-104                                 |
| MC_SetPosition                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-107                                 |
| MC_SetOverride                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-116                                 |
| MC_ReadActualPosition                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-121                                 |
| MC_ReadActualVelocity                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-123                                 |
| MC_ReadActualTorque                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-125                                 |
| MC_ReadStatus                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-127                                 |
| MC_ReadMotionState                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-133                                 |
| MC_ReadAxisError                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-139                                 |
| MC_Reset                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-141                                 |
| MC_TouchProbe                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-143                                 |
| MC_AbortTrigger                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-149                                 |
| MC_CamIn                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-152                                 |
| MC_CamOut                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-176                                 |
| MC_GearIn                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-182                                 |
| MC_GearOut                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-188                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 102                                 |
| MC_PhasingAbsolute                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| MC_PhasingAbsolute<br>MC_PhasingRelative                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-200                                 |
| MC_PhasingRelative                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-200<br><b>3-207</b>                 |
| MC_PhasingRelative                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-200<br><b>3-207</b><br><b>3-209</b> |
| MC_PhasingRelative                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| MC_PhasingRelative                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| MC_PhasingRelative                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| MC_PhasingRelative.<br><b>3.3 Delta-defined Motion Control Instructions</b><br><b>3.3.1 Single-axis Motion Control Function Blocks</b><br>DFB_AxisSetting1<br>DFB_AxisSetting2<br>DFB_InputPolarity                                                                                                                                                                                                                                   |                                       |
| MC_PhasingRelative                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| MC_PhasingRelative.<br><b>3.3 Delta-defined Motion Control Instructions.</b><br><b>3.3.1 Single-axis Motion Control Function Blocks.</b><br>DFB_AxisSetting1.<br>DFB_AxisSetting2.<br>DFB_InputPolarity.<br>DFB_CamMultiRead<br>DFB_CamMultiWrite.                                                                                                                                                                                    |                                       |
| MC_PhasingRelative<br><b>3.3 Delta-defined Motion Control Instructions</b><br><b>3.3.1 Single-axis Motion Control Function Blocks</b><br>DFB_AxisSetting1<br>DFB_AxisSetting2<br>DFB_InputPolarity<br>DFB_CamMultiRead<br>DFB_CamMultiWrite<br>DFB_CamCurve2                                                                                                                                                                          |                                       |
| MC_PhasingRelative                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| MC_PhasingRelative<br>3.3 Delta-defined Motion Control Instructions<br>3.3.1 Single-axis Motion Control Function Blocks<br>DFB_AxisSetting1<br>DFB_AxisSetting2<br>DFB_InputPolarity<br>DFB_CamMultiRead<br>DFB_CamMultiWrite<br>DFB_CamCurve2<br>DFB_CamCurveUpdate2<br>3.3.2 Multi-axis Motion Control Function Blocks                                                                                                              |                                       |
| MC_PhasingRelative<br><b>3.3 Delta-defined Motion Control Instructions</b><br><b>3.3.1 Single-axis Motion Control Function Blocks</b><br>DFB_AxisSetting1<br>DFB_AxisSetting2<br>DFB_InputPolarity<br>DFB_CamMultiRead<br>DFB_CamMultiWrite<br>DFB_CamCurve2<br>DFB_CamCurveUpdate2<br><b>3.3.2 Multi-axis Motion Control Function Blocks</b><br>DFB_GroupAbsLinear                                                                   |                                       |
| MC_PhasingRelative<br>3.3 Delta-defined Motion Control Instructions<br>3.3.1 Single-axis Motion Control Function Blocks<br>DFB_AxisSetting1<br>DFB_AxisSetting2<br>DFB_InputPolarity<br>DFB_CamMultiRead<br>DFB_CamMultiWrite<br>DFB_CamCurve2<br>DFB_CamCurveUpdate2<br>DFB_GroupAbsLinear<br>DFB_GroupRelLinear                                                                                                                     |                                       |
| MC_PhasingRelative.<br><b>3.3 Delta-defined Motion Control Instructions.</b><br><b>3.3.1 Single-axis Motion Control Function Blocks.</b><br>DFB_AxisSetting1.<br>DFB_AxisSetting2.<br>DFB_InputPolarity<br>DFB_CamMultiRead<br>DFB_CamMultiWrite.<br>DFB_CamCurve2<br>DFB_CamCurveUpdate2<br><b>3.3.2 Multi-axis Motion Control Function Blocks</b><br>DFB_GroupAbsLinear<br>DFB_GroupAbsLinear<br>DFB_GroupAbsCircular               |                                       |
| MC_PhasingRelative<br>3.3 Delta-defined Motion Control Instructions<br>3.3.1 Single-axis Motion Control Function Blocks<br>DFB_AxisSetting1<br>DFB_AxisSetting2<br>DFB_InputPolarity<br>DFB_CamMultiRead<br>DFB_CamMultiWrite<br>DFB_CamCurve2<br>DFB_CamCurve2<br>DFB_CamCurveUpdate2<br>3.3.2 Multi-axis Motion Control Function Blocks<br>DFB_GroupAbsLinear<br>DFB_GroupAbsLinear<br>DFB_GroupAbsCircular<br>DFB_GroupRelCircular |                                       |

| DFB_GroupReset                                 |       |
|------------------------------------------------|-------|
| DFB_ReadGroupStatus                            |       |
| 3.3.3 Auxiliary Motion Control Function Blocks | 3-281 |
| DFB_HCnt                                       |       |
| DFB_HTmr                                       |       |
| DFB_Compare                                    |       |
| DFB_CmpOutRst                                  |       |
| DFB_Capture2                                   |       |
| 3.3.4 Network Function Blocks                  | 3-305 |
| DFB_ECATReset                                  |       |
| DFB_ECATServoRead                              |       |
| DFB_ECATServoWrite                             |       |
| DFB_SDO_Read                                   |       |
| DFB_SDO_Write                                  |       |

# Appendices

| A.1. | Table of Data Type Unit(DUT): Enum                 | A-2  |
|------|----------------------------------------------------|------|
| A.2. | Error Codes and Troubleshooting                    | A-9  |
| A.2. | 1. Error Codes and Indicators                      | A-9  |
| AHx  | xEMC-5A                                            | A-11 |
| Anal | og I/O Modules and Temperature Measurement Modules | A-40 |
| AH0  | 2HC-5A/AH04HC-5A                                   | A-42 |
| AH0  | 5PM-5A/AH10PM-5A/AH15PM-5A                         | A-43 |
| AH2  | 0МС-5А                                             | A-44 |
| AH1  | 0EN-5A / AH15EN-5A                                 | A-45 |
| AH1  | 0SCM-5A / AH15SCM-5A                               | A-46 |
| AH1  | 0DNET-5A                                           | A-46 |
| AH1  | 0PFBM-5A                                           | A-47 |
| AH1  | 0PFBS-5A                                           | A-48 |
| AH1  | 0СОРМ-5А                                           | A-48 |
| A.2. | 2. Error Codes and Troubleshooting                 | A-50 |
| AHx  | xEMC-5A                                            | A-50 |
| Ana  | og I/O Modules and Temperature Measurement Modules | A-84 |
| AH0  | 2HC-5A/AH04HC-5A                                   | A-87 |
| AH0  | 5PM-5A/AH10PM-5A/AH15PM-5A                         | A-89 |
| AH2  | 0MC-5A                                             | A-90 |
|      |                                                    |      |

| AH10EN-5A / AH15EN-5A A                         | ۹-92 |
|-------------------------------------------------|------|
| AH10SCM-5A / AH15SCM-5A A                       | 4-93 |
| AH10DNET-5A A                                   | 4-93 |
| AH10PFBM-5AA                                    | ۹-94 |
| AH10PFBS-5A A                                   | ۹-95 |
| AH10COPM-5A A                                   | ۹-96 |
| A.2.3. Troubleshooting for Limitation ErrorsA   | -97  |
| Troubleshooting for the software limit errors A | ۹-97 |
| Troubleshooting for the hardware limit errors   | 4-98 |



# Preface

# **Table of Contents**

| P.1  | Intr | oduction                | II  |
|------|------|-------------------------|-----|
| P.1. | 1.   | Applicable Products     | .II |
| P.1  | .2.  | Related Manuals         | .II |
| P.2  | Nav  | igation between Manuals | []] |

# **P.1 Introduction**

Thank you for purchasing the AH series Motion CPU with our advanced motion control system.

This manual introduces the motion control instructions including single-axis, multi-axes instructions and e-cam applications. Please ensure that you understand the configuration and operations of the AH series motion control system, and use the AH series Motion Controller CPU correctly.

To obtain required information for different system configurations, you can navigate between different manuals of AH Motion series manuals and other related manuals.

### P.1.1. Applicable Products

This manual relates to the following products

- AHxxEMC-5A (AH08EMC-5A/AH10EMC-5A/AH20EMC-5A)

### P.1.2. Related Manuals

The related manuals of the AH Motion Controller series motion controllers are composed of the following.

#### 1. AH Motion Controller - Hardware Manual

It introduces function specifications, electrical specifications, appearances, dimensions, and etc.

### 2. ISPSoft User Manual

It introduces the use of ISPSoft, the programming languages (ladder diagrams, sequential function charts, function block diagrams, and structured texts), the concept of POUs, the concept of tasks, and the operation of motion control programming.

### 3. AH Motion Controller - Standard Instructions Manual

It introduces the elements for standard programming including devices, symbols and standard instructions.

#### 4. AH Motion Controller - Operation Manual

It introduces basic knowledge of motion control structure, software/hardware setup, quick start of Software operations, devices to be used, motion control operations and troubleshooting.

#### 5. AH Motion Controller - Motion Control Instructions Manual

It introduces the elements for motion control programming including devices, symbols and single axis/multi-axes motion instructions.

#### 6. AH500 Motion Control Module Manual

It introduces the specifications for the AH500 series motion control modules, the wiring, the instructions, and the functions.

### 7. AH500 Module Manual

It introduces the use of special I/O modules of AH500 series PLCs. For example, network modules, analog I/O modules, temperature measurement modules, and etc.

Ρ

# **P.2 Navigation between Manuals**

Before using the products, there are three manuals that should be utilized as fundamental information: *AH Motion Controller - Hardware Manual*, *ISPSoft User Manual*, and *AH Motion Controller - Standard Instructions Manual*. With the fundamental manuals, you can understand the basic information of hardware configuration, operation procedures of the software, and the basic instructions for using the system.

To obtain required information for different system configurations and applications, refer to other manuals as indicated in the table below. Reading all manuals related to your system configuration helps you make the most use of the AH series motion control system.

| $\searrow$                                         |                                                  | AH M                                      | otion Co            | ontroller s                                               | eries ma                                   | anuals                                                       |                                       |                     |
|----------------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|---------------------------------------|---------------------|
| Related manuals<br>General operation<br>procedures |                                                  | Fundamental                               |                     |                                                           | L.                                         | ٩                                                            |                                       |                     |
|                                                    |                                                  | AH Motion Controller –<br>Hardware Manual | ISPSoft User Manual | AH Motion Controller –<br>Standard Instructions<br>Manual | AH Motion Controller –<br>Operation Manual | AH Motion Controller – Motion<br>Control Instructions Manual | AH500 Motion Control Module<br>Manual | AH500 Module Manual |
| 1.                                                 | Overview of AH Motion series products            | V                                         |                     |                                                           |                                            |                                                              |                                       |                     |
| 2.                                                 | Setting up hardware configuration for the system |                                           |                     |                                                           |                                            |                                                              |                                       |                     |
|                                                    | for motion control applications                  |                                           |                     |                                                           | V                                          |                                                              |                                       |                     |
|                                                    | for communication (e.g. EtherCAT)                | V                                         |                     |                                                           |                                            |                                                              |                                       |                     |
|                                                    | for additional motion control modules            |                                           |                     |                                                           |                                            |                                                              | V                                     |                     |
|                                                    | for I/O extension using AH500 series modules     |                                           |                     |                                                           |                                            |                                                              |                                       | V                   |
| 3.                                                 | Getting started with the software                |                                           |                     |                                                           |                                            |                                                              |                                       |                     |
|                                                    | for motion control applications                  |                                           |                     |                                                           | V                                          |                                                              |                                       |                     |
|                                                    | for communication (e.g. EtherCAT)                |                                           | V                   |                                                           |                                            |                                                              |                                       |                     |
|                                                    | for additional motion control modules            |                                           |                     |                                                           |                                            |                                                              | V                                     |                     |
|                                                    | for I/O extension using AH500 series modules     |                                           |                     |                                                           |                                            |                                                              |                                       | V                   |
| 4.                                                 | Programming                                      |                                           |                     | V                                                         |                                            |                                                              |                                       |                     |
|                                                    | for motion control applications                  |                                           |                     |                                                           | V                                          | V                                                            |                                       |                     |
|                                                    | for communication (e.g. EtherCAT)                |                                           | V                   |                                                           |                                            |                                                              |                                       |                     |
|                                                    | for additional motion control modules            |                                           | -                   |                                                           |                                            |                                                              | V                                     |                     |
|                                                    | for I/O extension using AH500 series modules     |                                           |                     |                                                           |                                            |                                                              |                                       | v                   |

| Related manuals<br>General operation<br>procedures |                                              | AH Motion Controller series manuals       |                     |                                                           |                                            |                                                              |                                       |                     |
|----------------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|---------------------------------------|---------------------|
|                                                    |                                              | Fundamental                               |                     |                                                           |                                            | Ę                                                            | Ð                                     |                     |
|                                                    |                                              | AH Motion Controller –<br>Hardware Manual | ISPSoft User Manual | AH Motion Controller –<br>Standard Instructions<br>Manual | AH Motion Controller –<br>Operation Manual | AH Motion Controller – Motion<br>Control Instructions Manual | AH500 Motion Control Module<br>Manual | AH500 Module Manual |
| 5. Tes                                             | ting and troubleshooting                     |                                           |                     |                                                           |                                            |                                                              |                                       |                     |
|                                                    | for motion control applications              |                                           |                     |                                                           |                                            | V*                                                           |                                       |                     |
|                                                    | for communication (e.g. EtherCAT)            |                                           | v                   |                                                           | V                                          |                                                              |                                       |                     |
| for additional motion control modules              |                                              |                                           | -                   | V*                                                        |                                            |                                                              | V                                     |                     |
|                                                    | for I/O extension using AH500 series modules |                                           |                     | V*                                                        |                                            |                                                              |                                       | V                   |
| 6. Maintenance and Inspection                      |                                              | V                                         |                     |                                                           |                                            |                                                              |                                       |                     |

\*Note: Information regarding Error codes and Indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller – Operation Manual.* 



# Chapter 1 Introduction to Motion Control Instructions

# **Table of Contents**

| 1.1 | Motion Control Instructions                      | 1-2 |
|-----|--------------------------------------------------|-----|
| 1.1 | 1.1 Fundamentals of Motion Control Instructions  |     |
| 1.2 | Points to Note about Motion Control Instructions | 1-5 |
| 1.3 | Categories of Motion Control Instructions        | 1-7 |

# **1.1 Motion Control Instructions**

This manual introduces the elements for motion control programming including devices, symbols and motion control instructions.

Motion control instructions are defined as function blocks (FB) and are used in the program for performing a variety of motion control purposes. The motion control instructions are developed based on the specifications of PLCopen\* motion control function blocks.

In addition to the PLCopen-based instructions, there are also Delta-defined function blocks for users to achieve complete motion control applications. This section gives an overview of the motion control instructions for both PLCopen-based function blocks and Delta-defined function blocks. PLCopen defines the program and function block interfaces so as to achieve a standardized motion control programming environment for the languages specified in IEC61131-3. Using PLCopen-based instructions together with Delta-defined instructions reduces the costs for training and support. Also, the program can be adjusted and reused in different controllers easier.

Before using the instructions, please be sure that you understand the devices, symbols and the function of instructions sufficiently.

You can also refer to the Appendices for a quick reference of the motion control instruction list and error codes.

#### \*Note:

**PLCopen** is an organization promoting industrial control based on IEC61131-3, which is an international standard widely adopted for PLC programming. For more information regarding PLCopen, check the official website at: <a href="http://www.plcopen.org/">http://www.plcopen.org/</a>

# **1.1.1 Fundamentals of Motion Control Instructions**

Using motion control instructions requires fundamental knowledge defined in the specifications of PLCopen motion control function blocks. This subsection gives an overview of these specifications.

### Names of Motion Control Instructions

PLCopen-based motion control instructions begin with "MC\_", and Delta-defined function block instructions begin with "DFB\_".

| Types | Description                                |
|-------|--------------------------------------------|
| MC_   | PLCopen-based motion control instructions  |
| DFB_  | Delta-defined function block instructions* |

\*Note: Delta-defined function block instructions (DFB) include Delta-defined motion control function blocks and other administrative/non-administrative function blocks which are applicable for AH Motion series CPUs. Therefore you can look up a function block (FB) in this manual and a function (FC) in *AH Motion Controller – Standard Instructions Manual* which includes all applicable functions (FC). For further explanation of Function(FC) and Function Block(FB) and the software interface for using these instructions, refer to *ISPSoft User Manual*.

### Types of Motion Control Related Instructions

Different categories of motion control instructions are divided by functions such as single-axis motion instructions, multi-axis motion instructions, auxiliary motion instructions, and network instructions. Refer to **Ch3 Motion Control Instructions** for more details.

### State Transitions

PLCopen specifications also define motion states and their transition behaviors. For details on the state transitions, refer to *AH Motion Controller - Operation Manual* for more information.

### Execution and Status Indication of a Function Block

Function block instructions generally include two types of inputs for execution: *Execute* and *Enable*. When the instruction is executed or enabled, the outputs of the function block can indicate the status. The basic outputs include *Busy*, *Done*, *CommandAborted*, and *Error*. For detailed information of inputs and outputs of each function block, refer to **Ch3 Motion Control Instructions**.

### Error Handling

Information regarding error codes and indicators are attached as Appendices for a quick reference in *AH Motion Controller - Standard Instructions Manual*, and *AH Motion Controller - Motion Control Instructions Manual*. The detailed troubleshooting procedures and error codes are explained in *AH Motion Controller - Operation Manual*.

### Re-execution of a Function Block

Re-execution of a function block refers to triggering *Execute* again after resetting it. If the input values are changed and *Execute* is triggered again while the function block is during operation (in busy status), the action of triggering *Execute* will be ignored and the input values will not be updated. The function block will finish its on-going operation with the original input values.

### Buffer Modes

Some motion instructions have an input called *BufferMode*. You can execute a different instruction instance during axis motion when the values for *BufferMode* are specified. This input decides whether the instruction executes immediately (non-buffered mode) or it waits till current motion instruction sets its status outputs (*Done/InVelocity/InPosition*, etc.)

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in Standstill state.

The following Buffer Modes are supported.

| Buffer Mode         | Function                                                                                                                                                                                                             |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0: Aborting         | Aborts the ongoing motion. The next instruction takes effect immediately                                                                                                                                             |
| 1: Buffered         | Automatically executes the next instruction after the ongoing motion is completed.                                                                                                                                   |
| 2: BlendingLow      | Takes the lower target velocity as the transit velocity between the current instruction and the buffered instruction. (The transit velocity is the velocity that the current instruction uses as the transit point.) |
| 3: BlendingPrevious | Takes the target velocity of the current instruction as the transit velocity.                                                                                                                                        |
| 4: BlendingNext     | Takes the target velocity of the buffered instruction as the transit velocity.                                                                                                                                       |
| 5: BlendingHigh     | Takes the higher target velocity as the transit velocity between the current instruction and the buffered instruction.                                                                                               |

When a DFB\_ Instruction is Followed by a BufferMode Instruction (MC\_)

DFB\_ instructions do not have the *BufferMode* input. Therefore, care should be taken when an on-going motion driven by a DFB\_ instruction (e.g. DFB\_TrSeg1) is followed by a buffer-mode instruction (e.g. MC\_MoveVelocity) during axis motion status. When the MC\_ instruction is executed, the DFB\_ instruction will be aborted, and the following MC\_ instruction will report an error.

### • Structures Applicable for Motion Control

In PLCopen technical standard, the information and parameters required for configuring motion control on axis are defined in a Structure, which is a kind of the DUT(data type unit) provided by the ISPSoft software. A Structure is a data type applicable to group the data elements together, which is easier for users to specify proper parameters

| Struc                      | ctures                                          |                                                                                                                                                                     |  |
|----------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PLCopen Motion Control FBs |                                                 | Definition                                                                                                                                                          |  |
| AXIS_REF*                  | Applicable<br>for MC_ / DFB_<br>function blocks | Information and parameters required for configuring axis motion is grouped in this Structure.                                                                       |  |
| AXES_GROUP_REF             | N/A                                             | Information and parameters required for configuring axes group motion is included in this Structure.                                                                |  |
| TRIGGER_REF                | MC_TouchProbe<br>MC_AbortTrigger                | <ul> <li>Information on trigger inputs</li> <li>Specifications of the trigger</li> <li>Trigger activation patterns (rising-edge, falling edge, and etc.)</li> </ul> |  |
| INPUT_REF                  | N/A                                             | Information relating to the inputs. Virtual data could be included.                                                                                                 |  |
| OUTPUT_REF                 | N/A                                             | Information relating to physical outputs.                                                                                                                           |  |

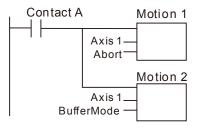
For AH Motion CPUs, the applicable Structure is AXIS\_REF as below.

\*Note: refer to the **2.2.1 Parameters for Motion Axes: Structure** of this manual for the list of parameters grouped in the Structure AXIS\_REF which is supported by AH Motion CPU.

# **1.2 Points to Note about Motion Control Instructions**

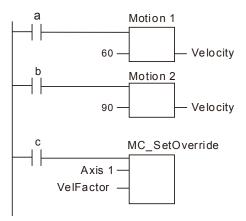
This section explains important specifications and limitations when applying motion control instructions. For detailed information of each instruction in this manual, refer to **Chapter 3 Motion Control Instructions**.

Programming Languages for Motion Control Instructions


You can use all programming languages provided by ISPSoft to create, edit, or maintain the program. The supported languages include Ladder Diagram (LD), Sequential Function Chart (SFC), Continuous Function Chart (CFC) and Structured Text (ST).

For detailed information about the programming languages, refer to ISPSoft User Manual.

### Multi-execution of Multiple Motion Control Instructions


Multi-execution of motion control instructions refers to that multiple instructions on the same axis are executed in the same task execution period.

- In the following program, motion 1 and motion 2 starts in the same task execution period when contact A is ON.
- In the ladder logic, instructions are executed according to the top-down order\*, therefore motion 1 is started first and motion 2 started later before motion 1 is completed.
- This situation is considered as multi-execution of multiple motions. The pattern of multi-execution is defined by the input variable *BufferMode* which is specified to blend the two motions. In this program, *BufferMode* of Motion 2 will take effects to blend the two motions.



For descriptions of each buffer mode, refer to 1.1.1 Fundamentals of Motion Control Instructions.

\***Note**: When MC\_SetOverride is activated simultaneously in the same condition as above diagram, the values to be apply for MC\_SetOverride still take effects first even if it is inserted on the bottom. Therefore, if MC\_SetOverride is to be used, the below programming is recommended.



### Precautions for Operation Modes

When there are sudden changes of the velocity or the position in synchronized motion of master axis, errors could occur. Refer to below precautions and points to note for avoiding excessive operation for the machine.

### Sudden Changes of the Velocity

If the velocity of the master axis is suddenly changed during synchronized motion, the motion on the slave axis could also be changed significantly, and the equipment could be impacted with the excessive operation. Therefore precautions are required in below situations which may cause sudden changes on the master axis.

- If any of the following instructions is executed on master axis:

### MC\_Stop

#### MC\_SetPosition

To avoid sudden changes on the slave axis, be careful on setting the input parameters and the activation timing for instructions above. You can also execute the above instructions after the synchronized motion is disengaged.

- If an immediate stop signal is triggered for the master axis;
- If the servo is turned off for the master axis;

If the servo is turned off when the master axis works as a vertical axis, a sudden change on the position of the axis could happen. In this case, proper measures should be applied to prevent the slave axis from sudden displacement. You can design a brake for the master axis or stop the servo only when the synchronized motion is disengaged.

### **Conditions Causing Errors**

When one of the below situations occurs on the master axis which starts a synchronized motion or is during a synchronized motion, a master axis position reading error will occur on the slave axis. In this case, *CommandAborted* output will shifts to True at the same time.

- Process data objects (PDO) are not established for EtherCAT communications.
- EtherCAT slave communication error occurs due to incorrect EtherCAT communications settings.
- Absolute encoder failed to calculate the current position and thus error occurs.
- The slave loses connection with the master.

**Note:** When MC\_Home instruction is started on the master axis, the slave will ignore the sudden position changes on the master axis. This behavior prevents the slave from fluctuating along with the homing process of the master axis.

# **1.3 Categories of Motion Control Instructions**

| Categories                                 | Туре           | Function Group                                  | Description                                                                                    |
|--------------------------------------------|----------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                            |                | Positioning on single axis                      |                                                                                                |
|                                            |                | Velocity control on single axis                 |                                                                                                |
|                                            | Motion         | Torque control on single axis                   | "MC_"<br>PLCopen-based motion control                                                          |
| Single-axis Motion Control<br>Instructions |                | Synchronized control on single axis             | instructions<br>"DFB_"                                                                         |
|                                            |                | Manual operation on single axis                 | Delta-defined motion control<br>instructions                                                   |
|                                            | Administrative | Administrative functions on single axis         |                                                                                                |
|                                            |                | G-codes                                         | Numerical Control                                                                              |
| Multi-axis Motion Control                  | Motion         | Group Motion                                    | Coordinated Control                                                                            |
| Instructions                               | Administrative | Administrative functions on multiple axes       | M-codes<br>Administrative functions on<br>G-codes and group motion                             |
| Auxiliary Instructions                     | Administrative | Supporting functions for configuring the system | High speed counters, high speed timers, high speed counters, high speed capture and comparison |
| Network instructions Administrative        |                | Supporting functions for setting the networks   | Motion network settings                                                                        |

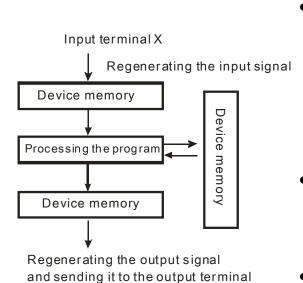
MEMO

2

# **Chapter 2** Devices, Symbols and Instructions

# **Table of Contents**

| 2.1    | Common Devices                                                 |
|--------|----------------------------------------------------------------|
| 2.1.1. | Functions of Common Devices                                    |
| 2.1.2. | Common Device List                                             |
| 2.1.3. | Latched Devices2-4                                             |
| 2.1.4. | Input Relays (X)                                               |
| 2.1.5. | Output Relays (Y) 2-6                                          |
| 2.1.6. | Auxiliary Relays (M)2-7                                        |
| 2.1.7. | Special Auxiliary Relays (SM)2-7                               |
| 2.1.8. | Data Registers (D) 2-7                                         |
| 2.1.9. | Special Data Registers (SR)2-7                                 |
| 2.1.10 | . Link Registers (L)                                           |
| 2.1.11 | . Stepping Relays (S)                                          |
| 2.1.12 | . Timers (T)                                                   |
| 2.1.13 | . Counters (C)                                                 |
| 2.1.14 |                                                                |
| 2.1.15 | . Values and Constants (K, 16#)2-9                             |
| 2.1.16 |                                                                |
| 2.1.17 | . Strings ("\$")                                               |
| 2.1.18 | Pointers (PR)                                                  |
| 2.1.18 | .1 Pointer Registers of Timers (T_Pointer) (TR) 2-10           |
|        | .2 Pointer Registers of 16-bit Counters (C_Pointer) (CR) 2-11  |
| 2.1.18 | .3 Pointer Registers of 32-bit Counters (HC_Pointer) (HCR)2-11 |
| 2.2    | Motion Control Devices2-12                                     |
| 2.2.1  | Parameters for Motion Axes: Structure 2-12                     |
| 2.3    | EtherCAT Symbols2-15                                           |
| 2.4    | Symbols                                                        |
| 2.4.1  | Application of Symbols 2-15                                    |
| 2.4.2  | Classes                                                        |
| 2.4.3  | Data Types 2-16                                                |
| 2.4.4  | Using instructions, Devices and Symbols 2-17                   |
| 2.4.5  | Modifying a Symbol with an Index Register 2-18                 |
| 2.5    | Data Type Unit (DUT): ENUM2-20                                 |


| 2.6   | Instructions2-2                             | 21 |
|-------|---------------------------------------------|----|
| 2.6.1 | Categories of Motion Control Instructions2- | 21 |
| 2.6.2 | List of Motion Control Instructions2-       | 21 |

# 2.1 Common Devices

This section describes the concept of common devices which include input/output/auxiliary relays, timers, counters, and data registers. For detailed descriptions on functions as well as characteristics of devices, you can refer to **AH Motion Controller – Operation Manual**. For details of motion control devices, refer to **2.2 Motion Control Devices**.

# 2.1.1. Functions of Common Devices

The procedure for processing the program in the PLC:



Regenerating the input signal:

- 1. Before the program is executed, the state of the external input signal is read into the memory of the input signal.
- When program is executed, the state in the memory of the input signal does not change even if the input signal changes from ON to OFF or from OFF to ON. Not until the next scan begins will the input signal be refreshed.
- Processing the program:

After the input signal is refreshed, the instructions in the program are executed in order from the start address of the program, and the results are stored in the device memories.

• Regenerating the state of the output:

After the instruction END is executed, the state in the device memory is sent to the specified output terminal.

| Туре       | Device name                |       | Number of devices          | Range                                     |
|------------|----------------------------|-------|----------------------------|-------------------------------------------|
|            | Input relay                | х     | 8192                       | X0.0~X511.15<br>(Supporting Force ON/OFF) |
|            | Output relay               | Y     | 8192                       | Y0.0~Y511.15<br>(Supporting Force ON/OFF) |
|            | Data register              | D     | 1048576                    | D0.0~D65535.15                            |
|            | Link registers             | L     | 1048576                    | L0.0~ L65535.15                           |
| Dit davias | Auxiliary relay            | М     | 8192                       | M0~M8191                                  |
| Bit device | Special<br>auxiliary relay | SM    | SM: 2048                   | SM0~SM2047                                |
|            | Stepping relay             | S     | 2048                       | S0~S2047                                  |
|            | Timer                      | Т     | 2048                       | T0~T2047                                  |
|            | Counter                    | С     | 2048                       | C0~C2047                                  |
|            | 32-bit counter             | HC/AC | HC: 64<br>AC: 56 (AH10EMC) | HC0~HC63<br>AC0~AC55 (AH10EMC)            |

### 2.1.2. Common Device List

### AH Motion Controller - Motion Control Instructions Manual

| Туре           | Device                                           | name  | Number of devices                                                                     | Range                          |
|----------------|--------------------------------------------------|-------|---------------------------------------------------------------------------------------|--------------------------------|
|                | Input relay                                      | Х     | 512                                                                                   | X0~X511                        |
|                | Output relay                                     | Y     | 512                                                                                   | Y0~Y511                        |
|                | Data register                                    | D     | 65536                                                                                 | D0~D65535                      |
|                | Special data register                            | SR    | SR: 2048                                                                              | SR0~SR2047                     |
| Word<br>device | Link registers                                   | L     | 1048576                                                                               | L0~ L65535                     |
|                | Timer                                            | Т     | 2048                                                                                  | T0~T2047                       |
|                | Counter                                          | С     | 2048                                                                                  | C0~C2047                       |
|                | 32-bit counter                                   | HC/AC | HC: 64<br>AC: 56 (AH10EMC)                                                            | HC0~HC63<br>AC0~AC55 (AH10EMC) |
|                | Index register                                   | E     | 32                                                                                    | E0~E31                         |
|                | Decimal<br>system                                | к     | 16 bits: -32768~32767<br>32 bits:<br>-2147483648~2147483647                           |                                |
|                | Hexadecimal system                               | 16#   | 16 bits: 16#0~16#FFFF<br>32 bits: 16#0~16#FFFFFFFF                                    |                                |
| Constant*      | Single-precisio<br>n floating-point<br>number    | F     | 32 bits: ±1.17549435 <sup>-38</sup> ~±3.40282347 <sup>+38</sup>                       |                                |
|                | Double-precisi<br>on<br>floating-point<br>number | DF    | 64 bits: ±2.2250738585072014 <sup>-308</sup> ~<br>±1.7976931348623157 <sup>+308</sup> |                                |
| String*        | String                                           | "\$"  | 1~31 characters                                                                       |                                |
| Pointer*       | Pointer                                          | PR    |                                                                                       |                                |

\*1: The decimal forms are notated by K in the device table in *AH Motion - Standard Instructions Manual*, whereas they are entered directly in ISPSoft. For example, entering 50 in ISPSoft indicates the value K50.

\*2: The floating-point numbers are notated by F/DF in the device table in *AH Motion - Standard Instructions Manual*, whereas they are represented by decimal points in ISPSoft. For example, entering 500.0 in ISPSoft indicates the value F500.

\*3: The strings are notated by \$ in *AH Motion - Standard Instructions Manual*, whereas they are represented by adding quotes (" ") to the value in ISPSoft. For example, entering "1234" in ISPSoft indicates the string 1234.

# 2.1.3. Latched Devices

• Latched areas of each type of device

| Device | Function    | Device range                                                  | Latched area                 |
|--------|-------------|---------------------------------------------------------------|------------------------------|
| x      | Input relay | X devices (bit):<br>X0.0~X511.15<br>X devices (word): X0~X511 | All devices are non-latched. |

| Device | Function                   | Device range                                                       | Latched area                                                                                                                                   |
|--------|----------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Y      | Output relay               | Y devices (bit):<br>Y0.0~Y511.15<br>Y devices (word): Y0~Y511      | All devices are non-latched.                                                                                                                   |
| M*     | Auxiliary relay            | M0~M8191                                                           | Default: M0~M8191                                                                                                                              |
| SM     | Special<br>auxiliary relay | SM: SM0~SM2047                                                     | Some devices are latched, and can not be<br>changed. Refer to the table of special auxiliary<br>relays in the appendices for more information. |
| S      | Stepping relay             | S0~S2047                                                           | All devices are non-latched.                                                                                                                   |
| T*     | Timer                      | T0~T2047                                                           | Default: T0~T2047.                                                                                                                             |
| C*     | Counter                    | C0~C2047                                                           | Default: C0~C2047.                                                                                                                             |
| HC/AC* | 32-bit counter             | HC: HC0~HC63<br>AC: AC0~ AC55<br>(AH10EMC)                         | Default: HC0~HC63.<br>AC devices are non-latched.                                                                                              |
| D*     | Data register              | D device (bit):<br>D0.0~D65535.15<br>D device (word):<br>D0~D65535 | Default: D0~D32767.<br>At most 32768 devices can be latched devices.                                                                           |
| SR     | Special data register      | SR: SR0~SR2047                                                     | Some are latched, and can not be changed.<br>Refer to the list of special data registers for more<br>information.                              |
| L      | Link register              | L0~ L65535                                                         | All devices are non-latched.                                                                                                                   |
| E      | Index register             | E0~E31                                                             | All devices are non-latched.                                                                                                                   |

\*Note: You can define the range of latched areas for T, C, HC and D and set the devices to be non-latched. Note that the range should not exceed the available device range, and only 32768 D devices at most can be non-latched. For example, you can set D50~D32817 or D32768~D65535 to latched area though the default range of latched areas is D0~D32767.

• Behavior of non-latched and latched devices

| PLC acti         | Device type                                                              | Non-latched | Latched  | Output relay                                                                         |
|------------------|--------------------------------------------------------------------------|-------------|----------|--------------------------------------------------------------------------------------|
|                  | Power: OFF→ON                                                            |             | Retained | Cleared                                                                              |
|                  | The output relay is cleared.                                             | Retained    | Retained | Cleared                                                                              |
| STOP<br>↓<br>RUN | The state of the output relay is retained.                               | Retained    | Retained | Retained                                                                             |
|                  | The state of the output relay returns to that before the PLC's stopping. | Retained    | Retained | The state of the<br>output relay<br>returns to that<br>before the PLC's<br>stopping. |
|                  | The non-latched devices are cleared.                                     | Cleared     | Retained | Cleared                                                                              |
|                  | The state of latched devices is retained.                                | Retained    | Retained | Retained                                                                             |
|                  | RUN→STOP                                                                 | Retained    | Retained | Retained                                                                             |

2

| Device type PLC action                                 | Non-latched | Latched  | Output relay |
|--------------------------------------------------------|-------------|----------|--------------|
| SM204 is ON.<br>(All non-latched devices are cleared.) | Cleared     | Retained | Cleared      |
| SM205 is ON.<br>(All latched devices are cleared.)     | Retained    | Cleared  | Retained     |
| Default value                                          | 0           | 0        | 0            |

# 2.1.4. Input Relays (X)

• The function of the input

The input is connected to the input device (e.g. external devices such as button switches, rotary switches, number switches, and etc.), and the input signal is read into the PLC. Besides, contact A or contact B of the input can be used several times in the program, and the ON/OFF state of the input varies with the ON/OFF state of the input device.

• The input number (the decimal number)

For the PLC, the input numbers start from X0.0. The number of inputs varies with the number of inputs on the digital input/output modules, and the inputs are numbered according to the order in which the digital input/output modules are connected to the CPU module. The maximum number of inputs on the PLC can reach up to 8192, and the range is between X0.0 and X511.15.

• The input type

The inputs are classified into two types.

- 1. Regenerated input: Before the program is executed, the data is fed into the PLC according to the states of the inputs which are regenerated. For example, LD X0.0.
- 2. Direct input: During the execution of the instructions, the data is fed into the PLC according to the states of the inputs. For example, LD DX0.0.

# 2.1.5. Output Relays (Y)

• The function of the output

The task of the output is sending the ON/OFF signal to drive the load connected to the output. The load can be an external signal lamp, a digital display, or an electromagnetic valve. There are three types of outputs. They are relays, transistors, and TRIACs (AC thyristors). Contact A or contact B of the output can be used several times in the program, but the output should be used only once in the program. Otherwise, according the program-scanning principle of the PLC, the state of the output depends on the circuit connected to the last output in the program.

• The output number (the decimal number)

For the PLC, the input numbers start from X0.0. The number of outputs varies with the number of outputs on the digital input/output modules, and the outputs are numbered according to the order in which the digital input/output modules are connected to the PLC. The maximum number of outputs on the PLC can reach up to 8192, and the range is between Y0.0 and Y511.15.

The output which is not practically put to use can be used as a general device.

The output type

The outputs are classified into two types.

- 1. Regenerated output: Not until the program executes the instruction END is the information fed out according to the states of the outputs. For example, OUT Y0.0.
- 2. Direct output: When the instructions are executed, the information is fed out according to the states of the outputs. For example, OUT DY0.0.

### 2.1.6. Auxiliary Relays (M)

The auxiliary relay has contact A and contact B. It can be used several times in the program. You can combine the control loops by means of the auxiliary relay, but can not drive the external load by means of the auxiliary relay. The auxiliary relays can be divided into two types according to their attributes.

- 1. For general use: If an electric power cut occurs when the PLC is running, the auxiliary relay for general use will be reset to OFF. When the power supply is restored, the auxiliary relay for general use is still OFF.
- 2. For latched use: If an electric power cut occurs when the PLC is running, the state of the auxiliary relay for latched use will be retained. When the power supply is restored, the state remains the same as that before the power electric cut.

### 2.1.7. Special Auxiliary Relays (SM)

#### SM: special auxiliary relays

Every special auxiliary relay has its specific function. Please do not use the special auxiliary relays which are not defined.

For function descriptions of each special auxiliary relay (SM), refer to **Appendix 1: Special Auxiliary Relays Table** of **AH** *Motion Controller - Standard Instructions Manual.* 

### 2.1.8. Data Registers (D)

The data register stores the 16-bit data. The highest bit represents either a positive sign or a negative sign, and the values which can be stored in the data registers range from -32,768 to +32,767. Two 16-bit registers can be combined into a 32-bit register, i.e. (D+1, D) in which the register whose number is smaller represents the low 16 bits. The highest bit represents either a positive sign or a negative sign, and the values which can be stored in the data registers range from -2,147,483,648 to +2,147,483,647. Besides, four 16-bit registers can be combined into a 64-bit register, i.e. (D+3, D+2, D+1, D) in which the register whose number is smaller represents the lower 16 bits. The highest bit represents either a positive sign or a negative sign, and the values which can be stored in the data registers range from -9,223,372,036,854,776 to +9,223,372,036,854,775,807. The data registers also can be used to refresh the values in the control registers in the modules other than digital I/O modules. Please refer to ISPSoft User Manual for more information regarding refreshing the values in the control registers.

The registers can be classified into two types according to their properties:

- General-purpose register: If the PLC begins to run, or is disconnected, the value in the register will be cleared to zero. If you want to retain the data when the PLC begins to RUN, you can refer to ISPSoft User Manual for more information. Please notice that the value will still be cleared to zero if the PLC is disconnected.
- Latched register: If the PLC is disconnected, the data in the latched register will not be cleared. In other words, the value before the disconnection is still retained. If you want to clear the data in the latched area, you can use RST or ZRST.

### 2.1.9. Special Data Registers (SR)

SR: special data registers.

Every special data register has its definition and specific function. The system statuses and the error messages are stored in the special data registers. Besides, the special data registers can be used to monitor the system statuses.

For function descriptions of each special data register (SR), refer to Appendix 2: Special Deta Registers Table of AH Motion Controller - Standard Instructions Manual.

### 2.1.10. Link Registers (L)

The link register is mainly used in for automatic data exchange function. When the data exchange occurs between the AH10EMC series PLCs, the link register can be used as the buffer.

The link registers L0~L65535 have 65536 words and can be used as the common auxiliary registers.

# 2.1.11. Stepping Relays (S)

The function of the stepping relay:

The stepping relay can be easily used in the industrial automation to set the procedure. It is the most basic device in the sequential function chart (SFC). Please refer to ISPSoft User Manual for more information related to sequential function charts.

There are 2048 stepping relays, i.e. S0~S2047. Every stepping relay is like an output relay in that it has an output coil, contact A, and contact B. It can be used several times in the program, but it can not directly drive the external load. Besides, the stepping relay can be used as a general auxiliary relay when it is not used in the sequential function chart.

# 2.1.12.Timers (T)

- 1. 100 millisecond timer: The timer specified by the instruction TMR takes 100 milliseconds as the timing unit.
- 2. 1 millisecond timer: The timer specified by the instruction TMRH takes 1 millisecond as the timing unit.
- 3. The timers for the subroutine's exclusive use are T1920~T2047.
- The accumulative timers are ST0~ST2047. If you want to use the device-monitoring function, you can monitor T0~T2047.
- 5. If the same timer is used repeatedly in the program, including in different instructions TMR and TMRH, the setting value is the one that the value of the timer matches first.
- 6. If the same timer is used repeatedly in the program, it is OFF when one of the conditional contacts is OFF.
- 7. If the same timer is used repeatedly in the program as the timer for the subroutine's exclusive use and the accumulative timer in the program, it is OFF when one of the conditional contacts is OFF.
- 8. When the timer is switched from ON to OFF and the conditional contact is ON, the timer is reset and counts again.
- 9. When the instruction TMR is executed, the specified timer coil is ON and the timer begins to count. As the value of the timer matches the setting value, the state of the contact is as follows.

| Normally open (NO) contact   | ON  |
|------------------------------|-----|
| Normally closed (NC) contact | OFF |

Refer to Chapter 5: Understanding Common Devices of *AH Motion Controller - Operation Manual* for more information.

# 2.1.13.Counters (C)

The function of the counter:

Each time the input switches from OFF to ON, the value of the counter increases by one increment. When the value of the counter matches the setting value, the output coil is ON. You can use either the decimal constant or the value in the data register as the setting value.

The 16-bit counter:

- 1. Setting range: 0~32,767 (The setting values 0 and 1 mean the same thing in that the output contact is ON when the counter counts for the first time.)
- 2. For the general-purpose counter, the current value of the counter is cleared when there is a power cut. If the counter is the latched one, the current value of the counter and the state of the contact before the power cut will be retained. The latched counter counts from the current value when the power supply is restored.
- 3. If you use the instruction MOV or ISPSoft to transmit a value bigger than the setting value to the current value register C0, the contact of the counter C0 will be ON and the current value will become the same as the setting value next time X0.1 is switched from OFF to ON.
- 4. You can use either the constant or the value in the register as the setting value of the counter.
- 5. The setting value of the counter can be a positive or a negative. If the counter counts up from 32,767, the next current value becomes -32,768.

Refer to Chapter 5: Understanding Common Devices of *AH Motion Controller - Operation Manual* for more information.

### 2.1.14.32-bit Counters (HC/AC)

HC: The 32-bit general-purpose addition/subtraction counter

AC: The 32-bit counters used specifically for motion axis. The function of AC is the same as that of HC

- 1. Setting range: -2,147,483,648~2,147,483,647
- The switch between the 32-bit general-purpose addition counters and the 32-bit general-purpose subtraction counters depends on the states of the special auxiliary relays SM621~SM684. For example, the counter HC0 is the addition counter when SM621 is OFF, whereas HC0 is the subtraction counter when SM621 is ON.
- You can use either the constant or the value in the data registers as the setting value of the counter, and the setting value can be a positive or a negative. If you use the value in the data registers as the setting value of the counter, the setting value occupies two consecutive registers.
- 4. For the general-purpose counter, the current value of the counter is cleared when there is a power cut. If the counter is the latched one, the current value of the counter and the state of the contact before the power cut will be retained. The latched counter counts from the current value when the power supply is restored.
- 5. If the counter counts up from 2,147,483,647, the next current value becomes -2,147,483,648. If the counter counts down from -2,147,483,648, the next current value becomes 2,147,483,647.

Refer to Chapter 5: Understanding Common Devices of AH Motion - Operation Manual for more information.

### 2.1.15. Values and Constants (K, 16#)

The PLC uses four types of values to execute the operation according to different control purposes. The functions of these values are illustrated as follows:

1. Binary number (BIN)

The PLC adopts the binary system to operate the values.

2. Decimal number (DEC)

The decimal number in the PLC is used as

• the setting value of the timer (T) or the setting value of the counter (C/HC). For example, TMR C0 50 (constant K).

- the device number. For example, M<u>10</u> and T<u>30</u> (device number)
- the number before or after the decimal point. For example, X0.0, Y0.11, and D10.0 (device number).
- the constant K: It is used as the operand in the applied instruction. For example, MOV 123 D0 (constant K).
- 3. Binary-coded decimal (BCD)

A decimal value is represented by a nibble or four bits, and therefore sixteen consecutive bits can represent a four-digit decimal value.

4. Hexadecimal number (HEX)

The hexadecimal number in the PLC is used as

• **the constant 16#**: It is used as the operand in the applied instruction. For example, MOV <u>16#1A2B</u> D0 (hexadecimal constant).

Refer to Chapter 5: Understanding Common Devices of *AH Motion Controller - Operation Manual* for more information.

# 2.1.16. Floating-point Numbers (F, DF)

The floating-point numbers are represented by decimal points in ISPSoft. For example, the floating-point number of 500 is 500.0.

Refer to Chapter 5: Understanding Common Devices of *AH Motion Controller - Operation Manual* for more information.

# 2.1.17.Strings ("\$")

What strings can process are ASCII codes (\*1). A complete string begins with a start character, and ends with an ending character (NULL code). If what you enter is a string, you can enter 31 characters at most, and the ending character 16#00 will be added automatically in ISPSoft.

Refer to Chapter 5: Understanding Common Devices of *AH Motion Controller - Operation Manual* for more information.

# 2.1.18. Pointers (PR)

- ISPSoft supports the function blocks. When the symbol declaration type is VAR\_IN\_OUT, and the data type is POINTER, the symbol will be assigned as pointer registers (PR). The value in the PR can refer directly to the value of device X, Y, D, or L, and the PR can also refer to the symbols with addresses which are automatically allocated by ISPSoft.
- You can declare 16 pointer registers in every function block: PR0~PR15 or PR0.0~PR15.15.

### 2.1.18.1 Pointer Registers of Timers (T\_Pointer) (TR)

- **ISPSoft** supports the function blocks. If you want to use the timer in the function block, you have to declare a pointer register of the timer (TR) in the function block. The address of the timer is transmitted to TR when the function block is called.
- When the symbol declaration type is VAR\_IN\_OUT, and the data type is T\_POINTER, the symbol will be assigned as TR. The value in the TR can refer directly to the value of device T or the symbols which are assigned as timers by ISPSoft.
- You can declare 8 pointer registers of the timers in every function block: TR0~TR7.

• If you want to use an instruction in the function block, and the timer is supported among the operands, you have to use the pointer register of the timer.

### 2.1.18.2 Pointer Registers of 16-bit Counters (C\_Pointer) (CR)

- **ISPSoft** supports the function blocks. If you want to use the 16-bit counter in the function block, you have to declare a pointer register of the 16-bit counter (CR) in the function block. The address of the 16-bit counter is transmitted to the CR when the function block is called.
- When the symbol declaration type is VAR\_IN\_OUT, and the data type is C\_POINTER, the symbol will be assigned as CR. The value in the CR can refer directly to the value of device C or the symbols which are assigned as 16-bit counters by **ISPSoft**.
- You can declare 8 pointer registers of the 16-bit counters in every function block: CR0~CR7.
- If you want to use an instruction in the function block, and the counter is supported among the operands, you have to use the pointer register of the 16-bit counter.

### 2.1.18.3 Pointer Registers of 32-bit Counters (HC\_Pointer) (HCR)

- **ISPSoft** supports the function blocks. If you want to use the 32-bit counter in the function block, you have to declare a pointer register of the 32-bit counter (HCR) in the function block. The address of the 32-bit counter is transmitted to the HCR when the function block is called.
- When the symbol declaration type is VAR\_IN\_OUT, and the data type is HC\_POINTER, the symbol will be assigned as HCR. The value in the HCR can refer directly to the value of device HC or the symbols which are assigned as 32-bit counters by ISPSoft.
- You can declare 8 pointer registers of the 32-bit counters in every function block: HCR0~HCR7.
- If you want to use an instruction in the function block, and the 32-bit counter is supported among the operands, you have to use the pointer register of the 32-bit counter.

Refer to Chapter 5: Understanding Common Devices of *AH Motion Controller - Operation Manual* for more information.

# 2.2 Motion Control Devices

Motion control devices are manly used for configuring parameters for motion axis. In most applications, you can set up axis parameters in ISPSoft software, which is a convenient environment for users. Axis parameters required for configuring motion control on axis are defined as Structures. A Structure is a data type applicable to group the data elements together. You can refer to *ISPSoft User Manual* for the operation of using structures.

### 2.2.1 Parameters for Motion Axes: Structure

For AH Motion CPUs, the applicable structure for setting up axis parameters is AXIS\_REF. The below table can be used in case there is a need to change axis parameters by modifying specific data registers. The detailed explanation also helps you to have a proper understanding of the axis parameters.

### The axis parameters for motion axes

| AXIS_REF                    |     | Description |                                                                                                           |                                          |                              |  |  |
|-----------------------------|-----|-------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------|--|--|
| Members                     |     | Data type   | Function                                                                                                  | Setting range                            | Factory setting<br>(Default) |  |  |
| Parm_settir                 | ng  | WORD        | Setting the parameters of the axis specified                                                              | Bit 0~bit15                              | 0                            |  |  |
| Pulse_of_1                  | Rev | DINT        | Number of pulses it takes for the motor of the axis specified to rotate once                              | 1~99999999<br>pulses/revolution          | 10,000                       |  |  |
| Parm_setti<br>ng            | 32  | DINT        | Distance generated after the motor of the                                                                 | 1~1000000<br>Userunit/                   | 10,000                       |  |  |
| Pulse_of_<br>1Rev           | 64  | LREAL       | axis specified rotate once                                                                                | revolution                               | 10,000                       |  |  |
| Maximum<br>_Speed           | 32  | DINT        | Maximum speed ( $V_{MAX}$ ) at which the axis                                                             | 0~2,147,483,647                          | 100,000                      |  |  |
| Max_Spee<br>d_f             | 64  | LREAL       | specified rotates                                                                                         | 0~2,147,403,047                          | 100,000                      |  |  |
| Start_up_s<br>peed          | 32  | DINT        | Start-up speed ( $V_{BIAS}$ ) at which the axis                                                           | 0~100,000                                | 0                            |  |  |
| Start_up_s<br>peed_f        | 64  | LREAL       | specified rotates                                                                                         | 0 * 100,000                              | 0                            |  |  |
| JOG_spee<br>d               | 32  | DINT        | JOG speed ( $V_{JOG}$ ) at which the axis                                                                 | 0~(2 <sup>31</sup> -1)                   | 5,000                        |  |  |
| Target_JO<br>G_speed_<br>f  | 64  | LREAL       | specified rotates                                                                                         | 0~1.7976931348*<br>(10 <sup>308</sup> )  | 5,000                        |  |  |
| Homing_speed<br>_for_switch |     | DINT        | Speed ( $V_{RT}$ ) at which the axis specified returns home (0.1RPM)                                      | 0~2,147,483,647                          | 2,000                        |  |  |
| Homing_speed<br>_for_zero   |     | DINT        | Speed ( $V_{CR}$ ) to which the speed of the axis specified decreases when the axis returns home (0.1RPM) | 0~2,147,483,647                          | 100                          |  |  |
| Homing_positio<br>n         |     | DINT        | Home position of the axis specified (User Unit)                                                           | -(2 <sup>31</sup> )~(2 <sup>31</sup> -1) | 0                            |  |  |

| AXIS_REF                                  |      | Description |                                                               |                                               |                              |  |  |
|-------------------------------------------|------|-------------|---------------------------------------------------------------|-----------------------------------------------|------------------------------|--|--|
| Members                                   |      | Data type   | Function                                                      | Setting range                                 | Factory setting<br>(Default) |  |  |
| Max_Accelerate<br>_time                   |      | INT         | Maximum acceleration time (TACC);<br>unit: ms                 | 0~1,000 ms                                    | 500                          |  |  |
| Max_Decel<br>e_time                       | erat | INT         | Maximum deceleration time (TDEC);<br>unit: ms                 | 0~1,000 ms                                    | 500                          |  |  |
| Target_cm<br>d_position<br>1              | 32   | DINT        | Target position of the axis specified                         | -(2 <sup>31</sup> )~(2 <sup>31</sup> -1)      | _                            |  |  |
| Target_cm<br>d_position<br>_f             | 64   | LREAL       | (User Unit)                                                   | (+-)1.7976931348<br>*(10 <sup>308</sup> )     | 0                            |  |  |
| Target_cm<br>d_speed1                     | 32   | DINT        | Speed at which the axis specified rotates                     | 0~(2 <sup>31</sup> -1)                        |                              |  |  |
| Target_cm<br>d_speed_f                    | 64   | LREAL       | (User Unit)                                                   | 0~1.7976931348*<br>(10 <sup>308</sup> )       | 0                            |  |  |
| Current_c<br>md_positio<br>n_UU           | 32   | DINT        |                                                               | -(2 <sup>31</sup> )~(2 <sup>31</sup> -1)      | 0                            |  |  |
| Current_c<br>md_positio<br>n_UU_f         | 64   | LREAL       | Present command position of the axis specified (User Unit)    | (+-)<br>1.7976931348*<br>(10 <sup>308</sup> ) | 0                            |  |  |
| Current_a<br>ctual_spee<br>d              | 32   | DINT        |                                                               | 0~(2 <sup>31</sup> -1) PPS                    | 0                            |  |  |
| Current_a<br>ctual_spee<br>d_UUperS<br>_f | 64   | LREAL       | Present command speed of the axis specified (User Unit/S)     | 0~1.7976931348*<br>(10 <sup>308</sup> )       | 0                            |  |  |
| Position_Lim_P<br>ositive_f               |      | LREAL       | Positive dirction position limit (User Unit)                  | 0~1.7976931348*<br>(10 <sup>308</sup> )       | 2,147,483,647                |  |  |
| Position_Lim_N<br>egative_f               |      | LREAL       | Negative dirction position limit (User Unit)                  | 0~-1.7976931348*<br>(10 <sup>308</sup> )      | 2,147,483,647                |  |  |
| Max_Accelerati<br>on_f                    |      | LREAL       | Maximum Acceleration (User Unit /S <sup>2</sup> )             | 0~1.7976931348*<br>(10 <sup>308</sup> )       | 1,000                        |  |  |
| Target_cmd_Ac celeration_F                |      | LREAL       | Target acceleration of the axis specified (User Unit $/S^2$ ) | 0~1.7976931348*<br>(10 <sup>308</sup> )       | 1,000                        |  |  |
| Max_Decelerati<br>on_f                    |      | LREAL       | Maximum Dcceleration (User Unit /S <sup>2</sup> )             | 0~1.7976931348*<br>(10 <sup>308</sup> )       | 1,000                        |  |  |
| Target_cmd_De<br>celeration_f             |      | LREAL       | Target deceleration of the axis specified (User Unit $/S^2$ ) | 0~1.7976931348*<br>(10 <sup>308</sup> )       | 200,000                      |  |  |

### AH Motion Controller – Motion Control Instructions Manual

| AXIS_REF                                                                  | Description |                                                                |                                                      |                              |  |
|---------------------------------------------------------------------------|-------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------|--|
| Members Data typ                                                          |             | Function                                                       | Setting range                                        | Factory setting<br>(Default) |  |
| Target_cmd_Je<br>rk_f                                                     | LREAL       | Target jerk of the axis specified (User Unit /S <sup>3</sup> ) | 0~1.7976931348*<br>(10 <sup>308</sup> )              | 0                            |  |
| Max_position_o<br>f_Rotary_Axis_f LREAL                                   |             | Maximum position of rotational axis<br>(User Unit )            |                                                      | 2,147,483,647                |  |
| Min_position_of<br>_Rotary_Axis_f LREAL (User Unit )                      |             | Minimum position of rotational axis<br>(User Unit )            | -2,147,483,647~0                                     | -2,147,483,647               |  |
| Current_Axis_e<br>rror_code                                               | WORD        | Axis error code                                                | Please refer to the error code tables in appendix A. | 0                            |  |
| Egear_ratio_Nu<br>merator INT                                             |             | Electronic gear ratio of the axis specified (Numerator)        | 1~99,999,999                                         | 128                          |  |
| Egear_ratio_De<br>nominator                                               | INT         | Electronic gear ratio of the axis specified (Denominator)      | 1~99,999,999                                         | 1                            |  |
| Electrical_zero                                                           | DINT        | Electrical zero of the axis specified                          | Users can set the value according to their needs.    | 0                            |  |
| StateMachine_<br>AxisStatus <sup>*1</sup> WORD State of the designed axis |             | Refer to the table below                                       | 2                                                    |                              |  |

### \*<sup>1</sup>: State of the designed axis

| Axis number | Description        |
|-------------|--------------------|
| 2           | Disabled           |
| 3           | Standstill         |
| 4           | Homing             |
| 5           | Stopping           |
| 6           | ContinuousMotion   |
| 7           | SynchronizedMotion |
| 8           | DiscreteMotion     |
| 9           | Coordinated        |
| 10          | CoordinatedHalt    |
| 11          | CoordinatedStop    |

# 2.3 EtherCAT Symbols

The EtherCAT symbols are used to read states of EtherCAT slave. The symbols can be seen from the EtherCAT symbol table in the ISPSoft software.

| EtherCAT Symbol         | Data type | Description                                            | Range                  | Default<br>settings |
|-------------------------|-----------|--------------------------------------------------------|------------------------|---------------------|
| eCAT_Dis.SlaveAddress[] | WORD[199] | The EtherCAT slave address that disconnected (n=0~198) | 0~9999                 | 0                   |
| eCAT_Dis.Count          | WORD      | The number of EtherCAT slave address that disconnected | 0~(2 <sup>16</sup> -1) | 0                   |

# 2.4 Symbols

During the process of developing a traditional program for a PLC, it generally takes much time to manage device addresses. Besides, managing or debugging the program in a big project is a burden on users. As a result, the concept of symbols in a high-level programming language is introduced into IEC 61131-3. A device in a PLC can be represented by a symbol, and a device can be automatically assigned to a symbol. The time of assigning devices is saved, a program is more readable, and the efficiency of developing a program increases. Variables in ISPSoft are called symbols. As a result, variables are the same as symbols in terms of meaning in this manual.

# 2.4.1 Application of Symbols

A symbol has to be declared before it is used. There are two types of symbols. They are global symbols and local symbols. The global symbols in a project can be used in all the POUs\* in the project, and the local symbols in a project can only be used in the POU in which the local symbols are declared. Besides, the identifier of a local symbol in a POU can be the same as the identifier of a local symbol in another POU. However, if the identifier of a local symbol declared in a POU is the same as the identifier of a global symbol, the system will automatically regard the local symbol declared in the POU as a local symbol.

\*Note: For further explanations regarding a POU, refer for ISPSoft User Manual.

# 2.4.2 Classes

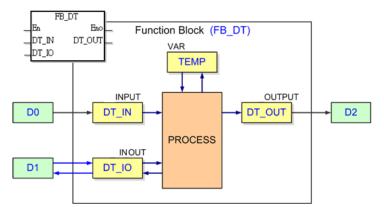
Symbols can be classified into four classes. The characteristics of these four classes are described below.

### • VAR - General symbol

The symbols of this class are for general operations only. The significance of a symbol of this class depends on the data type of the symbol.

### INPUT - Symbol used as an input pin of a function block

A symbol of this class is used as an input pin of a function block. It can only be declared in the function block. If a function block is called, the symbols of this class can receive the input values sent by the caller. Besides, in a ladder diagram, the symbols of this class are put at the left sides of function blocks, and the pins which receive the input values sent by the caller are assigned to the symbols of this class.


### OUTPUT - Symbol used as an output pin of a function block

A symbol of this class is used as an output pin of a function block. It can only be declared in a function block. After the execution of a function block is complete, the operation result will be sent to the caller through the symbols of this class.

Besides, in a ladder diagram, the symbols of this class are put at the right sides of function blocks, and the pins which send the operation results to the caller are assigned to the symbols of this class.

### • INOUT - Symbol used as a feedback pin of a function block

A symbol of this class is used as a feedback pin of a function block. It can only be declared in the function block. Please refer to the following example. When the function block is called, the caller sends the value in D1 to DT\_IO, which is a symbol of the INOUT class. After the operation comes to an end, the final value of DT\_IO is sent to D1. Besides, in a ladder diagram, the symbols of this class are put at the left sides of function blocks.



# 2.4.3 Data Types

The data type of a symbol determines the format of the value of the symbol. Suppose there are two symbols VAR\_1 and VAR\_2. The data type of VAR\_1 is BOOL, and the data type of VAR\_2 is WORD. If VAR\_1 and VAR\_2 are used in a program, VAR\_1 will represent a contact, and VAR\_1 will represent a 16-bit device which can be involved in arithmetic operation or transferring the data.

The data types supported by ISPSoft are listed below.

| Data type | Name                                 | Description                                                                | Program | Function<br>block |
|-----------|--------------------------------------|----------------------------------------------------------------------------|---------|-------------------|
| BOOL      | Boolean                              | A Boolean value represents the state of a contact, could be TRUE or FALSE. | ~       | $\checkmark$      |
| WORD      | Word                                 | Bit string of length 16.                                                   | ✓       | ✓                 |
| DWORD     | Double Word Bit string of length 32. |                                                                            | ✓       | ✓                 |
| LWORD     | Long Word Bit string of length 64.   |                                                                            | ✓       | ✓                 |
| UINT      | Unsigned integer                     | 16-bit data.                                                               | ✓       | ✓                 |
| UDINT     | Unsigned double integer              | 32-bit data.                                                               | ~       | $\checkmark$      |
| INT       | Integer                              | 16-bit data                                                                | ✓       | ✓                 |
| DINT      | Double integer                       | 32-bit data.                                                               | ✓       | ✓                 |
| LINT      | Long Integer                         | 64-bit data.                                                               | ✓       | ✓                 |

| Data type | Name             | Description                                                                                                                                                          | Program | Function<br>block |
|-----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|
| REAL      | Real numbers.    | 32-bit data; applicable to single width floating-point instructions.                                                                                                 | ✓       | ✓                 |
| LREAL     | Long reals       | 64-bit data; applicable to double width floating-point instructions.                                                                                                 | ~       | ✓                 |
| CNT       | Counter          | 16-bit counter value or 32-bit counter value.                                                                                                                        | ✓       | ✓                 |
| TMR       | Timer            | 16-bit timer value.                                                                                                                                                  | ✓       | ✓                 |
| ARRAY     | Array            | If a symbol is declared as an array, the size of<br>an array and an array data type must be<br>specified. (An array is composed of 256<br>elements/members at most.) | ~       | ✓                 |
| String    | Character string | Variable-length single-byte data string                                                                                                                              | ~       | ✓                 |

# 2.4.4 Using instructions, Devices and Symbols

A device is assigned to a symbol according to the data type of the symbol. You can set the initial value of a symbol. After the program in a project is downloaded to a motion controller, the initial values of the symbols will be written into the devices assigned to the symbols if the program is scanned for the first time.

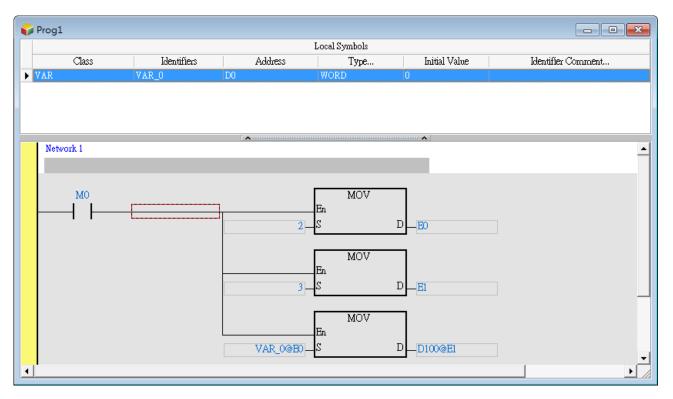
The principles of assigning devices to symbols are as follows.

- You can assign devices to the global symbols and the local symbols declared in the POUs which are programs. The system can also automatically assign devices to the global symbols and the local symbols declared in the POUs which are programs.
- If a local symbol declared in a function block is not a symbol of the VAR class, the system will automatically assign a device to the symbol, and you can not assign a device to the symbol.
- The devices assigned by the system are usable devices. (You can set a range of devices which can be assigned automatically.)
- If a symbol is declared, the device assigned to the symbol, the data type of the symbol, and the initial value of the symbol must be compatible with one another.

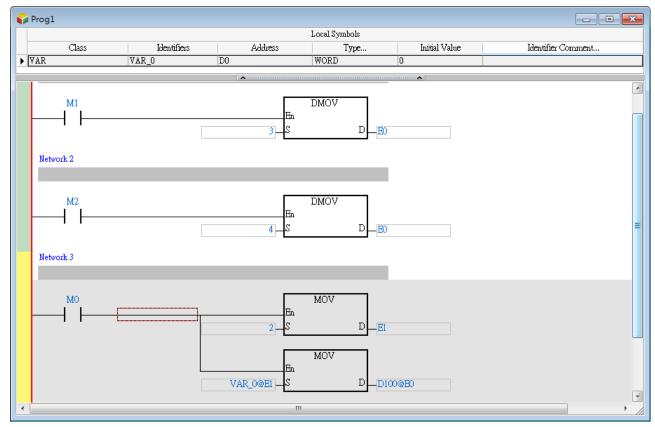
The relation between the data types and the device types which can be assigned is described below.

|           | AH Motion Controller CPU                   |                               |  |  |
|-----------|--------------------------------------------|-------------------------------|--|--|
| Data type | Device assigned by users                   | Device assigned by the system |  |  |
| BOOL      | Contact M/SM or bit in the device X/Y (*3) | Contact M/SM                  |  |  |
| WORD      | D                                          | W                             |  |  |
| DWORD     | D                                          | W                             |  |  |
| LWORD     | D                                          | W                             |  |  |

|           | AH Motion Controller CPU                                                                                                                                                                                                                                              |                               |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|
| Data type | Device assigned by users                                                                                                                                                                                                                                              | Device assigned by the system |  |  |  |
| UINT      | D                                                                                                                                                                                                                                                                     | W                             |  |  |  |
| UDINT     | D                                                                                                                                                                                                                                                                     | W                             |  |  |  |
| INT       | D                                                                                                                                                                                                                                                                     | W                             |  |  |  |
| DINT      | D                                                                                                                                                                                                                                                                     | W                             |  |  |  |
| LINT      | D                                                                                                                                                                                                                                                                     | W                             |  |  |  |
| REAL      | D                                                                                                                                                                                                                                                                     | W                             |  |  |  |
| LREAL     | D                                                                                                                                                                                                                                                                     | W                             |  |  |  |
| CNT       | C                                                                                                                                                                                                                                                                     | С                             |  |  |  |
| TMR       | T T                                                                                                                                                                                                                                                                   |                               |  |  |  |
| ARRAY     | `The devices assigned to a symbol whose data type is ARRAY depend on the array type specified. An array is composed of the devices starting from the device assigned by users or the system, and the number of devices in an array conforms to the size of the array. |                               |  |  |  |
| String    | N/A                                                                                                                                                                                                                                                                   |                               |  |  |  |


\*1. Please refer to *ISPSoft User manual* for more information about setting a range of devices which can be assigned automatically.

- \*2. A symbol representing a function block definition has a special significance. Please refer to *ISPSoft User manual* for more information.
- \*3. X0.0 and Y0.1 are bits in the word devices X and Y. Please refer to ISPSoft User manual for more information.


# 2.4.5 Modifying a Symbol with an Index Register

You are allowed to use index registers (E device) in ISPSoft to modify a symbol. The E devices are like general 16-bit data registers. You can write data into the E devices and read data from the E devices freely. If a E device is used as a general register, it can only be used in a 16-bit instruction. The modification of a symbol by an index register is represented by the format: **Identifier@Index register**. If an E device is used to modify an operand, it can be used in a 16-bit instruction or a 32-bit instruction.

Please refer to the program below. The device assigned to VAR\_0 is D0. The data stored in an index register indicates the offset for the symbol which the index register modifies. If the value in the index register E0 is 2, VAR\_0@ E0 indicates that 2 is added to the device address (D0) assigned to VAR\_0, that is, VAR\_0@E0 represents D2. If M0 is ON, the value in E0 will be 2, the value in E1 will be 3, and the value in D2 will be moved to D103.



Besides, if the value in an index register is changed, the device which actually operates differs from the original device. As a result, if the original device is not used in the program, the final value in the original device is retained. In the figure below, if the value in E0 is 3, the value in D2 will be moved to D103. When the value in E0 is changed from 3 to 4, the value in D2 will be moved to D104, and the value in D103 will remain unchanged.



- \*1. The data stored in an index register indicates the offset for the device which the index register modifies. If the system automatically assigns a device to a symbol, the use of an index register to modify the symbol will cause the program to be executed incorrectly because users do not know which device is assigned to the symbol.
- \*2. If you want to assign index registers to symbols, you have to specify device addresses and data types.

# 2.5 Data Type Unit (DUT): ENUM

You can also use the data type unit (DUT) for enumeration (ENUM). ENUM is a derivative data type which defines the ENUM symbol with its elements and the associated values. You can specify the initial value to an element, and use one of the enumerated values in the associated elements list. The list defines an ordered set of values in series, starting with the first element and ending with the last one. You can use the same element in different ENUM symbols.

The rules for specifying the elements and the values for an ENUM symbol:

- If elements are not specified, the initial value will be 0, and following 1, and etc.
- When elements are specified with initial values, the initial value of the element will be changed. The enumerated values before the element is defined with an initial value remain unchanged. For example, 0, 1, 2 (not defined), 35(the defined initial value), 36, 37, and etc.
- Another example when the element is defined twice: 0, 1, 2 (not defined), 35(first defined value), 36, 70(second defined value), 71, and etc.
- The two setting methods:

| 😜 DUT                                                                                                                                                   |                                           |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|
| Name DUT_ENUM Data                                                                                                                                      | a Type INT 💌                              | <u>^</u>  |
| Element<br>red<br>blue<br>green                                                                                                                         | Value           2           4           6 | Via table |
| <pre>     DUT     0001 TYPE DUT_ENUM :     0002 (     0003 red:=2, blue:=4, g     0004 ) INT;     0005 END_TYPE     0006     0007     0008     1 </pre> | reen:=6                                   | Via texts |

You can refer to **Appendices** of this manual for a list of Enumerations. For more information about the software operation, refer to **ISPSoft User Manual**.

# 2.6 Instructions

Instructions used for the AH Motion products include standard instructions and motion control instructions. For information of standard instructions, refer to *AH Motion Controller – Standard Instructions Manuals*.

2.6.1 Categories of Motion Control Instructions

| Categories                                 | Туре           | Function Group                                  | Description                                                                      |
|--------------------------------------------|----------------|-------------------------------------------------|----------------------------------------------------------------------------------|
|                                            |                | Positioning on single axis                      |                                                                                  |
|                                            |                | Velocity control on single axis                 | "MC_"                                                                            |
|                                            | Motion         | Torque control on single axis                   | PLCopen-based motion control                                                     |
| Single-axis Motion Control<br>Instructions |                | Synchronized control on single axis             | instructions<br>"DFB"                                                            |
|                                            |                | Manual operation on single axis                 | Delta-defined motion control                                                     |
|                                            | Administrative | Administrative functions on single axis         | instructions                                                                     |
|                                            |                | G-codes                                         | Numerical Control                                                                |
| Multi-axis Motion Control                  | Motion         | Group Motion                                    | Coordinated Control                                                              |
| Instructions                               | Administrative | Administrative functions on multiple axes       | M-codes<br>Administrative functions on<br>G-codes and group motion               |
| Auxiliary Instructions                     | Administrative | Supporting functions for configuring the system | High speed counters, high speed timers, high speed comparison and comparison and |
| Network instructions                       | Administrative | Supporting functions for setting the networks   | Motion network settings                                                          |

# 2.6.2 List of Motion Control Instructions

Columns

| 1     | <u>2</u><br>↑   | 3<br>↑                                                                                                                                             |                                                                   | <u>4</u><br>↑                                                                                                               |
|-------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| FB/FC | Name            | Graphic expre                                                                                                                                      | ession                                                            | Description                                                                                                                 |
| FB    | MC_MoveAbsolute | MC_MoveAbs<br>En<br>Axis<br>Execute<br>ContinuousUpdate<br>Position<br>Velocity<br>Acceleration<br>Deceleration<br>Jeck<br>Direction<br>BufferMode | olute<br>Eno<br>Done<br>Busy<br>Active<br>Abort<br>Enror<br>Enror | MC_MoveAbsolute<br>controls the axis to<br>move to the specified<br>absolute target<br>position at a specified<br>behavior. |

| Iter | Items provided in the table |                                                                                                                                                                               |  |  |  |
|------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | FB/FC                       | <b>FB</b> : Function block; <b>FC</b> : Function<br>For further explanations of Program(PROG), Function block(FB), and Function (FC), refer to<br><i>ISPSoft User Manual.</i> |  |  |  |
| 2    | Name                        | The name of the instruction<br>"MC_": PLCopen-based motion control instructions<br>"DFB_": Delta-defined motion control instructions                                          |  |  |  |
| 3    | Graphic<br>expression       | The graphic expression used in the ladder diagram in the software                                                                                                             |  |  |  |
| 4    | Description                 | The function description of the instruction                                                                                                                                   |  |  |  |

# • Single-axis Motion Control Instructions

For instruction details, refer to 3.2 PLCopen-based Motion Control Instructions and 3.3 Delta-defined Motion Control Instructions

#### Motion

| FB/FC | Name    | Graphi       | Description    |                         |
|-------|---------|--------------|----------------|-------------------------|
|       |         | M            | C_Home         |                         |
|       |         | En           | Eno            |                         |
|       |         | Axis         | Done           |                         |
|       | MC Hama | Execute      | Busy           | MC_Home controls        |
| FB    | MC_Home | Position     | Active         | the axis to perform the |
|       |         | HomeMode     | CommandAborted | homing operation.       |
|       |         | BufferMode   | Error          |                         |
|       |         |              | EnorID         |                         |
|       |         | N            | [C_Stop        |                         |
|       |         | En           | Eno            |                         |
|       |         | Axis         | Done           |                         |
|       | MO Otar | Execute      | Busy           | MC_Stop decelerates     |
| FB    | MC_Stop | Deceleration | Active         | an axis to a stop.      |
|       |         | Jerk         | CommandAborted |                         |
|       |         |              | Error          |                         |
|       |         |              | EnorID         |                         |
|       |         | N            | IC_Halt        |                         |
|       |         | En           | Eno            |                         |
|       |         | Axis         | Done           |                         |
|       |         | Execute      | Busy           |                         |
| FB    | MC_Halt | Deceleration | Active         | MC_Halt halts an axis.  |
|       |         | Jerk         | CommandAborted |                         |
|       |         | BufferMode   | Error          |                         |
|       |         |              | EnorID         |                         |

| FB/FC | Name            | Graphic expression                                                                                                                                                                                        | Description                                                                                                                 |
|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| FB    | MC_MoveAbsolute | MC_MoveAbsolute<br>En Eno<br>Axis Done<br>Execute Busy<br>ContinuousUpdate Active<br>Position CommandAborted<br>Velocity Enror<br>Acceleration EnrorID<br>Deceleration<br>Jerk<br>Direction<br>BufferMode | MC_MoveAbsolute<br>controls the axis to<br>move to the specified<br>absolute target<br>position at a specified<br>behavior. |
| FB    | MC_MoveRelative | MC_MoveRelative<br>En Eno<br>Axis Done<br>Execute Busy<br>ContinuousUpdate Active<br>Distance CommandAborted<br>Velocity Enror<br>Acceleration EnrorID<br>Deceleration<br>Jerk<br>BufferMode              | MC_MoveRelative<br>controls the axis to<br>move a specified<br>relative distance with a<br>specified behavior.              |
| FB    | MC_MoveAdditive | MC_MoveAdditive<br>En Eno<br>Axis Done<br>Execute Busy<br>ContinuousUpdate Active<br>Distance CommandAborted<br>Velocity Enror<br>Acceleration EnrorID<br>Deceleration<br>Jerk<br>BufferMode              | MC_MoveAdditive<br>controls the axis to<br>move an additional<br>distance at a given<br>speed and<br>acceleration.          |

| FB/FC | Name                | Graphic expressio                                                                                                                                   | n                                                                                              | Description                                                                                                                                       |
|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| FB    | MC_MoveSuperImposed | . Velocity<br>Acceleration                                                                                                                          | ed<br>Eno.<br>Done.<br>Busy.<br>Active.<br>nandAborted.<br>Enror.<br>Enror.D.<br>eredDistance. | MC_Superimposed<br>controls the axis move<br>a relative<br>superimposed<br>distance at a specified<br>behavior while the axis<br>is moving.       |
| FB    | MC_HalfSuperimposed | MC_HaltSuperimpose<br>En<br>Axis<br>Execute<br>Deceleration<br>Jerk Comm                                                                            | ed<br>Eno<br>Done<br>Busy<br>Active<br>nandAborted<br>Error<br>ErrorID                         | MC_HaltSuperimpose<br>d halts all<br>superimposed motions<br>of the axis without<br>aborting the previous<br>superimposed motion.                 |
| FB    | MC_MoveVelocity     | MC_MoveVelocity<br>En<br>Axis<br>Execute<br>ContinuousUpdate<br>Velocity Comm<br>Acceleration<br>Deceleration<br>Jerk<br>Direction<br>BufferMode    | Eno<br>InVelocity<br>Busy<br>Active<br>nandAborted<br>Error<br>ErrorID                         | MC_MoveVelocity<br>performs velocity<br>control on an axis in<br>the position mode with<br>a specified behavior<br>and an average<br>velocity.    |
| FB    | MC_VelocityControl  | MC_VelocityControl<br>En<br>Axis<br>Execute<br>ContinuousUpdate<br>Velocity Comm<br>Acceleration<br>Deceleration<br>Jerk<br>Direction<br>BufferMode | Eno.<br>InVelocity.<br>Busy.<br>Active.<br>aandAborted.<br>Error.<br>Error.                    | MC_VelocityControl<br>performs velocity<br>control on an axis in<br>the velocity mode with<br>a specified behavior<br>and an average<br>velocity. |

| FB/FC | Name             | Graphic exp                                                                                                                                                                                                                                                                                                                                                                                                                             | Description                                                                               |                                                                                                               |
|-------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| FB    | MC_TorqueControl | MC_TorqueC<br>En<br>Axis<br>Execute<br>ContinuousUpdate<br>Torque<br>TorqueRamp<br>Velocity<br>Acceleration<br>Deceleration<br>Jerk<br>Direction<br>BufferMode                                                                                                                                                                                                                                                                          | Control<br>Eno<br>InTorque<br>Busy<br>Active<br>CommandAborted<br>Enor<br>EnrorID         | MC_TorqueControl<br>controls the torque by<br>using the Torque<br>Control Mode of the<br>applied servo drive. |
| FB    | MC_CamIn         | MC_Cam<br>En<br>Master<br>Slave<br>Execute<br>ContinuousUpdate<br>CamTable<br>Periodic<br>MasterAbsolute<br>SlaveAbsolute<br>MasterOffset<br>SlaveOffset<br>MasterOffset<br>SlaveOffset<br>MasterScaling<br>SlaveScaling<br>MasterStartDistance<br>MasterSyncPosition<br>ActivationPosition<br>ActivationPosition<br>ActivationMode<br>StartMode<br>Velocity<br>Acceleration<br>Deceleration<br>Jerk<br>MasterValueSource<br>BufferMode | aln Eno<br>InSync<br>EndOfProfile<br>Busy<br>Active<br>CommandAborted<br>Enror<br>EnrorID | MC_CamIn performs<br>cam operation by<br>engaging the cam.                                                    |

| FB/FC | Name               | Graphic                            | expression           | Description                              |
|-------|--------------------|------------------------------------|----------------------|------------------------------------------|
|       |                    | MC_                                | CamOut               |                                          |
|       |                    | En                                 | Eno                  |                                          |
|       |                    | Slave                              | Done                 | Cam operation is                         |
| FB    | MC_CamOut          | Execute                            | Busy                 | ended for the axis                       |
|       |                    |                                    | CommandAborted       | specified with the input parameter.      |
|       |                    |                                    | Error                |                                          |
|       |                    |                                    | EnrorID              |                                          |
|       |                    |                                    | GearIn               |                                          |
|       |                    | En                                 | Eno.                 |                                          |
|       |                    | Master                             | InG <del>c</del> ar. |                                          |
|       |                    | Slave                              | Busy.                |                                          |
|       |                    | Execute                            | Active.              | MC_GearIn                                |
|       |                    | ContinuousUpdate<br>RatioNumerator | Abort.               | establishes the gear                     |
| FB    | MC_GearIn          | RatioDenominator                   | Error<br>ErrorID     | relation (velocity)                      |
|       |                    | MasterValueSource                  |                      | between master and slave axis.           |
|       |                    | Acceleration                       |                      | slave axis.                              |
|       |                    | Deceleration                       |                      |                                          |
|       |                    | Jerk                               |                      |                                          |
|       |                    | BufferMode                         |                      |                                          |
|       |                    | MC                                 | GearOut              |                                          |
|       |                    | En En                              | Eno.                 |                                          |
|       |                    | Slave                              | Done.                | MC_GearOut                               |
| FB    | MC_GearOut         | Execute                            | Busy.                | disconnects the gear relation (velocity) |
|       | _                  |                                    | CommandAborted       | between master and                       |
|       |                    |                                    | Error.               | slave axis.                              |
|       |                    |                                    | EntorID .            |                                          |
|       |                    | MC_Phas                            | ingAbsolute          |                                          |
|       |                    | En                                 | Eno                  |                                          |
|       |                    | Master                             | Done                 |                                          |
|       |                    | Slave                              | Busy                 | MC_PhasingAbsolute                       |
|       |                    | Execute                            | Active               | shifts the phase of the                  |
| FB    | MC_PhasingAbsolute | PhaseShift                         | Abort                | master axis virtually by                 |
|       |                    | Velocity                           | Enor                 | a specified absolute                     |
|       |                    | Acceleration                       | ErrorID              | phase shift value.                       |
|       |                    | Deceleration                       | AbsolutePhaseShift   |                                          |
|       |                    | Jerk<br>Butte Made                 |                      |                                          |
|       |                    | BufferMode                         |                      |                                          |

| FB/FC | Name               | Graphic                                                                                                                   | c expression                                                                                              | Description                                                                                                             |
|-------|--------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FB    | MC_PhasingRelative | MC_Ph<br>En<br>Master<br>Slave<br>Execute<br>PhaseShift<br>Velocity<br>Acceleration<br>Deceleration<br>Jerk<br>BufferMode | asingRelative<br>Eno<br>Done<br>Busy<br>Active<br>Abort<br>Enror<br>Enror<br>EnrorID<br>CoveredPhaseShift | MC_PhasingRelative<br>shifts the phase of the<br>master axis virtually by<br>a specified relative<br>phase shift value. |

### ■ Administrative

| FB/F<br>C | Name              | Graphic express                                                                                               | ion                                                 | Description                                                                                                                                      |
|-----------|-------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| FB        | MC_Power          | MC_Power<br>En<br>Axis<br>Enable<br>EnablePositive<br>EnableNegative<br>Mode                                  | Eno<br>Status<br>Busy<br>Active<br>Enror<br>EnrorID | MC_Power enables or<br>disables the<br>corresponding servo<br>axis.                                                                              |
| FB        | MC_SetTorqueLimit | MC_SetTorqueLin<br>En<br>Axis<br>Enable<br>PositiveEnable<br>PositiveValue<br>NegativeEnable<br>NagativeValue | nit Eno<br>Status<br>Busy<br>Enror<br>EnrorID       | MC_SetTorqueLimit<br>instruction limits the<br>torque output from the<br>Servo Drive through<br>the torque limit function<br>of the Servo Drive. |
| FB        | MC_SetPosition    | MC_SetPosition<br>En<br>Axis<br>Execute<br>Position<br>Relative<br>ExecutionMode                              | Eno<br>Done<br>Busy<br>Enor<br>EnrorID              | MC_SetPosition<br>changes the current<br>position by shifting the<br>coordinate system of<br>an axis.                                            |

| FB/F<br>C | Name                  | Graphic    | expression    | Description                            |
|-----------|-----------------------|------------|---------------|----------------------------------------|
|           |                       |            | tOvenide      |                                        |
|           |                       | En         | Eno           | MC_SeOverride                          |
|           |                       | Axis       | Enabled       | changes the velocity                   |
| FB        | MC_SetOverride        | Enable     | Busy          | override factor so as to               |
|           |                       | VelFactor  | Error         | change the target velocity of a motion |
|           |                       | AccFactor  | ErrorID       | axis.                                  |
|           |                       | JerkFactor |               |                                        |
|           |                       | MC_ReadA   | ctualPosition |                                        |
|           |                       | En         | Eno           |                                        |
|           |                       | Axis       | Valid         | This instruction reports               |
| FB        | MC_ReadActualPosition | Enable     | Busy          | the actual axis position               |
|           |                       |            | Error         | continuously when                      |
|           |                       |            | ErrorID       | Enable is set.                         |
|           |                       |            | Position      |                                        |
|           |                       | MC_ReadA   | ctualVelocity |                                        |
|           |                       | En         | Eno           |                                        |
|           |                       | Axis       | Valid         | This instruction reports               |
| FB        | MC_ReadActualVelocity | Enable     | Busy          | the actual axis velocity               |
|           |                       |            | Error         | continuously when                      |
|           |                       |            | ErrorID       | Enable is set                          |
|           |                       |            | Velocity      |                                        |
|           |                       | MC_Read/   | ActualTorque  |                                        |
|           |                       | En         | Eno           |                                        |
|           |                       | Axis       | Valid         | This instruction reports               |
| FB        | MC_ReadActualTorque   | Enable     | Busy          | the axis torque                        |
|           |                       |            | Error         | continuously when                      |
|           |                       |            | EnorID        | Enable is set.                         |
|           |                       |            | Torque        |                                        |

| FB/F<br>C | Name                  | Graphic                                   | expression                                                                                                                                                                                                 | Description                                                                                                            |
|-----------|-----------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|           | Name<br>MC_ReadStatus |                                           | expression<br>eadStatus<br>Eno<br>Valid<br>Busy<br>Enor<br>EnrorID<br>EnrorStop<br>Disabled<br>Stopping<br>Homing<br>Standstill<br>DiscreteMotion<br>ContinousMotion<br>SyncMotion<br>Coordinated          | Description         MC_ReadStatus reads         the state of the axis         and indicates it at the         outputs. |
| FB        | MC_ReadMotionState    | MC_Read<br>En<br>Axis<br>Enable<br>Source | Coordinated<br>CoordinatedStop<br>CoordinatedHalt<br>MotionState<br>Eno<br>Valid<br>Busy<br>Error<br>ErrorID<br>ConstantVelocity<br>Accelerating<br>Decelerating<br>DirectionPositive<br>DirectionNegative | This instruction reports<br>details of the axis<br>status relating the<br>on-going motion<br>behavior                  |
| FB        | MC_ReadAxisError      | MC_Rea<br>En<br>Axis<br>Enable            | dAxisError<br>Eno<br>Valid<br>Busy<br>Error<br>ErrorID<br>AxisErrorID                                                                                                                                      | MC_ReadStatus reads<br>the state of the axis<br>and indicates it at the<br>outputs.                                    |
| FB        | MC_Reset              | MC<br>En<br>Axis<br>Execute               | _Reset<br>Eno<br>Done<br>Busy<br>Error<br>ErrorID                                                                                                                                                          | MC_Reset clears axis-related errors                                                                                    |

| FB/F<br>C | Name             | Graphic e                                                                                      | Graphic expression                                                                        |                                                                                                                       |  |
|-----------|------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| FB        | MC_TouchProbe    | MC_Tou<br>En<br>Axis<br>TriggerInput<br>Execute<br>WindowOnly<br>FirstPosition<br>LastPosition | nchProbe<br>Eno<br>Done<br>Busy<br>CommandAborted<br>Error<br>ErrorID<br>RecordedPosition | MC_TouchProbe<br>captures and records<br>an axis position when<br>a trigger event occurs.                             |  |
| FB        | MC_AbortTrigger  | MC_Abo<br>En<br>Axis<br>TriggerInput<br>Execute                                                | ntTrigger<br>Eno<br>Done<br>Busy<br>Enror<br>Enror                                        | MC_AbortTrigger<br>aborts instructions<br>which are intended to<br>capture trigger events<br>(e.g.<br>MC_TouchProbe). |  |
| FB        | DFB_AxisSetting1 | DFB_Ax:<br>En<br>Axis<br>Execute<br>Vmax<br>Vbias<br>Tacc<br>Tdec                              | isSetting1<br>Eno.<br>Done.<br>Busy.<br>Error.<br>ErrorID.                                | DFB_AxisSetting1<br>sets motion<br>parameters for the<br>specified axis.                                              |  |
| FB        | DFB_AxisSetting2 | DFB_Axi<br>En<br>Axis<br>Execute<br>Vcurve<br>PulseRev<br>DistanceRev                          | isSetting2<br>Eno.<br>Done.<br>Busy.<br>Error.<br>ErrorID.                                | DFB_AxisSetting2<br>sets motion<br>parameters for the<br>specified axis.                                              |  |

| FB/F<br>C | Name              | Graphic ex                                                                                                                                                                                                                                         | pression                                                                                                                                                                                                                                                              | Description                                                                                              |
|-----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| FB        | DFB_InputPolarity | DFB_Inpu<br>En<br>Enable<br>X0_00_Pg0<br>X0_01_Pg1<br>X0_02_Pg2<br>X0_03_Pg3<br>X0_08_mpgA<br>X0_09_mpgB<br>X0_10_Dog4<br>X0_11_Dog5<br>X0_12_Dog0<br>X0_13_Dog1<br>X0_14_Dog2<br>X0_15_Dog3<br>X1_00<br>X1_01<br>X1_02<br>X1_03<br>X1_04<br>X1_05 | Polarity<br>Eno<br>Valid<br>Pg0_X0_00<br>Pg1_X0_01<br>Pg2_X0_02<br>Pg3_X0_03<br>mpgA_X0_08<br>mpgB_X0_09<br>Dog4_X0_10<br>Dog5_X0_11<br>Dog0_X0_12<br>Dog1_X0_13<br>Dog2_X0_14<br>Dog3_X0_15<br>Nor_X1_00<br>Nor_X1_01<br>Nor_X1_03<br>Nor_X1_04<br>Nor_X1_05<br>Busy | DFB_InputPolarity<br>sets the polarity of<br>inputs and reads the<br>states of these input<br>terminals. |
| FB        | DFB_CamMultiRead  | DFB_CamN<br>.En<br>.CamTableId<br>.Enable<br>.ReadStartPointNo<br>.ReadAmount                                                                                                                                                                      | fultiRead<br>Eno.<br>Valid.<br>Error.<br>ErrorID.<br>MasterPosition.<br>SlavePosition.                                                                                                                                                                                | DFB_CamMultiRead<br>reads cam points from<br>the specified motion<br>axis.                               |
| FB        | DFB_CamMultiWrite | DFB_CamN<br>En<br>CamTableId<br>Execute<br>WriteStartPointNo<br>WriteAmount<br>MasterPosition<br>SlavePosition                                                                                                                                     | fultiWrite<br>Eno.<br>Done.<br>Busy.<br>Error.<br>Error.D.                                                                                                                                                                                                            | DFB_CamMultiWrite<br>writes cam poinst to<br>the specified cam<br>curve                                  |

2

| FB/F<br>C | Name                | Graphic expr                                                                                                                                      | ression                                                                                 | Description                                                                                                   |
|-----------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| FB        | DFB_CamCurve2       | DFB_CamCo<br>En<br>Slave<br>Execute<br>MLength_P<br>SLength_P<br>SSyncLength_P<br>SSyncRatio<br>SMaxRatio<br>AccCurve<br>eCamCurve<br>Concatenate | urve2<br>Eno .<br>Done .<br>Busy .<br>Error .<br>Error ID .<br>SyncBegin .<br>SyncEnd . | DFB_CamCurve2<br>creates cam curves<br>which are mainly used<br>in rotary cut and flying<br>saw applications. |
| FB        | DFB_CamCurveUpdate2 | DFB_CamCurve<br>En<br>Execute<br>Slave<br>UpdateImmediately                                                                                       | eUpdate2<br>Eno<br>Done<br>Busy<br>Enor<br>EnrorID                                      | DFB_CamCurveUpdat<br>e2 updates the cam<br>operation with the<br>modified cam profile in<br>the next cycle.   |

# • Multi-axis Motion Control Instructions

For instruction details, refer to 3.3 Delta-defined Motion Control Instructions

#### Motion

| FB/FC | Name               | Graphic expression                                                                                    |                                                                        | Descriptio<br>n                                                                                                                                  |
|-------|--------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_GroupGcodeRun  | DFB_GroupGcodeR<br>.En<br>.GroupNum<br>.GcodeID<br>.Execute<br>.Filter                                | un Eno.<br>Done.<br>Busy.<br>Aborted.<br>Enror.<br>EnrorID.<br>EnDone. | DFB_GroupGcodeRu<br>n performs G-code<br>motion on the axis<br>group specified by<br><i>GcoupNum</i> .                                           |
| FB    | DFB_GroupAbsLinear | DFB_GroupAbsLine<br>En<br>GroupNum<br>Execute<br>Position<br>Velocity<br>BufferMode<br>TransitiomMode | ar Eno<br>Done<br>Busy<br>Active<br>Aborted<br>Enror<br>EnrorID        | DFB_GroupAbsLinea<br>r controls the axis<br>group to perform<br>linear interpolation to<br>move to the specified<br>absolute target<br>position. |

| FB/FC | Name                 | Graphic expression                                                                                                                                             | on                                                                           | Descriptio<br>n                                                                                                                                       |
|-------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_GroupRelLinear   | DFB_GroupRelLine<br>En<br>.GroupNum<br>.Execute<br>.Distance<br>.Velocity<br>.BufferMode<br>.TransitiomMode                                                    | ar Eno.<br>Done.<br>Busy.<br>Active.<br>Aborted.<br>Enror.<br>Enror.D.       | DFB_GroupAbsLinea<br>r controls the axis<br>group to perform<br>linear interpolation to<br>move to the specified<br>relative distance.                |
| FB    | DFB_GroupAbsCircular | DFB_GroupAbsCirce<br>En<br>GroupNum<br>Execute<br>DirectionCCW<br>IPMode<br>Position<br>AuxPosition<br>Velocity<br>SpiralTums<br>BufferMode<br>TransitiomMode  | ular<br>Eno.<br>Done.<br>Busy.<br>Active.<br>Aborted.<br>Error.<br>Error.ID. | DFB_GroupAbsLinea<br>r controls the axis<br>group to perform<br>linear interpolation to<br>move to the specified<br>relative distance.                |
| FB    | DFB_GroupRelCircular | DFB_GroupRelCircu<br>En<br>GroupNum<br>Execute<br>DirectionCCW<br>IPMode<br>Position<br>AuxPosition<br>Velocity<br>SpiralTurns<br>BufferMode<br>TransitiomMode | lar<br>Eno<br>Done<br>Busy<br>Active<br>Aborted<br>Enror<br>Enror D          | DFB_GroupAbsCircu<br>lar controls the axis<br>group to perform<br>arc/circular or helix<br>interpolation to move<br>a specified relative<br>distance. |
| FB    | DFB_GroupStop        | DFB_GroupStop<br>En<br>GroupNum<br>Execute<br>StopMode                                                                                                         | Eno<br>Done<br>Busy<br>Enor<br>EnorD                                         | DFB_GroupStop<br>decelerates the<br>group axes to stop or<br>pause to the current<br>position.                                                        |

2

#### ■ Administrative

| FB/FC | Name                  | Graphic expression                                                                                                                                       |                                                       | Description                                                                                                                                                            |
|-------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_GroupMcode        | DFB_GroupMcode<br>.En<br>.GroupNum<br>.Enable<br>.CLRMcode                                                                                               | Eno.<br>Valid.<br>Busy.<br>Enor.<br>EnorID.<br>Value. | In the G-code motion<br>of the specified axis<br>group,<br>DFB_GroupMcode<br>reads the M-code in<br>use.                                                               |
| FB    | DFB_GroupGcodeSetting | DFB_GroupGoodeSetting<br>En<br>GroupNum<br>Execute<br>VelPercentage                                                                                      | :<br>Done<br>Busy<br>Enor<br>EnorID                   | DFB_GroupGcodeSe<br>tting specifies the<br>behavior for<br>continuous<br>interpolation in<br>G-code motion by the<br>velocity percentage<br>setting<br>(VelPercentage) |
| FB    | DFB_GroupEnable       | DFB_GroupEnable<br>En<br>GroupNum<br>Execute<br>AxisNumOrder_1<br>AxisNumOrder_2<br>AxisNumOrder_3<br>AxisNumOrder_4<br>AxisNumOrder_5<br>AxisNumOrder_6 | Eno<br>Done<br>Busy<br>Error<br>ErrorID               | DFB_GroupEnable<br>enables a group of<br>axes for group<br>motion.                                                                                                     |
| FB    | DFB_GroupDisable      | DFB_GroupDisable<br>En<br>.GroupNum<br>.Execute                                                                                                          | Eno<br>Done<br>Busy<br>Enor<br>EnrorID                | DFB_GroupDisable<br>disables the axis<br>group with the<br>specidied group<br>number.                                                                                  |
| FB    | DFB_GroupReset        | DFB_GroupReset<br>En<br>GroupNum<br>Execute                                                                                                              | Eno<br>Done<br>Busy<br>Enror<br>EnrorID               | DFB_GroupReset<br>resets the axis group<br>which is in the state of<br>"Errorstop".                                                                                    |

| FB/FC | Name                | Graphic expression                       |                                                                                                                                                                                             | Description                                                                                                                                        |
|-------|---------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_ReadGroupStatus | DFB_ReadG<br>.En<br>.GroupNum<br>.Enable | roupStatus<br>Eno<br>Valid<br>Error<br>ErrorID<br>AxisNumOrder_1<br>AxisNumOrder_2<br>AxisNumOrder_3<br>AxisNumOrder_3<br>AxisNumOrder_5<br>AxisNumOrder_5<br>AxisNumOrder_6<br>GroupStatus | DFB_ReadGroupStat<br>us reads the axis<br>numbers in an axis<br>group, and indicates<br>the status of the axis<br>group at<br><i>GroupStatus</i> . |

# • Auxiliary instructions

For instruction details, refer to 3.3 Delta-defined Motion Control Instructions

| FB/FC | Name        | Graphic expressi                                                                                              | ion                                                    | Description                                                                                                                                                                         |
|-------|-------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_HCnt    | DFB_HCnt<br>En<br>Channel<br>Enable<br>ExtRstEN<br>InputType<br>InitialValue                                  | Eno<br>Valid<br>Busy<br>Enor<br>EnorD<br>CountValue    | DFB_HCnt enables<br>the specified high<br>speed counter<br>according to the<br>specified parameters<br>and monitors the<br>count value.                                             |
| FB    | DFB_HTmr    | DFB_HTmr<br>En<br>Channel<br>Enable<br>TriggerMode                                                            | Eno<br>Valid<br>Busy<br>Error<br>ErrorID<br>TimerValue | DFB_HCnt enables<br>the specified high<br>speed counter<br>according to the<br>specified parameters<br>and monitors the<br>count value.                                             |
| FB    | DFB_Compare | DFB_Compare<br>.En<br>.Channel<br>.Enable<br>.Source<br>.CmpMode<br>.OutputDevice<br>.OutputMode<br>.CmpValue | Eno.<br>Valid.<br>Busy.<br>Error.<br>ErrorID.          | DFB_Compare<br>compares the<br>designated source<br>with a specified value<br>and outputs the<br>specified results on a<br>desired device when<br>the comparison result<br>is True. |

2

| AH Motion | Controller - | Motion | Control  | Instructions | Manual |
|-----------|--------------|--------|----------|--------------|--------|
|           | Controller   | would  | 00111101 | matructions  | manuar |

| FB/FC | Name                         | Graphic expression                                                                             |                                                                                                                                       | Description                                                                                                           |
|-------|------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| FB    |                              |                                                                                                | mpOutRst<br>Eno<br>Valid<br>CMP_Y08<br>CMP_Y09<br>CMP_Y10<br>CMP_Y11<br>CMP_AC0Rst<br>CMP_AC4Rst<br>CMP_AC4Rst<br>CMP_AC12Rst<br>Busy | DFB_CmpOutRst<br>monitors the output<br>results and clears the<br>output states<br>triggered by the<br>comparators.   |
| FB    | DFB_CmpOutRst<br>DFB_Capture | DFB_<br>En<br>Channel<br>Enable<br>Source<br>CmpMode<br>OutputDevice<br>OutputMode<br>CmpValue | Compare<br>Eno.<br>Valid.<br>Busy.<br>Enor.<br>EnorID.                                                                                | DFB_Capture base<br>on user selected<br>trigger device to<br>capture the command<br>pulse of the user<br>assign axis. |

# • Network Instructions

For instruction details, refer to 3.3 Delta-defined Motion Control Instructions

| FB/FC | Name              | Graphic expression                                                                                          | Description                                                                                                                   |
|-------|-------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_ECATReset     | DFB_ECATReset<br>En Eno.<br>Execute Done.<br>Busy.<br>Enror.<br>Enror.                                      | DFB_ECATReset<br>resets an abnormal<br>EtherCAT network.                                                                      |
| FB    | DFB_ECATServoRead | DFB_ECATServoRead<br>En Eno<br>Axis Done<br>Execute Busy<br>Group Enror<br>Parameter EnrorID<br>Retry Value | DFB_ECATServoRea<br>d reads the values of<br>parameters from the<br>Delta servo drive<br>specified on an<br>EtherCAT network. |

| FB/FC | Name               | Graphic expression                                                                                                               | Description                                                                                                                     |
|-------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_ECATServoWrite | DFB_ECATServoWrite<br>En Eno.<br>Axis Done.<br>Execute Busy.<br>Group Error.<br>Parameter ErrorID.<br>Value<br>DataType          | DFB_ECATServoWrit<br>e writes the values of<br>parameters into the<br>Delta servo drive<br>specified on an<br>EtherCAT network. |
| FB    | DFB_SDO_Write      | DFB_SDO_Write<br>En Eno<br>SlaveAddress Done<br>Execute Busy<br>ODIndex Error<br>ODSubIndex ErrorID<br>Data<br>DataType<br>Retry | DFB_SDO_Write<br>writes the values of<br>parameters into the<br>specified OD of the<br>EtherCAT Slave via<br>SDO.               |
| FB    | DFB_SDO_Read       | DFB_SDO_Read<br>En Eno<br>SlaveAddress Done<br>Execute Busy<br>ODIndex Error<br>ODSubIndex ErrorID<br>DataType Data<br>Retry     | DFB_SDO_Read<br>reads the values of<br>parameters from the<br>specified OD of the<br>EtherCAT Slave via<br>SDO.                 |

MEMO



# **Chapter 3** Motion Control Instructions

# **Table of Contents**

| 3.1   | Applying This Chapter                                          | 3-3   |
|-------|----------------------------------------------------------------|-------|
| 3.1.1 | The Interface of a Motion Control Function Block               | 3-3   |
| 3.1.2 | PDO Mapping                                                    | 3-6   |
| 3.1.3 | List of Motion Control Related Instructions (Sort by function) | 3-6   |
| 3.2   | PLCopen-based Motion Control Instructions                      | 3-10  |
| MC_P  | ower                                                           | 3-12  |
| MC_H  | ome                                                            | 3-24  |
| MC_S  | ор                                                             | 3-32  |
| MC_H  | alt                                                            | 3-38  |
| MC_M  | oveAbsolute                                                    | 3-43  |
| MC_M  | oveRelative                                                    | 3-53  |
| MC_M  | oveAdditive                                                    | 3-61  |
| MC_M  | oveSuperimposed                                                | 3-71  |
| MC_H  | altSuperimposed                                                | 3-77  |
| MC_M  | oveVelocity                                                    | 3-81  |
| MC_V  | elocityControl                                                 | 3-88  |
| MC_T  | orqueControl                                                   | 3-95  |
| MC_S  | etTorqueLimit                                                  | 3-104 |
| MC_S  | etPosition                                                     | 3-107 |
| MC_S  | etOverride                                                     | 3-116 |
| MC_R  | eadActualPosition                                              | 3-121 |
| MC_R  | eadActualVelocity                                              | 3-123 |
| MC_R  | eadActualTorque                                                | 3-125 |
| MC_R  | eadStatus                                                      | 3-127 |
| MC_R  | eadMotionState                                                 | 3-133 |
| MC_R  | eadAxisError                                                   | 3-139 |
| MC_R  | eset                                                           | 3-141 |
| MC_T  | buchProbe                                                      | 3-143 |
| MC_A  | portTrigger                                                    | 3-149 |
| MC_C  | amIn                                                           | 3-152 |
| MC_C  | amOut                                                          | 3-176 |

| MC_ | _GearIn                                              | 3-182 |
|-----|------------------------------------------------------|-------|
| MC_ | _GearOut                                             |       |
| MC  | _PhasingAbsolute                                     | 3-193 |
| MC  | _PhasingRelative                                     |       |
| 3.3 | Delta-defined Motion Control Instructions            | 3-207 |
| 3.3 | S.1 Single-axis Motion Control Function Blocks       |       |
| DFE | 3_AxisSetting1                                       |       |
| DFE | 3_AxisSetting2                                       |       |
| DFE | 3_InputPolarity                                      |       |
| DFE | 3_CamMultiRead                                       |       |
| DFE | 3_CamMultiWrite                                      |       |
| DFE | 3_CamCurve2                                          | 3-226 |
| DFE | 3_CamCurveUpdate2                                    |       |
| 3.3 | <b>3.2 Multi-axis Motion Control Function Blocks</b> | 3-236 |
| DFE | 3_GroupAbsLinear                                     |       |
|     | 3_GroupRelLinear                                     |       |
|     | 3_GroupAbsCircular                                   |       |
|     | 3_GroupRelCircular                                   |       |
|     | 3_GroupStop                                          |       |
|     | 3_GroupEnable                                        |       |
|     | 3_GroupDisable                                       |       |
|     | 3_GroupReset                                         |       |
| DFE | 3_ReadGroupStatus                                    |       |
| 3.3 | <b>3.3</b> Auxiliary Motion Control Function Blocks  | 3-281 |
| DFE | 3_HCnt                                               | 3-282 |
| DFE | 3_HTmr                                               | 3-285 |
| DFE | 3_Compare                                            | 3-288 |
| DFE | 3_CmpOutRst                                          | 3-292 |
| DFE | 3_Capture2                                           | 3-296 |
| 3.3 |                                                      |       |
|     | 3_ECATReset                                          |       |
|     | 3_ECATServoRead                                      |       |
|     | 3_ECATServoWrite                                     |       |
|     | 3_SDO_Read                                           |       |
| DFE | 3_SDO_Write                                          |       |

# 3.1 Applying This Chapter

The interface of a motion control instruction includes inputs, outputs and in-outs. The definitions and the general behaviors of the common interface are explained in this section.

# 3.1.1 The Interface of a Motion Control Function Block

# • Definitions of Inputs and Outputs

Common inputs and outputs in motion control function blocks are listed below. A function block has one or a part of the inputs/outputs listed below. For example, a function block has either the *Execute* input or the *Enable* input, based on the properties of the motion control function block.

| Inputs                          |                                                                                                              |           |                         |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|-----------|-------------------------|
| Name                            | Description                                                                                                  | Date Type | Setting value (Default) |
| En                              | Receiving the logic state in front of this instruction.                                                      | BOOL      | True/False (False)      |
| Enable                          | Enabling the motion control function block                                                                   | BOOL      | True/False (False)      |
| Execute                         | Starting the motion control function block                                                                   | BOOL      | True/False (False)      |
|                                 | Outputs                                                                                                      |           |                         |
| Name                            | Description                                                                                                  | Date Type | Setting value(Default)  |
| Eno                             | Transfering the logic state of the <i>En</i> input to the following instruction which is connected in series | BOOL      | True/False (False)      |
| Done                            | The execution of the function block is complete.                                                             | BOOL      | True/False (False)      |
| Valid                           | An output value is valid.                                                                                    | BOOL      | True/False (False)      |
| Busy                            | The motion control function block is being executed.                                                         | BOOL      | True/False (False)      |
| Active                          | True when the axis is being controlled.                                                                      | BOOL      | True/False (False)      |
| Command<br>Aborted(Ab<br>orted) | The execution of the motion control function block is interrupted by another instruction.                    | BOOL      | True/False (False)      |
| Error                           | An error occurs in a function block.                                                                         | BOOL      | True/False (False)      |

A motion control function block has either the *Execute* input or the *Enable* input. The *Execute/Enable* input in a motion control function block is used to start the motion control function block. A motion control function block generally has the *Busy* output and the *Done* output. The *Busy* output and the *Done* output indicate the state of the motion control function block. If the execution of motion control function block is to be interrupted by another motion control function block, the *CommandAborted/Aborted* output will be added to the motion control function block. Besides, the *Error* output is used to indicate that an error occurs when the motion control function block is executed.

A motion control function block has not only the *Execute/Enable* input, but also value/state inputs. The characteristics of the value/state inputs are described below.

#### - Use of input values:

- If a function block has an *Execute* input, values are used when *Execute* input changes from False to True. If a new value is created, it becomes valid when the *Execute* input is triggered again while the instruction is not in busy status.
- If a function block has an *Enable* input, values are used when *Enable* input changes from False to True. Compared with the *Execute* input, the *Enable* input is used more often when an input value is updated repeatedly.

#### An input value exceeds a range.

After a function block is started, the input values which are not in ranges allowed will be limited, or result in an error occurring in the motion control function block. If an error occurring in a function block results in an error occurring in an axis, the function block is applied incorrectly. Users should prevent incorrect values from being generated in an applied program.

#### - Outputs are mutually exclusive.

- If the a function block has an *Execute* input which is set to True, either the *Busy* output, the *Done* output, the *CommandAborted* output, or the *Error* output can be set to True.
- If the a function block has an *Enable* input, the *Valid* output and the *Error* output are mutually exclusive, and only the *Valid* output or the *Error* output can be set to True.

#### Time when output data/states are valid

- If a function block has an *Execute* input, the *Done* output, the *Error* output, the *CommandAborted* output, and data output are reset when the *Execute* input changes from False to True. If the *Execute* input is reset before the execution of the function block is complete, i.e. *Busy* is True, output states of *Done*, *Error*, *CommandAborted* will still be generated and retained for one cycle.
- If a function block has an *Enable* input, the *Valid* output, the *Busy* output, and the *Error* output are reset when *Enable* input changes from True to False. (MC\_Power has different behaviors on the inputs and outputs, refer to MC\_Power for details.)

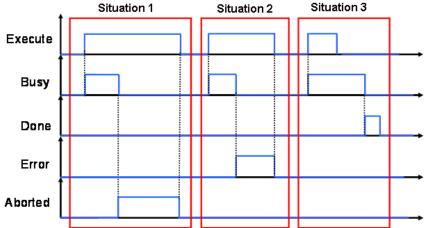
#### - Characteristic of the Done output

The *Done* output in a motion control function block will be set to True after the motion control function block is executed successfully.

#### - Characteristic of the Busy output

- If a function block has an *Execute* input, the function block uses the *Busy* output to indicate that the execution of the function block is not complete, and new output states (values) are expected to be generated. The *Busy* output is set to True when *Execute* input changes from False to True. When either the *Done* output, the *CommandAborted* output, or the *Error* output is set to True, the *Busy* output is reset.
- If a function block has an *Enable* input, the function block uses the *Busy* output to indicate that the execution of the function block is not complete, and new output states (values) are expected to be generated. The *Busy* output is set to True when *Enable* input changes from False to True, and remains True when the function block is executing. When the *Busy* output is True, output states (values) are updated continuously.

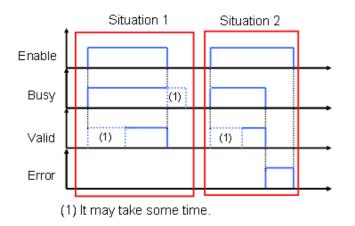
#### - Characteristic of the CommandAborted/Aborted output


The *CommandAborted* output in a motion control function block is set to True when the execution of the motion control function block is interrupted.

#### - Relation between the Enable input and the Valid output

If a function block has an *Enable* input, the function block uses the *Valid* output to indicate whether output data/states are valid. The *Valid* output is set to True only when the *Enable* input is set to True and output data/state becomes valid

and available. If an error occurs in a function block, output data/states will not be valid, and the *Valid* output will be set to False. The *Valid* output in a motion control function block will not be True until the error is eliminated and the output data/states become valid.


# Timing Diagram for Input/Outputs



Situation 1: The execution of the motion control function block is interrupted.

Situation 2: An error occurs in the motion control function block.

Situation 3: The execution of the motion control function block is complete normally.



Situation 1: The motion control function block is executed normally.

Situation 2: An error occurs in the motion control function block.

2

# 3.1.2 PDO Mapping

Before starting to use the motion control instructions, you must complete the PDO (Process Data Objects) mapping settings for processing data communications between the ISPSoft software and the AH Motion CPU.

Setting values for PDO mapping:

| RxPDO (1600 hex) | Control Word(6040 hex), TargetPosition(607A hex), TargetVelocity(60FF hex), TargetTorque (6071 hex), ModeOfOperation(6060 hex)              |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| TxPDO (1a00 hex) | Status Word(6041 hex), ActualPosition(6064 hex), Velocity actual value(606C hex), ActualTorque (6077 hex), ModeOfOperationDisplay(6061 hex) |

For the detailed explanations on PDO setting, refer to the corresponding Slave's Manual.

For the step-by-step PDO setting procedures, refer to ISPSoft User Manual.

# 3.1.3 List of Motion Control Related Instructions (Sort by function)

|                                         | Categories       | Name                | Description                                                                                                                           |
|-----------------------------------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                  | MC_Home             | MC_Home drives the axis to perform the homing operation.                                                                              |
|                                         |                  | MC_Stop             | MC_Stop decelerates an axis to a stop.                                                                                                |
|                                         |                  | MC_Halt             | MC_Halt halts an axis.                                                                                                                |
| S                                       |                  | MC MoveAbsolute     | MC_MoveAbsolute controls the axis to move to the specified absolute target position at a specified behavior.                          |
| structior                               | Position Control | MC MoveRelative     | MC_MoveRelative controls the axis to move a specified relative distance with a specified behavior.                                    |
| Single-axis motion control Instructions |                  | MC_MoveAdditive     | MC_MoveAdditive controls the axis to move an additional distance at a given speed and acceleration.                                   |
|                                         |                  | MC_MoveSuperImposed | MC_Superimposed controls the axis move a relative superimposed distance at a specified behavior while the axis is moving.             |
| ngle-axi                                |                  | MC HalfSuperimposed | MC_HaltSuperimposed halts all superimposed motions of the axis without aborting the previous superimposed motion.                     |
| Sir                                     | Velocity Control | MC MoveVelocity     | MC_MoveVelocity performs velocity control on an axis in the position mode with a specified behavior and an average velocity.          |
|                                         |                  | MC_VelocityControl  | MC_VelocityControl performs velocity control on an axis in<br>the velocity mode with a specified behavior and an average<br>velocity. |

|  | Categories                    | Name                  | Description                                                                                                                             |
|--|-------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|  | Torque Control                | MC TorqueControl      | MC_TorqueControl controls the torque by using the Torque Control Mode of the applied servo drive.                                       |
|  |                               | MC_CamIn              | MC_CamIn performs cam operation by engaging the cam.                                                                                    |
|  |                               | MC CamOut             | Cam operation is ended for the axis specified with the input parameter.                                                                 |
|  |                               | MC_GearIn             | MC_GearIn establishes the gear relation (velocity) between master and slave axis.                                                       |
|  |                               | MC_GearOut            | MC_GearOut disconnects the gear relation (velocity) between master and slave axis.                                                      |
|  | Synchronized control          | MC_GearInPos          | MC_GearInPos establishes the gear relation between master and slave axis with the specified starting synchronization position.          |
|  |                               | MC_PhasingAbsolute    | MC_PhasingAbsolute shifts the phase of the master axis virtually by a specified absolute phase shift value.                             |
|  |                               | MC_PhasingRelative    | MC_PhasingRelative shifts the phase of the master axis virtually by a specified relative phase shift value.                             |
|  |                               | MC_CombineAxis        | MC_GombineAxes combines the motion of 2 axes by summing or deducting the command positions of the two axes.                             |
|  | Manual<br>Operation           | DFB_MPG               | DFB_MPG enables the manual pulse generator (MPG) mode.                                                                                  |
|  | Single axis<br>administrative | MC_Power              | MC_Power enables or disables the corresponding servo axis.                                                                              |
|  |                               | MC_SetTorqueLimit     | MC_SetTorqueLimit instruction limits the torque output from<br>the Servo Drive through the torque limit function of the Servo<br>Drive. |
|  |                               | MC_SetPosition        | MC_SetPosition changes the current position by shifting the coordinate system of an axis.                                               |
|  |                               | MC_SetOverride        | MC_SeOverride changes the velocity override factor so as to change the target velocity of a motion axis.                                |
|  |                               | MC ReadActualPosition | This instruction reports the actual axis position continuously when <i>Enable</i> is set.                                               |
|  |                               | MC ReadActualVelocity | This instruction reports the actual axis velocity continuously when <i>Enable</i> is set                                                |
|  |                               | MC_ReadActualTorque   | This instruction reports the axis torque continuously when <i>Enable</i> is set.                                                        |

| Categories   | Name                 | Description                                                                                                                                    |
|--------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|              | MC ReadStatus        | MC_ReadStatus reads the state of the axis and indicates it at the outputs.                                                                     |
|              | MC ReadMotionState   | This instruction reports details of the axis status relating the on-going motion behavior                                                      |
|              | MC_ReadAxisError     | MC_ReadStatus reads the state of the axis and indicates it at the outputs.                                                                     |
|              | MC Reset             | MC_Reset clears axis-related errors                                                                                                            |
|              | MC_TouchProbe        | MC_TouchProbe captures and records an axis position when a trigger event occurs.                                                               |
|              | MC AbortTrigger      | MC_AbortTrigger aborts MC_TouchProbe instructions which are intended to capture trigger events.                                                |
|              | DFB AxisSetting1     | DFB_AxisSetting1 sets motion parameters for the specified axis.                                                                                |
|              | DFB_AxisSetting2     | DFB_AxisSetting2 sets motion parameters for the specified axis.                                                                                |
|              | DFB_InputPolarity    | DFB_InputPolarity sets the polarity of inputs and reads the states of these input terminals.                                                   |
|              | DFB_CamMultiRead     | DFB_CamRead reads cam points from the specified motion axis.                                                                                   |
|              | DFB CamMultiWrite    | DFB_CamWrite writes cam points to the specified cam curve                                                                                      |
|              | DFB CamCurve2        | DFB_CamCurve2 creates cam curves which are mainly used in rotary cut and flying saw applications.                                              |
|              | DFB_CamCurveUpdate2  | DFB_CamCurveUpdate2 updates the cam operation with the modified cam profile in the next cycle.                                                 |
|              | DFB_GroupAbsLinear   | DFB_GroupAbsLinear controls the axis group to perform linear interpolation to move to the specified absolute target position.                  |
|              | DFB GroupRelLinear   | DFB_GroupAbsLinear controls the axis group to perform linear interpolation to move to the specified relative distance.                         |
| Group Motion | DFB GroupAbsCircular | DFB_GroupAbsCircular controls the axis group to perform arc/circular or helix interpolation to move to the specified absolute target position. |
|              | DFB_GroupRelCircular | DFB_GroupAbsCircular controls the axis group to perform arc/circular or helix interpolation to move a specified relative distance.             |

|           | Categories            | Name                 | Description                                                                                                                                                 |
|-----------|-----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Stop                  | DFB GroupStop        | DFB_GroupStop decelerates the group axes to stop or pause to the current position.                                                                          |
|           |                       | DFB GroupEnable      | DFB_GroupEnable enables a group of axes for group motion.                                                                                                   |
|           | Multi-axes            | DFB_GroupDisable     | DFB_GroupDisable disables the axis group with the specidied group number.                                                                                   |
|           | administrative        | DFB_GroupReset       | DFB_GroupReset resets the axis group which is in the state of "Errorstop".                                                                                  |
|           |                       | DFB_ReadGroupStatus  | DFB_ReadGroupStatus reads the axis numbers in an axis group, and indicates the status of the axis group at <i>GroupStatus</i> .                             |
|           | High speed counter    | DFB HCnt             | DFB_HCnt enables the specified high speed counter according to the specified parameters and monitors the count value.                                       |
|           | High speed<br>timer   | DFB_HTmr             | DFB_HTmr enables the specified high speed timer channel according to the specified parameters and monitors and timed value.                                 |
| Auxiliary | Comparison            | DFB_Compare          | DFB_Compare compares the designated source with a specified value and outputs the specified results on a desired device when the comparison result is True. |
|           |                       | DFB_CmpOutRst        | DFB_CmpOutRst monitors the output results and clears the output states triggered by the comparators.                                                        |
|           | Capture               | <u>DFB_Capture</u> 2 | DFB_Capture2 captures the commanded pulses of the specified axis according to the designated external trigger deivce.                                       |
|           |                       | DFB_ECATReset        | DFB_ECATReset resets an abnormal EtherCAT network.                                                                                                          |
| Network   |                       | DFB ECATServoRead    | DFB_ECATServoRead reads the values of parameters from the Delta servo drive specified on an EtherCAT network.                                               |
|           | ECAT<br>Communication | DFB_ECATServoWrite   | DFB_ECATServoWrite writes the values of parameters into the Delta servo drive specified on an EtherCAT network.                                             |
|           |                       | DFB_SDO_Read         | DFB_SDO_Read reads the values of parameters from the specified OD of the EtherCAT Slave via SDO.                                                            |
|           |                       | DFB_SDO_Write        | DFB_SDO_Write writes the values of parameters into the specified OD of the EtherCAT Slave via SDO.                                                          |

# 3.2 PLCopen-based Motion Control Instructions

|                                         | Categories                   | Name                | Description                                                                                                                           |
|-----------------------------------------|------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Sing                                    |                              | MC_Home             | MC_Home drives the axis to perform the homing operation.                                                                              |
| jle-ax                                  |                              | MC Stop             | MC_Stop decelerates an axis to a stop.                                                                                                |
| dis m                                   |                              | MC Halt             | MC_Halt halts an axis.                                                                                                                |
| otion co                                |                              | MC_MoveAbsolute     | MC_MoveAbsolute controls the axis to move to the specified absolute target position at a specified behavior.                          |
| ntrol Ins                               | Position Control             | MC_MoveRelative     | MC_MoveRelative controls the axis to move a specified relative distance with a specified behavior.                                    |
| Single-axis motion control Instructions |                              | MC MoveAdditive     | MC_MoveAdditive controls the axis to move an additional distance at a given speed and acceleration.                                   |
| Ū                                       |                              | MC MoveSuperImposed | MC_MoveSuperimposed controls the axis move a relative superimposed distance at a specified behavior while the axis is moving.         |
|                                         |                              | MC HalfSuperimposed | MC_HaltSuperimposed halts all superimposed motions of the axis without aborting the previous superimposed motion.                     |
|                                         | Velocity Control             | MC_MoveVelocity     | MC_MoveVelocity performs velocity control on an axis in the position mode with a specified behavior and an average velocity.          |
|                                         |                              | MC_VelocityControl  | MC_VelocityControl performs velocity control on an axis in<br>the velocity mode with a specified behavior and an average<br>velocity. |
|                                         | Torque Control               | MC TorqueControl    | MC_TorqueControl controls the torque by using the Torque Control Mode of the applied servo drive.                                     |
|                                         |                              | MC_CamIn            | MC_CamIn performs cam operation by engaging the cam.                                                                                  |
|                                         |                              | MC_CamOut           | Cam operation is ended for the axis specified with the input parameter.                                                               |
|                                         | Currenterentered             | MC_GearIn           | MC_GearIn establishes the gear relation (velocity) between master and slave axis.                                                     |
|                                         | Synchronized cont <b>rol</b> | MC_GearOut          | MC_GearOut disconnects the gear relation (velocity) between master and slave axis.                                                    |
|                                         |                              | MC PhasingAbsolute  | MC_PhasingAbsolute shifts the phase of the master axis virtually by a specified absolute phase shift value.                           |
|                                         |                              | MC PhasingRelative  | MC_PhasingRelative shifts the phase of the master axis virtually by a specified relative phase shift value.                           |
|                                         | Administrative               | MC_Power            | MC_Power enables or disables the corresponding servo axis.                                                                            |

| Categories | Name                  | Description                                                                                                                             |
|------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|            | MC SetTorqueLimit     | MC_SetTorqueLimit instruction limits the torque output from<br>the Servo Drive through the torque limit function of the Servo<br>Drive. |
|            | MC SetPosition        | MC_SetPosition changes the current position by shifting the coordinate system of an axis.                                               |
|            | MC_SetOverride        | MC_SeOverride changes the velocity override factor so as to change the target velocity of a motion axis.                                |
|            | MC_ReadActualPosition | This instruction reports the actual axis position continuously when <i>Enable</i> is set.                                               |
|            | MC_ReadActualVelocity | This instruction reports the actual axis velocity continuously when <i>Enable</i> is set                                                |
|            | MC ReadActualTorque   | This instruction reports the axis torque continuously when <i>Enable</i> is set.                                                        |
|            | MC ReadStatus         | MC_ReadStatus reads the state of the axis and indicates it at the outputs.                                                              |
|            | MC_ReadMotionState    | This instruction reports details of the axis status relating the on-going motion behavior                                               |
|            | MC_ReadAxisError      | MC_ReadStatus reads the state of the axis and indicates it at the outputs.                                                              |
|            | MC Reset              | MC_Reset clears axis-related errors                                                                                                     |
|            | MC TouchProbe         | MC_TouchProbe captures and records an axis position when a trigger event occurs.                                                        |
|            | MC AbortTrigger       | MC_AbortTrigger aborts MC_TouchProbe instructions which are intended to capture trigger events.                                         |

# MC\_Power

| FB/FC | Description                                                |  |  |  |
|-------|------------------------------------------------------------|--|--|--|
| FB    | MC_Power enables or disables the corresponding servo axis. |  |  |  |
| ·     | MC_Power                                                   |  |  |  |

| MC_Power       |         |
|----------------|---------|
| En             | Eno     |
| Axis           | Status  |
| Enable         | Busy    |
| EnablePositive | Active  |
| EnableNegative | Error   |
| Mode           | ErrorID |

# Inputs

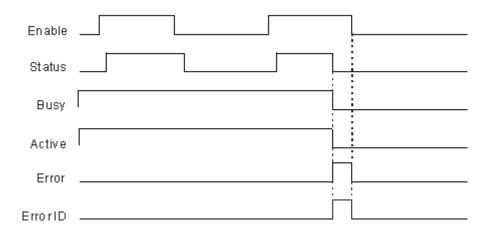
| Name           | Function                                                                                                                    | Data type                               | Setting value<br>(Default value)      | Timing for updating                                    |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------------------|
| Enable         | EnableThe axis is ready to be operatedwhen Enable is True, and notready when Enable is False.                               |                                         | True/False<br>(False)                 | -                                                      |
| EnablePositive | blePositive Enables motion in positive direction when <i>EnablePositive</i> is True. Valid only when <i>Enable</i> is True. |                                         | True/False<br>(False)                 | Continuously updates value when <i>Enable</i> is True. |
| EnableNegative | Enables motion in negative<br>direction when <i>EnableNegative</i> is<br>True. Valid only when <i>Enable</i> is<br>True.    | BOOL                                    | True/False<br>(False)                 | Continuously updates value when <i>Enable</i> is True. |
| Mode           | Specifies the buffering behavior of the instruction when <i>Enable</i> changes to False.                                    | eMC_SERV<br>OOFF_MOD<br>E <sup>*2</sup> | 0: mcAborting<br>1: mcBuffered<br>(0) | When <i>Enable</i> shifts to<br>False                  |

\*Note:

- 1. Motion control instructions can control the axis to perform the corresponding motion only after *Enable of* MC\_Power changes to True.
- 2. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

# • Outputs

| Name   | Function                                    | Data type | Output range (Default value) |
|--------|---------------------------------------------|-----------|------------------------------|
| Status | True when the axis is ready to be operated. | BOOL      | True/False (False)           |
| Busy   | True when the instruction is executed.      | BOOL      | True/False (False)           |


| Name    | Function                                                                                                  | Data type | Output range (Default value) |
|---------|-----------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Active  | True when the axis is being controlled.                                                                   | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                  | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions | DWORD     | 16#0~16#FFFFFFF (0)          |

# Outputs Update Timing

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                    |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Status        | • When <i>Enable</i> shifts to True and the axis is ready to be operated.                                                                 | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |  |
| Busy*         | • When the function block instance is enabled ( <i>En</i> = True) and no error exists.                                                    | • When <i>Error</i> shifts to True.                                                             |  |
| Active*       | • When the function block instance is enabled ( <i>En</i> = True) and no error exists.                                                    | • When <i>Error</i> shifts to True.                                                             |  |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When the error is cleared.                                                                    |  |

\*Note: Busy and Active will not shift to False when Enable is reset. The two outputs will be reset only when an error occurs.

# Timing Diagram



# In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                         |
|------|-----------------------|-----------|----------------------------------|-------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> shifts to True and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

3

# • Function

- The axis specified by Axis is ready to be operated and controlled when Enable changes to True.
- The effects of using Enable with EnablePositve and EnableNegative are as below

| Enable | EnablePositive | EnableNegative | Effects                                                    |
|--------|----------------|----------------|------------------------------------------------------------|
| True   | True           | False          | You can move the specified axis in the positive direction. |
| True   | False          | True           | You can move the specified axis in the negative direction. |

- If an associated motion instruction for moving the axis in **positive** direction is to be executed:

| Enable | EnablePositive | EnableNegative | Effects                                                                                                                                                                                                                                                                |
|--------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| True   | False          | True/False     | <ol> <li>Cannot move the axis in positive direction.</li> <li>If the axis is moving in positive direction and <i>EnablePositvie</i> is False, the associated motion instruction will have an error, and the axis will stop and enter the "Errorstop" state.</li> </ol> |

- If an associated motion instruction for moving the axis in **negative** direction is to be executed:

| Enable | EnablePositive | EnableNegative | Effects                                                                                                                                                                                                                                                                  |
|--------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| True   | True/False     | False          | <ol> <li>Cannot move the axis in negative direction.</li> <li>If the axis is moving in positive direction and <i>EnableNegasitvie</i> is False, the associated motion instruction will have an error, and the axis will stop and enter the "Errorstop" state.</li> </ol> |

- If *Enable* changes to False for the axis in the "Standstill" state, the ready status of the specified axis will be cleared. In this case, you cannot control the axis. Also, an error occurs if a motion instruction is executed on an axis whose ready status is cleared. However, you can execute the MC\_Power (to power Servo) and MC\_Reset (to reset axis errors) instructions on axes that are not in ready status.
- When *Enable* changes to False for the axis which is moving by motion instructions, whether the axis will enter the "Disabled" state immediately or not depends on the setting of *Mode*.
- Mode

*Mode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

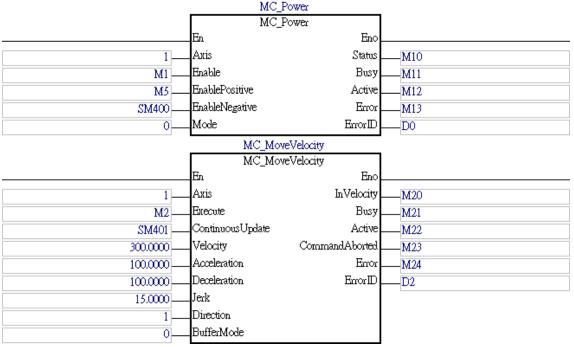
- The selected mode is valid if the previous instruction is executing.
- The selected mode is invalid if the axis is in "Standstill" state.

The following table lists the available buffer mode settings of MC\_Power.

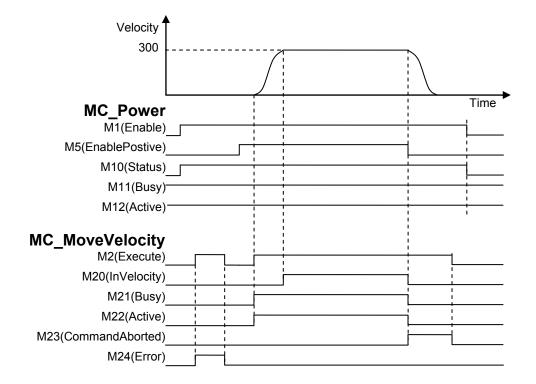
| Mode          | Function                                                                           |
|---------------|------------------------------------------------------------------------------------|
| 0: mcAborting | Aborts the ongoing motion. The next instruction takes effect immediately           |
| 1: mcBuffered | Automatically executes the next instruction after the ongoing motion is completed. |

Note: mode is evaluated when Enable of MC\_Power is reset.

|  | Input | Mode          | Description                                                                                                                                                                                                                            |
|--|-------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Mode  | 0: mcAborting | When <i>Enable</i> changes to False, the axis will enter the "Disabled" state immediately, and the motion controller will stop the slave axis from moving (within one sync cycle). Be cautious during operation in case of any danger! |
|  |       | 1: mcBuffered | When <i>Enable</i> changes to False, the axis will enter the "Disabled" state only after it changes to the "Standstill" state. The axis will complete its motion before entering "Standstill" state.                                   |


## • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.


## • Programming Example 1

The example below describes the behavior of the *EnablePositive* of MC\_Power in combination with MC\_MoveVelocity.

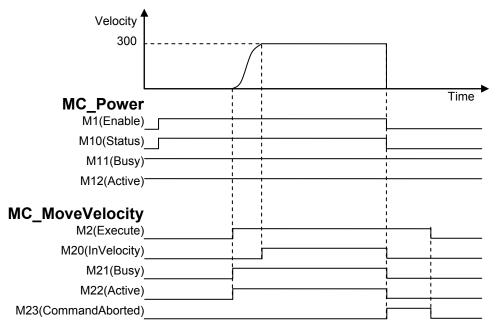
When *Enable* is True and *EnablePositive* is False, motion instructions are not allowed to move the specified in positive direction. In this case, there will be an error if the instruction for moving the axis forward is executed. When the axis moves in positive direction and *EnablePositive* changes from True to False, the axis will decelerate its speed at the decelerate rate specified by the current motion instruction and stop at the velocity 0.



#### Motion diagram:



- When M2(*Execute*) changes to True for the first time, the servo motor cannot move and M24(*Error*) changes to True. The servo motor is forbidden to move forward at the moment because M5(*EnablePostive*) is False. When M2(*Execute*) changes to True for the second time with M5(*EnablePostive*)=True, the motion controller starts to move the servo motor forward. When the servo motor reaches the target velocity, M20(*InVelocity*) will change to True.
- When M5(*EnablePostive*) changes to False, the MC\_MoveVelocity instruction is aborted and M23(*CommandAborted*) changes to True. Meanwhile the servo motor begins to decelerate its speed at the deceleration rate specified by the MC\_MoveVelocity instruction.
- When M2(Execute) changes to False, M23(CommandAborted) changes to False.
- When M1(Enable) changes to False, M10 (Status) changes to False.

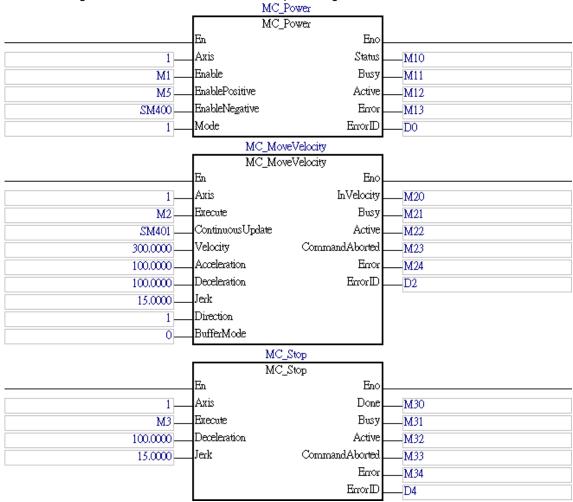

# • Programming Example 2

The example of *Mode* input is shown as follows (Mode=0):

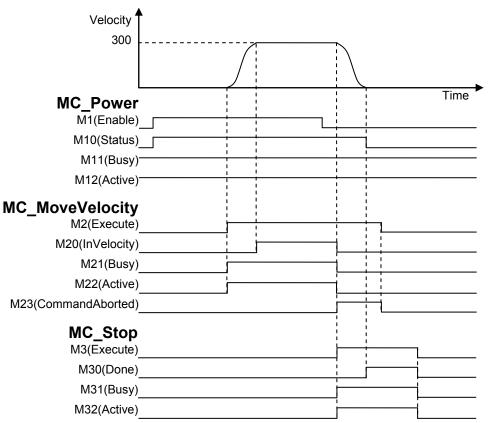
When the *Mode* value is 0 (Aborting) and *Enable* changes from True to False for the axis in motion, the axis will enter the Disabled state immediately and the controller will stop the axis from moving immediately.

|          | MC_PC            |                |     |
|----------|------------------|----------------|-----|
|          | MC_Po            |                |     |
|          | En               | Eno            |     |
| 1        | Axis             | Status         | M10 |
| M1       | Enable           | Busy           | M11 |
| M5       | EnablePositive   | Active         | M12 |
| SM400    | EnableNegative   | Error          | M13 |
| 0        | Mode             | ErrorID        | D0  |
|          | MC_Move          | Velocity       |     |
|          | MC_Move          |                |     |
|          | En               | Eno            |     |
| 1        | Ахіз             | InVelocity     | M20 |
| M2       | Execute          | Busy           | M21 |
| SM401    | ContinuousUpdate | Active         | M22 |
| 300.0000 | Velocity         | CommandAborted | M23 |
| 100.0000 | Acceleration     | Error          | M24 |
| 100.0000 | Deceleration     | ErrorID        | D2  |
| 15.0000  | Jerk             |                |     |
| 1        | Direction        |                |     |
| 0        | BufferMode       |                |     |
|          | MC_S             | itop           |     |
|          | MC_S             |                |     |
|          | En               | Eno.           |     |
| 1        | Axis             | Done           | M30 |
| M3       | Execute          | Busy           | M31 |
| 100.0000 | Deceleration     | Active         | M32 |
| 15.0000  | Jerk             | CommandAborted | M33 |
|          |                  | Error          | M34 |
|          |                  | ErrorID        | D4  |
|          |                  |                |     |

#### Motion Diagram:



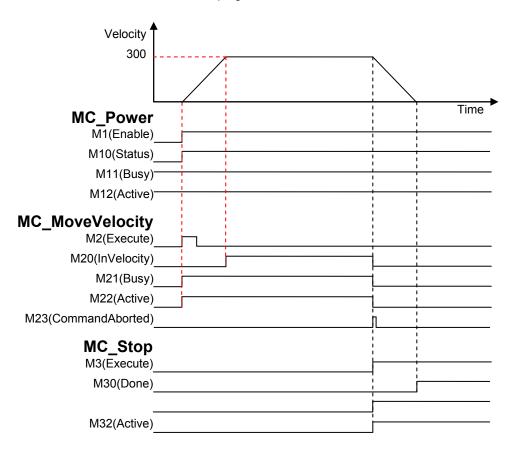

- When M2(*Execute*) changes to True, the motion controller starts to move the servo motor. When the servo motor reaches the target velocity, M20(*InVelocity*) changes to True.
- When M1(*Enable*) changes to False, the servo motor speed reaches 0 and enters the state of "Disabled" and M10(*Status*) changes to False immediately. Meanwhile M23(*CommandAborted*) changes to True and M20(*InVelocity*), M21(*Busy*), and M22(*Active*) change to False.
- When M2(Execute) changes to False, M23(CommandAborted) changes to False.


## • Programming Example 3

The example of *Mode* input is shown as follows (Mode=1):

When the *Mode* value is 1 (Buffered) and *Enable* changes from True to False for the axis in motion, there will be no change for *Status* of MC\_Power and the axis state. In this case, the axis will not enter the Disabled state and *Status* of MC\_Power will not change from True to False until the axis stops moving.




#### Motion diagram:



- When M2(*Execute*) changes to True, the motion controller starts to control the servo motor for moving. When the servo motor reaches the target velocity, M20(*InVelocity*) changes to True.
- In this case, when M1(*Enable*) changes to False, the servo motor will not enter the state of Standstill immediately unless the execution of the MC\_Stop instruction is completed. When M3(*Execute*) changes to True, the servo motor begins to decelerate. When the servo motor speed reaches 0, M30(*Done*) changes to True. Meanwhile, the servo motor enters the state of "Disabled" and M10(*Status*) change to False.
- When M2(Execute) changes to False, M23(CommandAborted) changes to False.
- When M3(*Execute*) changes to False, M30(*Done*), M31(*Busy*), and M32(*Active*) change to False.

## • Programming Example 4

The example below shows how to write a motion control program in Structured Text.



MC\_Power(

Axis := 1, Enable := M1, EnablePositive := SM400, EnableNegative := SM400, Mode := 0, (\* Aborting \*) Status => M10, Busy => M11, Active => M12, Error => M13, ErrorID => D0);

MC\_MoveVelocity(

Axis := 1 , Execute := M2 , ContinuousUpdate := SM400, Velocity := 300 , Acceleration := 100.0 , Deceleration := 100.0 ,

```
Jerk := 0.0 ,
               Direction := 0,
               BufferMode := 1 , (* emC_BUFFER_MODE.mcAborting *)
               InVelocity => M20,
               Busy => M21,
               Active => M22,
               CommandAborted => M23,
               Error => M24 ,
               ErrorID => D2 );
       MC_STOP(
               Axis := 1 ,
               Execute := M3 ,
               Deceleration := 100.0,
               Jerk := 0.0 ,
               Done => M30 ,
               Busy => M31 ,
               Active => M32,
               CommandAborted => M33,
               Error => M34 ,
           ErrorID => D4 );
   (* When MC_Power.Status = TRUE , Execute MC_MoveVelocity *)
   IF M10 THEN
       TMR (T0, 10);
   ELSE
       T0 := FALSE ;
   END_IF;
   M2 := M10 & NOT T0 ;
   (* When MC_MoveVelocity.InVelocity = TRUE , Start Timer T1 *)
   IF M20 THEN
       TMR (T1, 100);
   ELSE
       T1 := FALSE;
   END IF;
   (* When Timer T1=10sec , execute MC_Stop *)
   IF T1 THEN
       M3 := TRUE ;
   ELSE
       M3 := FALSE ;
   END_IF;
When M1(Enable) is set to True manually, the system will execute as below process.
```

- When M10(*Status*) changes to True, M2 changes to True immediately and the servo motor starts to accelerate. After 1 second, M2(*Execute*) is reset to False because of the activation of Timer 0(T0).
- When the speed reaches 300, M20(*InVelocity*) changes to True and Timer 1(T1) is executed to time for 10 seconds.
- After 10 seconds, M3(*Execute*) is set to True and the servo motor is stopped.

## • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion controller modules: AHxxEMC-5A

# MC\_Home

| FB/FC | Description                                              |          |        |  |  |
|-------|----------------------------------------------------------|----------|--------|--|--|
| FB    | MC_Home drives the axis to perform the homing operation. |          |        |  |  |
|       |                                                          | MC_Hom   | ie     |  |  |
|       |                                                          | En       | Eno    |  |  |
|       |                                                          | Axis     | Done   |  |  |
|       |                                                          | Execute  | Busy   |  |  |
|       |                                                          | Position | Active |  |  |

CommandAborted

Error ErrorID

- Position is used to specify the absolute home position after homing is completed.

- The instruction will complete in "Standstill" state if it was executed in "Standstill" state.

HomeMode BufferMode

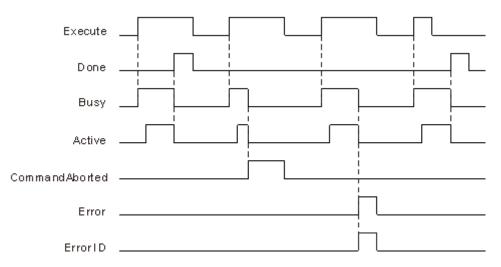
#### Inputs

| Name       | Function                                                                                                 | Data type           | Setting value<br>(Default value)                | Timing for updating                                             |
|------------|----------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------|-----------------------------------------------------------------|
| Execute    | Executes the instruction when <i>Execute</i> changes to True.                                            | BOOL                | True/False<br>(False)                           | -                                                               |
| Position   | Sets the home absolute home<br>position after homing is<br>completed.<br>(Unit: user unit)* <sup>1</sup> | LREAL               | Negative number,<br>positive number or 0<br>(0) | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False  |
| HomeMode   | Specifies the axis behavior of the homing process.                                                       | WORD 0-35 (0)       |                                                 | When <i>Execute</i> shifts to True and <i>Busy</i> is False     |
| BufferMode | Reserved                                                                                                 | eMC_BUFF<br>ER_MODE |                                                 | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |

#### \*Note:

1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

# • Outputs


| Name           | Function                                                                                             | Data type | Output range (Default value) |
|----------------|------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done           | True when homing is completed.                                                                       | BOOL      | True/False (False)           |
| Busy           | True when the instruction is executed.                                                               | BOOL      | True/False (False)           |
| Active         | True when the axis is being controlled.                                                              | BOOL      | True/False (False)           |
| CommandAborted | True when the instruction is aborted.                                                                | BOOL      | True/False (False)           |
| Error          | True if an error occurs.                                                                             | BOOL      | True/False (False)           |
| ErrorID        | Indicates the error code if an error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

## Outputs Update Timing

| Name           | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                                                                                                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>When the homing is completed.</li> </ul>                                                                                         | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul>                                                               |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                    | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                                               |
| Active         | • When the motion on the axis is started.                                                                                                 | <ul> <li>When <i>Done</i> shifts to False.</li> <li>When an error occurs</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and <i>Active</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| CommandAborted | <ul> <li>When this instruction is aborted by another instruction.</li> </ul>                                                              | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will be<br/>True for only one period and immediately<br/>shift to False.</li> </ul>                                                           |
| Error/ErrorID  | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False. (Error code is cleared)                                                                                                                                                                                                          |

3

Timing Diagram



#### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### • Function

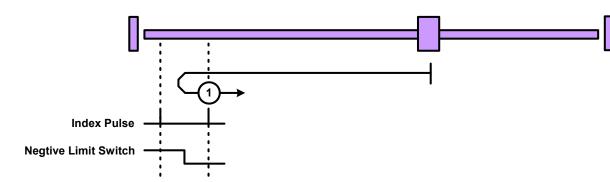
- When *Execute* changes to True, the homing operation starts to be performed on the axis specified in *Axis.*
- The parameters used in MC\_Home can be set in the axis' parameters.
- There are 36 homing methods supported by Delta motion controllers and Delta servo drives. You can specify the desired homing mode in the instruction.
- When working with the instruction MC\_STOP and set the deceleration to 0, users need to check the definition of OD 6085 hex on the corresponding slave.

#### Software Limit

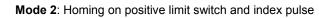
- When the axis runs beyond the software limit set, an error will be reported.
- When the axis is in the homing mode, software limit will not be taken into account. (Even if the axis runs beyond the software limt set, no error will be reported.)

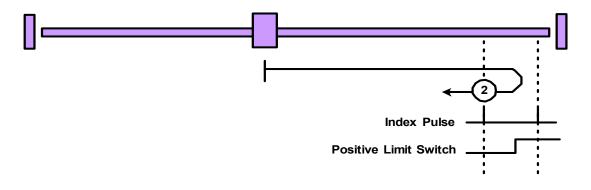
#### Homing Modes

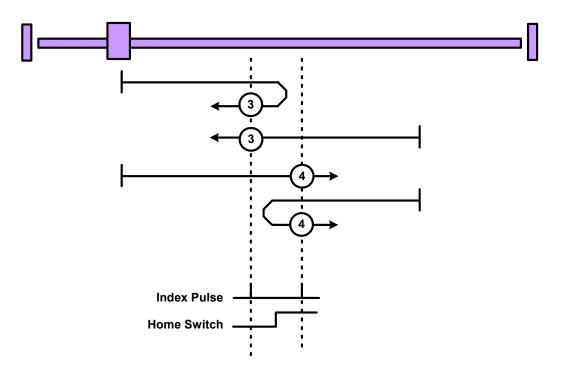
Delta servo drives, e.g. ASDA A2-E, supports up to 35 homing modes which are defined in CiA 402\*. The supported homing modes are manufacturer dependent. For the supported homing modes of products other than Delta drives, refer to the information provided by the servo drive manufacturer.


**Note:** CiA stands for CAN in Automation, which is the nonprofit organization that supports standardization of CAN protocols and develops and publishes CiA specifications.

| Homing<br>modes | Description                                         | Delta servo drive<br>(ASDA-A2-E) |
|-----------------|-----------------------------------------------------|----------------------------------|
| 0               | Reserved                                            | None                             |
| 1               | Homing on the negative limit switch and index pulse | ок                               |
| 2               | Homing on the positive limit switch and index pulse | ок                               |
| 3               | Homing on the positive home switch and index pulse  | ок                               |
| 4               | Homing on the positive home switch and index pulse  | ОК                               |
| 5               | Homing on the negative home switch and index pulse  | ОК                               |
| 6               | Homing on the negative home switch and index pulse  | ОК                               |
| 7               | Homing on the home switch and index pulse           | ОК                               |
| 8               | Homing on the home switch and index pulse           | ОК                               |
| 9               | Homing on the home switch and index pulse           | ОК                               |
| 10              | Homing on the home switch and index pulse           | ОК                               |
| 11              | Homing on the home switch and index pulse           | ОК                               |
| 12              | Homing on the home switch and index pulse           | ОК                               |
| 13              | Homing on the home switch and index pulse           | ОК                               |
| 14              | Homing on the home switch and index pulse           | ок                               |
| 15              | Reserved                                            | None                             |
| 16              | Reserved                                            | None                             |
| 17              | Like 1 but Homing without an index pulse            | ОК                               |
| 18              | Like 2 but Homing without an index pulse            | ОК                               |
| 19              | Like 3 but Homing without an index pulse            | ОК                               |
| 20              | Like 4 but Homing without an index pulse            | ОК                               |
| 21              | Like 5 but Homing without an index pulse            | ок                               |
| 22              | Like 6 but Homing without an index pulse            | ОК                               |
| 23              | Like 7 but Homing without an index pulse            | ОК                               |
| 24              | Like 8 but Homing without an index pulse            | ОК                               |
| 25              | Like 9 but Homing without an index pulse            | ОК                               |
| 26              | Like 10 but Homing without an index pulse           | ОК                               |
| 27              | Like 11 but Homing without an index pulse           | ОК                               |
| 28              | Like 12 but Homing without an index pulse           | ОК                               |

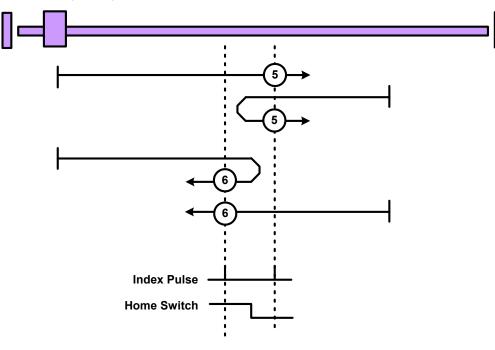

#### AH Motion Controller – Motion Control Instructions Manual


| Homing<br>modes | Description                               | Delta servo drive<br>(ASDA-A2-E) |
|-----------------|-------------------------------------------|----------------------------------|
| 29              | Like 13 but Homing without an index pulse | ОК                               |
| 30              | Like 14 but Homing without an index pulse | ок                               |
| 31              | Reserved                                  | None                             |
| 32              | Reserved                                  | None                             |
| 33              | Homing on the index pulse                 | ОК                               |
| 34              | Homing on the index pulse                 | ОК                               |
| 35              | Homing on the current position            | ОК                               |

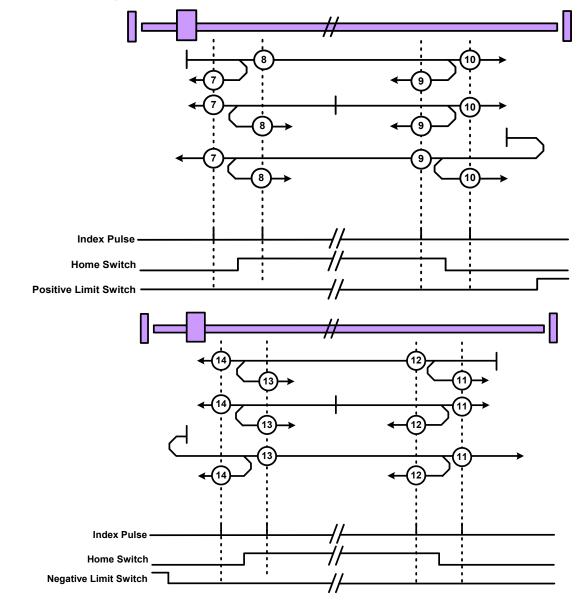

## Behavior Descriptions of Homing Modes



Mode 1: Homing on negative limit switch and index pulse

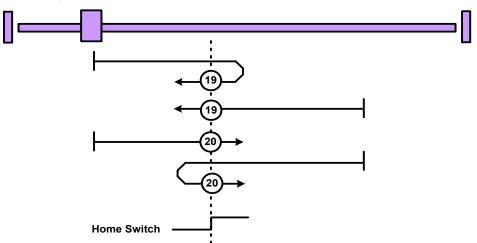




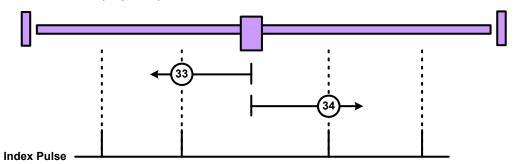

Mode 3 and 4: Homing on positive home switch and index pulse

Mode 5 and 6: Homing on negative home switch and index pulse




3




Mode 7 to 14: Homing on home switch and index pulse





Mode 17 to 30: Homing without an index pulse

Mode 31 and 32: Reserved (no picture)



Mode 33 to 34: Homing on index pulse

Mode 35: Homing on current position (no diagram)

### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, Error will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller – Operation Manual*.

#### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_Stop

| FB/FC | Description                            |              |        |  |  |
|-------|----------------------------------------|--------------|--------|--|--|
| FB    | MC_Stop decelerates an axis to a stop. |              |        |  |  |
|       | Γ                                      | MC_Stop      |        |  |  |
|       | E                                      | În           | Eno    |  |  |
|       | A                                      | Axis         | Done   |  |  |
|       | E                                      | ixecute      | Busy   |  |  |
|       | Γ                                      | Deceleration | Active |  |  |

CommandAborted

Error ErrorID

- MC\_Stop stops a moving axis according to the specified mode and transfers the axis to the state of "Standstill".
- It aborts any executing instruction. No other instructions can be executed while the axis is in the state of "Stopping".
- When 0 velocity is reached, Done will be True immediately and the state of "Stopping" remains.

Jerk

- The axis enters the state of "Standstill" when *Done* changes to True and *Execute* changes to False.

| • | Inputs |
|---|--------|
|---|--------|

| Name         | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating                                                     |
|--------------|---------------------------------------------------------------|-----------|----------------------------------|-------------------------------------------------------------------------|
| Execute      | Executes the instruction when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                                                                       |
| Deceleration | Deceleration rate<br>(Unit: user unit/s <sup>2</sup> )*       | LREAL     | Positive<br>number or 0 (0)      | When <i>Execute</i> is rising edge triggerred and <i>Busy</i> is False. |
| Jerk         | Jerk value<br>(Unit: user unit/s <sup>3</sup> )*              | LREAL     | Positive<br>number or 0 (0)      | When <i>Execute</i> is rising edge and <i>Busy</i> is False.            |

\*Note: Set the deceleration to 0, while executing MC\_Stop; the system will go to Immediate Stop or Deceleration Stop mode according to the parameters set in ISPSoft. (When working with the instruction MC\_Home and set the deceleration to 0, users need to check the definition of OD 6085 hex on the corresponding slave.)

Refer to Section 2.2.1 Parameters for Motion Axes: Structure for explanation on setting axis parameters.

### Outputs

| Name           | Function                                                                                                                                        | Data type | Output range (Default value) |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done           | True when zero velocity is reached.                                                                                                             |           | True/False (False)           |
| Busy           | True when the instruction is executed.                                                                                                          | BOOL      | True/False (False)           |
| Active         | true when the axis is being controlled. After a complete stop <i>Active</i> remains True until the axis is released with <i>Execute</i> =False. |           | True/False (False)           |
| CommandAborted | True when the instruction is aborted.                                                                                                           | BOOL      | True/False (False)           |

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

# Outputs Update Timing

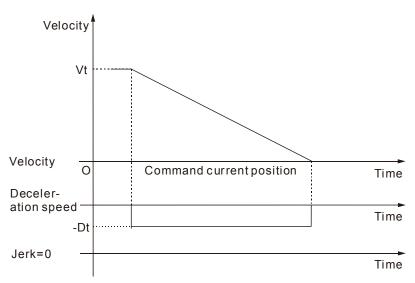
| Name           | Timing for shifting to True                                                                                          | Timing for shifting to False                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>True when the axis decelerates to a<br/>stop and reaches zero velocity.</li> </ul>                          | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                                                                                                                      |
| Busy           | • True when <i>Execute</i> shifts to True and the instruction is executed.                                           | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                                                                                                                                                             |
| Active         | • True when this instruction is started.                                                                             | <ul> <li>When <i>Execute</i> shifts to False and <i>Done</i> is True.</li> <li>When <i>Done</i> shifts to True and <i>Execute</i> is False.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and <i>Active</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| CommandAborted | <ul> <li>When this instruction is aborted<br/>because another motion control<br/>instruction is executed.</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                                                                                                            |
| Error/ErrorID  | • When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded)      | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                                                                                                                                                                                                     |

#### Timing Diagram



#### In-Outs

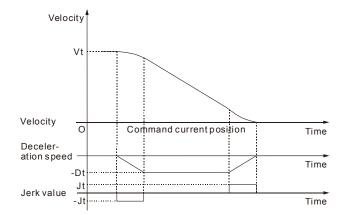
| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |


\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### • Function

You can set the inputs *Deceleration* and *Jerk* to specify the deceleration rate and jerk pattern when decelerating to a stop. -The relationship between the deceleration rate, the velocity, and the jerk values is shown below

#### Jerk=0


The velocity value is created according to the specified deceleration rate Dt



Vt: Velocity before the deceleration starts, Dt: The specified deceleration speed

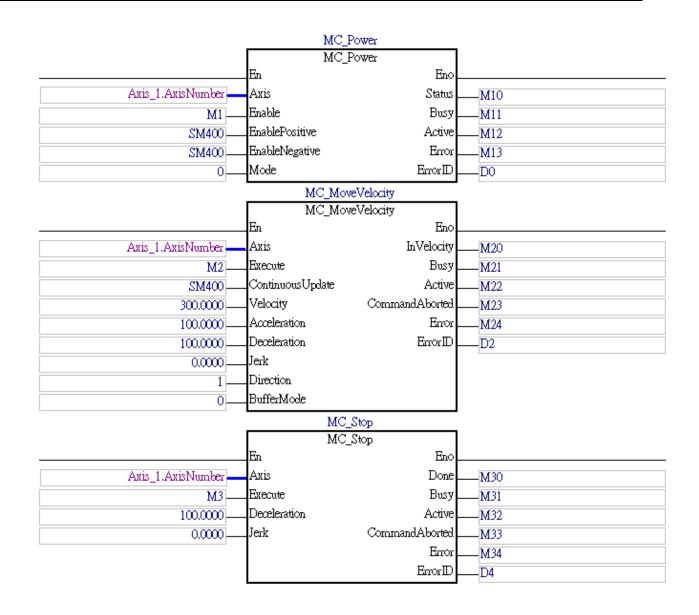
#### Jerk≠0

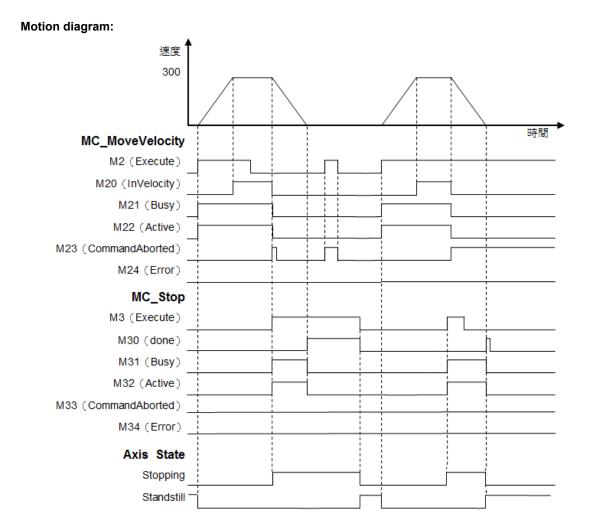
The velocity value is created according to the specified deceleration rate Dt, which functions as the upper limit to the deceleration speed.



Vt: Velocity before the deceleration slope starts, Dt: The specified deceleration rate, Jt: The specified jerk value

#### Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.


#### Programming Example

The example below shows the behavior when MC\_Stop is used with MC\_MoveVelocity.

A moving axis is delcelerating with MC\_Stop instruction.

The axis rejects motion instructions when *Execute* of MC\_Stop is True. If any motion instruction (ex. MC\_MoveVelocity) is executed, when MC\_Stop is busy, it will report CommandAborted.





- When M3(*Execute*) of MC\_Stop changes to True, it triggers M23(*CommandAboted*) of MC\_MoveVelocity at the same time and the motion controller starts to decelerate the axis to a stop. The Axis state is moved to the "Stopping".
- When the axis reaches zero velocity, M30(*Done*) will change to True. M3(*Execute*) is still True so the axis state remains in the state "Stopping".
- If MC\_MoveVelocity is executed again while the axis state is "Stopping", the execution of MC\_MoveVelocity will be aborted and CommandAborted will be reported (M23=True)
- As soon as M30(Done) is set ON and M3(Execute) is False, the axis state goes to "Standstill".

### Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_Halt

| FB/FC | Description            |         |   |
|-------|------------------------|---------|---|
| FB    | MC_Halt halts an axis. |         |   |
|       |                        | MC Halt | 1 |

| MC_Halt        |
|----------------|
| Eno            |
| Done           |
| Busy           |
| Active         |
| CommandAborted |
| Error          |
| ErrorID        |
|                |

- MC\_Halt stops a moving axis which is under normal operation and tansfers the axis to the state "DiscreteMotion" until zero velocity is reached. When the axis stopped, *Done* changes to True and the axis enters the state "Standstill".
- It is possible to execute another motion instruction during deceleration of the axis if it is not in a buffer mode. The executed motion instruction will abort MC\_Halt and operate immediately.
- During the execution of MC\_Halt, it is invalid to execute this instruction repeatedly.

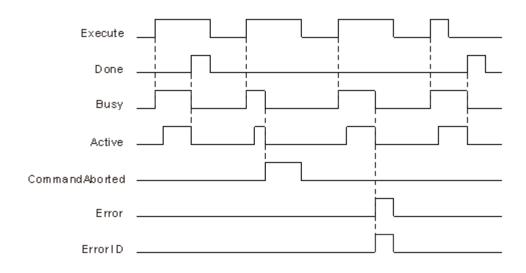
| Name         | Function                                                               | Data type                         | Setting value<br>(Default value)      | Timing for updating                                          |
|--------------|------------------------------------------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------------------------------|
| Execute      | Executes the<br>instruction when<br><i>Execute</i> changes to<br>True. | BOOL                              | True/False<br>(False)                 | -                                                            |
| Deceleration | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> ) *1             |                                   | Positive<br>number or 0<br>(0)        | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Jerk         | Jerk value.<br>(Unit: user unit/s <sup>3</sup> ) * <sup>1</sup>        |                                   | Positive<br>number or 0<br>(0)        | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| BufferMode   | Specifies the buffering behavior of the instruction.                   | eMC_BUFFER<br>_MODE <sup>*2</sup> | 0: mcAborting<br>1: mcBuffered<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

### Inputs

#### \*Note:

1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

# • Outputs


| Name           | Function                                                                                                   | Data type                                                                                      | Output range (Default value) |
|----------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------|
| Done           | True when zero velocity is reached.                                                                        | BOOL                                                                                           | True/False (False)           |
| Busy           | True when the instruction is executed.                                                                     | BOOL                                                                                           | True/False (False)           |
| Active         | True when the axis is being controlled.                                                                    | is is being controlled. BOOL True/False (False)                                                |                              |
| CommandAborted | True when the instruction is aborted.                                                                      | BOOL True/False (False)                                                                        |                              |
| Error          | True if an error occurs.                                                                                   | BOOL                                                                                           | True/False (False)           |
| ErrorID        | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | ne error code if an error occurs.<br><b>opendices</b> for error code DWORD 16#0~16#FFFFFFF (0) |                              |

## Outputs Update Timing

| Name           | Timing for shifting to True                                                                                          | Timing for shifting to False                                                                                                                                                                                                                                                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>When the axis decelerates to a stop and reaches zero velocity.</li> </ul>                                   | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                    |
| Busy           | • When <i>Execute</i> shifts to True and the instruction is executed.                                                | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                                                           |
| Active         | <ul> <li>When this instruction is started.</li> </ul>                                                                | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and <i>Active</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| CommandAborted | <ul> <li>When this instruction is aborted<br/>because another motion control<br/>instruction is executed.</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                          |
| Error/ErrorID  | • When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded)      | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                                                                                                   |

3\_

Timing Diagram



### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                   |
|------|-----------------------|-----------|----------------------------------|-----------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### • Function

#### BufferMode

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in "Standstill" state.

The following table lists the available buffer mode settings of MC\_Halt

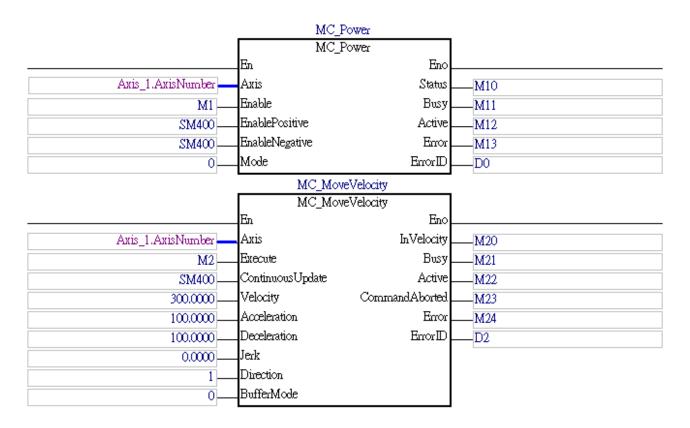
| Buffer Mode   | Function                                                                           |
|---------------|------------------------------------------------------------------------------------|
| 0: mcAborting | Aborts the ongoing motion. The next instruction takes effect immediately           |
| 1: mcBuffered | Automatically executes the next instruction after the ongoing motion is completed. |

The following table lists the buffer effects of MC\_Halt.

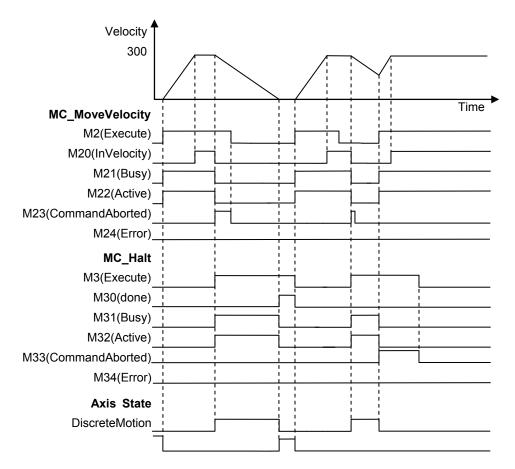
| Instruction | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to activate the next buffered instruction |
|-------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| MC_Halt     | YES                                        | YES                                       | Done                                                      |

For more information of buffer mode, refer to section AH Motion Controller - Operation Manual.

## • Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.

- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller – Operation Manual*.


## • Programming Example

The example below describes the behavior of MC\_Halt in combination with MC\_MoveVelocity.

The MC\_Halt stops MC\_MoveVelocity if there is no another instruction executed before the axis enters "Standstill" state. If MC\_MoveVelocity executes again during the deceleration, it will abort MC\_Halt immediately and accelerate again without entering "Standstill" state. This re-execution behavior is allowed for MC\_Halt but not allowed in MC\_Stop.



#### Motion diagram:



- When M3(*Execute*) of MC\_Halt changes to True, it triggers M23(*CommandAboted*) of MC\_MoveVelocity at the same time and the motion controller starts to decelerate the axis to a stop. The Axis state is moved to the "DiscreteMotion".
- When the axis reaches zero velocity, M30(*Done*) will change to True. The axis state transferred to "Standstill".
- If MC\_MoveVelocity is executed again while MC\_Halt is decelerating the axis and M3(*Execute*) is True, the execution of MC\_Halt will be aborted M33(*CommandAboted*) = True and M2(*Execute*) changes to True. MC\_MoveVelocity will accelerate again.
- Supported Products
- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_MoveAbsolute

| FB/FC | Description                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------|
| FB    | MC_MoveAbsolute controls the axis to move to the specified absolute target position at a specified behavior. |

| MC_Move          | eAbsolute      |
|------------------|----------------|
| En               | Eno            |
| Axis             | Done           |
| Execute          | Busy           |
| ContinuousUpdate | Active         |
| Position         | CommandAborted |
| Velocity         | Error          |
| Acceleration     | ErrorID        |
| Deceleration     |                |
| Jerk             |                |
| Direction        |                |
| BufferMode       |                |

# Inputs

| Name                 | Function                                                                                | Data type          | Setting value<br>(Default value)                                     | Timing for updating                                                |
|----------------------|-----------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| Execute              | Executes the instruction when <i>Execute</i> changes to True.                           | BOOL               | True/False<br>(False)                                                | -                                                                  |
| Continuous<br>Update | Continuously updates <i>Velocity</i> when Continuousupdate is True                      | BOOL               | True/False<br>(False)                                                | When <i>Active</i> shifts to True and it will update continuously. |
| Position             | Absolute target position<br>(Unit: user unit)* <sup>1</sup>                             | LREAL              | Negative number,<br>positive number or 0<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Velocity             | Target velocity<br>(Unit: user unit/s)*1                                                | LREAL              | Positive number<br>(0)                                               | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Acceleration         | Acceleration rate<br>(Unit: user unit/s <sup>2</sup> )* <sup>1</sup>                    | LREAL              | Positive number or 0 (0)                                             | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Deceleration         | Deceleration rate<br>(Unit: user unit/s <sup>2</sup> )* <sup>1</sup>                    | LREAL              | Positive number or 0 (0)                                             | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Jerk                 | Jerk value<br>(Unit: user unit/s <sup>3</sup> )* <sup>1</sup>                           | LREAL              | Positive number or 0 (0)                                             | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Direction            | Specifies the direction for servo<br>motor rotation.<br>The input is effective only for | eMC_DIREC<br>TION* | 1: mcPositiveDirection<br>2: mcShortestWay<br>3: mcNegativeDirection | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |

### AH Motion Controller – Motion Control Instructions Manual

| Name       | Function                                             | Data type            | Setting value<br>(Default value)                                                                                             | Timing for updating                                          |
|------------|------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|            | modulo/rotary axis.                                  |                      | 4: mcCurrentDirection (1)                                                                                                    |                                                              |
| BufferMode | Specifies the buffering behavior of the instruction. | eMC_BUFF<br>ER_MODE* | 0: mcAborting<br>1: mcBuffered<br>2: mcBlendingLow<br>3: mcBlendingPrevious<br>4: mcBlendingNext<br>5: mcBlendingHigh<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

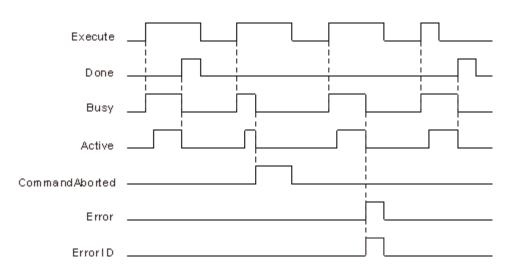
#### \*Note:

3

1. When one MC\_MoveAbsolute instruction is executed but not finished yet, it is invalid to re-execute the instruction.

## Outputs

| Name                                                | Function                                                                                                | Data type | Output range (Default value) |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done True when absolute target position is reached. |                                                                                                         | BOOL      | True/False (False)           |
| Busy                                                | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Active                                              | True when the axis is being controlled.                                                                 | BOOL      | True/False (False)           |
| CommandAborted                                      | True when the instruction is aborted.                                                                   | BOOL      | True/False (False)           |
| Error                                               | True if an error occurs.                                                                                | BOOL      | True/False (False)           |
| ErrorID                                             | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |


## Outputs Update Timing

| Name   | Timing for shifting to True                                         | Timing for shifting to False                                                                                                                                                                              |
|--------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done   | <ul> <li>When the absolute positioning is<br/>completed.</li> </ul> | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy   | • When <i>Execute</i> changes to True.                              | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                       |
| Active | • When the motion on the axis is started                            | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                        |

#### Chapter 3 Motion Control Instructions

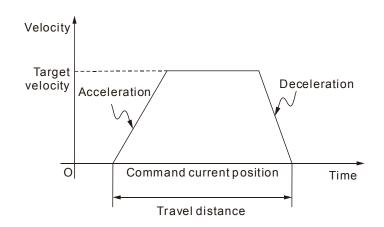
| Name           | Timing for shifting to True                                                                                                                                                                                                    | Timing for shifting to False                                                                                                                                                                        |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                                                                                | <ul> <li>If <i>Execute</i> is False and <i>Active</i> shifts to<br/>True, it will be True for only one period<br/>and immediately shift to False.</li> </ul>                                        |
| CommandAborted | <ul> <li>When this instruction is aborted by<br/>another instruction with the Buffer<br/>Mode set to mcAborting.</li> <li>When this instruction is aborted<br/>because of the execution of MC_Stop<br/>instruction.</li> </ul> | <ul> <li>When Execute shifts to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Error/ErrorID  | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                                      | When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                           |

## Timing diagram



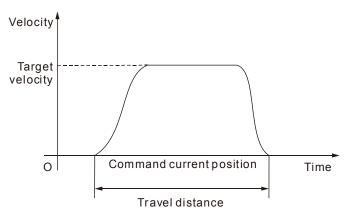
### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |


\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### • Function

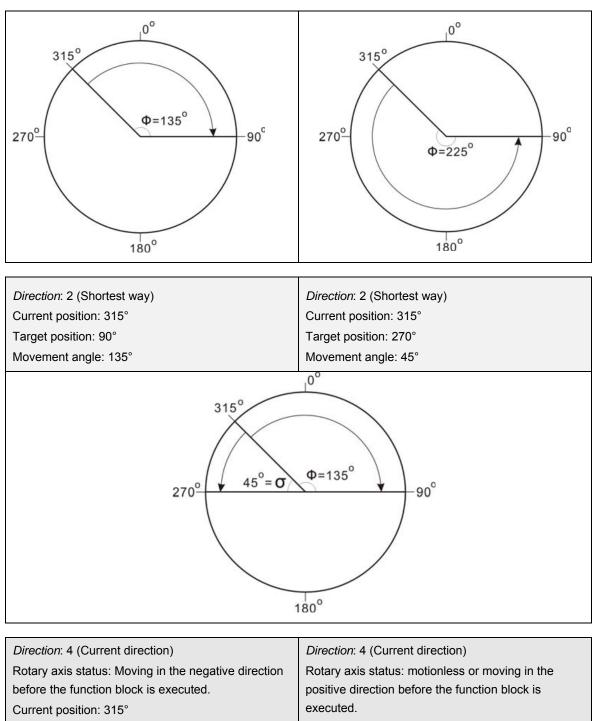
The instruction performs absolute positioning with specified target velocity (*Velocity*), acceleration rate (*Acceleration*), deceleration rate (*Deceleration*) and Jerk value (*Jerk*) when *Execute* changes to True.


- The motion path of absolute positioning is described as below.

#### Jerk=0



#### Jerk≠0

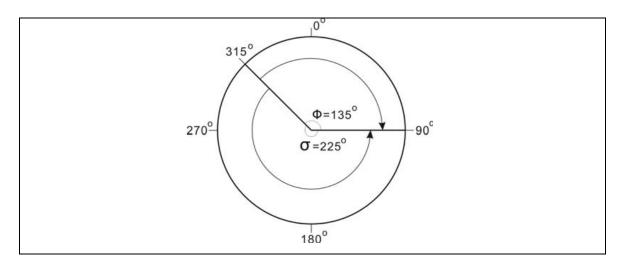

Setting up Jerk value allows you to control the motion path to ramp up (accelerate) or ramp down (decelerate) smoothly. The effects on a motion path with Jerk specified are as below.



#### Direction Settings

- Direction is used to define the rotation of servo axis and is effective only for modulo/rotary axis.
- When the direction value is different, the motion direction and the travel distance of the rotary axis will be different as follows. Suppose the output unit of the physical device is "degree", the motion direction of the rotary axis is illustrated as follows:

| Direction: 1 (Positive direction) | Direction: 3 (Negative direction) |
|-----------------------------------|-----------------------------------|
| Current position: 315°            | Current position: 315°            |
| Target position: 90°              | Target position: 90°              |
| Movement angle: 135°              | Movement angle: 225°              |




Target position: 90°

Movement angle: 225°

Current position: 315° Target position: 90° Movement angle: 135°

3



#### BufferMode

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in "Standstill" state.

The following table lists the available buffer mode settings of MC\_MoveAbsolute.

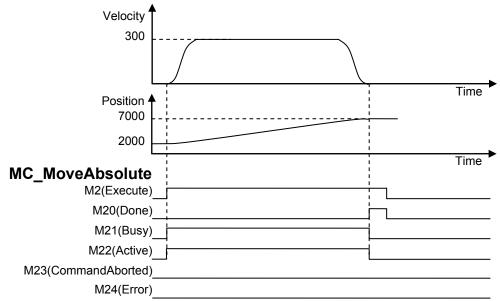
| Buffer Mode           | Function                                                                                                                                                                                                                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0: mcAborting         | Aborts the ongoing motion. The next instruction takes effect immediately                                                                                                                                                   |
| 1: mcBuffered         | Automatically executes the next instruction after the ongoing motion is completed.                                                                                                                                         |
| 2: mcBlendingLow      | Takes the lower target velocity as the transit velocity between the current instruction<br>and the buffered instruction. (The transit velocity is the velocity that the current<br>instruction uses as the transit point.) |
| 3: mcBlendingPrevious | Takes the target velocity of the current instruction as the transit velocity.                                                                                                                                              |
| 4: mcBlendingNext     | Takes the target velocity of the buffered instruction as the transit velocity.                                                                                                                                             |
| 5: mcBlendingHigh     | Takes the higher target velocity as the transit velocity between the current instruction and the buffered instruction.                                                                                                     |

The following table lists the buffer effects of MC\_ MoveAbsolute.

| Instruction     | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to activate the next buffered instruction |
|-----------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| MC_MoveAbsolute | YES                                        | YES                                       | Done                                                      |

For more information of buffer mode, refer to AH Motion Controller Motion Control Instructions Manual.

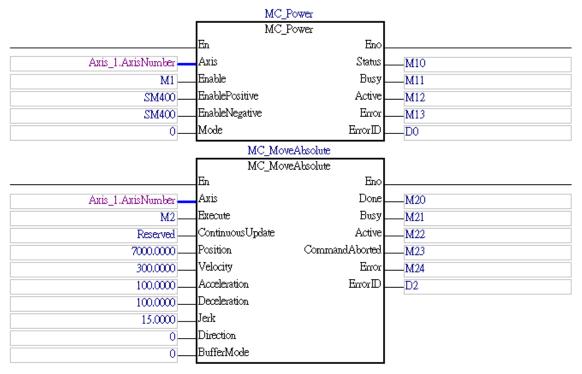
## • Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

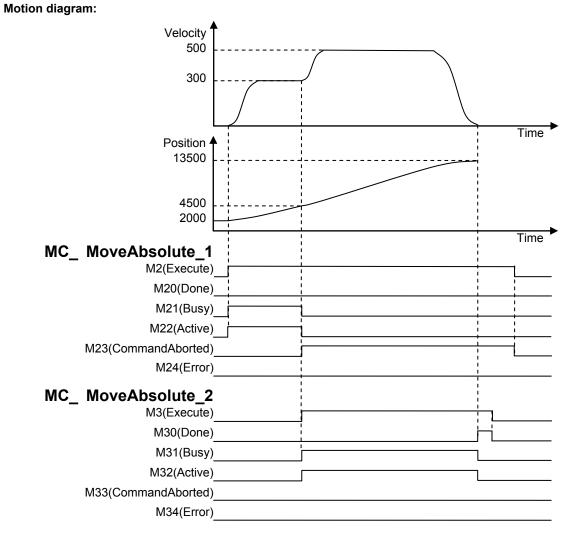
## • Programming Example 1

The example below describes the behavior of the MC\_MoveAbsolute instruction.

|                   | MC_Pe            | ower           |     |
|-------------------|------------------|----------------|-----|
|                   | MC_Po            | ower           |     |
|                   | En               | Eno            |     |
| Axis_1.AxisNumber | Axis             | Status         | M10 |
| M1                | Enable           | Busy           | M11 |
| SM400             | EnablePositive   | Active         | M12 |
| SM400             | EnableNegative   | Error          | M13 |
| 0                 | Mode             | EnorID         | D0  |
|                   | MC_Move          | Absolute       |     |
|                   | MC_Move          | Absolute       |     |
|                   | En               | Eno            |     |
| Axis_1.AxisNumber | Ахіз             | Done           | M20 |
| M2                | Execute          | Busy           | M21 |
| Reserved          | ContinuousUpdate | Active         | M22 |
| 7000.0000         | Position         | CommandAborted | M23 |
| 300.0000          | Velocity         | Error          | M24 |
| 100.0000          | Acceleration     | EnorID         | D2  |
| 100.0000          | Deceleration     |                |     |
| 15.0000           | Jerk             |                |     |
| 0                 | Direction        |                |     |
| 0                 | BufferMode       |                |     |


#### Motion diagram:




- When M2(*Execute*) changes to True, MC\_MoveAbsolute drives the axis to the target position. When the axis reaches the specified target position, M20(*Done*) changes to True, and M21 and M22 change to False.
- When M2(Execute) changes to False, M20(Done) changes to False.
- When the axis reaches the target position, re-execution of the instruction will not move the axis.

## Programming Example 2

The example below describes the behavior of 2 MC\_MoveAbsolute instructions which are connected with each other.



| MC_MoveAbsolute_2 |                  |                |     |  |
|-------------------|------------------|----------------|-----|--|
|                   | MC_Mov           | eAbsolute      |     |  |
|                   | En               | Eno            |     |  |
| Axis_1.AxisNumber | Ахіз             | Done           | M30 |  |
| M3                | Execute          | Busy           | M31 |  |
| Reserved          | ContinuousUpdate | Active         | M32 |  |
| 13500.0000        | Position         | CommandAborted | M33 |  |
| 500.0000          | Velocity         | Error          | M34 |  |
| 100.0000          | Acceleration     | EnorID         | D4  |  |
| 100.0000          | Deceleration     |                |     |  |
| 15.0000           | Jerk             |                |     |  |
| 0                 | Direction        |                |     |  |
| 0                 | BufferMode       |                |     |  |



When M2(*Execute*) changes to True, MC\_MoveAbsolute drives the axis to the target position. When M3(*Execute*) changes to True, the first MC\_MoveAbsolute instruction is aborted and M23(*CommandAborted*) changes to True. Meanwhile, the second MC\_MoveAbsolute instruction is executed and the axis will move according to the set parameters of the second MC\_MoveAbsolute instruction.

3-51

3

- When the axis reaches the specified target position of the second MC\_MoveAbsolute instruction, M30(*Done*) changes to True, and M31(*Busy*) and M32(*Active*) change to False.
- When M3(*Execute*) changes to False, M30(*Done*) changes to False.

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_MoveRelative

FB/FC

Description

MC\_MoveRelative controls the axis to move a specified relative distance with a specified behavior.

| MC_MoveF         | Relative       |
|------------------|----------------|
| En               | Eno            |
| Axis             | Done           |
| Execute          | Busy           |
| ContinuousUpdate | Active         |
| Distance         | CommandAborted |
| Velocity         | Error          |
| Acceleration     | ErrorID        |
| Deceleration     |                |
| Jerk             |                |
| BufferMode       |                |

# Inputs

| Name                 | Function                                                           | Data type | Setting value<br>(Default value)          | Timing for updating                                                |
|----------------------|--------------------------------------------------------------------|-----------|-------------------------------------------|--------------------------------------------------------------------|
| Execute              | Executes the instruction when <i>Execute</i> changes to True.      | BOOL      | True/False<br>(False)                     | -                                                                  |
| Continuous<br>Update | Continuously updates <i>Velocity</i> when Continuousupdate is True | BOOL      | True/False<br>(False)                     | When <i>Active</i> shifts to True and it will update continuously. |
| Distance             | Relative distance to be moved.<br>(Unit: user unit)                | LREAL     | Negative number, positive number or 0 (0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Velocity             | Target velocity.<br>(Unit: user unit/s)                            | LREAL     | Positive number (0)                       | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Acceleration         | Acceleration rate.<br>(Unit: user unit/s <sup>2</sup> )            | LREAL     | Positive number or 0 (0)                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Deceleration         | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> )            | LREAL     | Positive number or 0 (0)                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Jerk                 | Jerk value.<br>(Unit: user unit/s <sup>3</sup> )                   | LREAL     | Positive number or 0 (0)                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |

3

### AH Motion Controller – Motion Control Instructions Manual

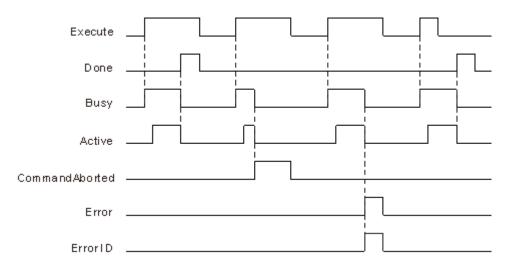
| Name       | Function                                             | Data type           | Setting value<br>(Default value)                                                                                             | Timing for updating                                             |
|------------|------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| BufferMode | Specifies the buffering behavior of the instruction. | eMC_BUFF<br>ER_MODE | 0: mcAborting<br>1: mcBuffered<br>2: mcBlendingLow<br>3: mcBlendingPrevious<br>4: mcBlendingNext<br>5: mcBlendingHigh<br>(0) | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |

### \*Note:

1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

## • Outputs

| Name           | Function                                                                                                   | Data type | Output range (Default value) |
|----------------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done           | True when relative distance is completed.                                                                  | BOOL      | True/False (False)           |
| Busy           | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Active         | True when the axis is being controlled.                                                                    | BOOL      | True/False (False)           |
| CommandAborted | True when the instruction is aborted.                                                                      | BOOL      | True/False (False)           |
| Error          | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID        | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |


## Outputs Update Timing

| Name   | Timing for shifting to True                                         | Timing for shifting to False                                                                                                                                                                                          |
|--------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done   | <ul> <li>When the relative positioning is<br/>completed.</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul>   |
| Busy   | • When <i>Execute</i> changes to True.                              | <ul> <li>When <i>Done</i> changes to True.</li> <li>When <i>Error</i> changes to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                 |
| Active | <ul> <li>When the motion on the axis is started.</li> </ul>         | <ul> <li>When <i>Done</i> changes to True.</li> <li>When <i>Error</i> changes to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and <i>Active</i> shifts to</li> </ul> |

# Chapter 3 Motion Control Instructions

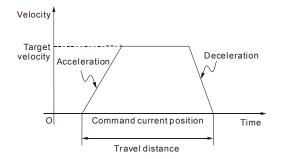
| Name           | Timing for shifting to True                                                                                                                                                                                    | Timing for shifting to False                                                                                                                                                                                            |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                                                                | True, it will be True for only one period and immediately shift to False.                                                                                                                                               |
| CommandAborted | <ul> <li>When this instruction is aborted by another instruction with the Buffer Mode set to mcAborting.</li> <li>When this instruction is aborted because of the execution of MC_Stop instruction.</li> </ul> | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will<br/>be True for only one period and<br/>immediately shift to False.</li> </ul> |
| Error/ErrorID  | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                      | <ul> <li>When Execute shifts from True to<br/>False.</li> <li>(Error code is cleared)</li> </ul>                                                                                                                        |

## Timing Diagram



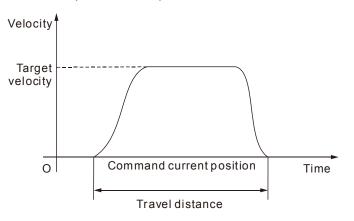
### • In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |  |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|--|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |  |


\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

## • Function

The instruction performs relative positioning with specified target velocity (*Velocity*), acceleration rate (*Acceleration*), deceleration rate (*Deceleration*) and Jerk value (*Jerk*) when execute changes to True.


- The motion path of relative positioning is described as below.

#### Jerk=0



#### Jerk≠0

Setting up Jerk value allows you to control the motion path to ramp up (accelerate) or ramp down (decelerate) smoothly. The effects on a motion path with Jerk specified are as below.



### BufferMode

BufferMode determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in "Standstill" state.

The following table lists the available buffer mode settings of MC\_MoveRelative.

| Buffer Mode           | Function                                                                                                                                                                                                                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0: mcAborting         | Aborts the ongoing motion. The next instruction takes effect immediately                                                                                                                                                   |
| 1: mcBuffered         | Automatically executes the next instruction after the ongoing motion is completed.                                                                                                                                         |
| 2: mcBlendingLow      | Takes the lower target velocity as the transit velocity between the current instruction<br>and the buffered instruction. (The transit velocity is the velocity that the current<br>instruction uses as the transit point.) |
| 3: mcBlendingPrevious | Takes the target velocity of the current instruction as the transit velocity.                                                                                                                                              |

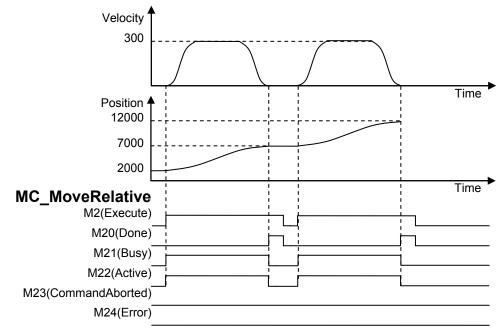
| 4: mcBlendingNext | Takes the target velocity of the buffered instruction as the transit velocity.                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------|
| 5: mcBlendingHigh | Takes the higher target velocity as the transit velocity between the current instruction and the buffered instruction. |

The following table lists the buffer effects of MC\_ MoveRelative.

| Instruction     | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to activate the next buffered instruction |
|-----------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| MC_MoveRelative | YES                                        | YES                                       | Done                                                      |

For more information of buffer mode, refer Motion Controller Motion Control Instructions Manual.

### Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", Error will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding Error codes and Indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.

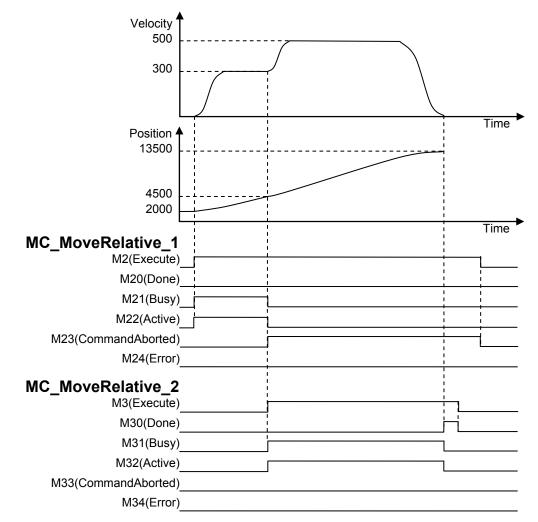
## • Programming Example 1

The example below describes the behavior of the MC\_MoveRelative instruction.

| MC_Power          |                  |                |     |
|-------------------|------------------|----------------|-----|
|                   | MC_P             |                |     |
|                   | En               | Eno.           |     |
| Axis_1.AxisNumber | Axis             | Status .       | M10 |
| M1                | Enable           | Busy.          | M11 |
| SM400             | EnablePositive   | Active.        | M12 |
| SM400             | EnableNegative   | Error.         | M13 |
| 0                 | Mode             | ErrorID        | D0  |
|                   | MC_Move          | Relative       |     |
|                   | MC_Move          | Relative       |     |
|                   | En               | Eno.           |     |
| Axis_1.AxisNumber | Ахіз             | Done.          | M20 |
| M2                | Execute          | Busy.          | M21 |
| Reserved          | ContinuousUpdate | Active.        | M22 |
| 5000.0000         | Distance         | CommandAborted | M23 |
| 300.0000          | Velocity         | Error.         | M24 |
| 100.0000          | Acceleration     | ErrorID .      | D2  |
| 100.0000          | Deceleration     |                |     |
| 15.0000           | Jerk             |                |     |
| 0                 | BufferMode       |                |     |

### Motion diagram:




- When M2(*Execute*) changes to True, MC\_MoveRelative drives the axis to the target position. When the axis moved the specified relative distance (5,000), M20(*Done*) changes to True, and M21 and M22 change to False.
- When M2(*Execute*) changes to False, M20(*Done*) changes to False.
- When the axis completed the specified relative distance(5,000) and then M2 changes to True again, the instruction will be executed again to move another distance(5,000) and reach the position of 12,000.
   When the specified distance is completed, M20(*Done*) changes to True again.

# • Programming Example 2

The example below describes the behavior of 2 MC\_MoveRelative instructions which are connected with each other.

|                   | MC_Po            |                |     |   |
|-------------------|------------------|----------------|-----|---|
|                   | En               | Eno            |     |   |
| Axis_1.AxisNumber | Axis             | Status .       | M10 |   |
| M1                | Enable           | Busy           | M11 |   |
| SM400             | EnablePositive   | Active         | M12 |   |
| SM400             | EnableNegative   | Error          | M13 |   |
| 0                 | Mode             | ErrorID        | D0  |   |
|                   | MC_MoveRe        | lative_1       |     |   |
|                   | MC_MoveF         | Relative       |     |   |
|                   | En               | Eno.           |     |   |
| Axis_1.AxisNumber | Axis             | Done.          | M20 |   |
| M2                | Execute          | Busy.          | M21 |   |
| Reserved          | ContinuousUpdate | Active         | M22 | ļ |
| 5000.0000         | Distance         | CommandAborted | M23 |   |
| 300.0000          | Velocity         | Error          | M24 |   |
| 100.0000          | Acceleration     | ErrorID        | D2  |   |
| 100.0000          | Deceleration     |                |     |   |
| 15.0000           | Jerk             |                |     |   |
| 0                 | BufferMode       |                |     |   |
|                   | MC_MoveRe        | lative_2       |     |   |
|                   | MC_MoveF         |                |     |   |
|                   | En               | Eno.           |     |   |
| Axis_1.AxisNumber | Axis             | Done.          | M30 |   |
| M3                | Execute          | Busy           | M31 |   |
| Reserved          | ContinuousUpdate | Active         | M32 |   |
| 9000.0000         | Distance         | CommandAborted | M33 |   |
| 500.0000          | Velocity         | Error          | M34 |   |
| 100.0000          | Acceleration     | ErrorID        | D4  |   |
| 100.0000          | Deceleration     |                |     |   |
| 15.0000           | Jerk             |                |     |   |
| 0                 | BufferMode       |                |     |   |
|                   |                  |                |     |   |

### Motion diagram:



- When M2(*Execute*) changes to True, MC\_MoveRelative drives the axis to the target position. When M3(*Execute*) changes to True at the position 4,500, the first MC\_MoveRelative instruction is aborted and M23(*CommandAborted*) changes to True. Meanwhile, the second MC\_Moverelative instruction is executed and the axis will move for 9,000 according to the set parameters of the second MC\_MoveRelative instruction.
- When the axis completed 9,000 which is specified by the second MC\_MoveAbsolute instruction, the axis reaches 13,500 and M30(*Done*) changes to True.
- When M3(*Execute*) changes to False, M30(*Done*) changes to False.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_MoveAdditive

FB/FC

Description

MC\_MoveAdditive controls the axis to move an additional distance at a given speed and acceleration.

| MC_MoveA         | Additive       |
|------------------|----------------|
| En               | Eno            |
| Axis             | Done           |
| Execute          | Busy           |
| ContinuousUpdate | Active         |
| Distance         | CommandAborted |
| Velocity         | Error          |
| Acceleration     | ErrorID        |
| Deceleration     |                |
| Jerk             |                |
| BufferMode       |                |

# Inputs

| Name                 | Function                                                                 | Data type | Setting value<br>(Default value)          | Timing for updating                                                |
|----------------------|--------------------------------------------------------------------------|-----------|-------------------------------------------|--------------------------------------------------------------------|
| Execute              | Executes the instruction when <i>Execute</i> changes to True.            | BOOL      | True/False<br>(False)                     | -                                                                  |
| Continuous<br>Update | Continuously updates <i>Velocity</i><br>when Continuousupdate is<br>True | BOOL      | True/False<br>(False)                     | When <i>Active</i> shifts to True and it will update continuously. |
| Distance             | Relative distance to be moved.<br>(Unit: user unit)                      | LREAL     | Negative number, positive number or 0 (0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Velocity             | Target velocity.<br>(Unit: user unit/s)                                  | LREAL     | Positive number (0)                       | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Acceleration         | Acceleration rate.<br>(Unit: user unit/s <sup>2</sup> )                  | LREAL     | Positive number or 0 (0)                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Deceleration         | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> )                  | LREAL     | Positive number or 0<br>(0)               | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Jerk                 | Jerk value.<br>(Unit: user unit/s <sup>3</sup> )                         | LREAL     | Positive number or 0<br>(0)               | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |

3

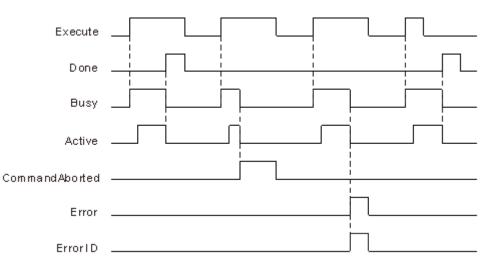
## AH Motion Controller – Motion Control Instructions Manual

| Name       | Function                                             | Data type           | Setting value<br>(Default value)                                                                                             | Timing for updating                                             |
|------------|------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| BufferMode | Specifies the buffering behavior of the instruction. | eMC_BUFF<br>ER_MODE | 0: mcAborting<br>1: mcBuffered<br>2: mcBlendingLow<br>3: mcBlendingPrevious<br>4: mcBlendingNext<br>5: mcBlendingHigh<br>(0) | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |

### \*Note:

## 1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

## • Outputs


| Name           | Function                                                                                                   | Data type | Output range (Default value) |
|----------------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done           | True when additive distance is completed.                                                                  | BOOL      | True/False (False)           |
| Busy           | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Active         | True when the axis is being controlled.                                                                    | BOOL      | True/False (False)           |
| CommandAborted | True when the instruction is aborted.                                                                      | BOOL      | True/False (False)           |
| Error          | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID        | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

## Outputs Update Timing

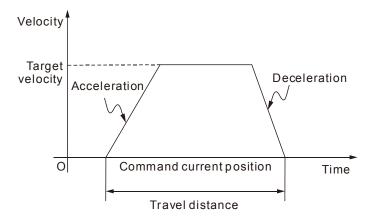
| Name   | Timing for changing to True                                              | Timing for changing to False                                                                                                                                                                                                                                                                   |
|--------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done   | <ul> <li>True when the additive positioning is<br/>completed.</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                     |
| Busy   | • True when <i>Execute</i> changes to True.                              | <ul> <li>When <i>Done</i> changes to True.</li> <li>When <i>Error</i> changes to True.</li> <li>When <i>CommandAborted</i> changes to True.</li> </ul>                                                                                                                                         |
| Active | <ul> <li>True when the motion on the axis is started.</li> </ul>         | <ul> <li>When <i>Done</i> changes to True.</li> <li>When <i>Error</i> changes to True</li> <li>When <i>Commandaborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and <i>Active</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |

| Name           | Timing for changing to True                                                                                                                                                                                                  | Timing for changing to False                                                                                                                                                                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CommandAborted | <ul> <li>When this instruction is aborted by<br/>another instruction with the Buffer<br/>Mode set to Aborting.</li> <li>When this instruction is aborted<br/>because of the execution of MC_Stop<br/>instruction.</li> </ul> | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Error/ErrorID  | • When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded)                                                                                                              | <ul> <li>When <i>Execute</i> shifts from True to False.<br/>(Error code is cleared)</li> </ul>                                                                                                              |

### Timing Diagram

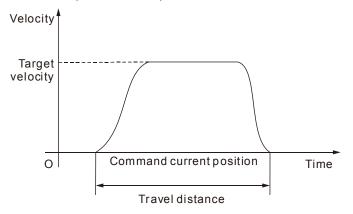


### In-Outs


| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### • Function


- *MC\_MoveAdditive* executes relative positioning based on the target distance of previous positioning instruction, regardless of the completion of the previous positioning instruction.
- When the previous positioning instruction is on-going, executing MC\_MoveAdditive will move the axis for the distance which is obtained by summing the previous target distance and the distance specified by MC\_MoveReletive.
- If the previous instruction is a velocity instruction, MC\_MoveAdditive will abort the execution of the velocity instruction and move the axis according to the given distance specified by MC\_MoveAdditive at a given speed, acceleration and deceleration and then stop.
- The motion path of additive positioning is described as below.

#### Jerk=0



### Jerk≠0

Setting up Jerk value allows you to control the motion path to ramp up (accelerate) or ramp down (decelerate) smoothly. The effects on a motion path with Jerk specified are as below.



### BufferMode

BufferMode determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

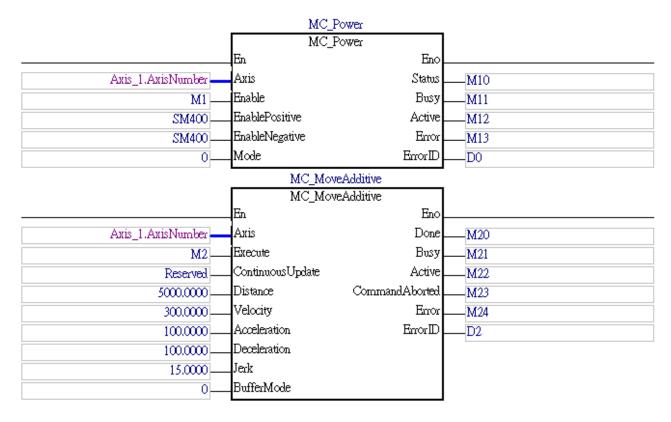
- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in "Standstill" state.

The following table lists the available buffer mode settings of MC\_MoveAdditive.

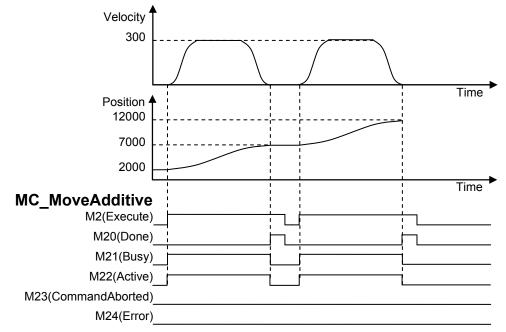
| Buffer Mode           | Function                                                                                                                                                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0: mcAborting         | Aborts the ongoing motion. The next instruction takes effect immediately                                                                                                                                             |
| 1: mcBuffered         | Automatically executes the next instruction after the ongoing motion is completed.                                                                                                                                   |
| 2: mcBlendingLow      | Takes the lower target velocity as the transit velocity between the current instruction and the buffered instruction. (The transit velocity is the velocity that the current instruction uses as the transit point.) |
| 3: mcBlendingPrevious | Takes the target velocity of the current instruction as the transit velocity.                                                                                                                                        |
| 4: mcBlendingNext     | Takes the target velocity of the buffered instruction as the transit velocity.                                                                                                                                       |

| 5: mcBlendingHigh                                                 | Takes the higher target velocity as the transit velocity between the current instruction and the buffered instruction. | nt |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----|--|
| The following table lists the buffer effects of MC_ MoveAdditive. |                                                                                                                        |    |  |

| Instruction     | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to<br>activate the next buffered<br>instruction |
|-----------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|
| MC_MoveAdditive | YES                                        | YES                                       | Done                                                            |


For more information of buffer mode, refer to section Motion Controller Motion Control Instructions Manual.

## • Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", Error will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.

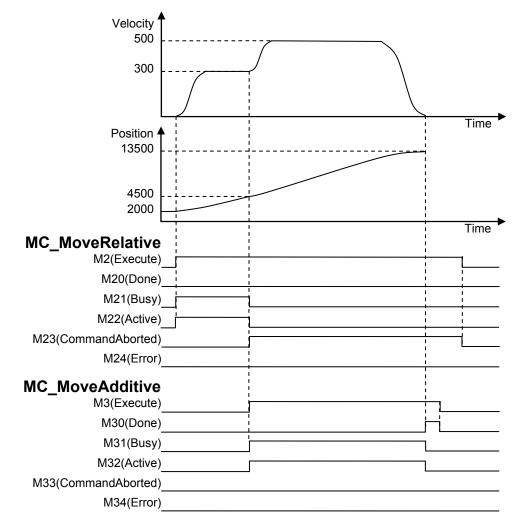
## • Programming Example 1

The example below describes the behavior of the MC\_MoveAdditive instruction.



### Motion diagram:




- When M2(*Execute*) changes to True, MC\_MoveAdditive controls the axis to rotate. When the axis moved the specified relative distance (5,000), M20(*Done*) changes to True, and M21 and M22 change to False.
- When M2(*Execute*) changes to False, M20(*Done*) changes to False.
- When the axis completed the specified relative distance(5,000) and then M2 changes to True again, the instruction will be executed again to move another distance(5,000) and reach the position 12,000.
   When the specified distance is completed, M20(*Done*) changes to True again.

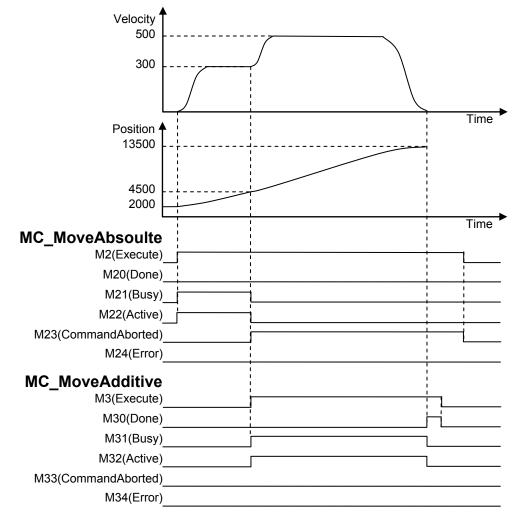
## • Programming Example 2

The example below describes the behavior of MC\_MoveRelative and MoveAdditive instructions which are executed in a series.



### Motion diagram:




- When M2(*Execute*) changes to True, MC\_MoveRelative drives the axis to the target position. A relative distance of 5000 is added to current position 2000, and the commanded position becomes 7000(2000+5000). When M3(*Execute*) changes to True at the position 4,500, the MC\_MoveRelative instruction is aborted and M23(*CommandAborted*) changes to True.
- Meanwhile, the MC\_MoveAdditive instruction is executed and adds a relative distance of 6500 to the previous commanded position 7000, and results the new commanded position 13500.
- When the axis reaches 13,500, M30(*Done*) changes to True.
- When M3(*Execute*) changes to False, M30(*Done*) changes to False.

# • Programming Example 3

The example below describes the behavior of MC\_MoveAbsolute and MC\_MoveAdditive instructions which are executed in a series.

| MC_Power          |                  |                |     |
|-------------------|------------------|----------------|-----|
|                   | MC_P             |                |     |
|                   | En               | Eno.           |     |
| Axis_1.AxisNumber | Ахіз             | Status .       | M10 |
| M1                | Enable           | Busy.          | M11 |
| SM400             | EnablePositive   | Active.        | M12 |
| SM400             | EnableNegative   | Error.         | M13 |
| 0                 | Mode             | ErrorID        | D0  |
|                   | MC_Move          |                |     |
|                   | MC_Move          |                |     |
|                   | En               | Eno.           |     |
| Axis_1.AxisNumber | Axis             | Done           |     |
| M2                | Execute          | Busy.          | M21 |
| Reserved          | ContinuousUpdate | Active.        | M22 |
| 7000.0000         | Position         | CommandAborted | M23 |
| 300.0000          | Velocity         | Error.         | M24 |
| 100.0000          | Acceleration     | ErrorID        | D2  |
| 100.0000          | Deceleration     |                |     |
| 15.0000           | Jerk             |                |     |
| 0                 | Direction        |                |     |
| 0                 | BufferMode       |                |     |
|                   | MC_Move          | eAdditive      |     |
|                   | MC_Move          |                |     |
|                   | En               | Eno.           |     |
| Axis_1.AxisNumber | Axis             | Done.          | M30 |
| M3                | Execute          | Busy.          | M31 |
| Reserved          | ContinuousUpdate | Active         | M32 |
| 6500.0000         | Distance         | CommandAborted | M33 |
| 500.0000          | Velocity         | Error          | M34 |
| 100.0000          | Acceleration     | EnorID         | D4  |
| 100.0000          | Deceleration     |                |     |
| 15.0000           | Jerk             |                |     |
| 0                 | BufferMode       |                |     |

### Motion diagram:



- When M2(*Execute*) changes to True, MC\_MoveAbsoulte drives the axis to the commanded absolute position 7000. When M3(*Execute*) changes to True at the position 4,500, the MC\_MoveAbsoulte instruction is aborted and M23(*CommandAborted*) changes to True.
- Meanwhile, MC\_MoveAdditive instruction is executed and adds relative distance 6500 on the previous commanded position 7000, and results the new commanded position 13500.
- When the axis reaches 13500, M30(Done) changes to True.
- When M3(*Execute*) changes to False, M30(*Done*) changes to False.

## • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

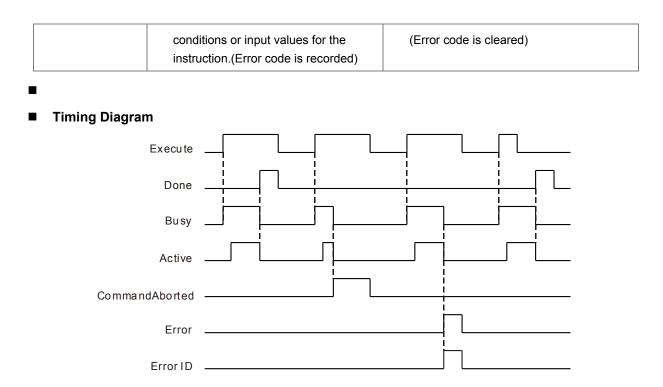
# MC\_MoveSuperimposed

| FB/FC | Description                                                                                   |
|-------|-----------------------------------------------------------------------------------------------|
| FB    | MC_MoveSuperimposed controls the axis to move a relative superimposed distance at a specified |
|       | behavior while the axis is moving.                                                            |

| MC_MoveSu        | MC_MoveSuperimposed |  |  |  |  |
|------------------|---------------------|--|--|--|--|
| En               | Eno                 |  |  |  |  |
| Ахіз             | Done                |  |  |  |  |
| Execute          | Busy                |  |  |  |  |
| ContinuousUpdate | Active              |  |  |  |  |
| Distance         | CommandAborted      |  |  |  |  |
| Velocity         | Error               |  |  |  |  |
| Acceleration     | ErrorID             |  |  |  |  |
| Deceleration     | CoveredDistance     |  |  |  |  |
| Jerk             |                     |  |  |  |  |

# Inputs

| Name                 | Function                                                           | Data type | Setting value<br>(Default value)                | Timing for updating                                                      |
|----------------------|--------------------------------------------------------------------|-----------|-------------------------------------------------|--------------------------------------------------------------------------|
| Execute              | Executes the instruction when <i>Execute</i> changes to True.      | BOOL      | True/False<br>(False)                           | -                                                                        |
| Continuous<br>Update | Continuously updates <i>Velocity</i> when Continuousupdate is True | BOOL      | True/False<br>(False)                           | When <i>Active</i> shifts to<br>True and it will update<br>continuously. |
| Distance             | Additional relative distance to be moved. (Unit: user unit)        | LREAL     | Negative number,<br>positive number or 0<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Velocity             | Additional target velocity<br>(Unit: user unit/s)                  | LREAL     | Positive number (0)                             | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Acceleration         | Additional acceleration rate (Unit: user unit/s <sup>2</sup> )     | LREAL     | Positive number or 0 (0)                        | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Deceleration         | Additional deceleration rate (Unit: user unit/s <sup>2</sup> )     | LREAL     | Positive number or 0 (0)                        | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Jerk                 | Additional jerk value<br>(Unit: user unit/s <sup>3</sup> )         | LREAL     | Positive number or 0 (0)                        | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |


3

# • Outputs

| Name                                                 | Function                                                                                                      | Data type | Output range (Default value) |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done True when relative distance is completed.       |                                                                                                               | BOOL      | True/False (False)           |
| Busy                                                 | True when the instruction is executed.                                                                        | BOOL      | True/False (False)           |
| Active                                               | True when the axis is being controlled.                                                                       | BOOL      | True/False (False)           |
| CommandAborted True when the instruction is aborted. |                                                                                                               | BOOL      | True/False (False)           |
| Error                                                | True if an error occurs.                                                                                      | BOOL      | True/False (False)           |
| ErrorID                                              | Indicates the error code when the error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |
| Covered Distance                                     | Continuously displays the covered distance moved by the instruction since it was executed.                    | LREAL     |                              |

# Outputs Update Timing

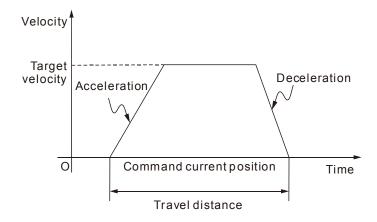
| Name            | Timing for shifting to True                                                                                                                                                                                                  | Timing for shifting to False                                                                                                                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done            | <ul> <li>When the superimposed distance is completed.</li> </ul>                                                                                                                                                             | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                    |
| Busy            | • When <i>Execute</i> changes to True.                                                                                                                                                                                       | <ul> <li>When <i>Done</i> changes to True.</li> <li>When <i>Error</i> changes to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                                                         |
| Active          | <ul> <li>When the motion on the axis is started.</li> </ul>                                                                                                                                                                  | <ul> <li>When <i>Done</i> changes to True.</li> <li>When <i>Error</i> changes to True</li> <li>When <i>Commandaborted</i> shifts to True</li> <li>If <i>Execute</i> is False and <i>Active</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| CommandAborted  | <ul> <li>When this instruction is aborted by<br/>another instruction with the Buffer<br/>Mode set to Aborting.</li> <li>When this instruction is aborted<br/>because of the execution of MC_Stop<br/>instruction.</li> </ul> | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                   |
| CoveredDistance | Continuously updates value when<br>Active is True.                                                                                                                                                                           | <ul> <li>Continuously updates value when Active<br/>is True.</li> </ul>                                                                                                                                                                                                                       |
| Error/ErrorID   | • When an error occurs in the execution                                                                                                                                                                                      | • When <i>Execute</i> shifts from True to False.                                                                                                                                                                                                                                              |



### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.


# • Function

MC\_MoveSuperimposed adds specified distance, acceleration, deceleration and jerk values to the axis in motion. When this instruction is executed, the previous instruction will not be aborted. The axis will react according to the superimposed values which are the sum of the previous instruction and MC\_MoveSuperimposed instruction. When the superimposed distance is reached, the axis will resume the operation of the previous instruction until the superimposed total distance is reached.

- If MC\_MoveSuperimposed is active, any other instruction in aborting mode (except MC\_MoveSuperimposed) will terminate both the previous instruction and MC\_MoveSuperimposed instruction. In modes other than aborting mode, the previous motion instruction is not aborted.
- If MC\_MoveSuperimposed is active and another MC\_MoveSuperimposed is executed, only the active MC\_MoveSuperimposed instruction is aborted, and the new MC\_MoveSuperimposed will replace the active one.
- In all relevant states, MC\_MoveSuperimposed changes the velocity and the moved distance of an ongoing motion.
- MC\_MoveSuperimposed should be executed when the axis is in the "Synchronized" state.
- The input values of *Acceleration*, *Deceleration*, and *Jerk* are values added to the on-going motion. Therefore, the previous motion instruction always completes within the same period of time regardless of whether a MC\_MoveSuperimposed instruction is executed at the same time.
- The motion path of the instruction and the effects of *Jerk* are described as below.

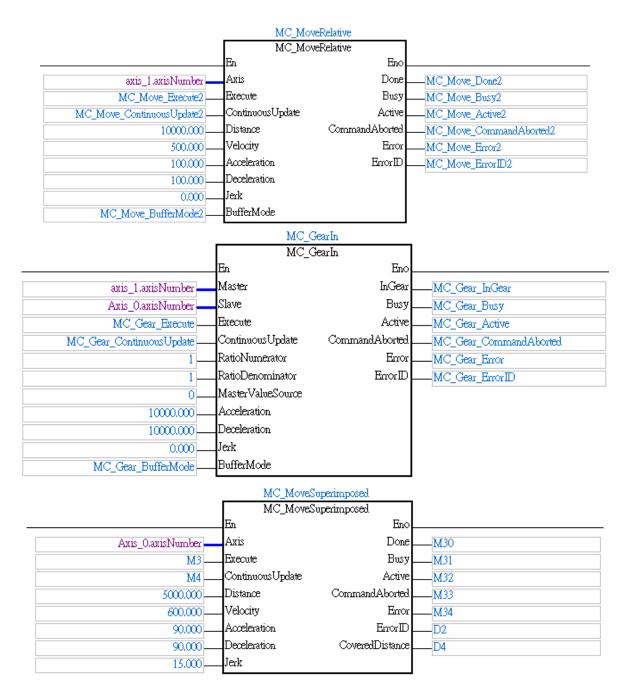
3-73



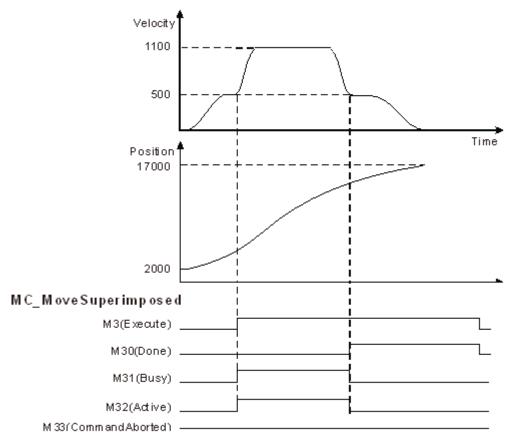


### Jerk≠0

Setting up Jerk value allows you to control the motion path to ramp up (accelerate) or ramp down (decelerate) smoothly. The effects on a motion path with Jerk specified are as below.




### Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

## • Programming Example

- 1. When MC\_Gear\_InGear (InGear) is True, specifive the parameters to be superimposed to the designated slave axis, and set M3(*Execute*) to True to execute MC\_Superimposed.
- 2. The instruction will take current position as the reference point and superimpose an extra amount to the slave axis, and the motor will drive the axis to reach the desired position.
- 3. When the target distance is reached, M30(*Done*) will shift to True.



### Motion diagram:



- When M3(*Execute*) changes to True, the MC\_MoveSuperImposed instruction starts and applies the additional values(velocity, distance, acceleration, deceleration and jerk) to the axis and the axis performs a superimposed motion path.
- When the specified distance 5,000 of the MC\_MoveSuperImposed instruction is completed, M30 changes to True and M31 and M32 changes to False. T
- When M3 changes to False, M30/M31 changes to False as well.

## Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_HaltSuperimposed

| FB/FC |
|-------|
| ED    |
| FB    |

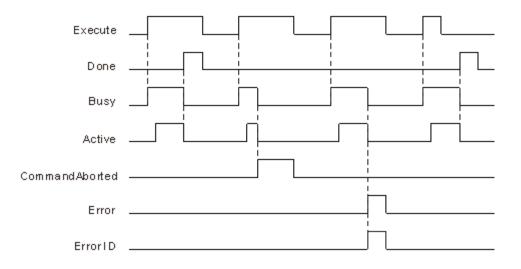
Description

MC\_HaltSuperimposed halts all superimposed motions of the axis without aborting the previous superimposed motion.

| MC_Ha        | ltSuperimposed |
|--------------|----------------|
| En           | Eno            |
| Axis         | Done           |
| Execute      | Busy           |
| Deceleration | Active         |
| Jerk         | CommandAborted |
|              | Error          |
|              | EnorID         |

# Inputs

| Name         | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating                                          |
|--------------|---------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------|
| Execute      | Executes the instruction when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                                                            |
| Deceleration | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> )       | LREAL     | Positive number or 0 (0)         | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Jerk         | Jerk value.<br>(Unit: user unit/s <sup>3</sup> )              | LREAL     | Positive number or 0 (0)         | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |


# • Outputs

| Name                                                 | Function                                                                                                | Data type | Output range (Default value) |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done True when the superimposing effects is cleared. |                                                                                                         | BOOL      | True/False (False)           |
| Busy                                                 | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Active                                               | True when the axis is being controlled.                                                                 | BOOL      | True/False (False)           |
| CommandAborted                                       | True when the instruction is aborted.                                                                   | BOOL      | True/False (False)           |
| Error                                                | True if an error occurs.                                                                                | BOOL      | True/False (False)           |
| ErrorID                                              | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

| Name                                                                                     | Timing for shifting to True                                                                                     | Timing for shifting to False                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done                                                                                     | <ul> <li>When the superimposing effects is<br/>cleared</li> </ul>                                               | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                    |
| Busy                                                                                     | • When <i>Execute</i> shifts to True and the instruction is executed.                                           | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                                                           |
| Active                                                                                   | When this instruction is started.                                                                               | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and <i>Active</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| When this instruction is aborted because another motion control instruction is executed. |                                                                                                                 | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted shifts</i> to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                          |
| Error/ErrorID                                                                            | • When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded) | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                                                                                                   |

## Outputs Update Timing

## Timing Diagram



## • In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

### • Programming Example

The example below describes the behavior of MC\_HaltSuperimposed in combination with MC\_MoveSuperimposed.

|                   | MoveSup             | erimposed       |      |
|-------------------|---------------------|-----------------|------|
|                   | MC_MoveSuperimposed |                 |      |
|                   | En                  | Eno             |      |
| Axis_1.AxisNumber | Axis                | Done            | M30  |
| M3                | Execute             | Busy            | M31  |
| Continus_Super    | ContinuousUpdate    | Active          | M32  |
| 5000.0000         | Distance            | Abort           | M33  |
| 600.0000          | Velocity            | Error           | M34  |
| 90.0000           | Acceleration        | EnorID          | D2   |
| 90.0000           | Deceleration        | CoveredDistance | D4   |
| 15.0000           | Jerk                |                 |      |
|                   | HaltSup             | erimposed       |      |
|                   | MC_HaltS            | uperimposed     |      |
|                   | En                  | Eno             |      |
|                   | Arria               | Deep            | 2.00 |

|                   | HaltSuperimposed    |        |     |
|-------------------|---------------------|--------|-----|
|                   | MC_HaltSuperimposed |        |     |
|                   | En                  | Eno    |     |
| Axis_1.AxisNumber | Axis                | Done   | M40 |
| M4                | Execute             | Busy   | M41 |
| 80.0000           | Deceleration        | Active | M42 |
| 15.0000           | Jerk                | Abort  | M43 |
|                   |                     | Error  | M44 |
|                   |                     | EnorID | D6  |

### Motion diagram:

| Velocity            | <b>↑</b> |                            |           |       |           |              |
|---------------------|----------|----------------------------|-----------|-------|-----------|--------------|
| 1100                |          |                            |           |       |           |              |
| 500                 |          | /<br>                      |           |       |           |              |
| MC_Move Relative    |          | <del> </del><br> <br> <br> |           |       |           | Tim e        |
| M2(Execute)         | -        | <br>                       |           |       |           | $\mathbf{L}$ |
| M20(Done)           |          | 1                          |           | <br>  |           | 1            |
| M21(Busy)           | 4        |                            | <br> <br> |       |           | Ļ            |
| M22(Active)         |          | 1                          |           |       |           | į.           |
| M23(Abort)          |          | 1                          |           |       |           | i<br>I       |
| MC_MoveSuperimposed | b        |                            |           |       |           | l<br>l       |
| M3(Execute)         |          |                            |           |       | <b>—</b>  | +            |
| M30(Done)           |          | 1<br> <br>                 | <br>      | •<br> | <br>      | ÷            |
| M31(Busy)           |          |                            |           |       |           | ÷            |
| M32(Active)         |          |                            | 1         |       | <br> <br> | ÷            |
| M33(Abort)          |          |                            |           |       |           | i<br>+-<br>1 |
| MC_HaltSuperimposed |          |                            |           |       |           | 1            |
| M4(Execute)         |          |                            |           |       |           | 1            |
| M40(Done)           |          |                            |           |       |           | 1            |
| M41(Busy)           |          |                            |           |       |           |              |
| M42(Active)         |          |                            |           |       |           |              |
| M43(Abort)          |          |                            |           |       |           |              |

- When M4 (*Execute*) of MC\_HaltSuperimposed changes to True, it triggers M33 (*CommandAboted*) of MC\_MoveSuperimposed at the same time and the motion controller starts to decelerate the axis according to the values specified in MC\_HaltSuperimposed.
- When the effects of MC\_MoveSuperimposed are cleared and M40 (Done) will change to True.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_MoveVelocity

| FB/FC | Description                                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------------|
| FB    | MC_MoveVelocity performs velocity control on an axis in the position mode with a specified behavior and an average velocity. |

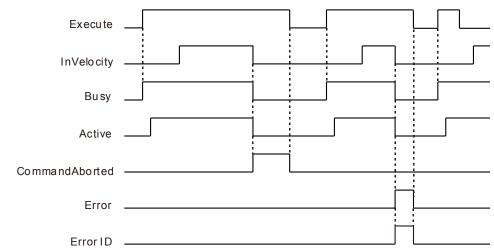
| MC_Mov           | eVelocity      |
|------------------|----------------|
| En               | Eno            |
| Axis             | InVelocity     |
| Execute          | Busy           |
| ContinuousUpdate | Active         |
| Velocity         | CommandAborted |
| Acceleration     | Error          |
| Deceleration     | ErrorID        |
| Jerk             |                |
| Direction        |                |
| BufferMode       |                |

# • Inputs

| Name                 | Function                                                                                                             | Data type           | Setting value<br>(Default value)                                                                                       | Timing for updating                                                |
|----------------------|----------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Execute              | Executes the instruction when<br><i>Execute</i> changes to True.                                                     | BOOL                | True/False (False)                                                                                                     | -                                                                  |
| Continuous<br>Update | Continuously updates <i>Velocity</i> when Continuousupdate is True                                                   | BOOL                | True/False (False)                                                                                                     | When <i>Active</i> shifts to True and it will update continuously. |
| Velocity             | Target velocity.<br>(Unit: user unit/s)                                                                              | LREAL               | Positive number or 0 (0)                                                                                               | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Acceleration         | Acceleration rate.<br>(Unit: user unit/s <sup>2</sup> )                                                              | LREAL               | Positive number or 0 (0)                                                                                               | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Deceleration         | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> )                                                              | LREAL               | Positive number or 0 (0)                                                                                               | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Jerk                 | Jerk value.<br>(Unit: user unit/s <sup>3</sup> )                                                                     | LREAL               | Positive number or 0 (0)                                                                                               | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |
| Direction            | Specifies the direction for<br>servo motor rotation.<br>PositiveDirection,<br>NegativeDirection,<br>CurrentDirection | eMC_DIREC<br>TION   | <ol> <li>1: mcPositiveDirection</li> <li>3: mcNegativeDirection</li> <li>4: mcCurrentDirection</li> <li>(0)</li> </ol> | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False.    |
| BufferMode           | Specifies the buffering behavior of the instruction.                                                                 | eMC_BUFF<br>ER_MODE | 0: mcAborting<br>1: mcBuffered (0)                                                                                     | When <i>Execute</i> shifts to True and <i>Busy</i> is False.       |

### \*Note:

1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.


# • Outputs

| Name           | Function                                                                                                   | Data type | Output range (Default value) |
|----------------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| InVelocity     | True when the specified target velocity is reached.                                                        | BOOL      | True/False (False)           |
| Busy           | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Active         | True when the axis is being controlled.                                                                    | BOOL      | True/False (False)           |
| CommandAborted | True when the instruction is aborted.                                                                      | BOOL      | True/False (False)           |
| Error          | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID        | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

## Outputs Update Timing

| Name           | Timing for shifting to True                                                                                                                                                                                                    | Timing for shifting to False                                                                                                                                                                                |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InVelocity     | <ul> <li>When the specified target velocity is reached.</li> </ul>                                                                                                                                                             | <ul> <li>When CommandAborted shifts to True</li> <li>When CommandAborted shifts to True and the target velocity is changed.</li> </ul>                                                                      |
| Busy           | • When <i>Execute</i> shifts to True.                                                                                                                                                                                          | <ul> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                   |
| Active         | • When the motion on the axis is started.                                                                                                                                                                                      | <ul> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                   |
| CommandAborted | <ul> <li>When this instruction is aborted by<br/>another instruction with the Buffer<br/>Mode set to mcAborting.</li> <li>When this instruction is aborted<br/>because of the execution of MC_Stop<br/>instruction.</li> </ul> | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Error/ErrorID  | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                                      | When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                   |

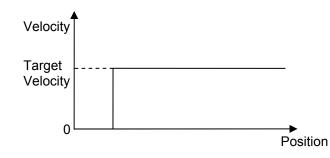
### Timing Diagram



### • In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

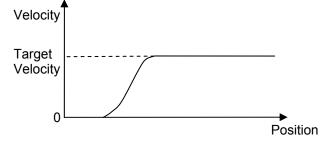
\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.


### • Function

The instruction performs speed control with specified target velocity (*Velocity*), acceleration rate (*Acceleration*), deceleration rate (*Deceleration*) and Jerk value (*Jerk*) when execute changes to True.

- You can execute another motion instruction to abort the ongoing motion of MC\_MoveVelocity.
- The output *InVelocity* is reset when the instruction is aborted by another instruction.
- When the instruction is used with MC\_MoveSuperimposed, the output *InVelocity* will be True as long as the specified target velocity equals to the performed actual velocity.
- The motion path of different velocity parameters is described as below.

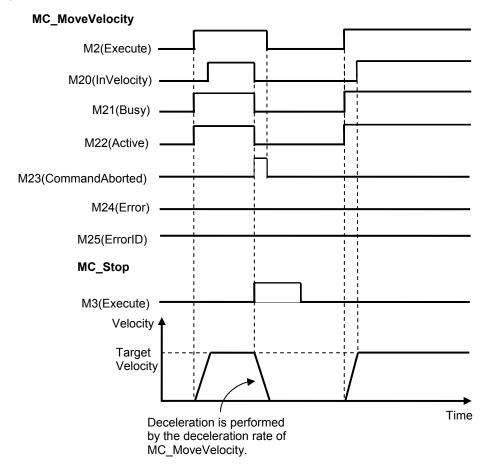
### Acceleration/Deceleration=0


When the instruction is executed with *Acceleration* or *Deceleration* set to 0, no accelerating or decelerating will be performed on the axis before it reachs the specified target velocity.



### Acceleration/Deceleration/Jerk≠0

Setting up Acceleration/Deceleration/Jerk value allows you to control the motion path to ramp up (accelerate) or ramp


down (decelerate) smoothly. The effects on a motion path with Jerk specified are as below.



The behavior of the MC\_MoveVelocity instruction followed by MC\_Stop instruction is described as below.

| MC_Move          | Velocity       |              |                |
|------------------|----------------|--------------|----------------|
| En               | Eno            |              |                |
| Axis             | InVelocity     |              |                |
| Execute          | Busy           |              | MC_Stop        |
| ContinuousUpdate | Active         | En           | Eno            |
| Velocity         | CommandAborted | Axis         | Done           |
| Acceleration     | Error          | Execute      | Busy           |
| Deceleration     | ErrorID        | Deceleration | Active         |
| Jerk             |                | Jerk         | CommandAborted |
| Direction        |                |              | Error          |
| BufferMode       |                |              | EnorID         |

#### Motion diagram:



- When M2(*Execute*) changes to True, MC\_MoveVelocity drives the axis to the target velocity. When the
  axis reaches the specified target velocity, M20(*InVelocity*) changes to True.
- When M3(*Execute*) changes to True, MC\_Stop aborts MC\_MoveVelocity and the axis decelerates according to the deceleration rate specified by MC\_MoveVelocity.
- If the MC\_MoveVelocity is not aborted, it will stay at the specified target velocity, and M20(*InVelocity*) remains True.

### BufferMode

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

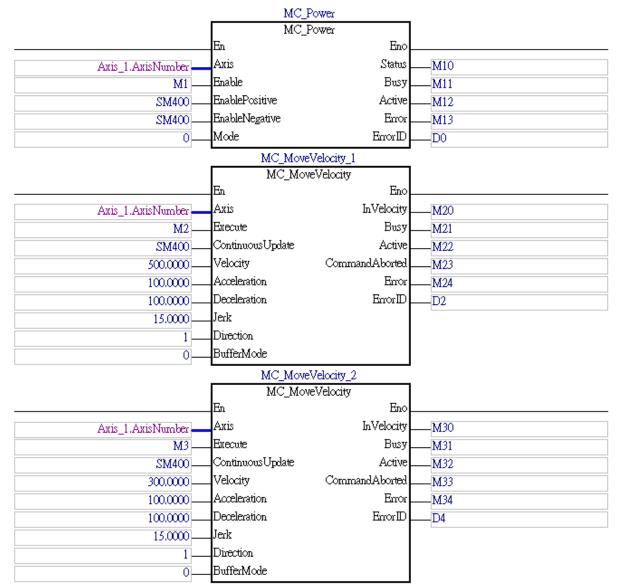
- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in "Standstill" state.

The following table lists the available buffer mode settings of MC\_MoveVelocity.

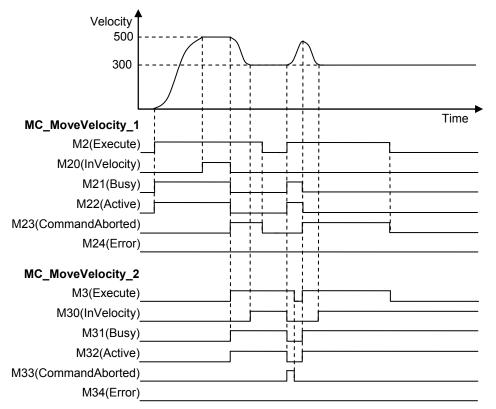
| Buffer Mode   | Function                                                                           |
|---------------|------------------------------------------------------------------------------------|
| 0: mcAborting | Aborts the ongoing motion. The next instruction takes effect immediately           |
| 1: mcBuffered | Automatically executes the next instruction after the ongoing motion is completed. |

The following table lists the buffer effects of MC\_ MoveVelocity.

| Instruction     | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to activate the next buffered instruction |
|-----------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| MC_MoveVelocity | YES                                        | YES                                       | InVelocity                                                |


For more information of buffer mode, refer to section Motion Controller Motion Control Instructions Manual.

### Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

# • Programming Example

The examples of the combination of two MC\_MoveVelocity instructions are described as below.



Motion diagram:



- When M2(*Execute*) changes to True, the first MC\_MoveVelocity controls the axis to reach the specified target velocity 500. When it reaches 500, M20(*InVelocity*) changes to True.
- If the M3(*Execute*) changes to True, M20(*InVelocity*) will change to False and M21(*CommanAborted*) will change to True while the second MC\_MoveVelocity is executed.
- The second MC\_MoveVelocity will decelerate the axis to the velocity 300. When 300 is reached, M30(*InVelocity*) will change to True and remain in this status as long as the velocity is not changed.
- When M2(Execute) changes to False, M21(CommanAborted) will change to False.
- If the first MC\_MoveVelocity is started again by M2(*Execute*) changes to True, the axis will abort the second MC\_MoveVelocity and accelerate toward the velocity 500.
- If the sencod MC\_MoveVelocity M3(*Execute*) changes to False and and set on again, the sencod instruction aborts the first MC\_MoveVelocity. In this case, the axis decelerates again without reaching the target velocity 500 of the first MC\_MoveVelocity.
- If MC\_MoveVelocity M3(*Execute*) changes to False after reaching the target velocity. M30(*InVelocity*), M31(*Busy*) and M32(*Active*) remain True.

#### Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

3

# MC\_VelocityControl

| FB/FC | Description                                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------------|
| FB    | MC_MoveVelocity performs velocity control on an axis in the velocity mode with a specified behavior and an average velocity. |

| MC_Veloci        | ityControl     |
|------------------|----------------|
| En               | Eno.           |
| Ахіз             | InVelocity.    |
| Execute          | Busy.          |
| ContinuousUpdate | Active         |
| Velocity         | CommandAborted |
| Acceleration     | Error          |
| Deceleration     | ErrorID        |
| Jerk             |                |
| Direction        |                |
| BufferMode       |                |

Before using MC\_VelocityControl instruction, it is required to confirm if the below object data is supported, and use ECAT Builder in ISPSoft to set the below data in the settings of PDO communications.

- Target velocity (60FF hex)
- Modes of operation (6060 hex)
- Modes of operation display (6061 hex)

If one of the above required object data is not set, an error will occur to indicate the problem of missing process data object setting.

#### Inputs

| Name                 | Function                                                           | Data type | Setting value<br>(Default value) | Timing for updating                                                      |
|----------------------|--------------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------------------|
| Execute              | Executes the instruction when<br><i>Execute</i> changes to True.   | BOOL      | True/False (False)               | -                                                                        |
| Continuous<br>Update | Continuously updates <i>Velocity</i> when Continuousupdate is True | BOOL      | True/False (False)               | When <i>Active</i> shifts to<br>True and it will update<br>continuously. |
| Velocity             | Target velocity.<br>(Unit: user unit/s)                            | LREAL     | Positive number or 0 (0)         | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Acceleration         | Acceleration rate.<br>(Unit: user unit/s <sup>2</sup> )            | LREAL     | Positive number or 0 (0)         | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Deceleration         | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> )            | LREAL     | Positive number or 0 (0)         | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Jerk                 | Jerk value.<br>(Unit: user unit/s <sup>3</sup> )                   | LREAL     | Positive number or 0 (0)         | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |

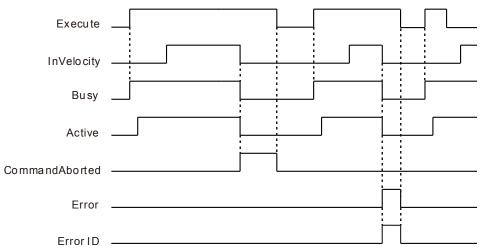
#### Chapter 3 Motion Control Instructions

| Name       | Function                                                                                                             | Data type           | Setting value<br>(Default value)                                                 | Timing for updating                                             |
|------------|----------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Direction  | Specifies the direction for<br>servo motor rotation.<br>PositiveDirection,<br>NegativeDirection,<br>CurrentDirection | eMC_DIREC<br>TION   | 1: mcPositiveDirection<br>3: mcNegativeDirection<br>4: mcCurrentDirection<br>(0) | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |
| BufferMode | Specifies the buffering behavior of the instruction.                                                                 | eMC_BUFF<br>ER_MODE | 0: mcAborting<br>1: mcBuffered (0)                                               | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |

#### \*Note:

1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

# • Outputs


| Name           | Function                                                                                                   | Data type | Output range (Default value) |
|----------------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| InVelocity     | True when the specified target velocity is reached.                                                        | BOOL      | True/False (False)           |
| Busy           | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Active         | True when the axis is being controlled.                                                                    | BOOL      | True/False (False)           |
| CommandAborted | True when the instruction is aborted.                                                                      | BOOL      | True/False (False)           |
| Error          | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID        | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

# Outputs Update Timing

| Name           | Timing for shifting to True                                                                                                                                           | Timing for shifting to False                                                                                                                                                            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InVelocity     | <ul> <li>When the specified target velocity is reached.</li> </ul>                                                                                                    | <ul> <li>When CommandAborted shifts to True</li> <li>When CommandAborted shifts to True<br/>and the target velocity is changed.</li> </ul>                                              |
| Busy           | • When <i>Execute</i> shifts to True.                                                                                                                                 | <ul><li>When <i>Error</i> shifts to True.</li><li>When <i>CommandAborted</i> shifts to True.</li></ul>                                                                                  |
| Active         | • When the motion on the axis is started.                                                                                                                             | <ul><li>When <i>Error</i> shifts to True.</li><li>When <i>CommandAborted</i> shifts to True.</li></ul>                                                                                  |
| CommandAborted | <ul> <li>When this instruction is aborted by<br/>another instruction with the Buffer<br/>Mode set to mcAborting.</li> <li>When this instruction is aborted</li> </ul> | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will<br/>be True for only one period and</li> </ul> |

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|               | because of the execution of MC_Stop instruction.                                                                                          | immediately shift to False.                                                 |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared) |

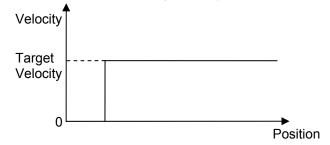
# Timing Diagram



### In-Outs

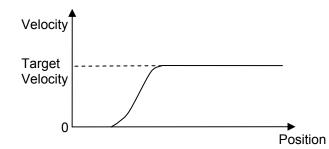
| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.


#### • Function

The instruction performs speed control with specified target velocity (*Velocity*), acceleration rate (*Acceleration*), deceleration rate (*Deceleration*) and Jerk value (*Jerk*) when execute changes to True.

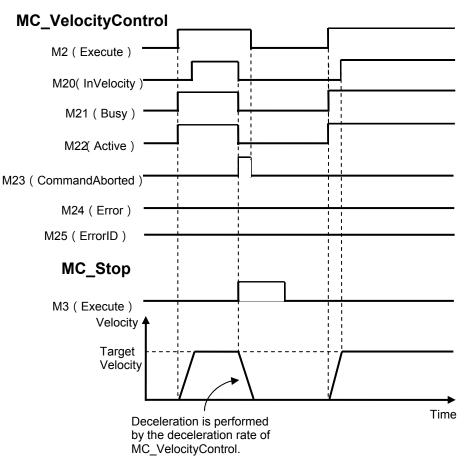
- You can execute another motion instruction to abort the ongoing motion of MC\_VelocityControl.
- The output InVelocity is reset when the instruction is aborted by another instruction.
- During the execution of the instruction MC\_VelocityControl in CSV control mode, if users execute MC\_Stop, MC\_Halt
  or the axis is in the state of Errorstop, when the target velocity (60FF hex) decelerates to 0, the mode will be switched
  to CSP control mode. Refer to its servo manual for more details on the actual servo behavior.
- The motion path of different velocity parameters is described as below.


#### Acceleration/Deceleration=0

When the instruction is executed with *Acceleration* or *Deceleration* set to 0, no accelerating or decelerating will be performed on the axis before it reachs the specified target velocity.



#### Acceleration/Deceleration/Jerk ≠0


Setting up *Acceleration/Deceleration/Jerk* value allows you to control the motion path to ramp up (accelerate) or ramp down (decelerate) smoothly. The effects on a motion path with Jerk specified are as below.



The behavior of the MC\_VelocityControl instruction followed by MC\_Stop instruction is described as below.

| MC_Velocit       | yControl       |              |                |
|------------------|----------------|--------------|----------------|
| En               | Eno            | -            |                |
| Axis             | InVelocity     | -            |                |
| Execute          | Busy           |              | MC_Stop        |
| ContinuousUpdate | Active         | En           | Eno            |
| Velocity         | CommandAborted | Axis         | Done           |
| Acceleration     | Error          | Execute      | Busy           |
| Deceleration     | ErrorID        | Deceleration | Active         |
| Jerk             |                | Jerk         | CommandAborted |
| Direction        |                |              | Error          |
| BufferMode       |                |              | EntorID        |

#### Motion diagram:



- When M2(*Execute*) changes to True, MC\_VelocityControl drives the axis to the target velocity. When the axis reaches the specified target velocity, M20(*InVelocity*) changes to True.
- When M3(*Execute*) changes to True, MC\_Stop aborts MC\_MoveVelocity and the axis decelerates according to the deceleration rate specified by MC\_VelocityControl.
- If the MC\_VelocityControl is not aborted, it will stay at the specified target velocity, and M20(*InVelocity*) remains True.

#### • BufferMode

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in "Standstill" state.

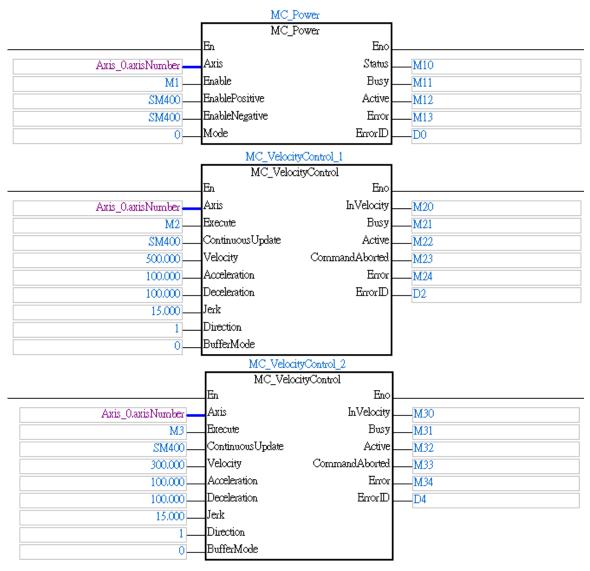
The following table lists the available buffer mode settings of MC\_VelocityControl.

| Buffer Mode   | Function                                                                           |
|---------------|------------------------------------------------------------------------------------|
| 0: mcAborting | Aborts the ongoing motion. The next instruction takes effect immediately           |
| 1: mcBuffered | Automatically executes the next instruction after the ongoing motion is completed. |

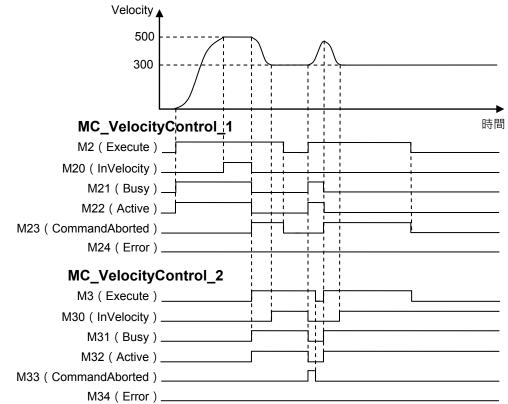
The following table lists the buffer effects of MC\_VelocityControl.

| Instruction        | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to activate the next buffered instruction |
|--------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| MC_VelocityControl | YES                                        | YES                                       | InVelocity                                                |

For more information of buffer mode, refer to *AH Motion Controller – Operation Manual.* 


Note: when switching among velocity and other modes (torque/positon), users should refer to the corresponding axis for the real velocity behavor continued.

### Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

### • Programming Example

The examples of the combination of two MC\_VelocityControl instructions are described as below.



#### Motion diagram:



- When M2(*Execute*) changes to True, the first MC\_VelocityControl controls the axis to reach the specified target velocity 500. When it reaches 500, M20(*InVelocity*) changes to True.
- If the M3(*Execute*) changes to True, M20(*InVelocity*) will change to False and M21(*CommanAborted*) will change to True while the second MC\_VelocityControl is executed.
- The second MC\_VelocityControl will decelerate the axis to the velocity 300. When 300 is reached, M30(*InVelocity*) will change to True and remain in this status as long as the velocity is not changed.
- When M2(*Execute*) changes to False, M21(*CommanAborted*) will change to False.
- If the first MC\_VelocityControl is started again by M2(*Execute*) changes to True, the axis will abort the second MC\_VelocityControl and accelerate toward the velocity 500.
- If the sencod MC\_VelocityControl M3(*Execute*) changes to False and and set on again, the sencod instruction aborts the first MC\_VelocityControl. In this case, the axis decelerates again without reaching the target velocity 500 of the first MC\_VelocityControl.
- If MC\_VelocityControl M3(*Execute*) changes to False after reaching the target velocity. M30(*InVelocity*), M31(*Busy*) and M32(*Active*) remain True.

# Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

|                                                                                                   | Becchption     |  |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| MC_TorqueControl controls the torque by using the Torque Control Mode of the applied servo drive. |                |  |  |  |  |
|                                                                                                   | -(1-1-1        |  |  |  |  |
| MC_lorg                                                                                           | weControl      |  |  |  |  |
| En                                                                                                | Eno            |  |  |  |  |
| Axis                                                                                              | InTorque       |  |  |  |  |
| Execute                                                                                           | Busy           |  |  |  |  |
| ContinuousUpdate                                                                                  | Active         |  |  |  |  |
| Torque                                                                                            | CommandAborted |  |  |  |  |
| TorqueRamp                                                                                        | Error          |  |  |  |  |
| Velocity                                                                                          | ErrorID        |  |  |  |  |
| Acceleration                                                                                      |                |  |  |  |  |
| Deceleration                                                                                      |                |  |  |  |  |

Description

# MC\_TorqueControl

FB/FC

FB

The actual movement will be limited by other input conditions, depending on the mechanical application conditions.

Before using MC\_TorqueControl instruction, it is required to confirm if the below object data is supported, and use ECAT Builder in ISPSoft to set the below data in the settings of PDO communications.

- Target torque (6071 hex)
- Modes of operation (6060 hex)
- Torque actual value (6077 hex)
- Modes of operation display (6061 hex)
- Torque ramp (6087 hex)
- Maximum velocity (6080 hex)

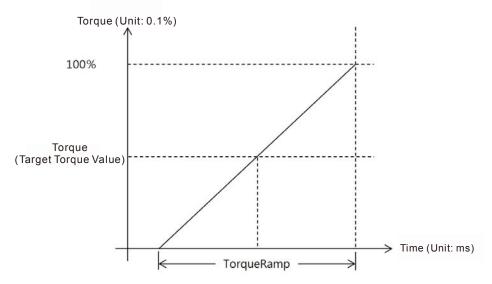
If one of the above required object data is not set, an error will occur to indicate the problem of missing process data object setting.

1. The instruction is also applicable for force control when there is no external load.

Jerk Direction BufferMode

2. When one MC\_TorqueControl instruction is executed but not finished yet, it is invalid to re-execute the instruction.

#### • Inputs


| Name    | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating |
|---------|---------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Execute | Executes the instruction when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                   |

### AH Motion Controller - Motion Control Instructions Manual

| Name                    | Function                                                                                                                       | Data type                         | Setting value<br>(Default value)               | Timing for updating                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------------------------------------------|
| Continuous<br>Update    | Continuously updates <i>Torque</i> when Continuousupdate is True                                                               | BOOL                              | True/False (False)                             | When <i>Active</i> shifts to<br>True and it will update<br>continuously. |
| Torque                  | The specified target torque (Unit:<br>refer to 6071 hex in the object<br>dictionary)                                           | LREAL                             | Refer to 6071 hex in the object dictionary (0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| TorqueRamp              | The specified maximum time<br>derivative of the desired torque<br>value. (Unit: refer to 6087 hex in<br>the object dictionary) | LREAL                             | Refer to 6087 hex in the object dictionary (0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Velocity                | The maximum velocity.<br>(Unit: refer to 6080 hex in the<br>object dictionary)                                                 | LREAL                             | Refer to 6080 hex in the object dictionary (0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.             |
| Acceleration            | Reserved                                                                                                                       | -                                 | -                                              | -                                                                        |
| Deceleration            | Reserved                                                                                                                       | -                                 | -                                              | -                                                                        |
| Jerk                    | Reserved                                                                                                                       | -                                 | -                                              | -                                                                        |
| Direction* <sup>3</sup> | Reserved                                                                                                                       | -                                 | -                                              | -                                                                        |
| BufferMode              | Specifies the buffering behavior of the instruction.                                                                           | eMC_BUFF<br>ER_MODE* <sup>3</sup> | 0: mcAborting<br>1: mcBuffered<br>(0)          | When <i>Execute</i> shifts to True and Busy is False.                    |

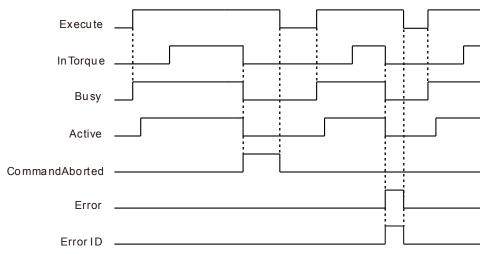
#### \*Note:

- 1. When the slave is Delta A2-E servo drive, when ContinuousUpdate is ON and the value of Torque is updated, this will cause the velocity to shift.
- 2. Take A2-E as an example, the torque ramp (6087 hex) will be defined as below:



3. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

# • Outputs


| Name           | Function                                                                                                | Data type | Output range (Default value) |
|----------------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| InTorque       | True when the specified torque or force is reached.                                                     | BOOL      | True/False (False)           |
| Busy           | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Active         | True when the axis is being controlled.                                                                 | BOOL      | True/False (False)           |
| CommandAborted | True when the instruction is aborted.                                                                   | BOOL      | True/False (False)           |
| Error          | True if an error occurs.                                                                                | BOOL      | True/False (False)           |
| ErrorID        | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

# Outputs Update Timing

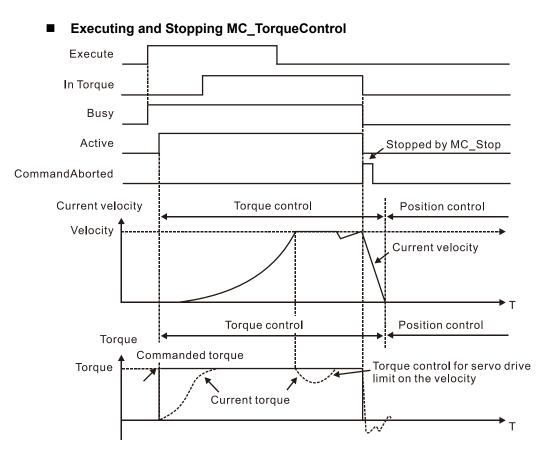
| Name           | Timing for shifting to True                                                                                                                                                                                                    | Timing for shifting to False                                                                                                                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InTorque       | <ul> <li>When the specified target torque is reached.</li> </ul>                                                                                                                                                               | <ul> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>When the instruction is re-executed and the target torque is changed.</li> </ul>                                |
| Busy           | • When <i>Execute</i> shifts to True.                                                                                                                                                                                          | <ul> <li>When <i>Execute</i> changes to False.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                |
| Active         | • When the motion on the axis is started.                                                                                                                                                                                      | <ul> <li>When <i>Execute</i> changes to False.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                |
| CommandAborted | <ul> <li>When this instruction is aborted by<br/>another instruction with the Buffer Mode<br/>set to mcAborting.</li> <li>When this instruction is aborted<br/>because of the execution of MC_Stop<br/>instruction.</li> </ul> | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will<br/>be True for only one period and<br/>immediately shift to False.</li> </ul> |
| Error/ErrorID  | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                                      | When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                               |

3\_

Timing Diagram



#### In-Outs


| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

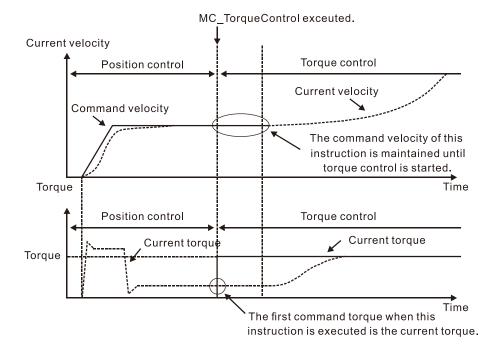
\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

# • Function

The instruction performs torque control with specified limit values such as target torque (*Torque*) and vmaximum velocity (*Velocity*) when *Execute* changes to True. The limit values are torque command values directly specified to the servo drive.

- If you need to do additional tests for monitoring purpose, you can design the specific tests outside of this instruction. For example, monitoring the moved distance could be performed by capturing the actual position during the motion.
- The axis will not remain in torque control status if another non-administrative motion instruction is executed.
- When the command torque equals or is higher than the maximum torque of the servo drive, the system will take the maximum torque of the servo drive as the command torque. However, the actual torque could be affected by the maximum velocity and the actual load, and it could be much lower than the command torque. Once the velocity and load change to the condition that requires the servo drive to exert a bigger torque, the servo drive will perform the operation targeting the maximum torque. In this case, the time derivative of the actual torque may exceed the input value of *TorqueRamp*.
- When the axis exceeds a soft limit, the instruction will be aborted and the axis will enter position mode. In this case, deceleration will be performed on the axis according to the command parameters of the servo drive.
- During the execution of the instruction MC\_TorqueControl in PT control mode, if users execute MC\_Stop, MC\_Halt or the axis is in the state of Errorstop, when QuickStop is complete, the mode will be switched to CSP control mode. Refer to its servo manual for more details on the actual servo behavior.
- The execution of MC\_TorqueControl can be stopped by using MC\_Stop instruction.




#### Switching the Control Modes

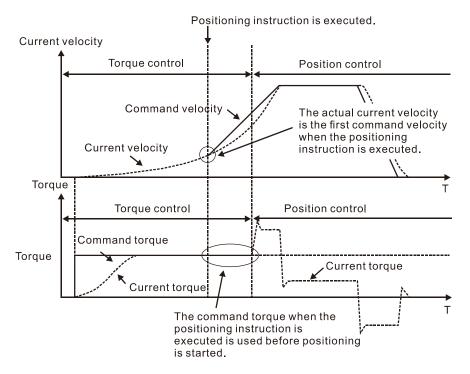
The servo drive remains in the previous Control Mode (Torque/Position) unless it is switched to another mode. Example 1:

Command: Switching from Position control to Torque control.

Actual: The servo drive operates in Position Control mode until it is switched to Torque Control mode.

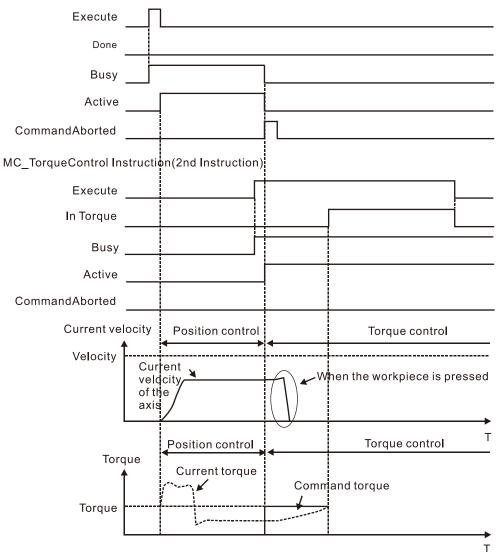
#### Switching from Position Control to Torque Control




3

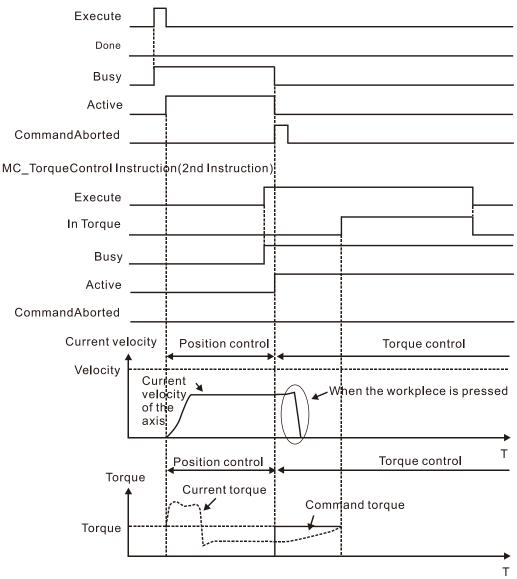
#### Example 2:

Command: Switching from Torque control to Position control.


Actual: The servo drive operates in Torque control mode until it is switched to Position control mode.

### Switching from Torque Control to Position Control




#### ■ Using MC\_TorqueControl to Abort the Previous Instruction

The motion diagram below shows an immediate stop for the axis to perform a pressing operation on the workpiece. Position Control Instruction (1st Instruction)



#### ■ Using MC\_TorqueControl to Buffer the Previous Instruction

The motion diagram below shows a buffered behavior for the axis to perform a pressing operation on the workpiece. Position Control Instruction (1st Instruction)



#### BufferMode

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in "Standstill" state.

The following table lists the available buffer mode settings of MC\_TorqueControl.

| Buffer Mode   | Function                                                                           |
|---------------|------------------------------------------------------------------------------------|
| 0: mcAborting | Aborts the ongoing motion. The next instruction takes effect immediately           |
| 1: mcBuffered | Automatically executes the next instruction after the ongoing motion is completed. |

The following table lists the buffer effects of MC\_ TorqueControl.

| Instruction      | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to activate the next buffered instruction |
|------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| MC_TorqueControl | YES                                        | YES                                       | InTorque                                                  |

For more information of buffer mode, refer to AH Motion Controller - Operation Manual.

#### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

#### Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_SetTorqueLimit

| FB/FC | Description                                                                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------|
| FB    | MC_SetTorqueLimit instruction limits the torque output from the servo drive via the torque limit function of the servo drive. |

| MC_SetTorqueLimit |         |
|-------------------|---------|
| En                | Eno     |
| Axis              | Status  |
| Enable            | Busy    |
| PositiveEnable    | Error   |
| PositiveValue     | ErrorID |
| NegativeEnable    |         |
| NagativeValue     |         |

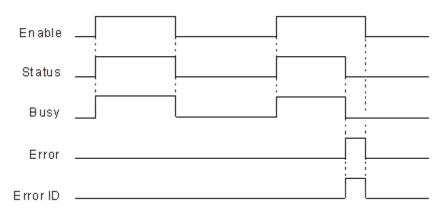
Before using MC\_SetTorqueLimit instruction, it is required to confirm if the below object data is supported.

- Positive torque limit (60E0 hex)
- Negative torque limit (60E1 hex)

#### Inputs

3

| Name           | Function                                                                                                                  | Data type | Setting value<br>(Default value)                     | Timing for updating                           |
|----------------|---------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------|-----------------------------------------------|
| Enable         | The axis is ready to be<br>operated when <i>Enable</i> is True,<br>and not ready when <i>Enable</i> is<br>False.          | BOOL      | True/False<br>(False)                                | -                                             |
| PositiveEnable | Enables the limit of positive<br>torque when <i>PositiveEnable</i> is<br>True. Valid only when <i>Enable</i><br>is True.  | BOOL      | True/False<br>(False)                                | Continuously updates value during busy state. |
| PositiveValue  | Sets the limit of positive torque<br>(Unit: refer to 60E0 hex in<br>the object dictionary)                                | LREAL     | Refer to 60E0<br>hex in the object<br>dictionary (0) | Continuously updates value during busy state. |
| NegativeEnable | Enables the limit of negative<br>torque when <i>NegativeEnable</i><br>is True. Valid only when<br><i>Enabl</i> e is True. | BOOL      | True/False<br>(False)                                | Continuously updates value during busy state. |
| NagativeValue  | Sets the limit of negative<br>torque (Unit: refer to 60E1<br>hex in the object dictionary)                                | LREAL     | Refer to 60E1<br>hex in the object<br>dictionary (0) | Continuously updates value during busy state. |


# Outputs

| Name    | Function                                                                                                  | Data type | Output range (Default value) |
|---------|-----------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Status  | True when the axis is ready to be operated.                                                               | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                    | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                  | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions | DWORD     | 16#0~16#FFFFFFF (0)          |

# Outputs Update Timing

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                                                                                            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Status        | <ul><li>When <i>Enable</i> shifts to True.</li><li>When MC_Power is enabled.</li></ul>                                                    | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>Enable</i> of MC_Power instruction shifts to False.</li> </ul> |
| Busy          | • When <i>Enable</i> shifts to True and the instruction is executed                                                                       | <ul><li>When <i>Enabl</i>e shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                         |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | <ul> <li>When <i>Enable</i> shifts from True to False.<br/>(Error code is cleared)</li> </ul>                                                                           |

# Timing Diagram



# In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                         |
|------|-----------------------|-----------|----------------------------------|-------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> shifts to True and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

# • Function

- The instruction specifies the limitation of torque that is applied to the servo drive.
- This can only be used when it is not in the torque mode.
- Enabling *PositiveEnable* with *Enable*=True limits the torque control of the axis with the specified *PositiveValue*. Enabling *NegativeEnable* with *Enable*=True limits the torque control of the axis with the specified *NegativeValue*.
- When *PositiveEnable/NegativeEnable* shifts to False, the value of the positive/negative torque limit will be set and keep in the servo drive.
- When *Enable* of this instruction shifts to False, the values of the positive and the negative torque limits will also be set and keep in the servo drive. Meanwhile *Busy* and *Status* shift to False.

# • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.

# Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# **MC\_SetPosition**

FB/FC

MC\_SetPosition changes the current position by shifting the coordinate system of an axis.

Description

| MC_SetPosition |         |
|----------------|---------|
| En             | Eno     |
| Axis           | Done    |
| Execute        | Busy    |
| Position       | Error   |
| Relative       | ErrorID |
| ExecutionMode  |         |
| ReferenceType  |         |

- The changing of the coordinate system is made by modifying both the current position of the instruction (command position) and the actual position from the feedback signals with the same value, which is set by *Position*.
- The following error between command position and actual position remains the same value.

| • Inp | uts |
|-------|-----|
|-------|-----|

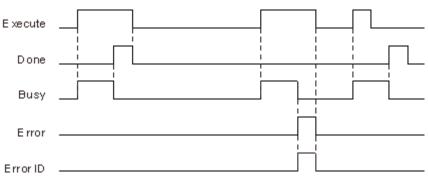
| Name          | Function                                                      | Data type    | Setting value<br>(Default value)                 | Timing for updating                                                |
|---------------|---------------------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------------------------|
| Execute       | Executes the instruction when <i>Execute</i> changes to True. | BOOL         | True/False<br>(False)                            | -                                                                  |
| Position      | Specifies the set position.<br>(Unit: user unit)              | LREAL        | Negative number,<br>positive number, or 0<br>(0) | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Relative      | Specifies a relative<br>distance or an absolute<br>position.  | BOOL         | True/False<br>(False)                            | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| ExecutionMode | Reserved                                                      | -            | -                                                | -                                                                  |
| ReferenceType | Specifies the source of reference position.                   | eMC_SOURCE*2 | 0: mcCommandedValue<br>2: mcActualValue<br>(0)   | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |

#### \*Note:

1. *"Relative=*True" means the value of *Position* will be added to the current position. *"Relative=*False" means that command current position will be set to the value specified in the parameter *Position*.

2. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

3


# • Outputs

| Name    | Function                                                                                                      | Data type | Output range (Default value) |
|---------|---------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the position change is completed.                                                                   | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                        | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                      | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code when the error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

#### Outputs Update Timing

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done          | • When the position change is completed                                                                                                   | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Busy          | • When <i>Execute</i> shifts to True and the instruction is executed.                                                                     | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True</li></ul>                                                                                                                |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                  |

# Timing Diagram



### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### • Function

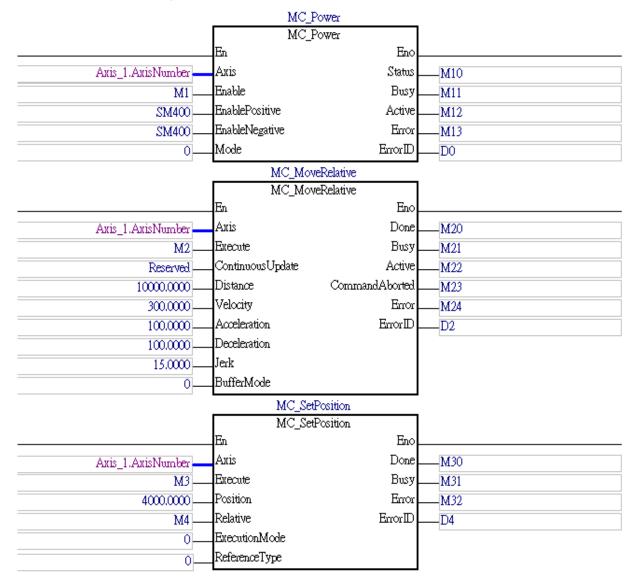
- MC\_SetPosition changes the current position of the servo axis to the specified target position.
- MC\_SetPosition changes the current position by shifting the coordinate system of an axis. The changing of the coordinate system is made by modifying both the current position of the instruction (command position) and the actual position from the feedback signals with the same value, which is set by *Position*.
- The following error between command position and actual position remains the same value, and can be explained by the following equation.

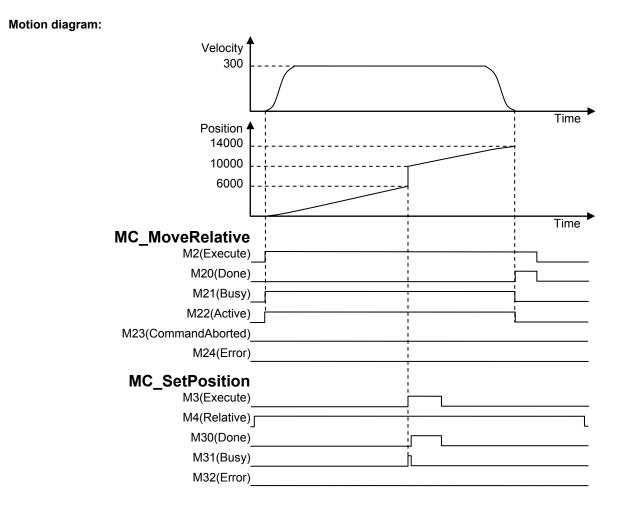
Actual position after change = Command position - Following error before change

- The instruction can also be used during motion without changing the target distance which is defined and fixed at the beginning of the motion instruction. For example, if the motion started at 0 and MC\_SetPosition executes during the motion, the execution effects for both MC\_MoveRelative with *Distance*=10000 and MC\_MoveAbsolute with *Position*=10000 will be the same.
- When the Count Mode is set to rotary mode (modulo axis), you can specify the set position (*Position*) to a value outside the range of the modulo.

#### Note:

- Avoid using the MC\_SetPosition instruction for a master axis that is in synchronization with instructions such as MC\_GearIn, and MC\_CAM; this act will cause the slave axis to jump from position to position in inconsistent velocity.
- 2. If another MC\_SetPosition instruction is executed while the current MC\_SetPosition is busy, the last instruction will take the priority. In this case, *Done* of the current MC\_SetPosition instruction shifts to True, however the position change of the current instruction is not completed.


### • Troubleshooting

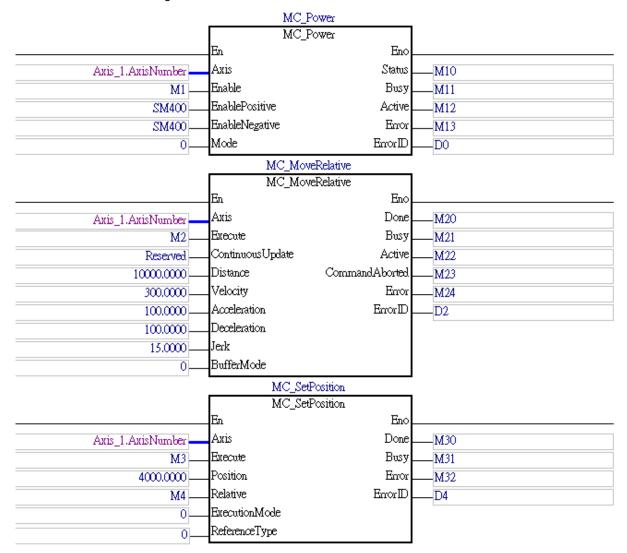

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

## • Programming Example 1

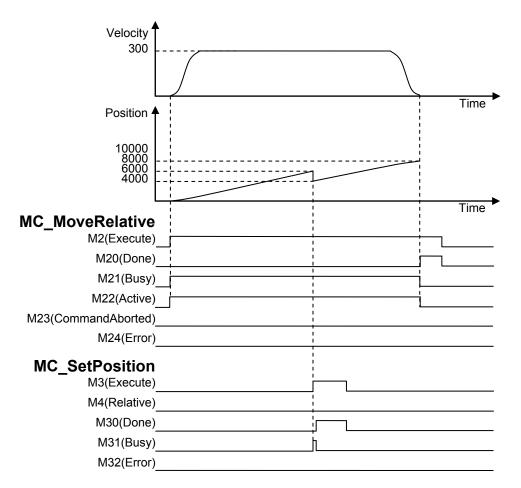
This example describes the effects of a combination of MC\_MoveRelative and MC\_SetPosition with its input *Relative* set to True.

- "Relative=True" means the value of Position will be added to the current position.
- Execution of the instruction will have no influence on the actual execution results of the MC\_MoveRelative instruction which is being executed.






- MC\_MoveRelative instruction executes when M2(*Execute*) changes to True. MC\_SetPosition instruction executes after a few seconds.
- The set position specified in *Position* is 4,000 with M4(*Relative*)=True, meaning 4,000 is added to current command position 6,000 when MC\_SetPosition executes. The command position becomes 10,000 after MC\_SetPosition instruction executes. The defined moving distance at the beginning of MC\_MoveRelative is 10,000, so MC\_MoveRelative keeps going for the remaining 4,000 then reaches 14,000 (14000=6000+4000+(10000-6000)).
- The motion of the physical device corresponding to MC\_MoveRelative is not affected after MC\_SetPosition changed the command position because the moving distance for the commanded motion remains 10,000, which is the same as the value set in *Distance* of MC\_MoveRelative.

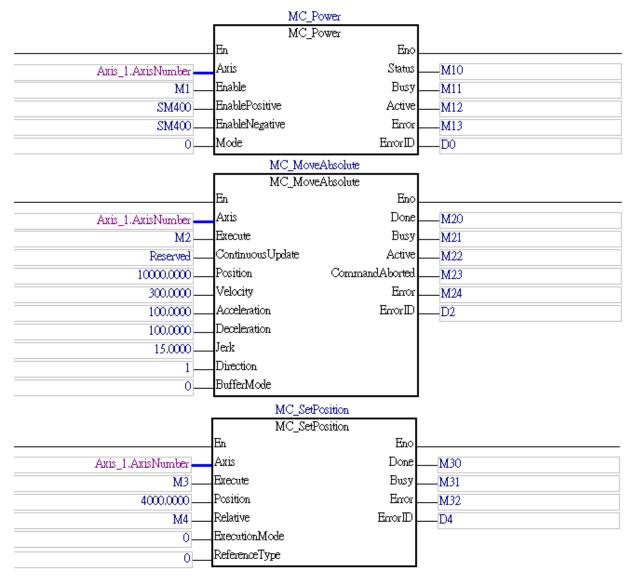

# • Programming Example 2

This example describes the effects of a combination of MC\_MoveRelative and MC\_SetPosition with its input *Relative* set to False.

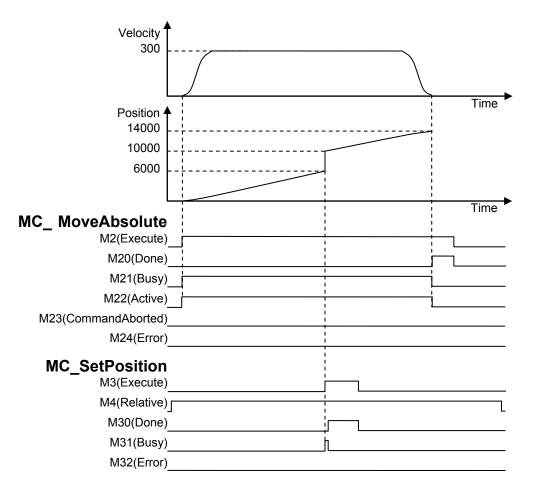
- "*Relative*=False" means that command current position will be set to the value specified in the parameter *Position.*
- Execution of the instruction will have no influence on the actual execution results of the MC\_MoveRelative instruction which is being executed.



Motion diagram:




- MC\_MoveRelative instruction executes when M2(*Execute*) changes to True. MC\_SetPosition instruction executes after a few seconds.
- The set position specified in *Position* is 4,000 with M4(*Relative*)=False, meaning 4,000 is taken to replace the current command position 6,000 when MC\_SetPosition executes. The command position becomes 8,000 after MC\_SetPosition instruction executes. The defined moving distance at the beginning of MC\_MoveRelative is 10,000, so MC\_MoveRelative keeps going for the remaining 4,000 then reaches 8,000 (8000=4000+(10000-6000)).
- The motion of the physical device corresponding to MC\_MoveRelative is not affected after MC\_SetPosition changed the command position because the moving distance for the commanded motion remains 10,000, which is the same as the value set in *Distance* of MC\_MoveRelative.


#### • Programming Example 3

This example describes the effects of a combination of MC\_MoveAbsolute and MC\_SetPosition with its input *Relative* set to True.

- "Relative=True" means the value of Position will be added to the current position.
- Execution of the instruction will have no influence on the actual execution results of the MC\_MoveAbsolute instruction which is being executed.



Motion diagram:



- MC\_MoveAbsolute instruction executes when M2(*Execute*) changes to True. MC\_SetPosition instruction executes after a few seconds.
- The set position specified in *Position* is 4,000 with M4(*Relative*)=True, meaning 4,000 is added to current command position 6,000 when MC\_SetPosition executes. The command position becomes 10,000 after MC\_SetPosition instruction executes. The defined moving distance at the beginning of MC\_MoveAbsolute is 10,000, so MC\_MoveAbsolute keeps going for the remaining 4,000 then reaches 14,000 (14000=6000+4000+(10000-6000)).
- The motion of the physical device corresponding to MC\_MoveAbsolute is not affected after MC\_SetPosition changed the command position because the moving distance for the commanded motion remains 10,000, which is defined and fixed at the beginning of MC\_MoveAbsolute by Position=10000.

#### Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

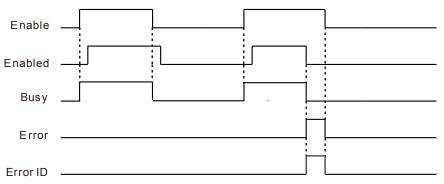
# MC\_SetOverride

| FB/FC | Description                                                                                               |
|-------|-----------------------------------------------------------------------------------------------------------|
| FB    | MC_SeOverride changes the velocity override factors so as to change the target velocity of a motion axis. |
|       | MC_SetOvenide                                                                                             |
|       | En Eno                                                                                                    |

| :Ovenide |
|----------|
| Eno      |
| Enabled  |
| Busy     |
| Error    |
| ErrorID  |
|          |
|          |

# • Inputs

| Name                     | Function                                                                                                                                    | Data type | Setting value<br>(Default value) | Timing for updating                           |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|-----------------------------------------------|
| Enable                   | The axis is ready to be<br>operated when <i>Enable</i> is<br>True. When Enable is True,<br>override factor will be<br>continuously updated. | BOOL      | True/False (False)               | -                                             |
| VelFactor                | Defines the velocity override factor. (Unit: %)                                                                                             | LREAL     | 0 to 500 (100)                   | Continuously updates value during busy state. |
| AccFactor<br>(Reserved)  | Reserved                                                                                                                                    | -         | -                                | -                                             |
| JerkFactor<br>(Reserved) | Reserved                                                                                                                                    | -         | -                                | -                                             |


# Outputs

| Name    | Function                                                                                                  | Data type | Output range (Default value) |
|---------|-----------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Enabled | True when the axis is ready to be operated.                                                               | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                    | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                  | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions | DWORD     | 16#0~16#FFFFFFF (0)          |

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                                        |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Enabled       | • When <i>Enable</i> shifts to True and the axis is ready to be operated.                                                                 | <ul> <li>After one period when <i>Enable</i> shifts to False.</li> <li>When <i>Error</i> shifts to True.</li> </ul> |
| Busy          | • When <i>Enable</i> shifts to True and the instruction is executed                                                                       | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul>                     |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | <ul> <li>When <i>Enable</i> shifts from True to False.<br/>(Error code is cleared)</li> </ul>                       |

#### Outputs Update Timing

#### Timing Diagram



### • In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                         |
|------|-----------------------|-----------|----------------------------------|-------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> shifts to True and <i>Busy</i> is False. |

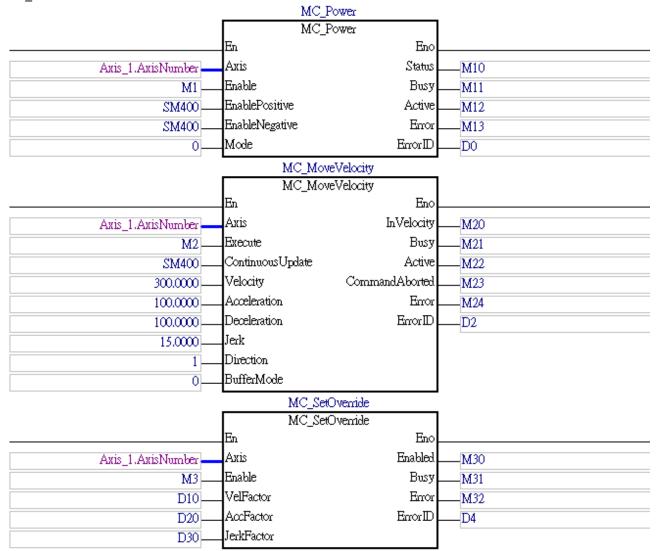
\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### Function

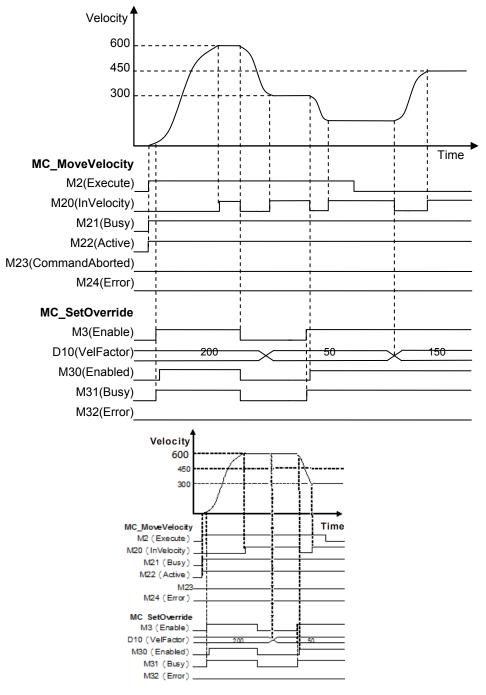
- The MC\_SetOverride instruction changes the target velocity (and acceleration/deceleration/jerk, if applicable) of the motion axis with its specified override factors.
- The new target velocity can be obtained by the equation as below.

The new target velocity = Current target velocity × The specified override factor

- The override value will command the axis to accelerate or decelerate to the target velocity.
- By setting the velocity override value as 0, you can pause the axis motion while keeping the operation status. Specifying the velocity override factor as 0 will change the target velocity to 0 and decelerate the axis to a velocity of 0 while keeping the axis operation status.
- Whenever *Enable* is True, the override factors will be updated continuously.
- The override factors stay the same when *Enable* shifts to False or an error occurs.
- If another MC\_SetOverride is executed during the current execution of MC\_SetOverride, the execution of the


last MC\_SetOverride will take the priority. Enabled will be True for both instructions.

#### Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.

#### Programming Example

This example describes the influence on the execution results of the MC\_MoveVelocity instruction by using the MC\_SetOverride instruction.

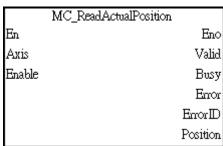


Motion diagram:



- When the MC\_MoveVelocity is being executed without reaching its target velocity(300) yet, executing the MC\_SetOverride instruction will change the target velocity from 300 to 600 when MC\_Setoverride is enabled with D10(*VelFactor*) set as 200, indicating a 200% shift. When the target velocity of the MC\_MoveVelocity reaches the new target velocity(600), M20(*InVelocity*) will change to True.
- When M3(*Enable*) of MC\_SetOverride changes to False, the override factor for the target velocity of the axis stays at 600.
- The modification made on *VelFactor* will continuously be updated and the axis will react accordingly as long as *Enable* of MC\_SetOverride True. You can observe this behavior by the variation from velocity 600 to 300 (*VelFactor*=50).

3


# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

3

# MC\_ReadActualPosition

| FB/FC | Description                                                                               |
|-------|-------------------------------------------------------------------------------------------|
| FB    | This instruction reports the actual axis position continuously when <i>Enable</i> is set. |
|       |                                                                                           |

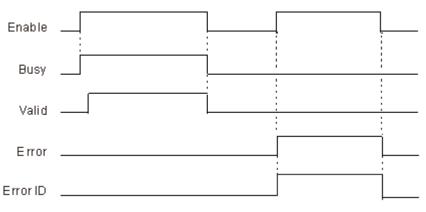


- 1. The output *Valid* shifts to True when the output *Position* is valid. If *Enable* is reset, the data loses its validity, and all outputs are reset. In this case, to update new position data requires enabling this instruction again.
- 2. The reported value of the actual position at the output is obtained from the servo drive and the unit of the position value is the same as that of the servo drive.

### Inputs

| Name   | Function                                                     | Data type | Setting value<br>(Default value) | Timing for updating |
|--------|--------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Enable | Obtains the value of the outputs continuously while enabled. | BOOL      | True/False<br>(False)            | -                   |

# Outputs


| Name                                           | Function                                                                                | Data type | Output range (Default value)              |
|------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|-------------------------------------------|
| Valid                                          | True when the axis position at the output is available.                                 | BOOL      | True/False (False)                        |
| Busy                                           | Indicates there are incoming new output values and the instruction is not yet finished. | BOOL      | True/False (False)                        |
| Error                                          | Indicates the error code if an error occurs.                                            |           | True/False (False)                        |
| ErrorID                                        |                                                                                         |           | 16#0~16#FFFFFFF (0)                       |
| Position Current absolute position (user unit) |                                                                                         | LREAL     | Negative number, positive number or 0 (0) |

#### Outputs Update Timing

| Name  | Timing for shifting to True                                                           | Timing for changing to False                                                                    |  |
|-------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Valid | • When <i>Enable</i> shifts to True and the axis position at the output is available. | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |  |

| Busy          | When <i>Enable</i> shifts to True                                                                                                         | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Enable</i> shifts from True to False.<br>(Error code is cleared)                      |  |
| Position      | Continuously updates value when <i>Valid</i> is True.                                                                                     | Continuously updates value when <i>Valid</i> is True.                                           |  |

#### Timing Diagram



# • In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                |
|------|-----------------------|-----------|----------------------------------|------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> shifts to True. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

# Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

### Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

| FB/FC | Description                                                                        |                  |  |  |
|-------|------------------------------------------------------------------------------------|------------------|--|--|
| FB    | This instruction reports the actual axis velocity continuously when Enable is set. |                  |  |  |
|       | MC P                                                                               | adActualVelocity |  |  |
|       | En INC_IN                                                                          | Eno              |  |  |
|       | Axis                                                                               | Valid            |  |  |

Busy Error ErrorID Velocity

## MC\_ReadActualVelocity

Enable

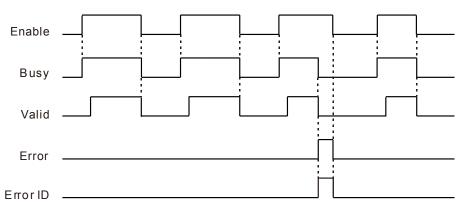
- 1. The output *Valid* is True when the output *Velocity* is valid. If *Enable* is reset, the data loses its validity, and all outputs are reset. In this case, to update new velocity data requires enabling this instruction again.
- 2. The reported value of the actual velocity at the output is obtained from the servo drive and the unit of the velocity value is the same as that of the servo drive.

#### • Inputs

| Name   | Function                                                     | Data type | Setting value<br>(Default value) | Timing for updating |
|--------|--------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Enable | Obtains the value of the outputs continuously while enabled. | BOOL      | True/False<br>(False)            | -                   |

#### Outputs

| Name                                                                                                        | Function                                           | Data type | Output range (Default value)              |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------|-------------------------------------------|
| Valid                                                                                                       | available. Indicates there are incoming new output |           | True/False (False)                        |
| Busy                                                                                                        |                                                    |           | True/False (False)                        |
| Error                                                                                                       | True if an error occurs.                           |           | True/False (False)                        |
| ErrorID Indicates the error code if an error occurs.<br>Refer to table XX.XX for error code<br>descriptions |                                                    | DWORD     | 16#0~16#FFFFFFF (0)                       |
| Velocity The value of the actual velocity (user unit/sec)                                                   |                                                    | LREAL     | Negative number, positive number or 0 (0) |


#### Outputs Update Timing

| Name  | Timing for shifting to True                        | Timing for shifting to False          |  |
|-------|----------------------------------------------------|---------------------------------------|--|
| Valid | • When <i>Enable</i> shifts to True and the actual | • When <i>Enable</i> shifts to False. |  |

3

|                                           | velocity at the output is available.                                                                                                      | • When <i>Error</i> shifts to True                                                             |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Busy • When <i>Enable</i> shifts to True. |                                                                                                                                           | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True</li></ul> |
| Error/ErrorID                             | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | <ul> <li>When <i>Enable</i> shifts from True to False.<br/>(Error code is cleared)</li> </ul>  |
| Velocity                                  | Continuously updates value when <i>Valid</i> is True.                                                                                     | Continuously updates value when <i>Valid</i> is True.                                          |

#### Timing Diagram



#### • In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                |
|------|-----------------------|-----------|----------------------------------|------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> shifts to True. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

## • Troubleshooting

- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller – Operation Manual.* 

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

## MC\_ReadActualTorque

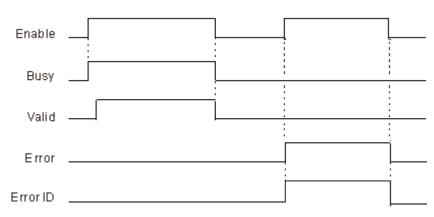
| FB/FC | Description                                                                      |
|-------|----------------------------------------------------------------------------------|
| FB    | This instruction reports the axis torque continuously when <i>Enable</i> is set. |
|       |                                                                                  |



- 1. The output *Valid* is True when the output *Torque* is valid. If *Enable* is reset, the data loses its validity, and all outputs are reset. In this case, to update new velocity data requires enabling this instruction again.
- 2. The reported value of the actual torque at the output is obtained from the servo drive and the unit of the torque value is the same as that of the servo drive.

#### • Inputs

| Name   | Function                                                     | Data type | Setting value<br>(Default value) | Timing for updating |
|--------|--------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Enable | Obtains the value of the outputs continuously while enabled. | BOOL      | True/False<br>(False)            | -                   |


#### Outputs

| Name                                                                                                                       | Function                                                                                                           | Data type | Output range (Default value)                                                                         |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------|
| Valid                                                                                                                      | True when the axis torque at the output is available.                                                              | BOOL      | True/False (False)                                                                                   |
| Busy                                                                                                                       | Indicates there are incoming new output values and the instruction is not yet finished.                            |           | True/False (False)                                                                                   |
| Error                                                                                                                      | Error True if an error occurs.                                                                                     |           | True/False (False)                                                                                   |
| ErrorID                                                                                                                    | ErrorID Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. |           | 16#0~16#FFFFFFF (0)                                                                                  |
| Torque     The value of the actual torque or force<br>(unit: refer to 6077 hex from the object<br>dictionary of the slave) |                                                                                                                    | LREAL     | refer to 6077 hex from the object dictionary<br>of the slave for the available range or use 0<br>(0) |

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                   |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Valid         | • When <i>Enable</i> shifts to True and the actual torque at the output is available.                                                     | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True</li></ul> |  |
| Busy          | • When <i>Enable</i> shifts to True.                                                                                                      | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True</li></ul> |  |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Enable</i> shifts from True to False.<br>(Error code is cleared)                     |  |
| Torque        | Continuously updates value when <i>Valid</i> is True.                                                                                     | Continuously updates value when <i>Valid</i> is True.                                          |  |

#### Outputs Update Timing

#### Timing Diagram



#### • In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                |
|------|-----------------------|-----------|----------------------------------|------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> shifts to True. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

## • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

| FB/FC | Description                                                                |                |  |  |  |  |
|-------|----------------------------------------------------------------------------|----------------|--|--|--|--|
| FB    | MC_ReadStatus reads the state of the axis and indicates it at the outputs. |                |  |  |  |  |
|       |                                                                            | ReadStatus     |  |  |  |  |
|       | En                                                                         | Eno            |  |  |  |  |
|       | Axis                                                                       | Valid          |  |  |  |  |
|       | Enable                                                                     | Busy           |  |  |  |  |
|       |                                                                            | Error          |  |  |  |  |
|       |                                                                            | ErrorID        |  |  |  |  |
|       |                                                                            | ErrorStop      |  |  |  |  |
|       |                                                                            | Disabled       |  |  |  |  |
|       |                                                                            | Stopping       |  |  |  |  |
|       |                                                                            | Homing         |  |  |  |  |
|       |                                                                            | Standstill     |  |  |  |  |
|       |                                                                            | DiscreteMotion |  |  |  |  |

ContinousMotion SyncMotion Coordinated CoordinatedStop CoordinatedHalt

## MC\_ReadStatus

- The instruction signals the axis state at the outputs after the execution of this instruction is completed.

#### • Inputs

| Name   | Function                                                 | Data type | Setting value<br>(Default value) | Timing for updating |  |
|--------|----------------------------------------------------------|-----------|----------------------------------|---------------------|--|
| Enable | Executes the instruction when<br>Enable changes to True. | BOOL      | True/False<br>(True)             | -                   |  |

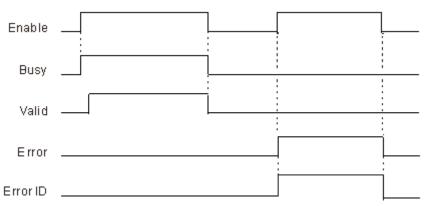
Note: This instruction will read the axis state constantly when Enable changes to True.

#### • Outputs

| Name                                        | Function                                                         | Data type | Output range (Default value) |
|---------------------------------------------|------------------------------------------------------------------|-----------|------------------------------|
| Valid                                       | True when the axis state at the output is available.             | BOOL      | True/False (False)           |
| Busy                                        | usy True when the instruction is executed.                       |           | True/False (False)           |
| Error                                       | Fror True if an error occurs.                                    |           | True/False (False)           |
| ErrorID                                     | rrorID Indicates the error code if an error<br>code descriptions |           | 16#0~16#FFFFFFF (0)          |
| ErrorStop Refer to Chapter 7 Motion Control |                                                                  | BOOL      | True/False (False)           |

#### AH Motion Controller – Motion Control Instructions Manual

| Name            | Function                                                           | Data type | Output range (Default value) |
|-----------------|--------------------------------------------------------------------|-----------|------------------------------|
| Disabled        | Programming of <b>AH Motion</b>                                    | BOOL      | True/False (False)           |
| Stopping        | <b>Controller</b> – <b>Operation Manual</b> for the state diagram. | BOOL      | True/False (False)           |
| Homing          |                                                                    | BOOL      | True/False (False)           |
| Standstill      | -                                                                  | BOOL      | True/False (False)           |
| DiscreteMotion  |                                                                    | BOOL      | True/False (False)           |
| ContinousMotion |                                                                    | BOOL      | True/False (False)           |
| SyncMotion      |                                                                    | BOOL      | True/False (False)           |
| Coordinated     |                                                                    | BOOL      | True/False (False)           |
| CoordinatedStop |                                                                    | BOOL      | True/False (False)           |
| CoordinatedHalt |                                                                    | BOOL      | True/False (False)           |


## Outputs Update Timing

| Name            | Timing for shifting to True                                                                                     | Timing for shifting to False                                                                    |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| Valid           | • When <i>Enable</i> shifts to True and the axis state at the output is available.                              | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |  |  |
| Busy            | • When <i>Enable</i> shifts to True.                                                                            | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |  |  |
| Error/ErrorID   | • When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded) | • When <i>Enable</i> shifts from True to False.<br>(Error code is cleared)                      |  |  |
| ErrorStop       | <ul> <li>When the axis status indicates<br/>"ErrorStop".</li> </ul>                                             | <ul> <li>When the axis status did not indicate<br/>"ErrorStop".</li> </ul>                      |  |  |
| Disabled        | <ul> <li>When the axis status indicates</li> <li>"Disabled".</li> </ul>                                         | • When the axis status did not indicate<br>"Disabled".                                          |  |  |
| Stopping        | <ul> <li>When the axis status indicates<br/>"Stopping".</li> </ul>                                              | <ul> <li>When the axis status did not indicate<br/>"Stopping".</li> </ul>                       |  |  |
| Homing          | <ul> <li>When the axis status indicates"<br/>Homing".</li> </ul>                                                | <ul> <li>When the axis status did not indicate<br/>"Homing".</li> </ul>                         |  |  |
| Standstill      | <ul> <li>When the axis status indicates<br/>"Standstill".</li> </ul>                                            | <ul> <li>When the axis status did not indicate<br/>"Standstill".</li> </ul>                     |  |  |
| DiscreteMotion  | <ul> <li>When the axis status indicates</li> <li>"DiscreteMotion".</li> </ul>                                   | When the axis status did not indicate     "DiscreteMotion".                                     |  |  |
| ContinousMotion | When the axis status indicates     "ContinousMotion".                                                           | When the axis status did not indicate     "ContinousMotion".                                    |  |  |
| SyncMotion      | When the axis status indicates                                                                                  | When the axis status did not indicate                                                           |  |  |

| Name            | Timing for shifting to True                                               | Timing for shifting to False                                                     |  |
|-----------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
|                 | "SyncMotion".                                                             | "SyncMotion".                                                                    |  |
| Coordinated     | <ul> <li>When the axis status indicates<br/>"Coordinated".</li> </ul>     | <ul> <li>When the axis status did not indicate<br/>"Coordinated".</li> </ul>     |  |
| CoordinatedStop | <ul> <li>When the axis status indicates<br/>"CoordinatedStop".</li> </ul> | <ul> <li>When the axis status did not indicate<br/>"CoordinatedStop".</li> </ul> |  |
| CoordinatedHalt | <ul> <li>When the axis status indicates<br/>"CoordinatedHalt".</li> </ul> | <ul> <li>When the axis status did not indicate<br/>"CoordinatedHalt".</li> </ul> |  |

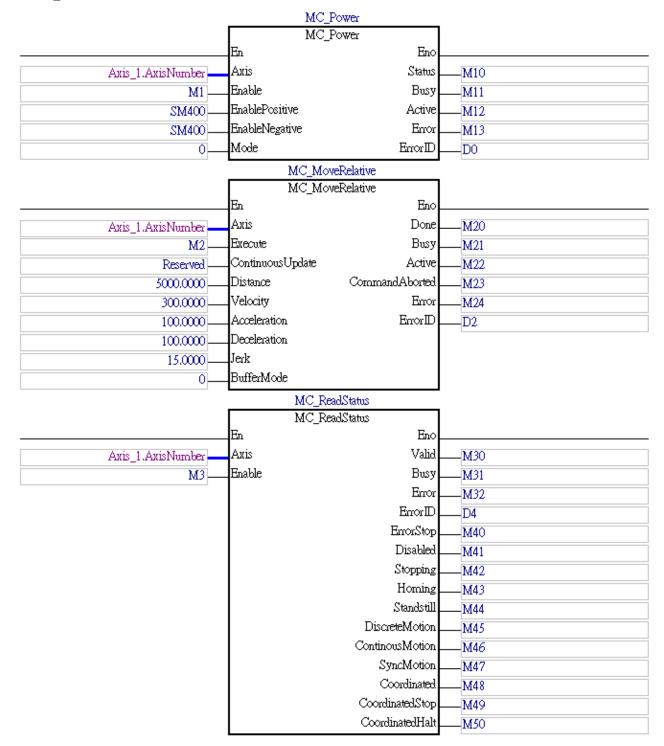
**Note**: When *Enable* shifts to False, the states of *ErrorStop*, *Disabled*, *Stopping*, *Homing*, *Standstil*, *DiscreteMotion*, *ContinousMotion*, *SyncMotion*, *Coordinated*, *CoordinatedStop* and *CoordinatedHalt* outputs remain unchanged.

Timing Diagram

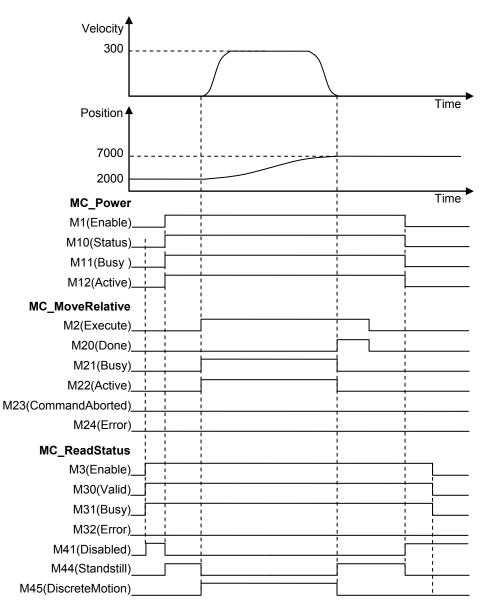


#### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                          |  |
|------|-----------------------|-----------|----------------------------------|----------------------------------------------|--|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> is rising edge triggered. |  |


\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

#### • Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller – Operation Manual.*

## • Programming Example

The MC\_ReadStatus instruction is used as follows.



#### Motion diagram:



- When MC\_ReadStatus is enabled (M3=True), M41 (*Disabled*) change to True, indicating the axis is not yet active.
- When MC\_Power is enabled (M1 = True), M44 (*Standstill*) changes to True, and M41 (*Disabled*) changes to False.
- When MC\_MoveRelative is executed (M2=True), the axis starts to move from current position to the designated target position. M45 (*DiscreteMotion*) change to True and M44 (*Standstill*) changes to False.
- When the axis reaches the specified target position, M20 (*Done*) and M44 (*Standstill*) change to True, and M45 (DiscreteMotion) changes to False.
- When MC\_Power is disabled (M1 = False), M41 (*Disabled*) changes to True, and M44 (*Standstill*) changes to False.
- When MC\_ReadStatus is disabled (M3 = False), M41 (*Disabled*) remains unchanged.

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

## MC\_ReadMotionState

| F | В/ | F | C |
|---|----|---|---|
|   | F  | В |   |

MC\_ReadMotionState reports details of the axis status relating the on-going motion behavior.

Description

| -      |                    |
|--------|--------------------|
|        | MC_ReadMotionState |
| En     | Eno                |
| Axis   | Valid              |
| Enable | Busy               |
| Source | Error              |
|        | EntorID            |
|        | ConstantVelocity   |
|        | Accelerating       |
|        | Decelerating       |
|        | DirectionPositive  |
|        | DirectionNegative  |

The output *Valid* is True when the outputs relating the axis motion status are valid. If *Enable* is reset, the data loses its validity, and all outputs are reset. In this case, to update new motion state requires enabling this instruction again.

#### Inputs

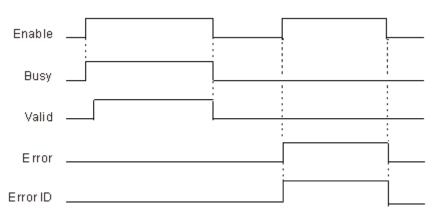
| Name   | Function                                                                                                                                                              | Data type               | Setting value<br>(Default value)               | Timing for updating                                                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|-----------------------------------------------------------------------------|
| Enable | Executes the instruction when <i>Enable</i> changes to True.                                                                                                          | BOOL                    | True/False (False)                             | -                                                                           |
| Source | Selects the source of the<br>relating data:<br>Commanded Value: The value<br>commanded by the controller.<br>Actual Value:<br>The actual value on the<br>motion axis. | eMC_SOURCE <sup>*</sup> | 1: mcCommandedValue<br>2: mcActualValue<br>(0) | When <i>Enable</i> is<br>rising-edge triggered<br>and <i>Busy</i> is False. |

\*Note: Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

#### Outputs

| Name    | Function                                              | Data type | Output range (Default<br>value) |
|---------|-------------------------------------------------------|-----------|---------------------------------|
| Valid   | True when the axis states at the output is available. | BOOL      | True/False (False)              |
| Busy    | True when the instruction is executed.                | BOOL      | True/False (False)              |
| Error   | True if an error occurs.                              | BOOL      | True/False (False)              |
| ErrorID | Indicates the error code if an error occurs. Refer to | DWORD     | 16#0~16#FFFFFFF (0)             |

3


### AH Motion Controller – Motion Control Instructions Manual

| Name                                    | Function                                                              | Data type | Output range (Default value) |
|-----------------------------------------|-----------------------------------------------------------------------|-----------|------------------------------|
| Appendices for error code descriptions. |                                                                       |           |                              |
| ConstantVelocity                        | Indicates that the current velocity is constant. Velocity might be 0. | BOOL      | True/False (False)           |
| Accelerating                            | Indicates the absolute value of velocity is increasing.               | BOOL      | True/False (False)           |
| Decelerating                            | Indicates the absolute value of velocity is decreasing.               | BOOL      | True/False (False)           |
| DirectionPositive                       | Indicates the position is increasing.                                 | BOOL      | True/False (False)           |
| DirectionNegative                       | Indicates the position is decreasing.                                 | BOOL      | True/False (False)           |

#### Outputs Update Timing

| Name                                 | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                                                                                                |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Valid                                | • When <i>Enable</i> shifts to True and the actual motion states at the output are available.                                             | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                             |
| Busy                                 | • When <i>Enable</i> shifts to True.                                                                                                      | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                             |
| Error/ErrorID                        | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Enable</i> shifts from True to False.<br>(Error code is cleared)                                                                                                  |
| ConstantVelocity                     | • When the velocity is constant.                                                                                                          | • When the velocity isn't constant and <i>Enable</i> is still True.                                                                                                         |
| Accelerating                         | • When the velocity is accelerating.                                                                                                      | • When the velocity isn't accelerating and <i>Enable</i> is still True.                                                                                                     |
| • When the velocity is decelerating. |                                                                                                                                           | • When the velocity isn't decelerating and <i>Enable</i> is still True.                                                                                                     |
| DirectionPositive                    | When the moving direction is positive.                                                                                                    | <ul> <li>When the moving direction isn't positive<br/>and <i>Enable</i> is still True.</li> <li>When the axis is not moving and <i>Enable</i><br/>is still True.</li> </ul> |
| DirectionNegative                    | <ul> <li>When the moving direction is negative.</li> </ul>                                                                                | <ul> <li>When the moving direction isn't negative and <i>Enable</i> is still True.</li> <li>When the axis is not moving and <i>Enable</i> is still True.</li> </ul>         |

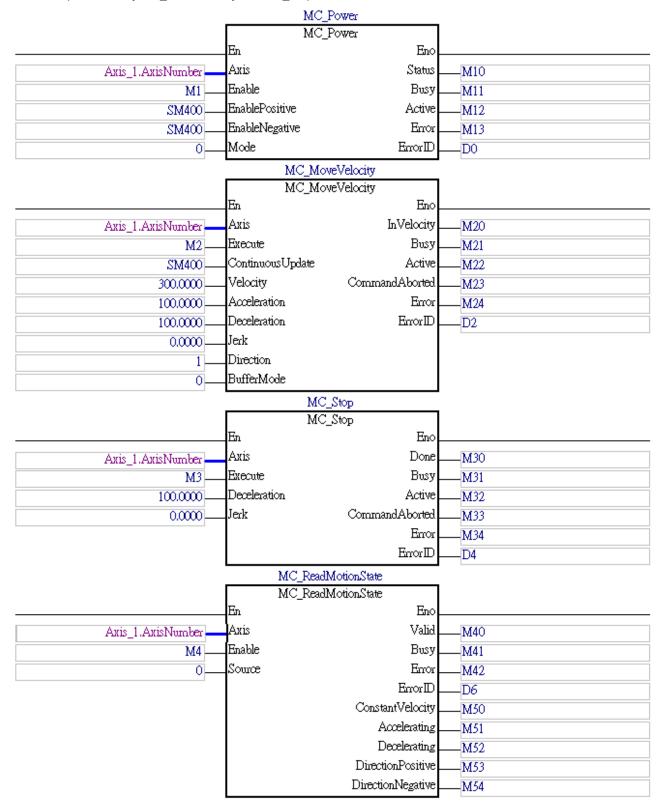
#### Timing Diagram



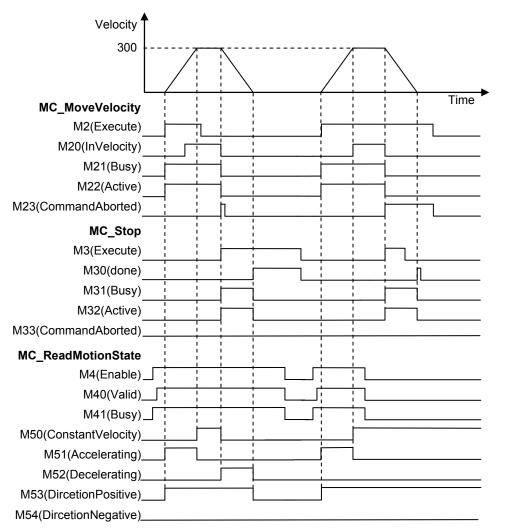
#### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                |
|------|-----------------------|-----------|----------------------------------|------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> shifts to True. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.


#### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*


3-135

## • Programming Example

The MC\_ReadMotionState instruction is used as follows. The example shows how MC\_ReadMotionState indicates the motion behavior performed by MC\_MoveVelocity and MC\_Stop.



Motion diagram:



- When MC\_ReadMotionState is enabled (M4=True), after that M40(*Valid*) change to True, indicating the motion state is available to be reported.
- When MC\_MoveVelocity is executed (M2=True), the axis starts to accelerate to the designated target velocity. M51 (*Accelerating*) and M53 (*DirectionPositive*) change to True, indicating the axis is accelerating in positive direction.
- When the axis reaches the specified target velocity, it operates at a constant speed. M51 (Accelerating) changes to False and M50 (ConstantVelocity) changes to True.
- When MC\_Stop is executed (M3=True), MC\_MoveVelocity is aborted and the axis starts to decelerate to a stop. M50 (*ConstantVelocity*) changes to False and M52 (*Decelerating*) changes to True.
- When the axis reaches zero velocity, M52 (Decelerating) and M53 (DirectionPositive) change to False.
- In the second cycle of the motion behavior, MC\_ReadMotionState is disabled (M4=False) while the axis is in constant velocity. In this case, outputs M50 (*ConstantVelocity*) and M53 (*DirectionPositive*) remain True and will not be updated no matter the commanded motion is completed or not.

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

## MC\_ReadAxisError

| FB/FC | Description                                              |  |  |
|-------|----------------------------------------------------------|--|--|
| FB    | MC_ReadAxisError reads the error information of the axis |  |  |
|       | MC_ReadAxisError<br>En Eno                               |  |  |

|        | MC_ReadAxisError |            |
|--------|------------------|------------|
| En     |                  | Eno        |
| Axis   |                  | Valid      |
| Enable |                  | Busy       |
|        |                  | Error      |
|        |                  | ErrorID    |
|        | Ах               | tisErrorID |

**Note**: Axis errors are the errors not relating to the instruction, such as drive errors and communication errors which could be displayed on the panel of the servo drive.

#### Inputs

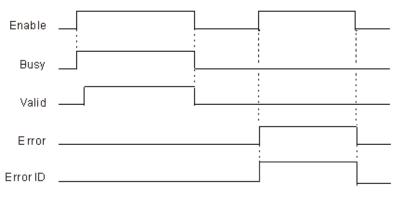
| Name   | Function                                                     | Data type | Setting value<br>(Default value) | Timing for updating |
|--------|--------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Enable | Executes the instruction when <i>Enable</i> changes to True. | BOOL      | True/False<br>(False)            | -                   |

Note: This instruction will read the axis state constantly when Enable changes to True.

## Outputs

| Name         | Function                                                                                             | Data type | Output range (Default value) |
|--------------|------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Valid        | True when the axis error status at the output is available.                                          | BOOL      | True/False (False)           |
| Busy         | Indicates the instruction is enabled<br>and there is incoming new error<br>status.                   | BOOL      | True/False (False)           |
| Error        | True if an error occurs.                                                                             | BOOL      | True/False (False)           |
| ErrorID      | Indicates the error code if an error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |
| AxisErrorID* | Indicates the error code of servo drive when <i>Valid</i> shifts to True.                            | DWORD     | 16#0~16#FFFFFFF (0)          |

#### \*Note:


Assume that 1xxx(hex) is indicated on the servo drive, xxx represents the error code of the servo drive. For example, if the servo drive shows AL3E3, *AxisErrorID* is13E3 (hex).

#### Outputs Update Timing

| Name          | Timing for shifting to True                                                                                      | Timing for shifting to False                                                                       |
|---------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Valid         | • When <i>Enable</i> shifts to True and the axis error status at the output is available                         | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When <i>Error</i> shifts to True.</li> </ul> |
| Busy          | • When <i>Enable</i> shifts to True.                                                                             | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul>    |
| Error/ErrorID | • When an error occurs in the execution conditions or input values for the instruction. (Error code is recorded) | • When <i>Enable</i> shifts from True to False.<br>(Error code is cleared)                         |
| AxisErrorID*  | Continuously updates value when <i>Valid</i> is True.                                                            | Continuously updates value when <i>Valid</i> is True.                                              |

\*Note: When Enable shifts to False, the AxisErrorID output remains unchanged.

#### Timing Diagram



#### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                |
|------|-----------------------|-----------|----------------------------------|------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Enable</i> shifts to True. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

#### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

## MC\_Reset

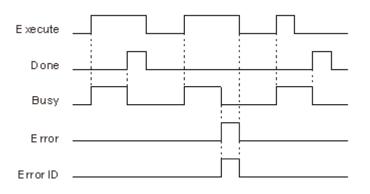
| C_Reset clears axis-related errors |          |          |
|------------------------------------|----------|----------|
| En                                 | MC_Reset | Eno      |
| _                                  |          | MC_Reset |

|         | MC_Reset |         |
|---------|----------|---------|
| En      |          | Eno     |
| Axis    |          | Done    |
| Execute |          | Busy    |
|         |          | Error   |
|         |          | ErrorID |

MC\_Reset is used to make the state transition from "ErrorStop" to "Standstill" or "Disabled" by clearing all axis-related errors while keeping the output of the function block instruction.

#### • Inputs

| Name    | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating |
|---------|---------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Execute | Executes the instruction when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                   |


## Outputs

| Name    | Function                                                                                                  | Data type | Output range (Default value) |
|---------|-----------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | Indicates the completion of the axis error reset process, i.e. entering "Standstill" or "Disabled" state. | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                    | BOOL      | True/False (False)           |
| Error   | True if an error occurs                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs. Refer to t <b>Appendices</b> for error code descriptions     | DWORD     | 16#0~16#FFFFFFF (0)          |

#### Outputs Update Timing

| Name          | Timing for shiftng to True                                                                                                                | Timing for shifting to False                                                                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done          | <ul> <li>When axis error reset process is<br/>completed.</li> </ul>                                                                       | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Busy          | • When <i>Execute</i> shifts to True                                                                                                      | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                               |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | <ul> <li>When Execute shifts from True to False.<br/>(Error code is cleared)</li> </ul>                                                                                                                    |

Timing Diagram



#### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                   |
|------|-----------------------|-----------|----------------------------------|-----------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

#### • Function

- MC\_Reset instruction starts the error reset process for the specified axis in *Axis* when *Execute* shifts to True. It resets axis-related errors and drive errors.
- The instruction can be executed for any axis type.
- Only the axes with errors are applicable for the error reset process.
- If drive errors occur on an axis, the drive errors will be reset prior to the error reset process on the axis-related errors. The reset process for drive errors will continue until either the drive error is reset or the Drive Error Reset Monitoring Time in the axis parameters is reached.
- Errors that occur while error reset process is executing are not cleared. Only errors that existed while *Execute* shifts to True are cleared.

#### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_TouchProbe

| FB/FC | Description                                                                      |  |
|-------|----------------------------------------------------------------------------------|--|
| FB    | MC_TouchProbe captures and records an axis position when a trigger event occurs. |  |
|       |                                                                                  |  |

| MC_T          | ouchProbe        |
|---------------|------------------|
| En            | Eno              |
| Axis          | Done             |
| TriggerInput  | Busy             |
| TriggerSignal | CommandAborted   |
| Execute       | Error            |
| WindowOnly    | ErrorID          |
| FirstPosition | RecordedPosition |
| LastPosition  |                  |

Before using MC\_TouchProbe instruction, it is required to confirm if the below object data is supported, and use ECAT Builder in ISPSoft to set the below data in the settings of PDO communications.

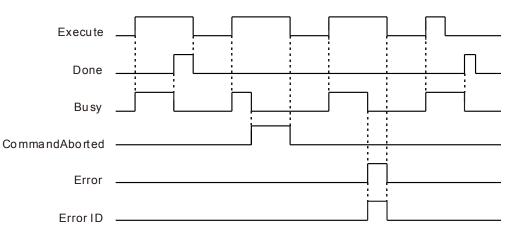
- Touch probe funciton (60B8 hex)
- Touch probe status (60B9 hex)
- Touch probe pos1 pos value (60BA hex)
- Touch probe pos1 neg value (60BB hex)
- Touch probe pos2 pos value (60BC hex)
- Touch probe pos2 neg valu (60BD hex)

If one of the above required object data is not set, an error will occur to indicate the problem of missing process data object setting.

#### Inputs

| Name          | Function                                                                                                                                 | Data type | Setting value<br>(Default value)                 | Timing for updating                                             |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------|-----------------------------------------------------------------|
| TriggerSignal | TriggerSignal Specifies the trigger signal in controller mode* <sup>1</sup>                                                              |           | True/False<br>(False)                            | Continuously updates value when <i>Busy</i> isTrue              |
| Execute       | Executes the instruction and starts axis position recording when <i>Execute</i> changes to True.                                         | BOOL      | True/False<br>(False)                            | -                                                               |
| WindowOnly    | WindowOnly<br>WindowOnly<br><i>LastPosition</i>                                                                                          |           | True/False<br>(False)                            | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |
| FirstPosition | FirstPosition Defines the start position (positive direction) of the window mask to capture the trigger event (user unit* <sup>2</sup> ) |           | Negative number,<br>positive number, or 0<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |

| Name         | Function                                                                                             | Data type | Setting value<br>(Default value)                 | Timing for updating                                          |
|--------------|------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------|--------------------------------------------------------------|
| LastPosition | Defines the stop position of the window mask to capture the trigger event (user unit <sup>*2</sup> ) | LREAL     | Negative number,<br>positive number, or 0<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |


## • Outputs

| Name                                                                                   | Function                                                                                                      | Data type | Output range (Default value)                     |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------|
| Done                                                                                   | True when a trigger event is recorded                                                                         | BOOL      | True/False (False)                               |
| Busy                                                                                   | True when the instruction is executed. Awaits the completion of trigger event recording.                      | BOOL      | True/False (False)                               |
| CommandAborted                                                                         | True when the instruction is aborted (MC_AbortTrigger)                                                        | BOOL      | True/False (False)                               |
| Error                                                                                  | True if an error occurs.                                                                                      | BOOL      | True/False (False)                               |
| ErrorID                                                                                | Indicates the error code when the error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)                              |
| RecordedPosition Indicates the position where trigger event is recorded (in user unit) |                                                                                                               | LREAL     | Negative number, positive number,<br>or 0<br>(0) |

## Outputs Update Timing

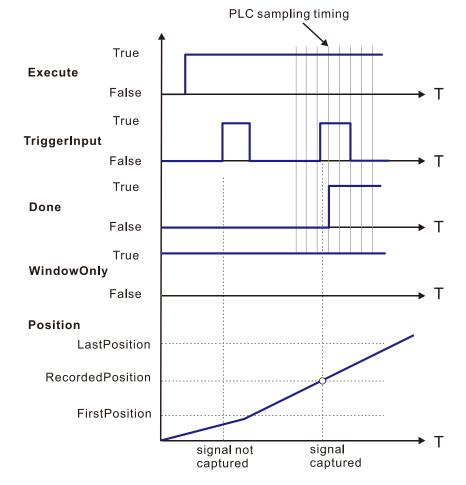
| Name               | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done               | <ul> <li>When the trigger event is recorded and<br/>the instruction is completed.</li> </ul>                                              | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>           |
| Busy               | • When <i>Execute</i> shifts to True and the instruction is executed.                                                                     | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                  |
| CommandAbo<br>rted | <ul> <li>When this instruction is aborted by<br/>another instruction (MC_AbortTrigger).</li> </ul>                                        | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Error/ErrorID      | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                          |

#### Timing Diagram



#### • In-Outs

| Name         | Function                                                              | Data type          | Setting value<br>(Default value) | Timing for updating                                                    |
|--------------|-----------------------------------------------------------------------|--------------------|----------------------------------|------------------------------------------------------------------------|
| Axis         | Motion axis<br>number                                                 | WORD               | K1~Kn* (0)                       | When <i>Execute</i> shafts to True and <i>Busy</i> is False.           |
| TriggerInput | Specifies the<br>reference to the<br>source of the<br>trigger signal. | MC_TRIG<br>GER_REF | Refer to the below table         | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |


\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

#### MC\_TRIGGER\_REF

| Name         | Data type      | Setting value<br>(Default value) | Function                                                                                                    |
|--------------|----------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|
| Mode         | WORD           | K0~K1 (0)                        | Specifies the mode for triggering<br>0: Drive mode<br>1: Controller mode                                    |
| TouchProbeID | WORD           | K0~K1 (0)                        | Specifies which Capture is to be applied in<br>Drive mode.<br>0: TouchProbe 1<br>1: TouchProbe 2            |
| InputDrive   | WORD K0~K1 (0) |                                  | Specifies the trigger signal of the servo drive<br>when Drive mode is selected.<br>0: Drive 1<br>1: Drive 2 |
| Edge         | WORD           | K0~K1 (0)                        | Specifies the edge of the trigger signal in Drive<br>mode.<br>0: Rising edge<br>1: Falling edge             |

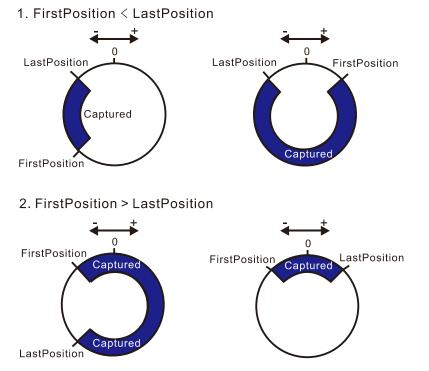
#### • Function

- The touch probe operation activates for only one time for recording the very first trigger signal after *Execute* is set as True. When a valid position is captured and recorded, the following trigger signals will be ignored.
- One function block instance should relate to only one MC\_TouchProbe instruction.
- If there were multiple function block instances on the same capture and axis, the members of MC\_TRIGGER\_REF should be added with TouchProbeID, which identifies different TouchProbe actions. The definition of TouchProbeID can be associated to MC\_AbortTrigger.
- The operation of MC\_TouhcProbe with window mask function is demonstrated as below:



- At the first activation of the trigger input signal, the signal is not accepted because the axis position hasn't reach the specified window mask section.
- When the axis position enters the window mask section, the second activation of the trigger input signal is accepted, and after a period *Done* chnages to True.
- Since Delta A2-E only supports one TouchProbe at the same time, TouchProbe ID can only be 0 when using Delta A2-E along with other funciton blocks. For the limitations of other brand's servo drives, refer to its manual for more details.
- When using Delta A2-E to execute this instruciton, InputDrive=0 indicates D13 is being used as a contact for triggering and InputDrive=1 indicates the servo drive's encorder z is being used as a contact for triggering.

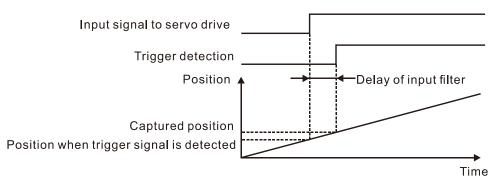
#### Note:


1. Time is needed until the touch probe operation is actually activated. The touch probe operation is not possiblly

to be activated immediately after *WindowOnly* shifts to True and until the touch probe operation is actually activated.

2. If the window mask is too small, the touch probe operation is not possible. The effective range for the window mask depends on EtherCAT communications and the performance of encoder input or the servo drive.

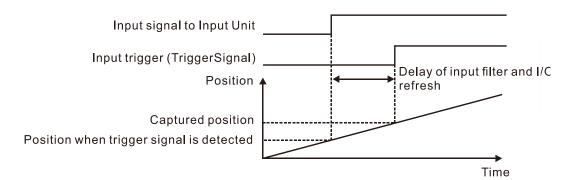
#### Window Mask Settings


- You can observe the results of different window mask settings when the instruction is used for rotary/modulo axes as below. The difference is resulted from the set values between *FisrPosition* and *LastPosition*.



#### TriggerInput Settings

#### - Drive Mode


The captured position in Drive Mode is more accurate than it is in Controller Mode since the Drive Mode references the actual position of the servo drive for the capture operation.



#### - Controller Mode

The captured position in Controller Mode is less accurate than it is in Drive Mode due to the scan time (I/O refresh dalay) of the controller.

- 1. In Controller Mode, you can declare a BOOL variable to be the trigger input signal.
- 2. The BOOL variable funcitons as trigger input signal can be specified for *TriggerSignal*.



## • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

#### 3

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

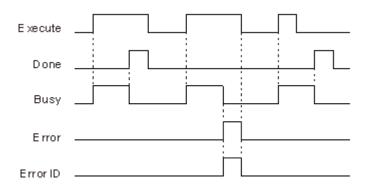
# MC\_AbortTrigger

| FB/FC | Description                                                                                       |
|-------|---------------------------------------------------------------------------------------------------|
| FB    | MC_AbortTrigger aborts the instruction MC_TouchProbe which are intended to capture trigger events |
|       |                                                                                                   |

| MC_AbortTrigger |         |
|-----------------|---------|
| En              | Eno     |
| Axis            | Done    |
| TriggerInput    | Busy    |
| Execute         | Error   |
|                 | ErrorID |

## • Inputs

| Name    | Function                                            | Data type | Setting value<br>(Default value) | Timing for updating |
|---------|-----------------------------------------------------|-----------|----------------------------------|---------------------|
| Execute | Executes the instruction and aborts trigger events. | BOOL      | True/False<br>(False)            | -                   |


## Outputs

| Name    | Function                                                                                                | Data type | Output range (Default value) |
|---------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when trigger event is aborted                                                                      | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Error   | True if an error occurs                                                                                 | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

#### Outputs Update Timing

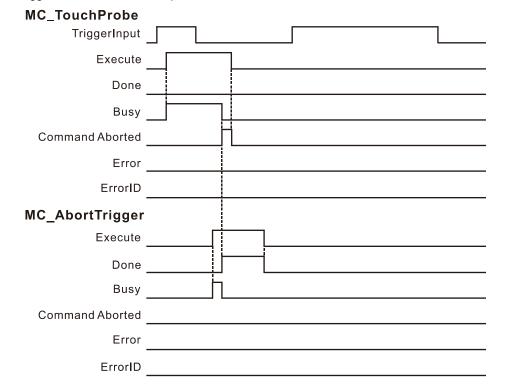
| Name          | Timing for shifting to True                                                                                                                            | Timing for shifting to False                                                                                                                                                                               |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Done          | <ul> <li>When the capture operation is stopped.</li> <li>When the instruction is executed on a capture operation which is not in execution.</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |  |
| Busy          | • When <i>Execute</i> shifts to True and the instruction is executed.                                                                                  | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                               |  |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>              | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                |  |

Timing Diagram



## In-Outs

| Name         | Function                                                              | Data type          | Setting value<br>(Default value) | Timing for updating                                                    |
|--------------|-----------------------------------------------------------------------|--------------------|----------------------------------|------------------------------------------------------------------------|
| Axis         | Motion axis<br>number                                                 | WORD               | K1~Kn* (0)                       | When <i>Execute</i> shafts to True and <i>Busy</i> is False.           |
| TriggerInput | Specifies the<br>reference to the<br>source of the<br>trigger signal. | MC_TRIG<br>GER_REF | Refer to the below table         | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |


\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

#### MC\_TRIGGER\_REF

| Name         | Data type | Setting value<br>(Default value) | Function                                                                                                    |
|--------------|-----------|----------------------------------|-------------------------------------------------------------------------------------------------------------|
| Mode         | WORD      | K0~K1 (0)                        | Specifies the mode for triggering<br>0: Drive mode<br>1: Controller mode                                    |
| TouchProbeID | WORD      | K0~K1 (0)                        | Specifies which Capture is to be applied in<br>Drive mode.<br>0: TouchProbe 1<br>1: TouchProbe 2            |
| InputDrive   | WORD      | K0~K1 (0)                        | Specifies the trigger signal of the servo drive<br>when Drive mode is selected.<br>0: Drive 1<br>1: Drive 2 |
| Edge         | WORD      | K0~K1 (0)                        | Specifies the edge of the trigger signal in Drive<br>mode.<br>0: Rising edge<br>1: Falling edge             |

#### • Function

- You can cancel the touch probe operation by using MC\_AbortTrigger.
- By setting Axis and TriggerInput for this instruction you can define the touch probe operation to abort.
- When MC\_AbortTrigger is executed on an axis without a touch probe request, MC\_AbortTrigger will not do anything and will complete normally. The same behavior also applies when MC\_AbortTrigger is executed for a MC\_TouchProbe instruction with the condition of "Done=True".
- The operation of the combination of MC\_AbortTrigger and MC\_TouchProbe is demonstrated as below. *Done* of MC AbortTrigger shifts to True for one period after *Execute* shifts to True.



#### Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_CamIn

| FB/FC |                                                      | Description         |                |  |  |  |
|-------|------------------------------------------------------|---------------------|----------------|--|--|--|
| FB    | MC_CamIn performs cam operation by engaging the cam. |                     |                |  |  |  |
|       |                                                      | MC_9                | CamIn          |  |  |  |
|       |                                                      | En                  | Eno            |  |  |  |
|       |                                                      | Master              | InSync         |  |  |  |
|       |                                                      | Slave               | EndOfProfile   |  |  |  |
|       |                                                      | Execute             | Busy           |  |  |  |
|       |                                                      | ContinuousUpdate    | Active         |  |  |  |
|       |                                                      | CamTable            | CommandAborted |  |  |  |
|       |                                                      | Periodic            | Error          |  |  |  |
|       |                                                      | MasterAbsolute      | ErrorID        |  |  |  |
|       |                                                      | SlaveAbsolute       |                |  |  |  |
|       |                                                      | MasterOffset        |                |  |  |  |
|       |                                                      | SlaveOffset         |                |  |  |  |
|       |                                                      | MasterScaling       |                |  |  |  |
|       |                                                      | SlaveScaling        |                |  |  |  |
|       |                                                      | MasterStartDistance |                |  |  |  |
|       |                                                      | MasterSyncPosition  |                |  |  |  |
|       |                                                      | ActivationPosition  |                |  |  |  |
|       |                                                      | ActivationMode      |                |  |  |  |
|       |                                                      | StartMode           |                |  |  |  |
|       |                                                      | Velocity            |                |  |  |  |
|       |                                                      | Acceleration        |                |  |  |  |
|       |                                                      | Deceleration        |                |  |  |  |
|       |                                                      | Jerk                |                |  |  |  |
|       |                                                      | MasterValueSource   |                |  |  |  |
|       |                                                      | BufferMode          |                |  |  |  |

## • Inputs

| Name                 | Function                                                                                                | Data type | Setting value<br>(Default value) | Timing for updating                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------|-----------|----------------------------------|-----------------------------------------------------------------------------|
| Execute              | Executes the<br>instruction when<br><i>Execute</i> changes to<br>True.                                  | BOOL      | True/False<br>(False)            | -                                                                           |
| Continuous<br>Update | Continuously updates<br>CamTable,<br>MasterScaling,<br>SlaveScaling when<br>Continuousupdate is<br>True | BOOL      | True/False (False)               | When <i>Active</i> shifts<br>to True and it will<br>update<br>continuously. |

| Name                      | Function                                                                                                   | Data type | Setting value<br>(Default value)                | Timing for updating                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|--------------------------------------------------------------------|
| CamTable                  | Specifies a Cam table                                                                                      | WORD      | 1~32 (0)                                        | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Periodic                  | Specifies a periodical<br>execution or a<br>one-time operation.<br>True: Periodic;<br>False: Non-periodic. | BOOL      | True/False<br>(False)                           | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| MasterAbsolute            | Specifies the<br>positioning mode of<br>the master axis.<br>True: Absolute mode<br>False: Relative mode    | BOOL      | True/False<br>(False)                           | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| SlaveAbsolute             | Specifies the<br>positioning mode of<br>the slave axis.<br>True: Absolute mode<br>False: Relative mode     | BOOL      | True/False<br>(False)                           | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| MasterOffset              | Shifts the position of<br>the master axis by the<br>specified offset value.                                | LREAL     | positive number, negative<br>number or 0<br>(0) | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| SlaveOffset* <sup>2</sup> | Shifts the<br>displacement of the<br>slave axis by the<br>specified offset value.                          | LREAL     | positive number, negative<br>number or 0<br>(0) | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| MasterScaling             | Scales the master<br>axis up and down with<br>the specified factor.                                        | LREAL     | positive number<br>(0)                          | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| SlaveScaling              | Scales the slave axis<br>up and down with the<br>specified factor.                                         | LREAL     | positive number<br>(0)                          | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| MasterStartDistance       | Reserved                                                                                                   | -         | -                                               | -                                                                  |
| MasterSyncPosition        | Specifies the relative<br>position of the master<br>axis when it starts to<br>engage                       | LREAL     | positive number, negative<br>number or 0<br>(0) | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| ActivationPosition        | Specifies the master position when it starts to engage and from                                            | LREAL     | positive number, negative<br>number or 0<br>(0) | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |

## AH Motion Controller – Motion Control Instructions Manual

| Name              | Function                                                                                                                                               | Data type                            | Setting value<br>(Default value)                                                       | Timing for<br>updating                                             |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ActivationMode    | there the slave will<br>start to engage.<br>Specifies the mode of<br>engement<br>0: Relative<br>1: Absolute                                            | MC_ACTIVATION<br>_MODE* <sup>1</sup> | 0: Relative<br>1: Absolute<br>(0)                                                      | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| StartMode         | Specifies the<br>engagement behavior<br>of the slave axis                                                                                              | eMC_START_MO<br>DE* <sup>1</sup>     | 0: mcJump<br>1: mcRampIn_Shortest<br>2: mcRampIn_Positive<br>3: RampIn_Negative<br>(0) | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Velocity          | The maximum<br>velocity for the<br>engaging behavior<br>specified by<br><i>StartMode.</i><br>(Unit: user unit/s) *                                     | LREAL                                | Positive number or 0<br>(0)                                                            | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Acceleration      | The maximum<br>acceleration rate for<br>the engaging<br>behavior specified by<br><i>StartMode.</i><br>(Unit: user unit/s) *                            | LREAL                                | Positive number or 0<br>(0)                                                            | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Deceleration      | The maximum<br>deceleration rate for<br>the engaging<br>behavior specified by<br><i>StartMode.</i><br>(Unit: user unit/s <sup>2</sup> ) * <sup>2</sup> | LREAL                                | Positive number or 0<br>(0)                                                            | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Jerk              | The maximum jerk<br>value for the engaging<br>behavior specified by<br><i>StartMode</i><br>(Unit: user unit/s <sup>3</sup> ) * <sup>2</sup>            | LREAL                                | Positive number or 0<br>(0)                                                            | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| MasterValueSource | Specifies the reference position of the master axis.                                                                                                   | eMC_SOURCE*1                         | 0: mcCommandedValue<br>2: mcActualValue<br>(0)                                         | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| BufferMode        | Specifies the<br>buffering behavior of<br>the instruction.                                                                                             | eMC_BUFFER_M<br>ODE* <sup>1</sup>    | 0: mcAborting<br>1: mcBuffered<br>(0)                                                  | When <i>Execute</i> shifts to True.                                |

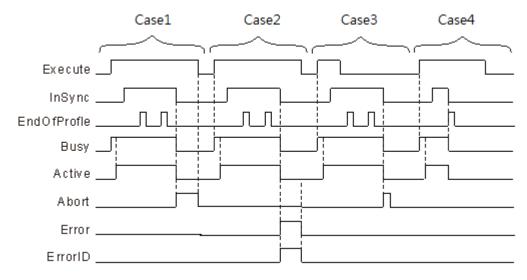
\*Note:

- 1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.
- 2. The input Slaveoffset only works when the master axis is in absolute mode.

#### Outputs

| Name           | Function                                                                                             | Data type | Output range (Default value) |
|----------------|------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| InSync         | True when the specified master/slave cam operation is synchronized.                                  | BOOL      | True/False (False)           |
| EndOfProfile   | Indicates the end point of the cam profile is completed. (Resets automatically)                      | BOOL      | True/False (False)           |
| Busy           | True when the instruction is executed.                                                               | BOOL      | True/False (False)           |
| Active         | True when the axis is being controlled.                                                              | BOOL      | True/False (False)           |
| CommandAborted | ted True when the instruction is aborted.                                                            |           | True/False (False)           |
| Error          | True if an error occurs.                                                                             | BOOL      | True/False (False)           |
| ErrorID        | Indicates the error code if an error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

#### Outputs Update Timing


| Name           | Timing for shifting to True                                                                                                                                                                                              | Timing for shifting to False                                                                                                                                                                                           |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InSync         | <ul> <li>When the specified master/slave cam<br/>operation is synchronized.</li> </ul>                                                                                                                                   | <ul> <li>When <i>Periodic</i> is False and <i>EndOfProfile</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                               |
| EndOfProfile*  | • When the end point of the cam profile is completed.                                                                                                                                                                    | • After <i>EndOfProfile</i> shifts to True for One period.                                                                                                                                                             |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                                                                                                   | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                |
| Active         | • When the motion on the axis is started.                                                                                                                                                                                | <ul> <li>When <i>Error</i> shifts to True</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                               |
| CommandAborted | <ul> <li>When this instruction is aborted by<br/>another instruction with the Buffer Mode<br/>set to Aborting.</li> <li>When this instruction is aborted because<br/>of the execution of MC_Stop instruction.</li> </ul> | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will<br/>be True for only one period and<br/>immediately shift to False.</li> </ul> |

3\_

| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the</li> </ul> | • When <i>Execute</i> shifts from True to False. |
|---------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|
|               | instruction.(Error code is recorded)                                                             | (Error code is cleared)                          |

\*Note: *EndOfProfile* shifts to True for one period when the desired cam engagement operation for the phase and displacement is completed and reached the end point of the cam table. *EndOfProfile* functions as an indicating signal of the end of the cam table.

#### Timing Diagram:



#### Case1

When *Execute* shifts to True and *Busy* is True. After one cycle, *Active* shifts to True. When the slave axis and the master axis are synchronized, *InSync* shifts to True. When the CamIn is at the final stop of the cycle, *EndOfProfile* shifts to True and after one cycle is complete, *EndOfProfile* shifts to False. When the relationship between the master axis and slave axis changes, for example executing MC\_CamOut instruction, *CommandAborted* shifts to True while *InSync*, *Busy*, *and Active* shift to False. And then *Execute* shifts to False and *CommandAborted* shifts to False.

#### Case2

When there is an error occurred during the execution of an instruction, *Error* shifts to True and the *ErrorIDs* such as *InSync, Busy, and Active* shift to False. And then *Execute* shifts to False and *Error* shifts to False. The value in *ErrorID* is 0.

#### Case3

During the execution of an instruction, if *Execute* shifts to False, the instruction will still be executed and *InSync, EndOfProfile, Busy, and Active* will not be affected either. But after the relationship between the master axis and slave axis changes, *InSync, Busy, and Active* will shift to False. *CommandAborted* shifts to True and after one cycle, *CommandAborted* shifts to False.

#### Case4

If the CamIn is not executed cyclically (*Periodic*=FASLE), when the CamIn is at the final stop of the cycle, *EndOfProfile* shifts to True and *InSync, Busy, and Active* shift to False. After one cycle, *EndOfProfile* shifts to False.

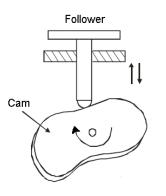
#### In-Outs

| Name   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Data type               | Setting value<br>(Default value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Timing for updating                                                    |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Master | Master Axis<br>1: 1 <sup>st</sup> axis position<br>2: 2 <sup>nd</sup> axis position<br>3: 3 <sup>rd</sup> axis position<br>4: 4 <sup>th</sup> axis position<br>5: 5 <sup>th</sup> axis position<br>6: 6 <sup>th</sup> axis position<br>7: 7 <sup>th</sup> axis position<br>9: 9 <sup>th</sup> axis position<br>10: 10 <sup>th</sup> axis position<br>11: 11 <sup>th</sup> axis position<br>12: 12 <sup>th</sup> axis position<br>13: 13 <sup>th</sup> axis position<br>14: 14 <sup>th</sup> axis position<br>15: 15 <sup>th</sup> axis position<br>16: 16 <sup>th</sup> axis position<br>17: 17 <sup>th</sup> axis position<br>18: 18 <sup>th</sup> axis position<br>19: 19 <sup>th</sup> axis position<br>20: 20 <sup>th</sup> axis position<br>21: 21 <sup>st</sup> axis position<br>22: 22 <sup>nd</sup> axis position<br>23: 23 <sup>rd</sup> axis position<br>24: 24 <sup>th</sup> axis position<br>25: 25 <sup>th</sup> axis position<br>26: 26 <sup>th</sup> axis position<br>27: 27 <sup>th</sup> axis position<br>28: 28 <sup>th</sup> axis position<br>29: 29 <sup>th</sup> axis position<br>30: 30 <sup>th</sup> axis position<br>31: 31 <sup>st</sup> axis position<br>32: 32 <sup>nd</sup> axis position<br>32: 32 <sup>nd</sup> axis position<br>31: 31 <sup>st</sup> axis position<br>32: 32 <sup>nd</sup> axis position<br>31: 31 <sup>st</sup> counter<br>32: 32 <sup>nd</sup> axis position<br>32: 32 <sup>nd</sup> axis position<br>32: 32 <sup>nd</sup> axis position<br>32: 32 <sup>nd</sup> axis position<br>32: 32 <sup>nd</sup> axis position<br>33: 31 <sup>st</sup> axis position<br>34: 31 <sup>st</sup> axis position<br>35: 32 <sup>nd</sup> axis position<br>36: 30 <sup>th</sup> best position<br>37: 31 <sup>st</sup> axis position<br>38: 32 <sup>st</sup> axis position<br>39: 30 <sup>th</sup> axis position<br>30: 30 <sup>th</sup> best position<br>3 | eMC_Master<br>_SOURCE*1 | 1: Axis1_Cmd<br>2: Axis2_Cmd<br>3: Axis3_Cmd<br>4: Axis4_Cmd<br>5: Axis5_Cmd<br>6: Axis6_Cmd<br>7: Axis7_Cmd<br>8: Axis8_Cmd<br>9: Axis9_Cmd<br>10: Axis10_Cmd<br>11: Axis11_Cmd<br>12: Axis12_Cmd<br>13: Axis13_Cmd<br>14: Axis14_Cmd<br>15: Axis15_Cmd<br>16: Axis16_Cmd<br>17: Axis17_Cmd<br>18: Axis18_Cmd<br>19: Axis20_Cmd<br>20: Axis20_Cmd<br>21: Axis21_Cmd<br>22: Axis22_Cmd<br>23: Axis23_Cmd<br>24: Axis24_Cmd<br>25: Axis25_Cmd<br>26: Axis26_Cmd<br>27: Axis27_Cmd<br>28: Axis28_Cmd<br>29: Axis29_Cmd<br>30: Axis30_Cmd<br>31: Axis31_Cmd<br>32: Axis32_Cmd | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |
| Slave  | Slave Axis <sup>*2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WORD                    | K1~Kn (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

#### Note:

- 1. Refer to **Section 2.4 Data Type Unit (DUT): ENUM** for explanation on using enumerations.
- 2. If you specify the same axis number for both master and slave axis, a Master and Slave Defined as Same Axis error will occur.

#### • E-CAM


A traditional mechanical cam is composed of a cam, a follower, and a support.

1. A mechanical cam is an input object with irregular shape. It makes a follower move regularly by coming into contact with the follower.

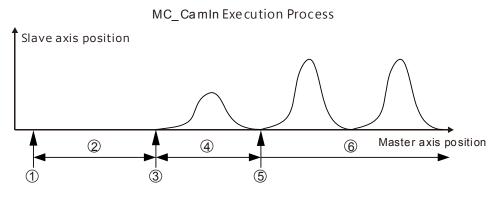
2. When a cam rotates, the follower will go move according to the shape of the cam. Cam followers are available in several designs and variants to meet the requirements of different applications.

3. A support is for supporting a cam and a follower.

As the image shown, for an operation of motion control, the relative movements between axes are achieved by the rotation of a cam.



Use a cam chart to define the relation between a follower and a cam to simulate the movements of a cam controlled by a PLC, making a slave axis to move by the master axis according to their defined relation.


The benefits of using a E-CAM are:

- 1. Friendly user interface
- 2. Users can modify the electronic cam data in an electronic cam in software. Users do not need to modify the mechanical design and no depreciation costs.
- 3. Higher acceleration
- 4. Smoother operation

#### • Function

MC\_CamIn instruction is used for using a cam chart to define the relation between a follower and a cam to simulate the movements of a cam controlled by a PLC, making a slave axis to move by the master axis according to their defined relation. And MC\_CamOut is used for stopping the relation between a follower and a cam.

MC\_CamIn execution process:



- Stage 1: Trigger and execute the MC\_CamIn instruction.
- Stage 2: Wait for the start of the engagement.
- Stage 3: The slave axis starts to perform the engagement action as the master axis reaches the position where the engagement starts.
- Stage 4: The engagement is ongoing.
- Stage 5: The master axis and slave axis achieve the synchronization as the engagement is completed.
- Stage 6: The master axis and slave axis are in the synchronous motion.
  - Stage 1: Trigger and execute the MC\_CamIn instruction.

The *MC\_CamIn* instruction is executed at this time and then the slave will enter the state of waiting for the start of the engagement immediately.

Note: The slave axis will stop at once and vibration may occur if the slave axis is in the motion at the moment. All set input parameters of the *MC\_CamIn* instruction will be read and retained for use in the execution.

Stage 2: Wait for the start of the engagement.

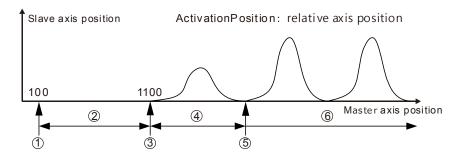
The slave axis waits for the timing for performing the engagement action in the standstill state. The time to start the engagement is when the master axis passes the position specified by the parameter *ActivationPosition*. In different circumstances, the period of time the slave axis waits for is different. If the master axis is at the position specified by *ActivationPosition* as the *MC\_CamIn* instruction is executed, the slave axis starts the engagement action immediately. If the master axis never reaches the position specified by *ActivationPosition*, the slave axis will never start to perform the engagement action and the cam synchronization will never come true. The parameters *ActivationPosition* and *ActivationMode* are used at this stage.

Stage 3: The slave axis starts to perform the engagement action when the master axis passes the position specified by ActivationPosition. The parameters, MasterAbsolute, SlaveAbsolute, MasterOffset, SlaveOffset, MasterScaling and SlaveScaling will work at the moment for making sure of the corresponding relationship between the master axis position and slave axis position and the cam phase.

#### Stage 4: The engagement is ongoing.

The slave axis performs the engagement in the way specified by the *StartMode* parameter. Besides *StartMode*, the parameters *Velocity*, *Acceleration* and *Deceleration* also works at this stage. The motion features about velocity, acceleration/ deceleration of the slave axis are determined by these parameters in the engagement.

Stage 5: The engagement is completed and the master axis and slave axis achieve the synchronization. The engagement is completed and the slave axis and master axis achieve the cam synchronization if the cam phase that the master axis and slave axis correspond to meets the planned cam relationship after the slave axis starts to perform the engagement action.


**Note**: In the figure above, the set master axis position at the time when the engagement begins is greater than the master position at the time when the *MC\_CamIn* instruction execution starts. The similar way is also applied to the circumstance that the set master axis position at the time when the engagement begins is less than or equal to the master position at the time when the *MC\_CamIn* instruction execution starts.

#### ActivationPosition/ActivationMode

#### ActivationMode=0 ; ActivationPosition, Relative axis position

When ActivationMode=0 (Relative), ActivationPosition is the axis positon. The setting of ActivationPosition is an axis position which is relative to the master axis position at the time when the MC\_CamIn instruction is executed. The master axis position as the actual engagement starts is the value of ActivationPosition plus the master position of when the MC\_CamIn instruction execution begins. For example: The master axis position is 100 and ActivationPosition 1000 at the time when the MC\_CamIn instruction execution starts. The master axis position is 1100 (1100=100+1000) as the actual engagement begins.

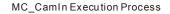
MC\_CamIn Execution Process

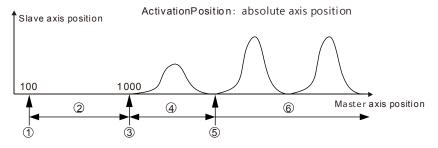


Stage 1: Trigger and execute the MC\_CamIn instruction. The master axis absolute position is 100 at the moment.

Stage 2: Wait for the start of the engagement.

- **Stage 3:** The master axis reaches the position for starting the engagement (1100) and the slave axis starts to perform the engagement action.
- Stage 4: The engagement is ongoing.


Stage 5: The engagement is completed and the master axis and slave axis achieve the synchronization.


Stage 6: The master axis and slave axis are in the synchronous motion.

#### • ActivationMode=1 ; ActivationPosition, Absolute axis position

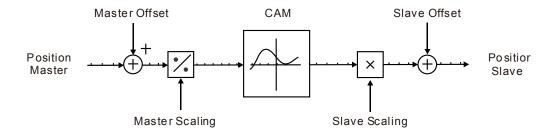
When ActivationMode =1, ActivationPosition is an axis position which is absolute to the master axis position at the time when the MC\_CamIn instruction is executed. The master axis position as the actual engagement starts is ActivationPosition.

For example: The master axis position is 100 and ActivationPosition 1000 at the time when the MC\_CamIn instruction execution starts. The master axis position is 1000 (1000= ActivationPosition) as the actual engagement begins.





- Stage 1: Trigger and execute the MC\_CamIn instruction. The master axis absolute position is 100 at the moment.
- Stage 2: Wait for the start of the engagement.
- Stage 3: The master axis reaches the position for starting the engagement (1000) and the slave axis starts to perform the engagement action.
- Stage 4: The engagement is being conducted.
- Stage 5: The engagement is completed and the master axis and slave axis achieve the synchronization.


Stage 6: The master axis and slave axis are in the synchronous motion.

#### Relationship between master axis position and slave axis position

The cam relationship which is planned in the software is the position relationship between the master axis and slave axis. The "position" mentioned here is the cam phase of the master axis / slave axis instead of the actual axis position. If the cam relationship which is planned is seen as the function CAM as below, the input of the function CAM is the master axis cam phase and the output is the slave axis cam phase. The formula is shown as below.

- y = CAM(x)
- x : The master axis cam phase
- y: The slave axis cam phase

The cam phase comes from the axis positions and there is a conversion between them. The conversion between the axis position and cam phase is related with the MasterAbsolute, SlaveAbsolute, MasterOffset, SlaveOffset, MasterScaling and SlaveScaling parameters. For details, refer to relevant sections. The slave axis follows the master axis to make the synchronous cam motion by using the MC\_CamIn instruction. In the synchronous cam motion, the corresponding relationship between the master axis position and slave axis position is based on the pre-planned cam relationship (the cam curve or cam table). The process in which the slave axis position is calculated through the master axis position is illustrated as follows.

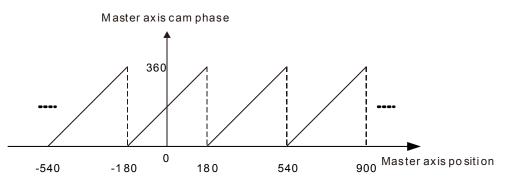


- <u>Slave position</u> = <u>f cam[ ( master position + master offset ) / master scaling]</u>\* <u>slave scaling + slave offset</u>

Method of calculating the master position in the above formula:

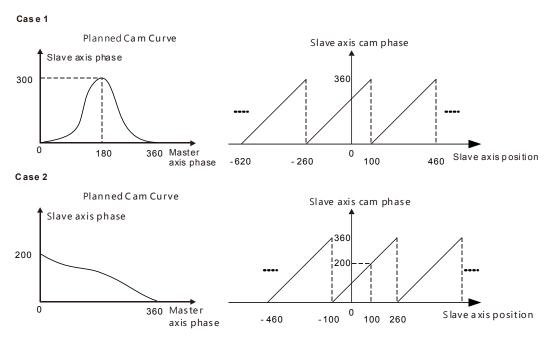
When master axis is in absolute mode, master position is the remainder of the current master position divided by modulo; When master axis is in relative mode, master position is the start point position (usually 0) of master axis in the corresponding cam curve.

" f\_cam " in above formula represents the cam curve relationship between master axis and slave axis.


#### MasterAbsolute and SlaveAbsolute

*MasterAbsolute* and *SlaveAbsolute* work at the moment when the engagement starts. That is to say that the corresponding relationship between the axis position and cam phase is built at the beginning of the engagement. (**Note:** The corresponding relationship is not built at the time when the *MC\_CamIn* instruction execution begins but when the engagement begins.) After that, the cam phase is calculated according to the corresponding relationship.

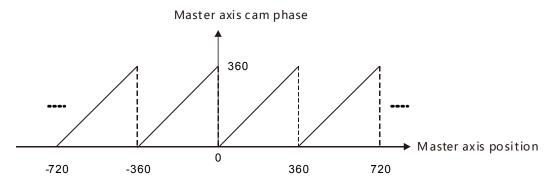
#### MasterAbsolute=False (Relative mode)


The master axis position and its cam phase are in the relative relationship as the *MasterAbsolute* parameter is FALSE. That is to say, the master axis position corresponds to its cam phase 0 at the time when the engagement starts. After that, the master cam phase will be calculated according to the corresponding relationship. For example, the master axis is in relative mode, the maximum value of the master axis cam phase in the cam relationship is 360 and the master axis position is 180 at the time when the engagement starts. So the master axis position 180 corresponds its cam phase 0; the master axis position 200 corresponds to its cam phase 20 (20= (200-180) %360) and so on.

In this circumstance, the master axis position corresponds to its cam phase as shown in the following figure.



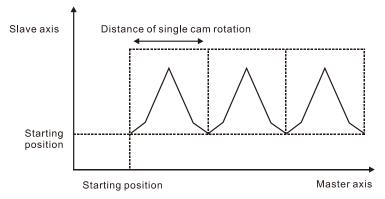
As the *SlaveAbsolute* parameter is FALSE, the slave axis position and its cam phase are in the relative relationship. That is to say, the slave axis cam phase and the master axis cam phase meet the planned cam relationship at the time when the engagement starts. If the slave axis is in relative mode, the method of being sure of the slave axis cam phase is different from the master axis. When the slave axis cam phase is sure, it should meet the condition that the slave axis cam phase and the master axis cam phase meet the planned cam relationship at the time when the engagement starts.


For example, the slave axis is in relative mode, the maximum value of the slave axis cam phase in the cam relationship is 360 and the slave axis position is 100 at the time when the engagement starts. If the master axis cam phase is 0 at the moment (and the slave axis cam phase is 0 as required in the cam relationship), the slave axis position 100 will correspond to its cam phase 0 as shown in the following circumstance 1. If the slave axis cam phase is 200 as required in the cam relationship, the slave axis position 100 will correspond to its cam phase 0 as shown in the following circumstance 1. If the slave axis cam phase 200 as required in the cam relationship, the slave axis position 100 will correspond to its cam phase 200 as shown in the following circumstance 2.



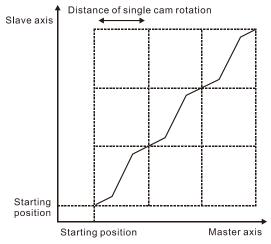
#### MasterAbsolute=True (Absolute mode)

When the MasterAbsolute parameter is TRUE, the master axis position and its cam phase are in the absolute relationship. At any time, the master axis cam phase is equal to the remainder got by dividing the master axis position at that time by the maximum value of the master axis cam phase in the cam relationship.


For example, the master axis is in absolute mode and the maximum value of the master axis in the cam relationship is 360. So its cam phase is 100 as the master axis position is 100 (100=100%360); its cam phase is 140 (140=500%360) as the master axis position is 500 and so on. The master axis position corresponds to its cam phase as shown in the figure below.



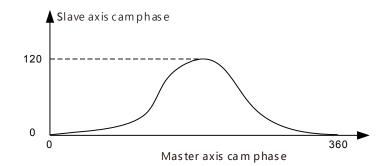
When the SlaveAbsolute parameter is TRUE, the slave axis position and its cam phase are in the absolute relationship. At any time, the slave axis cam phase is equal to the remainder got by dividing the slave axis position at that time by the maximum value of the slave axis cam phase in the cam relationship. When the slave axis is in absolute mode, the corresponding relationship between the slave axis position and its cam phase is consistent with that between the master axis position and its cam phase when the master axis is in absolute mode.


#### Periodic Operation

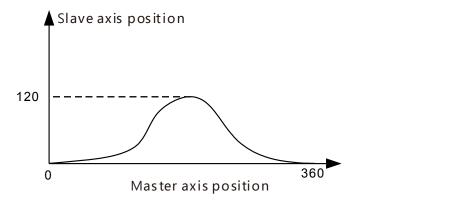
 If you specify True (periodic) for *Periodic*, the cam motion will be repeated from the start to the end point of the cam table. If you specify False (non-periodic), the cam operation ends when the last point in the cam table is executed. - If the stroke position of the slave axis is the same at the start and end points of the cam table when True (periodic) is set, the cam operates as a reciprocal cam. If the stroke position of the slave axis differs at the start point and end point, the cam operates as a feeding cam. In the following chart, the horizontal axis indicates the master axis and the vertical axis indicates the slave axis.



#### **Rotary/reciprocal Cam Operation**

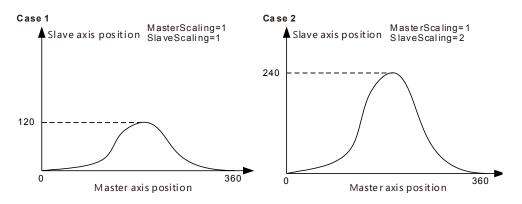

#### **Feeding Cam Operation**



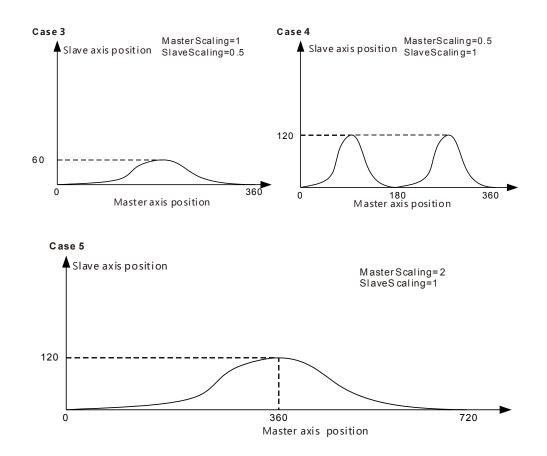

#### ■ MasterOffset/MasterScaling/SlaveOffset/Slavescaling

The cam relationship between the master axis and slave axis is preplanned. But as the cam motion is executed, the position offset or scaling based on the preplanned cam relationship can be performed through setting the *Offset* and *Scaling* parameters. For example, there are various sizes for the same product which is processed. Just one cam relationship need be planned and then changing the values of *Offset* and *Scaling* fits the processing of products of different sizes.

The position offset and scaling of the master axis and slave axis determine the actually executed cam relationship. The effect is described in the following example. The planned cam relationship is shown as the figure below.

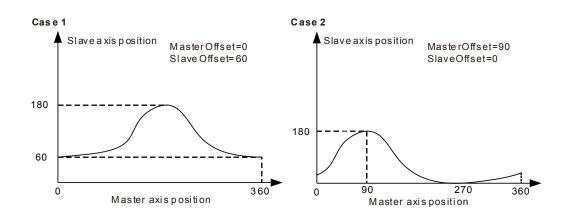



When the master axis and slave axis are both in absolute mode and the engagement begins, the master axis position and slave axis position are both 0. When there is no position offset and scaling (the offset and scaling are default values), the actual master axis position correspond to the actual slave axis position in the execution of the cam motion as shown in the following figure.




When the offset and scaling are not default values, the corresponding relationship between the actual master axis position and actual slave axis position are affected in the execution of the cam motion as below.

MasterOffset:0 and SlaveOffset:0 and the impact of MasterScaling and SlaveScaling on the cam relationship




#### AH Motion Controller - Motion Control Instructions Manual

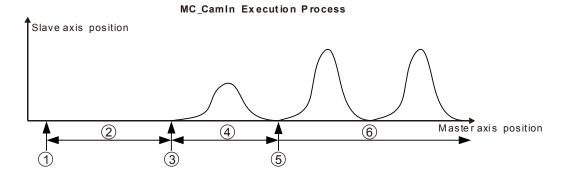


- **Case 1:** The actual cam relationship is consistent with the preplanned one as the values of MasterScaling and SlaveScaling are 1 and their offsets are 0.
- **Case 2:** The slave position corresponding to the master axis position is two times what is planned in the cam relationship as the value of *MasterScaling* is 1, *SlaveScaling* is 2 and their offsets are 0.
- **Case 3:** The slave position corresponding to the master axis position is 1/2 that in the planned cam relationship as the value of MasterScaling is 1, SlaveScaling is 0.5 and their offsets are 0.
- **Case 4:** The master axis position corresponding to the slave axis position is 1/2 what is planned as the value of *MasterScaling* is 0.5, *SlaveScaling* is 1 and their offsets are 0. If it is observed from the perspective of the cam phase, the master axis cam phase is 1/2 what is preplanned. That is, the master cam cycle changes from 360 to 180 (180=360\*0.5) and the slave axis cam phase is unchanged.
- **Case 5:** The master axis position corresponding to the slave axis position is 2 times what is planned as the value of *MasterScaling* is 2, *SlaveScaling* is 1 and their offsets are 0. If it is observed from the perspective of the cam phase, the master axis cam phase is two times the original. That is, the master axis cam cycle changes from 360 to 720 (720=360\*2) and the slave axis cam phase is unchanged.
- MasterScaling:1 and SlaveScaling:1 and the impact of MasterOffset and SlaveOffset on the actually executed cam relationship

*MasterOffset* means to make the actual axis position curve shifted horizontally in execution of the cam motion. *SlaveOffset* indicates to make the axis position curve shifted vertically in execution of the cam motion.



**Case 1**: The slave axis position corresponding to the master axis position will add by 60 based on the planned position as *MasterScaling* and *SlaveScaling* are both 1, *MasterOffset* is 0 and *SlaveOffset* is 60.


For example, in the planned cam relationship, the master axis position 180 corresponds to the slave axis position 180 and in the actual execution, the corresponding slave axis position is 240 (240=180+60).

Case 2 : The master axis position corresponding to the slave axis position will shift (add) by 90 based on the planned position as *MasterScaling* and *SlaveScaling* are 1, *MasterOffset* is 90 and *SlaveOffset* is 0.

For example, in the planned cam relationship, the master axis position 180 corresponds to the slave axis position 180 and in the actual execution, the master axis position 90 corresponds to the slave axis position 180 which is the slave axis position corresponded to by the master axis position 180 (180=90+90) in the planned cam relationship.

#### StartMode

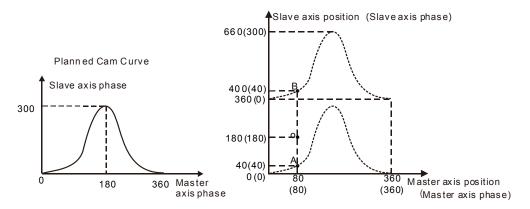
In the engagement, the way how the slave axis moves is specified by the *StartMode* parameter. That is, *StartMode* works at stage 4 in the execution of the *MC\_CamIn* instruction as shown in the following figure.



Stage 1: Trigger and execute the MC\_CamIn instruction.

Stage 2: Wait for the start of the engagement.

**Stage 3:** The master axis reaches the position where the engagement begins and the slave axis starts to perform the engagement action.

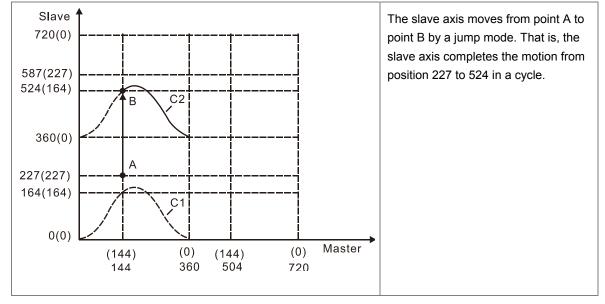

Stage 4: The engagement is ongoing.

Stage 5: The engagement is completed and the master axis and slave axis achieve the synchronization.

Stage 6: The master axis and slave axis are in the synchronous motion.

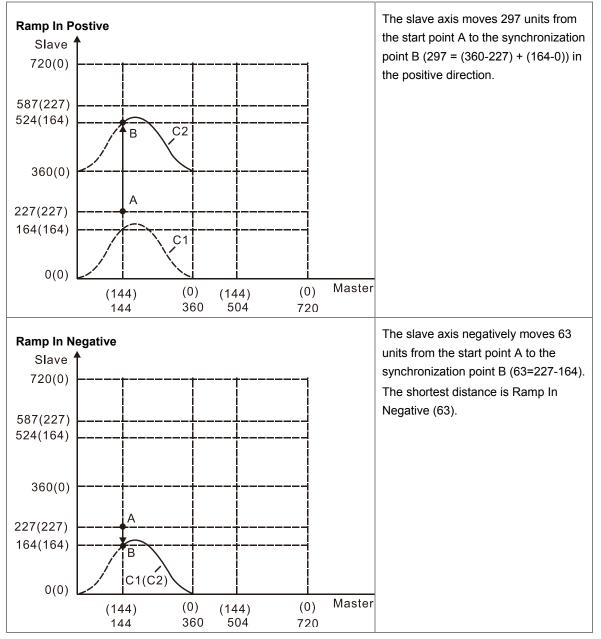
The cam synchronization requires that the master axis cam phase and the slave axis cam phase meet the defined cam relationship. The engagement process is the process in which the slave axis moves toward the synchronous phase. The synchronous phase and the master axis cam phase meet the defined cam relationship. Since the axis cam phase is cyclic, every cam phase is corresponded to by multiple axis positions. When the engagement occurs, there are many selections for the expected synchronization position. And thus there are several engagement ways for option.

For example, when the engagement starts, the master axis cam phase and slave axis cam phase are 80 and 180 respectively as point O in the following figure. But the defined cam relationship requires that the slave axis cam phase is 40 and thus the synchronous position that the slave axis expects is 40 or 400 (Point A or point B in the following figure) at the moment. The engagement process from Point O to A or Point O to B can be selected via the *StartMode* parameter.



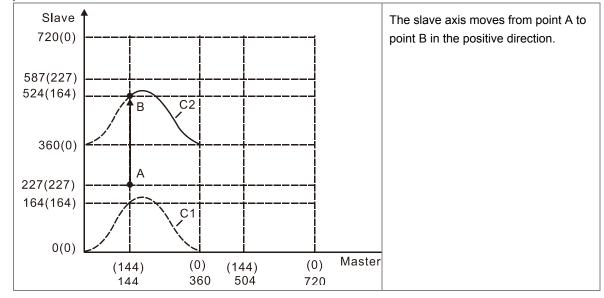

#### StartMode

The starting method of cam curves depends on the input StartMode in the process of master-slave coupling.


#### StartMode=0 (Jump)

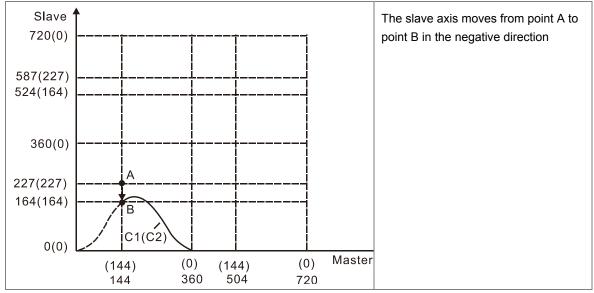
- The slave axis will jump to the synchronization point in a cycle in the positive direction. The mode may cause the motor to joggle.
- The following figure shows that C1 is a planned cam curve and C2 is an actually performed cam curve. Point A is the (master, slave) position triggering the MC\_CamIn instruction and point B is the synchronization point for master and slave axes.




#### StartMode=1 (RampIn\_Shortest)

- The slave axis will move to the synchronization point by taking the shortest way at the set parameters.
- The execution of the engagement action, the slave axis moves toward the position for synchronization by taking the shortest way. (using the shortest distance In Ramp In Positive or Ramp In Negative; if the distances of Ramp In Positive and Ramp In Negative are the same, use the vaule in Ramp In Positive)
- The following figure shows that C1 is a planned cam curve and C2 is an actually performed cam curve. Point A is the (master, slave) position triggering the MC\_CamIn instruction and point B is the synchronization point for master and slave axes.
- At the moment, the motion of the slave axis is affected by the *Velocity, Acceleration Deceleration* and *Jerk* parameters.




#### StartMode=2 (RampIn\_Positive)

- The slave axis will move to the synchronization point in the positive direction at the set parameter values.
- At the moment, the motion of the slave axis is affected by the *Velocity, Acceleration Deceleration* and *Jerk* parameters.



#### StartMode=3 (RampIn\_Negative)

- The slave axis will move to the synchronization point in the negative direction at the set parameter values.
- At the moment, the motion of the slave axis is affected by the *Velocity, Acceleration Deceleration* and *Jerk* parameters.



#### Note:

1. If the specified input values such as *Velocity, Acceleration, Deceleration* and *Jerk* are too small, the slave axis may not be able to couple with the master axis at the specified sync point, or achieve the synchronization in the specified start mode.

#### The impact of other instructions on cam operation

#### MC\_CamOut

The MC\_CamOut instruction can be used to end the cam operation which is being carried out.

#### MC\_SetPosition

The *MC\_SetPosition* instruction has no impact on the being executed motion instructions. Thus, during cam operation, the execution of *MC\_SetPosition* instruction for the master axis and slave axis will not affect the cam operation. If the cam operation is triggered after the *MC\_SetPosition* instruction is executed, the cam will be affected by the axis position change which is incurred by using the *MC\_SetPosition* instruction.

#### • MC\_Stop and MC\_Halt

As the *MC\_Stop* and *MC\_Halt* instructions are executed on the slave axis, the *MC\_CamIn* instruction is aborted, the cam relationship is disconnected and the slave axis decelerates till it stops.

#### MC\_Home

The *MC\_Home* instruction cannot be executed on the slave axis but the master axis. As the *MC\_Home* instruction is executed on the master axis, the master axis position may have a great change in a very short time, which may cause the vibration of the slave axis. Therefore, the *MC\_Home* instruction is recommended to execute after the synchronous relationship between the two axes is disconnected.

#### BufferMode

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

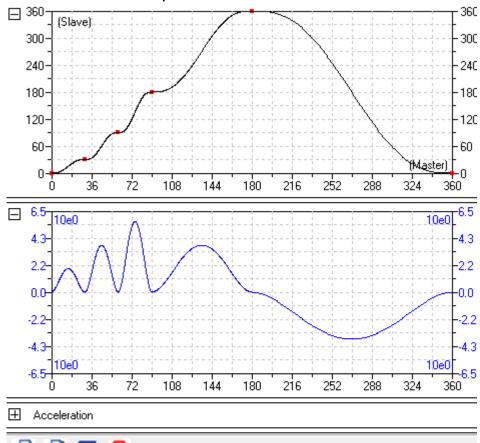
- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in Standstill state.

The following table lists the available buffer mode settings of MC\_CamIn.

| Buffer Mode   | Function                                                                           |
|---------------|------------------------------------------------------------------------------------|
| 0: mcAborting | Aborts the ongoing motion. The next instruction takes effect immediately           |
| 1: mcBuffered | Automatically executes the next instruction after the ongoing motion is completed. |

The following table lists the buffer effects of MC\_ Camin.

| Instruction | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to<br>activate the next buffered<br>instruction |
|-------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|
| MC_CamIn    | YES                                        | YES                                       | EndOfProfile                                                    |


For more information of buffer mode, refer to AH Motion Controller - Operation Manual.

## Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

## • Programming Example

This example explains MC\_CamIn instruction execution effects after the parameters for the electronic cam motion are configured.

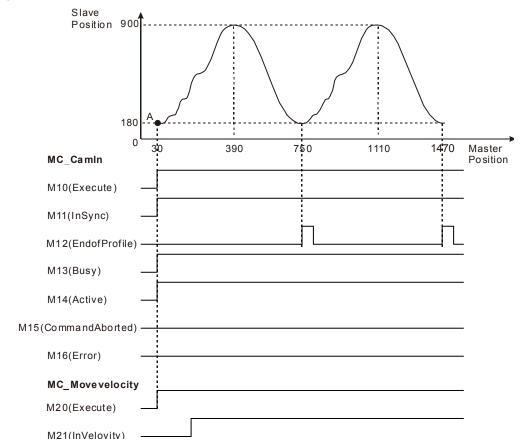


An electronic cam curve is planed below:

| 🚽 🊽 🖽 😆 |                 |                |                |                  |
|---------|-----------------|----------------|----------------|------------------|
|         | Master Position | Slave Position | Slave Velocity | Slave Accelerati |
| 1       | 0.0000          | 0.0000         | 0.0000         | 0.0000           |
| 2       | 30.0000         | 30.0000        | 0.0000         | 0.0000           |
| 3       | 60.0000         | 90.0000        | 0.0000         | 0.0000           |
| 4       | 90.0000         | 180.0000       | 0.0000         | 0.0000           |
| 5       | 180.0000        | 360.0000       | 0.0000         | 0.0000           |
| 6       | 360.0000        | 0.0000         | 0.0000         | 0.0000           |

#### **Conditions:**

| Parameter name                               | Value and explanation                             |
|----------------------------------------------|---------------------------------------------------|
| Cam period of the master axis and slave axis | 360                                               |
| Master Scaling and SlaveScaling              | 2                                                 |
| MasterOffset                                 | 0                                                 |
| SlaveOffset                                  | 0                                                 |
| Master axis: absolute/ relative              | Relative (False)                                  |
| Slave axis: absolute/relative                | Relative (False)                                  |
| Periodic                                     | Periodic (True)                                   |
| StartMode                                    | Jump to the positive target position (0 : mcJump) |


### Function blocks:

|                   | MC_Can              |                |     |
|-------------------|---------------------|----------------|-----|
|                   | MC_Ca               |                |     |
|                   | En                  | Eno.           |     |
| Axis_1.AxisNumber | Master              | InSync.        | M11 |
| Axis_2.axisNumber | Slave               | EndOfProfile   | M12 |
| M10               | Execute             | Busy           | M13 |
| Update            | ContinuousUpdate    | Active         | M14 |
| 1                 | CamTable            | CommandAborted | M15 |
| Periodic          | Periodic            | Error          | M16 |
| MasterAbsolute    | MasterAbsolute      | ErrorID        | D10 |
| SlaveAbsolute     | SlaveAbsolute       |                |     |
| MasterOffset      | MasterOffset        |                |     |
| SlaveOffset       | SlaveOffset         |                |     |
| 2.000             | MasterScaling       |                |     |
| 2.000             | SlaveScaling        |                |     |
| 0.000             | MasterStartDistance |                |     |
| 0.000             | MasterSyncPosition  |                |     |
| 0                 | ActivationMode      |                |     |
| 0                 | StartMode           |                |     |
| Velocity          | Velocity            |                |     |
| Acceleration      | Acceleration        |                |     |
| Deceleration      | Deceleration        |                |     |
| Jerk              | Jerk                |                |     |
| MasterValueSource | MasterValueSource   |                |     |
| BufferMode        | BufferMode          |                |     |
|                   |                     |                |     |

3

| MC_MoveVelocity   |                  |                |     |  |
|-------------------|------------------|----------------|-----|--|
|                   | MC_Move          | Velocity       |     |  |
|                   | En               | Eno            |     |  |
| Axis_1.AxisNumber | Ахіз             | InVelocity     | M21 |  |
| M20               | Execute          | Busy           | M22 |  |
| Continuous —      | ContinuousUpdate | Active         | M23 |  |
| 200.000           | Velocity         | CommandAborted | M24 |  |
| 10000.000         | Acceleration     | Error          | M25 |  |
| 1000.000          | Deceleration     | EnorID         | D20 |  |
| 1000.000          | Jerk             |                |     |  |
| Direction         | Direction        |                |     |  |
| BufferMode        | BufferMode       |                |     |  |

#### Motion diagram:



#### How the starting point for mapping actual axis position and the cam curve coordinates is calculated:

<u>Slave position</u> = <u>f [(master position + master offset)/ master scaling]</u> \* <u>slave scaling</u> + <u>slave offset</u> Current master position is 30 and slave position is 180;

Master position on the cam profile: <u>master position + master offset</u>)/ master scaling = (0 + 0) / (2) = 0

The cam table shows that slave position is 0 when master position is 0, i.e. f (0)=0.

Slave position on the cam profile: <u>Slave position</u> =  $[f(0)=0] * \underline{slave scaling} + \underline{slave offset} = 0 * 2 + 0 = 0.$ 

Therefore, after MC\_CamIn is executed, the coordinate of the starting point is (0, 0) in the cam curve which corresponds to the current position (30,180).

#### Actual master and slave position corresponding to the end point of cam curve:

Actual master position:

To perform displacement on the cam curve, master axis needs to move 360 from point (0, 0) to complete one cam cycle. Since master scaling is 2, master axis needs to move 720 from current position in actual displacement to complete one cycle, i.e. the actual master axis position of the end point: 30+720=**750**.

Actual slave position:

In the cam curve, slave axis moves 360 from point (0, 0) to reach the maximum value. Since slave scaling is 2, slave axis needs to move 720 positively from current position so as to reach the maximum value, i.e. 180+720=900.

In the cam curve, slave axis moves 360 from the maximum value to the end point position: 0. Since slave scaling is 2, slave axis needs to move 720 negatively from the maximum value to reach the end point, i.e. 900-720=**180**.

To sum up, the actual end point position is (750, 180).

## • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# MC\_CamOut

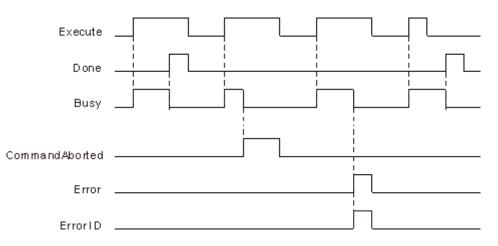
| FB/FC | Description                                                                             |
|-------|-----------------------------------------------------------------------------------------|
| FB    | MC_CamOut disengages the master axis and slave axis from the synchronization operation. |
|       | MC_CamOut<br>En Eno                                                                     |

|         | MC_CamOut      |
|---------|----------------|
| En      | Eno            |
| Slave   | Done           |
| Execute | Busy           |
|         | CommandAborted |
|         | Error          |
|         | ErrorID        |

## • Inputs

| Name    | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating |
|---------|---------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Execute | Executes the instruction when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                   |

## Outputs


| Name               | Function                                                                                                   | Data type | Output range (Default value) |
|--------------------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done               | True when the disengaging is completed.                                                                    | BOOL      | True/False (False)           |
| Busy               | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| CommandAb<br>orted | True when the instruction is aborted.                                                                      | BOOL      | True/False (False)           |
| Error              | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID            | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

## Outputs Update Timing

| Name | Timing for shifting to True                            | Timing for shifting to False                                                                                                                                                                               |
|------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done | <ul> <li>When the disengaging is completed.</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Busy | • When <i>Execute</i> changes to True.                 | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                        |

| CommandAbort<br>ed | <ul> <li>When this instruction is aborted by another instruction.</li> </ul>                                                              | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will be<br/>True for only one period and immediately<br/>shift to False.</li> </ul> |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error/ErrorID      | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                             |

## Timing Diagram



## • In-Outs

| Name  | Function    | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|-------|-------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Slave | axis number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

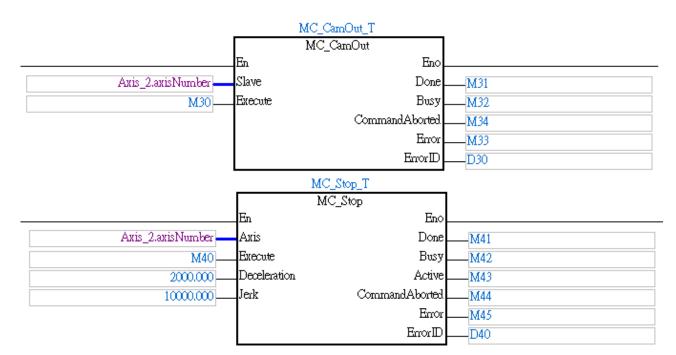
## • Function

The MC\_CamOut instruction ends cam operation of the slave axis. After the cam relationship is disconnected, the slave axis will keep moving at the speed where the cam relationship is disconnected. The axis will be in ContinuousMotion (it has nothing to do with the axis velocity).

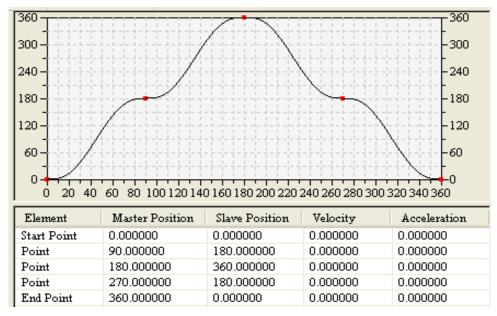
- If you execute this instruction on an axis which does not perform the cam operation, an error will occur.

## • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.


## • Programming Example

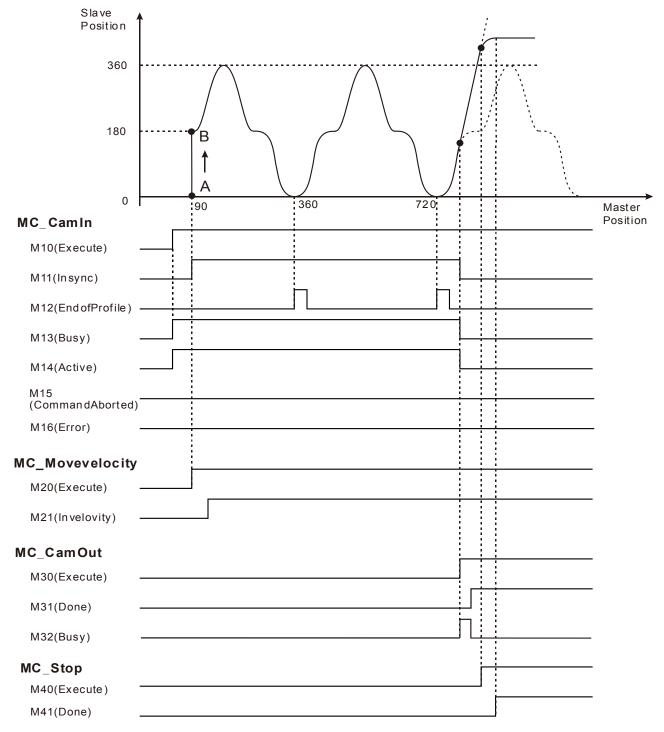
The following example describes the corresponding motion state throughout the cam operation via CAM-related instructions.


|                   | MC_MoveVelocity     |                |     |  |  |
|-------------------|---------------------|----------------|-----|--|--|
|                   | MC_MoveVelocity     |                |     |  |  |
|                   | En                  | Eno            |     |  |  |
| Axis_1.AxisNumber | Ахіз                | InVelocity     | M21 |  |  |
| M20               | Execute             | Busy           | M22 |  |  |
| Continuous        | ContinuousUpdate    | Active         | M23 |  |  |
| 500.000           | Velocity            | CommandAborted | M24 |  |  |
| 10000.000         | Acceleration        | Error          | M25 |  |  |
| 10000.000         | Deceleration        | ErrorID        | D20 |  |  |
| 10000.000         | Jerk                |                |     |  |  |
| Direction         | Direction           |                |     |  |  |
| BufferMode        | BufferMode          |                |     |  |  |
|                   | MC_Car              | nh_T           |     |  |  |
|                   | MC_C                | mh             |     |  |  |
|                   | En                  | Eno            |     |  |  |
| Axis_1.AxisNumber | Master              | InSync         | M11 |  |  |
| Axis_2.axisNumber | Slave               | EndOfProfile   | M12 |  |  |
| M10               | Execute             | Busy           | M13 |  |  |
| Update            | ContinuousUpdate    | Active         | M14 |  |  |
| 1                 | CamTable            | CommandAborted | M15 |  |  |
| Periodic          | Periodic            | Error          | M16 |  |  |
| MasterAbsolute    | MasterAbsolute      | EnorID         | D10 |  |  |
| SlaveAbsolute     | SlaveAbsolute       |                |     |  |  |
| MasterOffset      | MasterOffset        |                |     |  |  |
| SlaveOffset       | SlaveOffset         |                |     |  |  |
| 2.000             | MasterScaling       |                |     |  |  |
| 2.000             | SlaveScaling        |                |     |  |  |
| 0.000             | MasterStartDistance |                |     |  |  |
| 0.000             | MasterSyncPosition  |                |     |  |  |
| 0                 | ActivationMode      |                |     |  |  |
| 0                 | StartMode           |                |     |  |  |
| Velocity          | Velocity            |                |     |  |  |
| Acceleration      | Acceleration        |                |     |  |  |
| Deceleration      | Deceleration        |                |     |  |  |
| Jerk              | Jerk                |                |     |  |  |
| MasterValueSource | MasterValueSource   |                |     |  |  |
| BufferMode        | BufferMode          |                |     |  |  |
|                   |                     |                |     |  |  |

Note: the value of *Periodic*, *MasterAbsolute*, *SlaveAbsolute* of MC\_CamIn\_T is True.

3




When CamTable ID is 2, the corresponding curve is planned as below:



3

#### Motion diagram:

The positions of the master axis and slave axis are 90 and 0 respectively as point A shows in the following figure when the MC\_CamIn instruction is executed. The motion curve is shown below after the cam operation is performed.



- When M10 changes to True, MC\_CamIn is executed. According to the specified cam engagement behavior, the slave axis jumps from point A to point B immediately.
- when M20 changes to True, the master axis executes a velocity instruction and slave axis will start the motion following master axis according to cam curve.
- When M30 changes to True, MC\_CamOut is executed and the cam operation is disabled; Slave axis will move at the speed where the cam operation ends.

- When M40 changes to True, slave axis starts decelerating to stop.

## • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

3

Execute

ContinuousUpdate

RatioDenominator MasterValueSource

RatioNumerator

Acceleration Deceleration

BufferMode

Jerk

# MC\_GearIn

| FB/FC | Description                                                                       |             |     |
|-------|-----------------------------------------------------------------------------------|-------------|-----|
| FB    | MC_GearIn establishes the gear relation (velocity) between master and slave axis. |             |     |
|       | Г                                                                                 | MC_GearIn   | 7   |
|       | E                                                                                 | —           | 10. |
|       | -h                                                                                | Master InGe | ar. |
|       | s.                                                                                | lave Bu     | sy. |

Active

Abort Error

ErrorID

- The gear ratio is defined by the values specified in *RatioNumerator* (numerator) and *RatioDenominator* (denominator).
- A negative gear ratio indicates that the directions for the master and slave axis are opposite.
- You can define the reference source for master axis as commanded value or actual value.
- Acceleration, Deceleration and Jerk allows you to specify a desired behavior for the slave axis to engage with the master axis when the instruction is executed.

## Inputs

| Name                 | Function                                                                                                                                    | Data type | Setting value<br>(Default value)                | Timing for updating                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|-----------------------------------------------------------------------------|
| Execute              | Executes the instruction when <i>Execute</i> changes to True.                                                                               | BOOL      | True/False<br>(False)                           | -                                                                           |
| Continuous<br>Update | Continuously updates the gear ratio between the master and slave axes when Continuousupdate is True.                                        | BOOL      | True/False<br>(False)                           | When <i>Active</i> shifts<br>to True and it will<br>update<br>continuously. |
| RatioNumerator       | The numerator of the<br>electronic gear ratio<br>between the master and<br>slave axes.<br>A negative gear ratio<br>indicates the directions | DINT      | Negative number,<br>positive number or 0<br>(0) | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False.          |

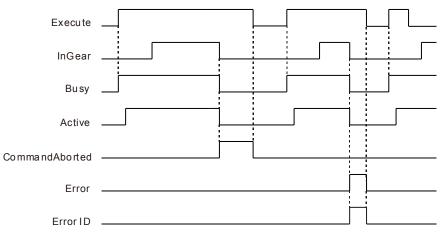
| Name              | Function                                                                                                                                                                                        | Data type                         | Setting value<br>(Default value)                  | Timing for updating                                                |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|--------------------------------------------------------------------|
|                   | for the master and slave axis are opposite.                                                                                                                                                     |                                   |                                                   |                                                                    |
| RatioDenominator  | The denominator of the<br>electronic gear ratio<br>between the master and<br>slave axes.<br>A negative gear ratio<br>indicates the directions<br>for the master and slave<br>axis are opposite. | DWORD                             | Positive number<br>(0)                            | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| MasterValueSource | Specifies the reference position of the master axis.                                                                                                                                            | eMC_SOURCE* <sup>1</sup>          | 0:<br>mcCommandedValue<br>2: mcActualValue<br>(0) | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Acceleration      | Acceleration rate.<br>(Unit: user unit/s <sup>2</sup> ) *                                                                                                                                       | LREAL                             | Positive number or 0 (0)                          | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Deceleration      | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> ) *                                                                                                                                       | LREAL                             | Positive number or 0 (0)                          | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| Jerk              | Jerk value.<br>(Unit: user unit/s <sup>3</sup> ) *                                                                                                                                              | LREAL                             | Positive number or 0 (0)                          | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |
| BufferMode        | Specifies the buffering behavior of the instruction.                                                                                                                                            | eMC_BUFFER_M<br>ODE* <sup>1</sup> | 0: mcAborting<br>1: mcBuffered<br>(0)             | When <i>Execute</i><br>shifts to True and<br><i>Busy</i> is False. |

## \*Note:

1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

## • Outputs

| Name                                                 | Function                                                                          | Data type | Output range (Default value) |
|------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|------------------------------|
| InGear                                               | True when the gear operation is completed and the in-gear status is acknowledged. | BOOL      | True/False (False)           |
| Busy True when the instruction is executed.          |                                                                                   | BOOL      | True/False (False)           |
| Active                                               | True when the axis is being controlled.                                           |           | True/False (False)           |
| CommandAborted True when the instruction is aborted. |                                                                                   | BOOL      | True/False (False)           |
| Error True if an error occurs.                       |                                                                                   | BOOL      | True/False (False)           |


## AH Motion Controller – Motion Control Instructions Manual

| Name    | Function                                                                                             | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| ErrorID | Indicates the error code if an error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

## Outputs Update Timing

| Name           | Timing for shifting to True                                                                                                                                                                                                                                                                                                        | Timing for shifting to False                                                                                                                                                                               |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InGear         | <ul> <li>When the slave axis achieves the<br/>target velocity and gear operation is<br/>completed.</li> </ul>                                                                                                                                                                                                                      | <ul> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>When the master axis velocity or the gear ratio is changed.</li> </ul>                             |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                                                                                                                                                                                                             | <ul> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                  |
| Active         | • When the motion on the axis is started.                                                                                                                                                                                                                                                                                          | <ul><li>When <i>Error</i> shifts to True.</li><li>When <i>CommandAborted</i> shifts to True.</li></ul>                                                                                                     |
| CommandAborted | <ul> <li>When this instruction is aborted<br/>because of the execution of<br/>MC_GearOut instruction.</li> <li>When this instruction is aborted by<br/>another instruction with the Buffer<br/>Mode set to Aborting.</li> <li>When this instruction is aborted<br/>because of the execution of MC_Stop<br/>instruction.</li> </ul> | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>If <i>Execute</i> is False and <i>CommandAborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Error/ErrorID  | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                                                                                                                                          | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                |

## Timing Diagram



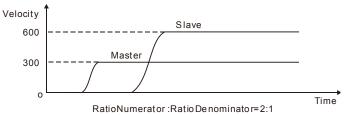
## In-Outs

| Name   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data type                               | Setting value<br>(Default value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Timing for updating                                                    |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Master | Master axis number<br>1: 1 <sup>st</sup> axis position<br>2: 2 <sup>nd</sup> axis position<br>3: 3 <sup>rd</sup> axis position<br>5: 5 <sup>th</sup> axis position<br>6: 6 <sup>th</sup> axis position<br>7: 7 <sup>th</sup> axis position<br>9: 9 <sup>th</sup> axis position<br>10: 10 <sup>th</sup> axis position<br>11: 11 <sup>th</sup> axis position<br>12: 12 <sup>th</sup> axis position<br>13: 13 <sup>th</sup> axis position<br>14: 14 <sup>th</sup> axis position<br>15: 15 <sup>th</sup> axis position<br>16: 16 <sup>th</sup> axis position<br>17: 17 <sup>th</sup> axis position<br>18: 18 <sup>th</sup> axis position<br>19: 9 <sup>th</sup> axis position<br>10: 20 <sup>th</sup> axis position<br>10: 10 <sup>th</sup> axis position<br>11: 11 <sup>th</sup> axis position<br>12: 12 <sup>th</sup> axis position<br>13: 13 <sup>th</sup> axis position<br>14: 14 <sup>th</sup> axis position<br>15: 15 <sup>th</sup> axis position<br>16: 16 <sup>th</sup> axis position<br>17: 17 <sup>th</sup> axis position<br>20: 20 <sup>th</sup> axis position<br>21: 21 <sup>st</sup> axis position<br>22: 22 <sup>nd</sup> axis position<br>23: 23 <sup>rd</sup> axis position<br>24: 24 <sup>th</sup> axis position<br>25: 25 <sup>th</sup> axis position<br>26: 26 <sup>th</sup> axis position<br>27: 27 <sup>th</sup> axis position<br>28: 28 <sup>th</sup> axis position<br>29: 29 <sup>th</sup> axis position<br>30: 30 <sup>th</sup> axis position<br>30: 30 <sup>th</sup> axis position<br>31: 31 <sup>st</sup> axis position<br>32: 32 <sup>nd</sup> axis position<br>200: 1 <sup>st</sup> counter value<br>204: 2 <sup>nd</sup> counter value<br>204: 2 <sup>th</sup> counter value<br>212: 4 <sup>th</sup> counter value<br>216: 5 <sup>th</sup> counter value<br>220: 6 <sup>th</sup> counter value | eMC_Mast<br>er_SOUR<br>CE* <sup>1</sup> | 1: Axis1_Cmd<br>2: Axis2_Cmd<br>3: Axis3_Cmd<br>4: Axis4_Cmd<br>5: Axis5_Cmd<br>6: Axis6_Cmd<br>7: Axis7_Cmd<br>8: Axis8_Cmd<br>9: Axis9_Cmd<br>10: Axis10_Cmd<br>11: Axis11_Cmd<br>12: Axis12_Cmd<br>13: Axis13_Cmd<br>14: Axis14_Cmd<br>15: Axis15_Cmd<br>16: Axis16_Cmd<br>17: Axis17_Cmd<br>18: Axis18_Cmd<br>19: Axis20_Cmd<br>20: Axis20_Cmd<br>21: Axis21_Cmd<br>22: Axis22_Cmd<br>23: Axis23_Cmd<br>24: Axis24_Cmd<br>25: Axis25_Cmd<br>26: Axis26_Cmd<br>27: Axis27_Cmd<br>28: Axis28_Cmd<br>29: Axis29_Cmd<br>30: Axis30_Cmd<br>31: Axis31_Cmd<br>32: Axis32_Cmd<br>20: DFB_AC0<br>204: DFB_AC1<br>200: DFB_AC1<br>21: DFB_AC16<br>220: DFB_AC20 | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |
| Slave  | Slave axis number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WORD                                    | K1~Kn* <sup>2</sup> (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

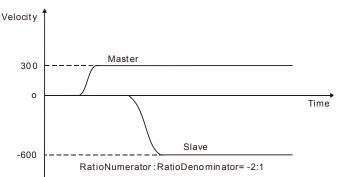
#### Note:

1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

2. Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.


## • Function

After the gear relation is established, slave axis will follow master axis to move at the given proportional relationship to accomplish the synchronized control of master and slave axis. Master and slave axis could be real or virtual axis or the external encoder master axis.


\*Note: If the specified slave axis is executing other motion instruction while MC\_GearIn is executed, the executing instruction will be aborted, and the specified axis will start to follow the master axis according to the gear relationship specified by MC\_GearIn.

#### RatioNumerator and RatioDenominator

When gear ratio is positive, the master and slave axes move in the same direction.



When gear ratio is negative, the master and slave axes move in opposite direction.



#### Acceleration and Deceleration

- If the current speed of the slave axis is lower than the target speed when the MC\_GearIn is executed, the slave axis will accelerate to the target speed by the specified acceleration rate (*Acceleration*).
- If the current speed of the slave axis is higher than the target speed when the MC\_GearIn is executed, the slave axis will decelerate to the target speed by the specified deceleration rate (*Deceleration*).

#### BufferMode

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in "Standstill" state.

The following table lists the available buffer mode settings of MC\_GearIn.

| Buffer Mode   | Function                                                                           |
|---------------|------------------------------------------------------------------------------------|
| 0: mcAborting | Aborts the ongoing motion. The next instruction takes effect immediately           |
| 1: mcBuffered | Automatically executes the next instruction after the ongoing motion is completed. |

The following table lists the buffer effects of MC\_GearIn.

| Instruction | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to activate the next buffered instruction |
|-------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| MC_GearIn   | YES                                        | YES                                       | InGear                                                    |

For more information of buffer mode, refer to section AH Motion Controller – Operation Manual.

### Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

## • Programming Example

Refer to the programming example of MC\_GearOut instruction.

## • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

Execute

# MC\_GearOut

| FB/FC | Description                                                                        |            |  |
|-------|------------------------------------------------------------------------------------|------------|--|
| FB    | MC_GearOut disconnects the gear relation (velocity) between master and slave axis. |            |  |
|       |                                                                                    |            |  |
|       |                                                                                    | MC_GearOut |  |
|       | En                                                                                 | Eno.       |  |
|       | Slave                                                                              | Done       |  |

After the execution of MC\_GearOut is finished, the disengaged slave axis will keep the velocity where the gear relation is disconnected and become available for executing other motion instructions.

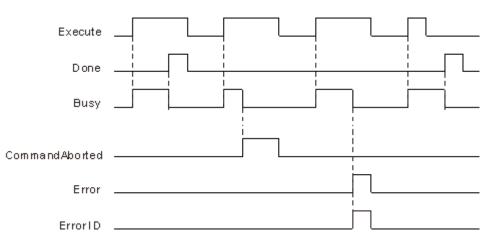
Busy Error ErrorID

## Inputs

| Name    | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating |
|---------|---------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Execute | Executes the instruction when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                   |

## Outputs

| Name               | Function                                                                                                   | Data type | Output range (Default value) |
|--------------------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done               | True when the gear disconnection is completed.                                                             | BOOL      | True/False (False)           |
| Busy               | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| CommandAb<br>orted | True when the instruction is aborted.                                                                      | BOOL      | True/False (False)           |
| Error              | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID            | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |


## Outputs Update Timing

| Name | Timing for shifting to True                                       | Timing for shifting to False                                                                                                                                                                               |
|------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done | <ul> <li>When the gear disconnection is<br/>completed.</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Busy | • When <i>Execute</i> changes to True.                            | • When <i>Done</i> shifts to True.                                                                                                                                                                         |

## Chapter 3 Motion Control Instructions

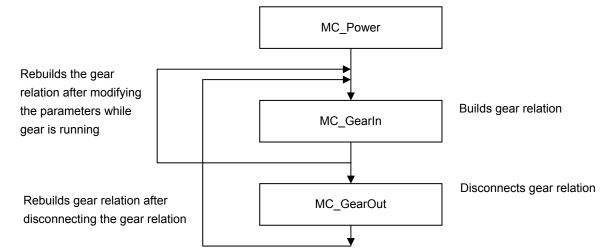
| Name               | Timing for shifting to True                                                                                                                                 | Timing for shifting to False                                                                                                                                                                 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                             | <ul><li>When <i>Error</i> shifts to True.</li><li>When <i>CommandAborted</i> shifts to True.</li></ul>                                                                                       |
| CommandAbort<br>ed | <ul> <li>When this instruction is aborted by other<br/>buffer modes set by mcAborting.</li> <li>When this instruction is aborted by<br/>MC_Stop.</li> </ul> | • When <i>Execute</i> changes to False.<br>If <i>Execute</i> is False and<br><i>CommandAborted</i> shifts to True, it will be<br>True for only one period and immediately<br>shift to False. |
| Error/ErrorID      | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                   | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>(Error code is cleared)</li> </ul>                                                                                          |

## Timing Diagram



## • In-Outs

| Name  | Function          | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|-------|-------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Slave | Slave axis number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |


\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

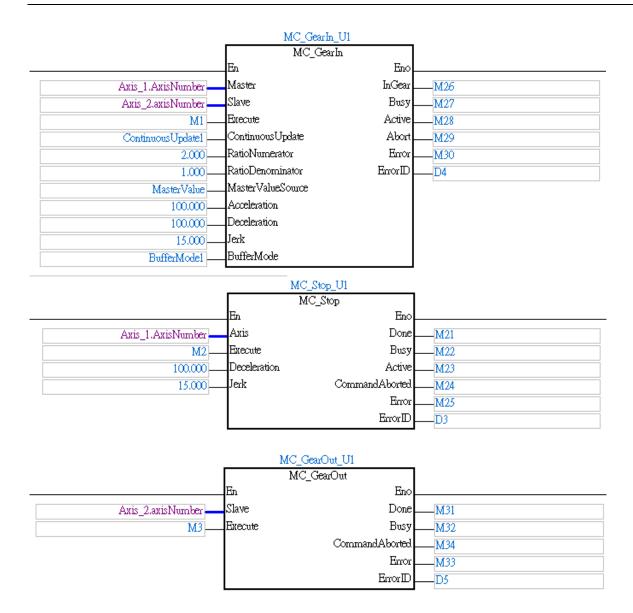
2

## • Function

The MC\_GearOut instruction ends gear synchronization of the slave axis. After the gear relationship is disconnected, the slave axis will keep moving at the speed where the gear relationship is disconnected. The axis will be in ContinuousMotion (it has nothing to do with the axis velocity)

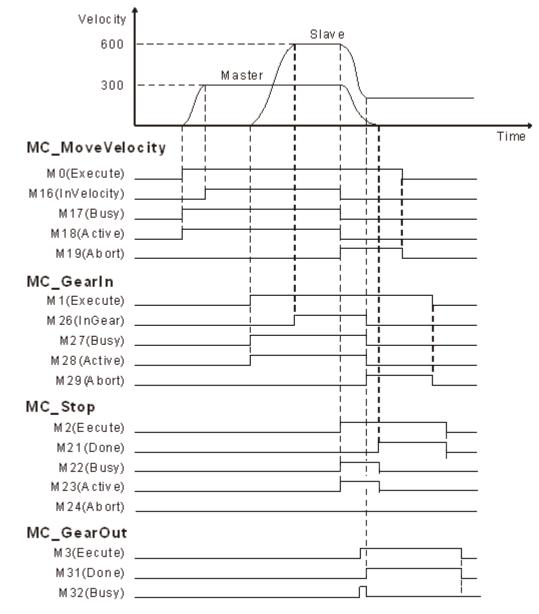
- The sequence for execution of the instructions related to electronic gear




## • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.

## • Programming Example


The following example describes the corresponding motion state throughout the gear operation via gear-related instructions.

| MC_MoveVelocity_U1 |                  |                |     |  |
|--------------------|------------------|----------------|-----|--|
|                    | MC_MoveVelocity  |                |     |  |
|                    | En               | Eno            |     |  |
| Axis_1.AxisNumber  | Axis             | InVelocity     | M21 |  |
| M20                | Execute          | Busy           | M22 |  |
| Continuous         | ContinuousUpdate | Active         | M23 |  |
| 500.000            | Velocity         | CommandAborted | M23 |  |
| 10000.000          | Acceleration     | Error          | M25 |  |
| 10000.000          | Deceleration     | ErrorID        | D20 |  |
| 10000.000          | Jerk             |                |     |  |
| Direction —        | Direction        |                |     |  |
| Buffermode         | BufferMode       |                |     |  |



3

#### Motion diagram:



- When M0 (Execute) changes to True, M17 and M18 change to True and master axis starts to move.
- When M1 (*Execute*) changes to True, the slave axis starts to catch the master axis. When the velocity of slave axis reaches 2 times the velocity of master axis (numerator=2, denominator=1), M26 (*InGear*) changes to True.
- When M2 (*Execute*) changes to True, master axis executes the MC\_Stop instruction.
- In the process of the MC\_Stop execution, when M3 (*Execute*) changes to True, MC\_GearOut is executed; when the disconnection is completed, M31 (*Done*) changes to True and slave axis will keep moving at the speed when the gear relation is decoupled.

## Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

## MC\_PhasingAbsolute

| FB/FC | Description                                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------|
| FB    | MC_PhasingAbsolute shifts the phase of the master axis virtually by a specified absolute phase shift value. |

| MC_Phas      | singAbsolute       |
|--------------|--------------------|
| En           | Eno                |
| Master       | Done               |
| Slave        | Busy               |
| Execute      | Active             |
| PhaseShift   | CommandAborted     |
| Velocity     | Error              |
| Acceleration | ErrorID            |
| Deceleration | AbsolutePhaseShift |
| Jerk         |                    |
| BufferMode   |                    |

#### Note:

- 1. The gear relation between the specified master and slave axes, e.g. electronic gear relationship, electronic cam relationship, should be established before the execution of MC\_PhasingAboslute/MC\_PhasingRelative.
- 2. The virtually shifted master axis will impact the motion of the slave axis according to the specified parameters.

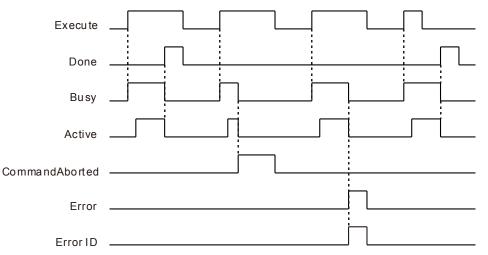
| Name         | Function                                                                            | Data type                         | Setting value<br>(Default value)          | Timing for updating                                          |
|--------------|-------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------------------------------|
| Execute      | Executes the instruction when <i>Execute</i> changes to True.                       | BOOL                              | True/False<br>(False)                     | -                                                            |
| PhaseShift   | Specifies the absolute phase<br>shift amount for master axis.<br>(Unit: user unit)* | LREAL                             | Negative number, positive number or 0 (0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Velocity     | The target velocity of the master axis phase shift amount. (Unit: user unit/s)*     | LREAL                             | Positive number (0)                       | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Acceleration | Acceleration rate.<br>(Unit: user unit/s <sup>2</sup> )*                            | LREAL                             | Positive number or 0 (0)                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Deceleration | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> )*                            | LREAL                             | Positive number or 0 (0)                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Jerk         | Jerk value.<br>(Unit: user unit/s <sup>3</sup> )*                                   | LREAL                             | Positive number or 0 (0)                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| BufferMode   | Specifies the buffering behavior of the instruction.                                | eMC_BUFFER<br>_MODE <sup>*2</sup> | 0: mcAborting<br>1: mcBuffered (0)        | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

## Inputs

#### \*Note:

Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

## • Outputs


| Name               | Function                                                                                                | Data type | Output range (Default value) |
|--------------------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done               | True when phasing operation is completed.                                                               | BOOL      | True/False (False)           |
| Busy               | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Active             | True when the axis is being controlled.                                                                 | BOOL      | True/False (False)           |
| CommandAborted     | True when the instruction is aborted.                                                                   | BOOL      | True/False (False)           |
| Error              | True if an error occurs.                                                                                | BOOL      | True/False (False)           |
| ErrorID            | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |
| AbsolutePhaseShift | Records the absolute phase shift on the master axis continuously.                                       | LREAL     | -                            |

## Outputs Update Timing

| Name           | Timing for shifting to True                                                                                                                                                                                  | Timing for shifting to False                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>When the phasing operation is<br/>completed.</li> </ul>                                                                                                                                             | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                                            |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                                                                                       | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                                                                                   |
| Active         | • When the motion on the axis is started.                                                                                                                                                                    | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will<br/>be True for only one period and<br/>immediately shift to False.</li> </ul> |
| CommandAborted | <ul> <li>When this instruction is aborted by another instruction with the Buffer Mode set to Aborting.</li> <li>When this instruction is aborted because of the execution of MC_Stop instruction.</li> </ul> | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will<br/>be True for only one period and<br/>immediately shift to False.</li> </ul>                                                                                               |

| Name               | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Error/ErrorID      | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>(Error code is cleared)</li> </ul> |
| AbsolutePhaseShift | Continuously updates value when <i>Busy</i> is True.                                                                                      | Continuously updates value when <i>Busy</i> is True.                                                |

### Timing Diagram



### In-Outs

| Name   | Function    | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|--------|-------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Master | Master Axis | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |
| Slave  | Slave Axis  | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

# • Function

- MC\_PhasingAbsolute shifts the phase of the master axis virtually by a specified absolute phase shift value.
- The instruction only affects the velocity and position of the slave axis without any influence on the velocity and position of the master axis.
- When MC\_PhasingAbsolute instruction is executed but not finished yet, it will not take effects to execute the instruction again.
- The reference zero point for calculating the *PhaseShift* value is the position when the synchronization between master and slave axis starts.
- For detailed explanation of the absolute phasing operation, refer to Programming Example below.

### BufferMode

*BufferMode* determines the behavior to combine the axis motions for this instruction and the previous instruction. When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in Standstill state.

The following table lists the available buffer mode settings of MC\_PhasingAbsolute.

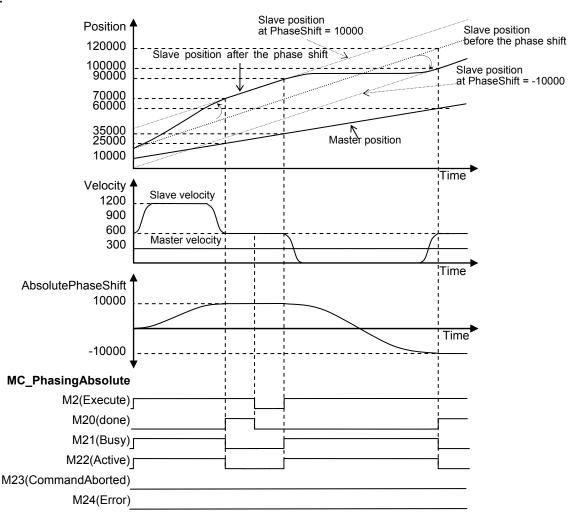
| Buffer Mode           | Function                                                                                                                                                                                                                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0: mcAborting         | Aborts the ongoing motion. The next instruction takes effect immediately                                                                                                                                                   |
| 1: mcBuffered         | Automatically executes the next instruction after the ongoing motion is completed.                                                                                                                                         |
| 2: mcBlendingLow      | Takes the lower target velocity as the transit velocity between the current instruction<br>and the buffered instruction. (The transit velocity is the velocity that the current<br>instruction uses as the transit point.) |
| 3: mcBlendingPrevious | Takes the target velocity of the current instruction as the transit velocity.                                                                                                                                              |
| 4: mcBlendingNext     | Takes the target velocity of the buffered instruction as the transit velocity.                                                                                                                                             |
| 5: mcBlendingHigh     | Takes the higher target velocity as the transit velocity between the current instruction and the buffered instruction.                                                                                                     |

The following table lists the buffer effects of MC\_ PhasingAbsolute.

| Instruction        | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to activate the next buffered instruction |
|--------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| MC_PhasingAbsolute | YES                                        | YES                                       | Done                                                      |

For more information of buffer mode, refer to section AH Motion Controller - Operation Manual.

# • Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

# • Programming Example

When the gear relationship is built between the specified master and slave axes, the MC\_PhasingAbsolute instruction will affect the speed and position of the slave axis.

|                   | MC_Ge             |                    |     |
|-------------------|-------------------|--------------------|-----|
|                   | MC_Ge             |                    |     |
|                   | En                | Eno                |     |
| Axis_1.AxisNumber | Master            | InGear             | M10 |
| Axis_2.axisNumber | Slave             | Busy               | M11 |
| M1                | Execute           | Active             | M12 |
| Reserved          | ContinuousUpdate  | Abort              | M13 |
| 2.0000            | RatioNumerator    | Error              | M14 |
| 1.0000            | RatioDenominator  | ErrorID            | D0  |
| SM401             | MasterValueSource |                    |     |
| 100.0000          | Acceleration      |                    |     |
| 100.0000          | Deceleration      |                    |     |
| 15.0000           | Jerk              |                    |     |
| 0                 | BufferMode        |                    |     |
|                   | MC_Phasing        | Absolute           |     |
|                   | MC_Phasing        | Absolute           |     |
|                   | En                | Eno                |     |
| Axis_1.AxisNumber | Master            | Done               | M20 |
| Axis_2.axisNumber | Slave             | Busy               | M21 |
| M2                | Execute           | Active             | M22 |
| D100              | PhaseShift        | Abort              | M23 |
| 300.0000          | Velocity          | Error              | M24 |
| 100.0000          | Acceleration      | ErrorID            | D2  |
| 100.0000          | Deceleration      | AbsolutePhaseShift | D4  |
| 15.0000           | Jerk              |                    |     |
| 0                 | BufferMode        |                    |     |

#### Motion diagram:



- The gear relationship between master axis and slave axis is established after M10 (*InGear*) of MC\_GearIn is True. The velocity ratio and position ratio between master axis and slave axis are both 1:2.
- Suppose that master axis moves at a constant speed of 300 and D100 (*PhaseShift*) value is 10,000. When M2(*Execute*) of MC\_PhasingAbsolute changes to True, the velocity, acceleration and deceleration and phase shift set in the instruction will be superimposed to the master axis.
- The execution of MC\_PhasingAbsolute does not affect the operation of master axis but the operation of slave axis according to gear relationship. As the diagram shows above, when M20 (*Done*) shifts to True at master position = 25,000, the slave position can be obtained as below:

Actual slave position after the phase shift = (Current master position - previous master position + <u>PhaseShift value</u> – <u>previous shifted amount</u>) \* (RatioNumerator / RatioDenominator) + <u>previous slave position</u> = (25,000-10,000+10,000-0)\*2+20,000 = 70,000. Note: previous shifted amount is deducted because *PhaseShift* is evaluated as an absolute value.

When D100 (*PhaseShift*) is changed to -10,000 and M2 (*Execute*) changes to True again, the instruction will be executed again. As the diagram shows above, when M20 (*Done*) changes to True at master position 60,000, the slave position can be obtained as below:

<u>Actual slave position after the phase shift</u> = (<u>Current master position</u> - <u>previous master position</u> + <u>PhaseShift value</u> – <u>previous shifted amount</u>) \* (RatioNumerator / RatioDenominator) + original slave position =

(60,000-35,000-10,000-**10,000**)\*2+90,000 = 100,000.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

Velocity

Jerk

Acceleration

Deceleration

BufferMode

| FB/FC | Description                                                                                                 |                |  |  |
|-------|-------------------------------------------------------------------------------------------------------------|----------------|--|--|
| FB    | MC_PhasingRelative shifts the phase of the master axis virtually by a specified relative phase shift value. |                |  |  |
|       | MC_PhasingRelative                                                                                          |                |  |  |
|       |                                                                                                             |                |  |  |
|       | En                                                                                                          | Eno.           |  |  |
|       | Master Done.                                                                                                |                |  |  |
|       | Slave Busy                                                                                                  |                |  |  |
|       | Execute                                                                                                     | Active.        |  |  |
|       | PhaseShift                                                                                                  | CommandAborted |  |  |

# MC\_PhasingRelative

| 1. | The gear relation between the specified master and slave axes, e.g. electronic gear relationship, electronic cam |
|----|------------------------------------------------------------------------------------------------------------------|
|    | relationship, should be established before the execution of MC_PhasingAboslute/MC_PhasingRelative.               |

Error ErrorID

CoveredPhaseShift

2. The virtually shifted master axis will impact the motion of the slave axis according to the specified parameters.

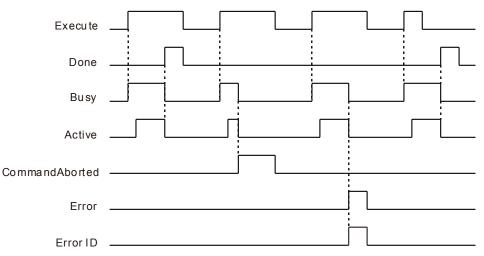
| Name         | Function                                                                                 | Data type                         | Setting value<br>(Default value)                | Timing for updating                                             |
|--------------|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------------------------------------|
| Execute      | Executes the instruction when<br><i>Execute</i> changes to True.                         | BOOL                              | True/False<br>(False)                           | -                                                               |
| PhaseShift   | Specifies the relative phase<br>shift amount for master axis.<br>(Unit: user unit)*      | LREAL                             | Negative number,<br>positive number or 0<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| Velocity     | The target velocity of the<br>master axis phase shift<br>amount.<br>(Unit: user unit/s)* | LREAL                             | Positive number<br>(0)                          | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |
| Acceleration | Acceleration rate.<br>(Unit: user unit/s <sup>2</sup> )*                                 | LREAL                             | Positive number or 0 (0)                        | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| Deceleration | Deceleration rate.<br>(Unit: user unit/s <sup>2</sup> )*                                 | LREAL                             | Positive number or 0 (0)                        | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| Jerk         | Jerk value.<br>(Unit: user unit/s³)*                                                     | LREAL                             | Positive number or 0 (0)                        | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| BufferMode   | Specifies the buffering behavior of the instruction.                                     | eMC_BUFFER_<br>MODE <sup>*2</sup> | 0: mcAborting<br>1: mcBuffered<br>(0)           | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |

\*Note:

1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

# • Outputs

| Name              | Function                                                                                                | Data type | Output range (Default value) |
|-------------------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done              | True when phasing operation is completed.                                                               | BOOL      | True/False (False)           |
| Busy              | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Active            | True when the axis is being controlled.                                                                 | BOOL      | True/False (False)           |
| CommandAborted    | True when the instruction is aborted.                                                                   | BOOL      | True/False (False)           |
| Error             | True if an error occurs.                                                                                | BOOL      | True/False (False)           |
| ErrorID           | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |
| CoveredPhaseShift | Records the absolute phase shift on the master axis continuously                                        | LREAL     | -                            |


# Outputs Update Timing

| Name           | Timing for shifting to True                                                                                                                                                                                                  | Timing for shifting to False                                                                                                                                                                                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>When the phasing operation is<br/>completed.</li> </ul>                                                                                                                                                             | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                                            |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                                                                                                       | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> </ul>                                                                                                                                                                   |
| Active         | • When the motion on the axis is started.                                                                                                                                                                                    | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>CommandAborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will<br/>be True for only one period and<br/>immediately shift to False.</li> </ul> |
| CommandAborted | <ul> <li>When this instruction is aborted by<br/>another instruction with the Buffer<br/>Mode set to Aborting.</li> <li>When this instruction is aborted<br/>because of the execution of MC_Stop<br/>instruction.</li> </ul> | <ul> <li>When <i>Execute</i> changes to False.</li> <li>If <i>Execute</i> is False and<br/><i>CommandAborted</i> shifts to True, it will<br/>be True for only one period and<br/>immediately shift to False.</li> </ul>                                                                                               |

### AH Motion Controller – Motion Control Instructions Manual

| Name              | Timing for shifting to True                                                                                     | Timing for shifting to False                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Error/ErrorID     | • When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded) | • When <i>Execute</i> shifts from True to False. (Error code is cleared) |
| CoveredPhaseShift | Continuously updates value when <i>Busy</i> is True.                                                            | Continuously updates value when <i>Busy</i> is True.                     |

### ■ Timing Diagram:



### • In-Outs

| Name   | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|--------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Master | Master axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |
| Slave  | Slave axis number     | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

# • Function

- MC\_PhasingRelative shifts the phase of the master axis virtually by a specified relative phase shift value.
- The instruction only affects the velocity and position of the slave axis without any influence on the velocity and position of the master axis.
- When MC\_PhasingRelative instruction is executed but not finished yet, it will not take effects to execute the instruction again.
- The reference zero point for calculating the *PhaseShift* value is the position when the synchronization between master and slave axis starts.
- For detailed explanation of the relative phasing operation, refer to Programming Example below.

### BufferMode

BufferMode determines the behavior to combine the axis motions for this instruction and the previous instruction.

When the instruction is executed;

- The selected buffer mode is valid if the previous instruction is executing.
- The selected buffer mode is invalid if the axis is in Standstill state.

The following table lists the available buffer mode settings of MC\_PhasingRelative.

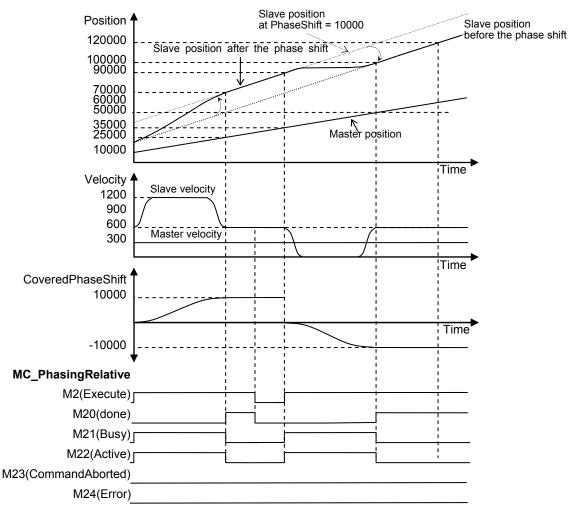
| Buffer Mode           | Function                                                                                                                                                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0: mcAborting         | Aborts the ongoing motion. The next instruction takes effect immediately                                                                                                                                             |
| 1: mcBuffered         | Automatically executes the next instruction after the ongoing motion is completed.                                                                                                                                   |
| 2: mcBlendingLow      | Takes the lower target velocity as the transit velocity between the current instruction and the buffered instruction. (The transit velocity is the velocity that the current instruction uses as the transit point.) |
| 3: mcBlendingPrevious | Takes the target velocity of the current instruction as the transit velocity.                                                                                                                                        |
| 4: mcBlendingNext     | Takes the target velocity of the buffered instruction as the transit velocity.                                                                                                                                       |
| 5: mcBlendingHigh     | Takes the higher target velocity as the transit velocity between the current instruction and the buffered instruction.                                                                                               |

The following table lists the buffer effects of MC\_ PhasingRelative.

| Instruction        | Can be specified as a buffered instruction | Can be followed by a buffered instruction | Relevant signal to<br>activate the next buffered<br>instruction |
|--------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|
| MC_PhasingRelative | YES                                        | YES                                       | Done                                                            |

For more information of buffer mode, refer to AH Motion Controller - Operation Manual.

# Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

# • Programming Example

When the gear relationship is built between the specified master and slave axes, the MC\_PhasingRelative instruction will affect the speed and position of the slave axis.

| MC_GearIn         |                   |                   |     |  |
|-------------------|-------------------|-------------------|-----|--|
|                   | MC_Ge             |                   |     |  |
|                   | En                | Eno               |     |  |
| Axis_1.AxisNumber | Master            | InGear            | M10 |  |
| Axis_2.axisNumber | Slave             | Busy              | M11 |  |
| M1                | Execute           | Active            | M12 |  |
| Reserved          | ContinuousUpdate  | Abort             | M13 |  |
| 2.0000            | RatioNumerator    | Error             | M14 |  |
| 1.0000            | RatioDenominator  | EnorID            | D0  |  |
| SM401             | MasterValueSource |                   |     |  |
| 100.0000          | Acceleration      |                   |     |  |
| 100.0000          | Deceleration      |                   |     |  |
| 15.0000           | Jerk              |                   |     |  |
| 0                 | BufferMode        |                   |     |  |
|                   | MC_Phasing        | Relative          |     |  |
|                   | MC_Phasing        | Relative          |     |  |
|                   | En                | Eno               |     |  |
| Axis_1.AxisNumber | Master            | Done              | M20 |  |
| Axis_2.axisNumber | Slave             | Busy              | M21 |  |
| M2                | Execute           | Active            | M22 |  |
| D100              | PhaseShift        | Abort             | M23 |  |
| 300.0000          | Velocity          | Error             | M24 |  |
| 100.0000          | Acceleration      | ErrorID           | D2  |  |
| 100.0000          | Deceleration      | CoveredPhaseShift | D4  |  |
| 15.0000           | Jerk              |                   |     |  |
| 0                 | BufferMode        |                   |     |  |

#### Motion diagram:



- The gear relationship between master axis and slave axis is established after M10 (*InGear*) of MC\_GearIn is True. The velocity ratio and position ratio between master axis and slave axis are both 1:2.
- Suppose that master axis moves at a constant speed of 300 and D100 (*PhaseShift*) value is 10,000. When M1(*Execute*) of MC\_PhasingAbsolute changes to True, the velocity, acceleration and deceleration and phase shift set in the instruction will be superimposed to the master axis.
- The execution of MC\_PhasingAbsolute does not affect the operation of master axis but the operation of slave axis according to gear relationship. As the diagram shows above, when M20 (*Done*) shifts to True at master position 25,000, the slave position can be obtained as below:

<u>Actual slave position after the phase shift</u> = (<u>Current master position</u> - <u>previous master position</u> + <u>PhaseShift value</u>)\* (RatioNumerator / RatioDenominator) + <u>previous slave position</u> = (25,000-10,000+10,000)\*2+20,000 = 70,000.

- When D100 (*PhaseShift*) is changed to -10,000 and M1 (*Execute*) changes to True again, the instruction will be executed again. As the diagram shows above, when M20 (*Done*) changes to True at master position 50,000, the slave position can be obtained as below:

<u>Actual slave position after the phase shift</u> = (<u>Current master position</u> - <u>previous master position</u> + <u>PhaseShift value</u>)\* (RatioNumerator / RatioDenominator) + original slave position = (50,000-35,000-10,000)\*2+90,000 = 100,000.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# 3.3 Delta-defined Motion Control Instructions

| Categories                    | Name                 | Description                                                                                                                                    |
|-------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | DFB_AxisSetting1     | DFB_AxisSetting1 sets motion parameters for the specified axis.                                                                                |
|                               | DFB_AxisSetting2     | DFB_AxisSetting2 sets motion parameters for the specified axis.                                                                                |
|                               | DFB InputPolarity    | DFB_InputPolarity sets the polarity of inputs and reads the states of these input terminals.                                                   |
| Single axis<br>Administrative | DFB CamMultiRead     | DFB_CamRead reads cam points from the specified motion axis.                                                                                   |
|                               | DFB_CamMultiWrite    | DFB_CamWrite writes cam points to the specified cam curve                                                                                      |
|                               | DFB_CamCurve2        | DFB_CamCurve2 creates cam curves which are mainly used in rotary cut and flying saw applications.                                              |
|                               | DFB_CamCurveUpdate2  | DFB_CamCurveUpdate2 updates the cam operation with the modified cam profile in the next cycle.                                                 |
|                               | DFB_GroupAbsLinear   | DFB_GroupAbsLinear controls the axis group to perform linear interpolation to move to the specified absolute target position.                  |
|                               | DFB_GroupRelLinear   | DFB_GroupAbsLinear controls the axis group to perform linear interpolation to move to the specified relative distance.                         |
| Group Motion                  | DFB_GroupAbsCircular | DFB_GroupAbsCircular controls the axis group to perform arc/circular or helix interpolation to move to the specified absolute target position. |
|                               | DFB GroupRelCircular | DFB_GroupAbsCircular controls the axis group to perform arc/circular or helix interpolation to move a specified relative distance.             |
| Stop                          | DFB GroupStop        | DFB_GroupStop decelerates the group axes to stop or pause to the current position.                                                             |
|                               | DFB GroupEnable      | DFB_GroupEnable enables a group of axes for group motion.                                                                                      |
| Multi-axes<br>Administrative  | DFB_GroupDisable     | DFB_GroupDisable disables the axis group with the specidied group number.                                                                      |
|                               | DFB_GroupReset       | DFB_GroupReset resets the axis group which is in the state of "Errorstop".                                                                     |

3\_

|           | Categories                                                | Name                                                                                                          | Description                                                                                                                                                 |
|-----------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                           | DFB_ReadGroupStatus                                                                                           | DFB_ReadGroupStatus reads the axis numbers in an axis group, and indicates the status of the axis group at <i>GroupStatus</i> .                             |
|           | High speed<br>counter                                     | DFB HCnt                                                                                                      | DFB_HCnt enables the specified high speed counter according to the specified parameters and monitors the count value.                                       |
|           | High speed<br>timer                                       | DFB HTmr                                                                                                      | DFB_HTmr enables the specified high speed timer channel according to the specified parameters and monitors and timed value.                                 |
| Auxiliary | Comparison                                                | DFB_Compare                                                                                                   | DFB_Compare compares the designated source with a specified value and outputs the specified results on a desired device when the comparison result is True. |
|           |                                                           | DFB_CmpOutRst                                                                                                 | DFB_CmpOutRst monitors the output results and clears the output states triggered by the comparators.                                                        |
|           | Capture                                                   | DFB Capture2                                                                                                  | DFB_Capture2 captures the commanded pulses of the specified axis according to the designated external trigger deivce.                                       |
|           |                                                           | DFB_ECATReset                                                                                                 | DFB_ECATReset resets an abnormal EtherCAT network.                                                                                                          |
|           | ECAT<br>Communication DFB_ECATServoWrite<br>DFB_SDO_Write | DFB_ECATServoRead reads the values of parameters from the Delta servo drive specified on an EtherCAT network. |                                                                                                                                                             |
| Network   |                                                           | DFB_ECATServoWrite                                                                                            | DFB_ECATServoWrite writes the values of parameters into the Delta servo drive specified on an EtherCAT network.                                             |
|           |                                                           | DFB_SDO_Write                                                                                                 | DFB_SDO_Write writes the values of parameters into the specified OD of the EtherCAT Slave via SDO.                                                          |
|           |                                                           | DFB_SDO_Read                                                                                                  | DFB_SDO_Read reads the values of parameters from the specified OD of the EtherCAT Slave via SDO.                                                            |

| Categories     | Name              | Description                                                                                       |
|----------------|-------------------|---------------------------------------------------------------------------------------------------|
|                | DFB_AxisSetting1  | DFB_AxisSetting1 sets motion parameters for the specified axis.                                   |
|                | DFB_AxisSetting2  | DFB_AxisSetting2 sets motion parameters for the specified axis.                                   |
| Single axis    | DFB InputPolarity | DFB_InputPolarity sets the polarity of inputs and reads the states of these input terminals.      |
| Administrative | DFB CamMultiRead  | DFB_CamRead reads cam points from the specified motion axis.                                      |
|                | DFB_CamMultiWrite | DFB_CamWrite writes cam points to the specified cam curve                                         |
|                | DFB_CamCurve2     | DFB_CamCurve2 creates cam curves which are mainly used in rotary cut and flying saw applications. |

3.3.1 Single-axis Motion Control Function Blocks

# DFB\_AxisSetting1

| FB/FC    | Description                                                     |  |
|----------|-----------------------------------------------------------------|--|
| FB       | DFB_AxisSetting1 sets motion parameters for the specified axis. |  |
| <b>_</b> | DFB AxisSetting1                                                |  |

|         | DFB_AxisSetting1 |         |
|---------|------------------|---------|
| En      |                  | Eno.    |
| Axis    |                  | Done    |
| Execute |                  | Busy.   |
| Vmax    |                  | Error   |
| Vbias   |                  | ErrorID |
| Tacc    |                  |         |
| Tdec    |                  |         |

The function blocks Vbias, Tacc and Tdec are for the axis velocity settings in the DFB series function blocks.

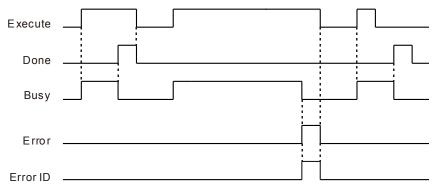
This instruction can only be executed when the state is in Disable, Standstill or Coordinated and the axis should be in Standby mode. Otherwise, an error message will be sent.

Note: refer to DFB\_AxisSetting2 for setting other motion axis parameters.

### Inputs

| Name    | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating                                          |
|---------|---------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------|
| Execute | Writes in the parameters when <i>Execute</i> changes to True. | BOOL      | True/False (False)               | -                                                            |
| Vmax    | Maximum speed<br>(user unit: s)                               | LREAL     | 0~2147483647.0 (0)               | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Vbias   | Start-up speed<br>(user unit: s)                              | LREAL     | 0~100000.0 (0)                   | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Тасс    | Acceleration time<br>(unit: ms)                               | WORD      | 0~32767 (0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Tdec    | Deceleration time<br>(unit: ms)                               | WORD      | 0~32767 (0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

# Outputs


| Name    | Function                                      | Data type | Output range (Default value) |
|---------|-----------------------------------------------|-----------|------------------------------|
| Done    | True when the parameter setting is completed. | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.        | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                      | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.  | DWORD     | 16#0~16#FFFFFFF (0)          |

| Refer to Appendices for error code |  |
|------------------------------------|--|
| descriptions.                      |  |

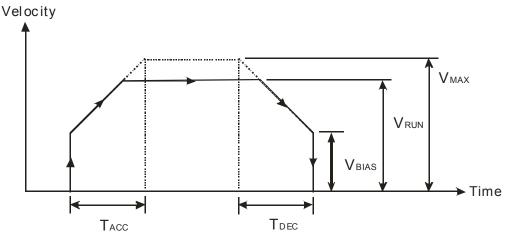
### Outputs Update Timing

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                                                                                                                        |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Done          | <ul> <li>When the specified target distance is<br/>completed</li> </ul>                                                                   | <ul> <li>When Execute shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |  |  |
| Busy          | • When <i>Execute</i> changes to True.                                                                                                    | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                        |  |  |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                           |  |  |

### Timing Diagram



# In-Outs


| Name | Function           | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|--------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising-edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

# • Function

DFB\_AxisSetting1 sets motion parameters for the specified axis. You can set the motion parameters including maximum speed of the axis (*Vmax*), the start-up speed (*Vbias*), the time it takes for the start-up speed to increase to its running speed (*Tacc*), and the time it takes for the running speed to decrease to its start-up speed (*Tdec*).

The motion diagram explaining the above parameters is as below.



**Note**:  $V_{RUN}$  indicates the actual operation speed which is calculated based on the specified values of *Tacc*, *Vbias*, *Tdec* and *Vmax*.

# • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", Error will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
  - Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_AxisSetting2

| FB/FC | Description                                                     |                         |  |  |  |
|-------|-----------------------------------------------------------------|-------------------------|--|--|--|
| FB    | DFB_AxisSetting2 sets motion parameters for the specified axis. |                         |  |  |  |
|       | .En                                                             | DFB_AxisSetting2<br>Eno |  |  |  |

| DFB_AxisSetting2 |         |
|------------------|---------|
| .En              | Eno     |
| Axis             | Done    |
| Execute          | Busy    |
| Vcurve           | Error   |
| Unit             | ErrorID |
| PulseRev         |         |
| DistanceRev      |         |

- DFB \_AxisSetting2 sets motion parameters for the specified axis. You can set the motion parameters including velocity curve (*Vcurve*), the pulse output type (*OutputType*), and the user unit system (*Unit*). For example, the setting of pulse number for a motor to rotate once (*PulseRev*) and the moving distance when the motor rotates once (*DistanceRev*) should be specified if mechanical unit system is required.
- This instruction can only be executed when the state is in Disable, Standstill or Coordinated and the axis should be in Standby mode. Otherwise, an error message will be sent.

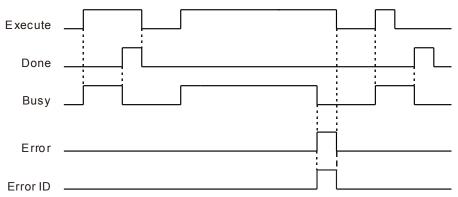
Note: refer to DFB\_AxisSetting1 for setting other motion axis parameters.

| Name        | Function                                                      | Data type | Setting value<br>(Default value)             | Timing for updating                                          |
|-------------|---------------------------------------------------------------|-----------|----------------------------------------------|--------------------------------------------------------------|
| Execute     | Writes in the parameters when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)                        | -                                                            |
| Vcurve      | Velocity curve                                                | BOOL      | Trapezoid: False<br>S Curve: True<br>(False) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| PulseRev    | Number of pulses per motor revolution                         | DWORD     | 1~99999999<br>(0)                            | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| DistanceRev | Travel distance per motor revolution                          | LREAL     | 1~100000.0<br>(0)                            | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

# Inputs

# Outputs

| Name  | Function                                      | Data type | Output range (Default value) |
|-------|-----------------------------------------------|-----------|------------------------------|
| Done  | True when the parameter setting is completed. | BOOL      | True/False (False)           |
| Busy  | True when the instruction is executed.        | BOOL      | True/False (False)           |
| Error | True if an error occurs.                      | BOOL      | True/False (False)           |


### AH Motion Controller – Motion Control Instructions Manual

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

### Outputs Update Timing

| Name          | Timing for shifting to True                                                                                     | Timing for shifting to False                                                                                                                                                                 |  |
|---------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Done          | <ul> <li>When the specified target distance is<br/>completed</li> </ul>                                         | <ul> <li>When Execute shifts from True to False.</li> <li>If Execute is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |  |
| Busy          | When Execute changes to True.                                                                                   | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                 |  |
| Error/ErrorID | • When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded) | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                  |  |

### Timing Diagram



# • In-Outs

| Name | Function           | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|--------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising-edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

# • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", Error will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller* – *Operation Manual.*

# Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

| ; |                  | Description                                                                                 |             |  |  |  |
|---|------------------|---------------------------------------------------------------------------------------------|-------------|--|--|--|
|   | DFB_InputPolarit | DFB_InputPolarity sets the polarity of inputs and reads the states of these input terminals |             |  |  |  |
|   |                  | DFB_Inp                                                                                     | utPolarity  |  |  |  |
|   |                  | En                                                                                          | Eno         |  |  |  |
|   |                  | Enable                                                                                      | Valid       |  |  |  |
|   |                  | X0_00_Pg0                                                                                   | Pg0_X0_00   |  |  |  |
|   |                  | X0_01_Pg1                                                                                   | Pg1_X0_01   |  |  |  |
|   |                  | X0_02_Pg2                                                                                   | Pg2_X0_02   |  |  |  |
|   |                  | X0_03_Pg3                                                                                   | Pg3_X0_03   |  |  |  |
|   |                  | X0_08_mpgA                                                                                  | mpgA_X0_08  |  |  |  |
|   |                  | X0_09_mpgB                                                                                  | mpgB_X0_09. |  |  |  |
|   |                  | X0_10_Dog4                                                                                  | Dog4_X0_10  |  |  |  |
|   |                  | X0_11_Dog5                                                                                  | Dog5_X0_11  |  |  |  |
|   |                  | X0_12_Dog0                                                                                  | Dog0_X0_12  |  |  |  |
|   |                  | X0_13_Dog1                                                                                  | Dog1_X0_13  |  |  |  |
|   |                  | X0_14_Dog2                                                                                  | Dog2_X0_14  |  |  |  |
|   |                  | X0_15_Dog3                                                                                  | Dog3_X0_15  |  |  |  |
|   |                  | X1_00                                                                                       | Nor_X1_00   |  |  |  |
|   |                  | X1_01                                                                                       | Nor_X1_01   |  |  |  |
|   |                  | X1_02                                                                                       | Nor_X1_02   |  |  |  |
|   |                  | X1_03                                                                                       | Nor_X1_03   |  |  |  |
|   |                  | X1_04                                                                                       | Nor_X1_04   |  |  |  |
|   |                  | X1_05                                                                                       | Nor_X1_05   |  |  |  |

# DFB\_InputPolarity

- You can specify the polarity of the inputs as NO (Normally Open) or NC (Normally Closed), and read the states of these input terminals by the outputs of this instruction.

Busy

# Inputs

| Name      | Function                                                  | Data type | Setting value<br>(Default value)     | Timing for updating                                       |
|-----------|-----------------------------------------------------------|-----------|--------------------------------------|-----------------------------------------------------------|
| Enable    | Enables the instruction<br>when Enable changes to<br>True | BOOL      | True/False<br>(False)                | -                                                         |
| X0_00_Pg0 | Polarity (NO/NC) setting                                  | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_00_Pg1 | Polarity (NO/NC) setting                                  | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |

| Name       | Function                 | Data type | Setting value<br>(Default value)     | Timing for updating                                       |
|------------|--------------------------|-----------|--------------------------------------|-----------------------------------------------------------|
| X0_00_Pg2  | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_00_Pg3  | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_08_mpgA | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_09_mpgB | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_10_Dog4 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_11_Dog5 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_12_Dog0 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_13_Dog1 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_14_Dog2 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X0_15_Dog3 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X1_00      | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X1_01      | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X1_02      | Polarity (NO/NC) setting | BOOL      | mcNO: False                          | Continuously updates the state when                       |

# AH Motion Controller – Motion Control Instructions Manual

| Name  | Function                 | Data type | Setting value<br>(Default value)     | Timing for updating                                       |
|-------|--------------------------|-----------|--------------------------------------|-----------------------------------------------------------|
|       |                          |           | mcNC: True<br>(False)                | <i>Valid</i> is True.                                     |
| X1_03 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X1_04 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |
| X1_05 | Polarity (NO/NC) setting | BOOL      | mcNO: False<br>mcNC: True<br>(False) | Continuously updates the state when <i>Valid</i> is True. |

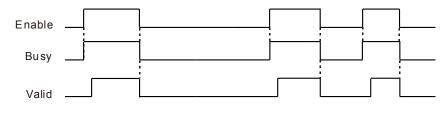
3

# • Outputs

| Name       | Function                                     | Data type | Output range (Default value) |
|------------|----------------------------------------------|-----------|------------------------------|
| Valid      | True when the polarity setting is completed. | BOOL      | True/False (False)           |
| Busy       | True when the instruction is enabled.        | BOOL      | True/False (False)           |
| Pgo_X0_00  | State of the input terminal                  | BOOL      | True/False (False)           |
| Pg1_X0_01  | State of the input terminal                  | BOOL      | True/False (False)           |
| Pg2_X0_02  | State of the input terminal                  | BOOL      | True/False (False)           |
| Pg3_X0_03  | State of the input terminal                  | BOOL      | True/False (False)           |
| mpgA_X0_08 | State of the input terminal                  | BOOL      | True/False (False)           |
| mpgB_X0_09 | State of the input terminal                  | BOOL      | True/False (False)           |
| Dog4_X0_10 | State of the input terminal                  | BOOL      | True/False (False)           |
| Dog5_X0_11 | State of the input terminal                  | BOOL      | True/False (False)           |
| Dog0_X0_12 | State of the input terminal                  | BOOL      | True/False (False)           |
| Dog1_X0_13 | State of the input terminal                  | BOOL      | True/False (False)           |
| Dog2_X0_14 | State of the input terminal                  | BOOL      | True/False (False)           |
| Dog3_X0_15 | State of the input terminal                  | BOOL      | True/False (False)           |
| Nor_X1_00  | State of the input terminal                  | BOOL      | True/False (False)           |
| Nor_X1_01  | State of the input terminal                  | BOOL      | True/False (False)           |
| Nor_X1_02  | State of the input terminal                  | BOOL      | True/False (False)           |
| Nor_X1_03  | State of the input terminal                  | BOOL      | True/False (False)           |

| Name      | Function                    | Data type | Output range (Default value) |
|-----------|-----------------------------|-----------|------------------------------|
| Nor_X1_04 | State of the input terminal | BOOL      | True/False (False)           |
| Nor_X1_05 | State of the input terminal | BOOL      | True/False (False)           |

# Outputs Update Timing


| Name       | Timing for shifting to True                                                                                                                                                | Timing for shifting to False                                                                                                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vaild      | • When the polarity setting is completed; one scan cycle after <i>Enable</i> shifts to True.                                                                               | • When <i>Enable</i> shifts to False.                                                                                                                                                                                   |
| Busy       | When Enable shifts to True.                                                                                                                                                | • When <i>Enable</i> shifts to False.                                                                                                                                                                                   |
| Pgo_X0_00  | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Pg1_X0_01  | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Pg2_X0_02  | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Pg3_X0_03  | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| mpgA_X0_08 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| mpgB_X0_09 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Dog4_X0_10 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external</li> </ul>                                | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> </ul>                                                                                  |

3\_

|            | signal is ON during operation.                                                                                                                                             | • When the output is OFF and the external signal is OFF during operation.                                                                                                                                               |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dog5_X0_11 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Dog0_X0_12 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Dog1_X0_13 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Dog2_X0_14 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Dog3_X0_15 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Nor_X1_00  | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Nor_X1_01  | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Nor_X1_02  | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |
| Nor_X1_03  | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external</li> </ul>                                | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external</li> </ul>                                 |
|            | signal is ON during operation.                                                                                                                                             | signal is OFF during operation.                                                                                                                                                                                         |

|           | <ul><li>signal is OFF during operation.</li><li>When the output is OFF and the external signal is ON during operation.</li></ul>                                           | <ul> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul>                                              |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nor_X1_05 | <ul> <li>When the output is ON and the external signal is OFF during operation.</li> <li>When the output is OFF and the external signal is ON during operation.</li> </ul> | <ul> <li>When <i>Enable</i> shifts to False.</li> <li>When the output is ON and the external signal is ON during operation.</li> <li>When the output is OFF and the external signal is OFF during operation.</li> </ul> |

# Timing Diagram



# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_CamMultiRead

| FB/FC | Description                                                  |
|-------|--------------------------------------------------------------|
| FB    | DFB_CamRead reads cam points from the specified motion axis. |
|       | DFB_CarnMultiRead                                            |
|       | En Eno                                                       |

| DFB_CamMultiKead |                 |  |
|------------------|-----------------|--|
| En               | Eno.            |  |
| CamTableId       | Valid.          |  |
| Enable           | Error.          |  |
| ReadStartPointNo | Error ID .      |  |
| ReadAmount       | MasterPosition. |  |
|                  | SlavePosition . |  |

- The *CamTableId* decides the motion axis of the cam curve where the cam point will be read. *ReadStartPointNo* defines the starting number of the cam point. *ReadAmount* defines the total amount of CAM data to be read from the value specified in ReadStartPointNo (the starting number of the cam point). *MasterPosition* and *SlavePosition* define the master and slave positions (coordinates of the cam point) read from the motion axis.

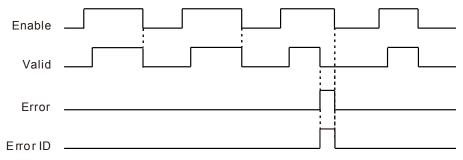
### \*Note:

- 1. CAM table ID is the number corresponding to the ID Number of the created E-CAM table in ISPSoft.
- 2. Refer to the resolution of the E-CAM table in the ISPSoft for the range of the data points.

### Inputs

| Name                 | Function                                                                                                                            | Data type | Setting value<br>(Default value) | Timing for updating                                              |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|------------------------------------------------------------------|
| CamTableId           | CAM table ID*1                                                                                                                      | WORD      | K1~K32 (0)                       | When Enable shifts to True.                                      |
| Enable               | Executes the instruction when<br><i>Enable</i> changes to True. The<br>specified cam point will then be<br>read from the cam curve. | BOOL      | True/False<br>(False)            | -                                                                |
| ReadStartPoint<br>No | The starting number of the cam point to be read                                                                                     | DWORD     | 0~2047<br>(0)                    | When <i>Enable</i> shifts to True. it udates value continuously. |
| ReadAmount           | The total amount of CAM data to be read                                                                                             | WORD      | 1~64 (0)                         | When <i>Enable</i> shifts to True, it udates value continuously. |

### Outputs


| Name    | Function                                                                                             | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Valid   | True when the specified cam point is read from the cam curve.                                        | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                             | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

| MasterPosition | Master position which is read. | LREAL | Positive value<br>(0)             |
|----------------|--------------------------------|-------|-----------------------------------|
| SlavePosition  | Slave position which is read.  | LREAL | Positive or negative value<br>(0) |

### Outputs Update Timing

| Name           | Timing for shifting to True                                                                                      | Timing for shifting to False                                                    |
|----------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Valid          | • When the specified cam point is read from the cam curve.                                                       | • When <i>Enable</i> shifts to False.                                           |
| Error(ErrorID) | • When an error occurs in the execution conditions or input values for the instruction. (error code is recorded) | • When <i>Execute</i> shifts from True to False. (error code is cleared)        |
| MasterPosition | <ul> <li>Updates value continuously when the instruction is enabled.</li> </ul>                                  | <ul> <li>Updates value continuously when the instruction is enabled.</li> </ul> |
| SlavePosition  | <ul> <li>Updates value continuously when the instruction is enabled.</li> </ul>                                  | <ul> <li>Updates value continuously when the instruction is enabled.</li> </ul> |

### Timing Diagram



# • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

# • Programming Example

Please refer to the programming example of DFB\_CamWrite.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

3-223

# DFB\_CamMultiWrite

| FB/FC | Description                                               |              |  |
|-------|-----------------------------------------------------------|--------------|--|
| FB    | DFB_CamWrite writes cam points to the specified cam curve |              |  |
|       | DFB_CamMultiWritt                                         | e            |  |
|       | En<br>CamTableId                                          | Eno.<br>Done |  |

| En                | Eno.    |
|-------------------|---------|
| CamTableId        | Done    |
| Execute           | Busy.   |
| WriteStartPointNo | Error   |
| WriteAmount       | ErrorID |
| MasterPosition    |         |
| SlavePosition     |         |

- The *CamTableId* decides the motion axis of the cam curve which is to be written with the cam point. *CamPointNo* defines the number of the cam point; *MasterPosition* and *SlavePosition* define the master and slave positions (coordinates of the cam point) which are to be written into the cam profile.

| Name              | Function                                                                                                                                   | Data type              | Setting value<br>(Default value)     | Timing for updating                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------|------------------------------------------------------|
| CamTableId        | CAM table ID*1                                                                                                                             | WORD                   | K1~K32 (0)                           | When Execute shifts to<br>True and Busy is False     |
| Execute           | Executes the instruction<br>when <i>Execute</i> changes to<br>True. The specified cam<br>point will then be written<br>into the cam curve. | BOOL                   | True/False<br>(False)                | -                                                    |
| WriteStartPointNo | The starting number of the cam point to be writeen                                                                                         | DWORD                  | 0~2047 (0)                           | When Execute shifts to<br>True and Busy is False     |
| WriteAmount       | The total amount of CAM data to be written                                                                                                 | WORD                   | 1~64 (0)                             | When Execute shifts to<br>True and Busy is False     |
| MasterPosition    | Master position which is to be written.                                                                                                    | Array [64]<br>of LREAL | Positive value<br>(0)                | When <i>Execute</i> shifts to True and Busy is False |
| SlavePosition     | Slave position which is to be written.                                                                                                     | Array [64]<br>of LREAL | Positive or negative<br>value<br>(0) | When <i>Execute</i> shifts to True and Busy is False |

### Inputs

### \*Note:

1. CAM table ID is the number corresponding to the ID Number of the created E-CAM table in ISPSoft.

2. Refer to the resolution of the E-CAM table in the ISPSoft for the range of the data points.

# • Outputs

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the specified cam point is written into the cam curve.                                           | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

### Outputs Update Timing

| Name           | Timing for shifting to True                                                                                                                | Timing for shifting to False                                                                                                                                                                                 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | • When the specified cam point is written into the cam curve.                                                                              | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If Execute is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy           | When Execute changes to True.                                                                                                              | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to False.</li></ul>                                                                                                                |
| Error(ErrorID) | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction. (error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False.<br>(error code is cleared)                                                                                                                                  |

### Timing Diagram



### Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

| FB/FC     | Description                                                                                       |            |  |  |
|-----------|---------------------------------------------------------------------------------------------------|------------|--|--|
| FB        | DFB_CamCurve2 creates cam curves which are mainly used in rotary cut and flying saw applications. |            |  |  |
| . <u></u> | DFB_C                                                                                             | amCurve2   |  |  |
|           | .En                                                                                               | Eno.       |  |  |
|           | Slave                                                                                             | Done.      |  |  |
|           | Execute                                                                                           | Busy       |  |  |
|           | MLength_P                                                                                         | Error.     |  |  |
|           | SLength_P                                                                                         | ErrorID    |  |  |
|           | SSyncLength_P                                                                                     | SyncBegin. |  |  |
|           | SSyncRatio                                                                                        | SyncEnd.   |  |  |
|           | SMaxRatio                                                                                         |            |  |  |
|           | AccCurve                                                                                          |            |  |  |
|           |                                                                                                   |            |  |  |

# DFB\_CamCurve2

- *MLength\_P*, *SLength\_P*, *SSyncLength\_P*, *SSyncRatio* and *SMaxRatio* specify the required physical quantity parameters for creating cam curves.
- AccCurve and aCamCurve define the acceleration curve in the cam profile and the cam curve type.

eCamCurve Concatenate

- This instruction can be used with MC\_CAMIN and DFB\_CAMIN2.
- After the execution of this instruction is done, users need to use DFB\_CamCurveUpdate2 to update.

| Name                   | Function                                                                          | Data type          | Setting value<br>(Default value)                 | Timing for updating                                          |
|------------------------|-----------------------------------------------------------------------------------|--------------------|--------------------------------------------------|--------------------------------------------------------------|
| CamTableId             | CAM table ID*1                                                                    | WORD               | K1~Kn* <sup>1</sup> (0)                          | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |
| Execute                | Executes the instruction to create the cam curve                                  | BOOL               | True/False (False)                               | -                                                            |
| MLength_P              | Specifies the moving distance for master axis.                                    | LREAL              | K1~K2147483647<br>(0)                            | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |
| SLength_P              | Specifies the moving distance for slave axis.                                     | LREAL              | K1~K2147483647<br>(0)                            | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |
| SSyncLength_P          | Specifes the synchronized distance for the slave axis.                            | LREAL              | K1~K2147483647<br>(0)                            | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |
| SSyncRatio             | Specifies the synchronization ratio between master and slave axes.                | REAL               | 1.1755x10-38~<br>3.4028x10+38<br>(0)             | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |
| SMaxRatio              | Specifies the max. cam<br>synchronization ratio between<br>master and slave axes. | REAL               | 1.1755x10-38 ~<br>3.4028x10+38<br>(0)            | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |
| AccCurve* <sup>2</sup> | Selects the acceleration curve in the cam profile.                                | eDFB_AC<br>C_CURVE | 0 : ConstAcc<br>1 : ConstJerk<br>2 : SingleHypot | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |

# • Inputs

| Name                    | Function                                                                                     | Data type          | Setting value<br>(Default value)                                                                          | Timing for updating                                          |
|-------------------------|----------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                         |                                                                                              |                    | 3:Cycloid<br>(0)                                                                                          |                                                              |
| eCamCurve* <sup>3</sup> | Selects the cam curve type.                                                                  | eDFB_GE<br>N_CURVE | 0 : leftCAM<br>1 : midCAMall<br>5 : rightCAM<br>7 : midCAMbegin<br>8 : midCAMend<br>9 : midCAMzero<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |
| Concatenate             | Defines if reciprocal operation is<br>required.<br>True: periodical<br>False: non-periodical | BOOL               | True/False<br>(False)                                                                                     | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

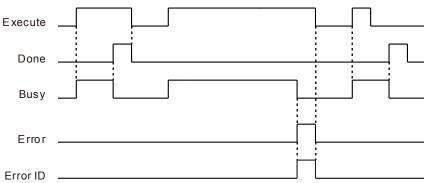
1. Set value of *AccCurve*. Refer to **Function** of this instruction for the cam profiles of each acceleration curve.

| Setting<br>Value | Definition         |  |
|------------------|--------------------|--|
| 0                | Constant speed     |  |
| 1                | Const Acceleration |  |
| 2                | SingleHypot        |  |
| 3                | Cycloid            |  |

2. Set value of *eCamCurve*. Refer to **Function** of this instruction for the cam profiles of each type.

| Setting<br>Value | Definition  |
|------------------|-------------|
| 0                | leftCAM     |
| 1                | midCAMall   |
| 2                | midCAMbegin |
| 3                | midCAMend   |
| 4                | rightCAM    |
| 5                | rightCAM    |
| 7                | midCAMbegin |
| 8                | midCAMend   |
| 9                | Empty       |

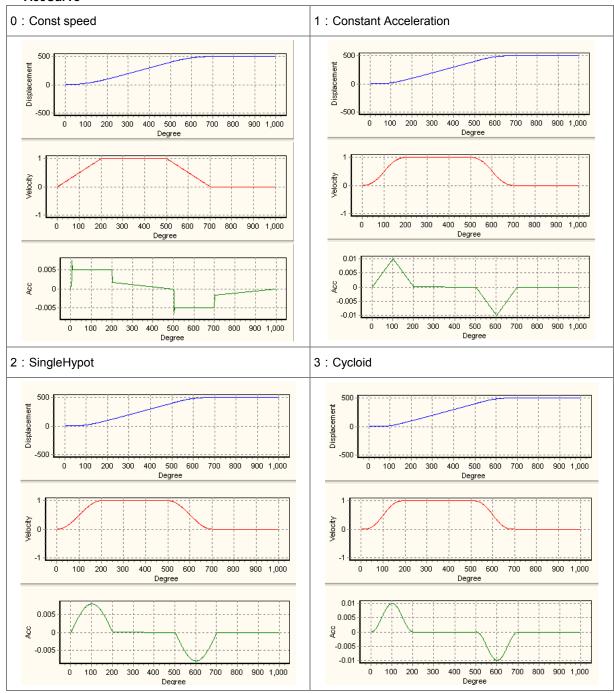
# Outputs

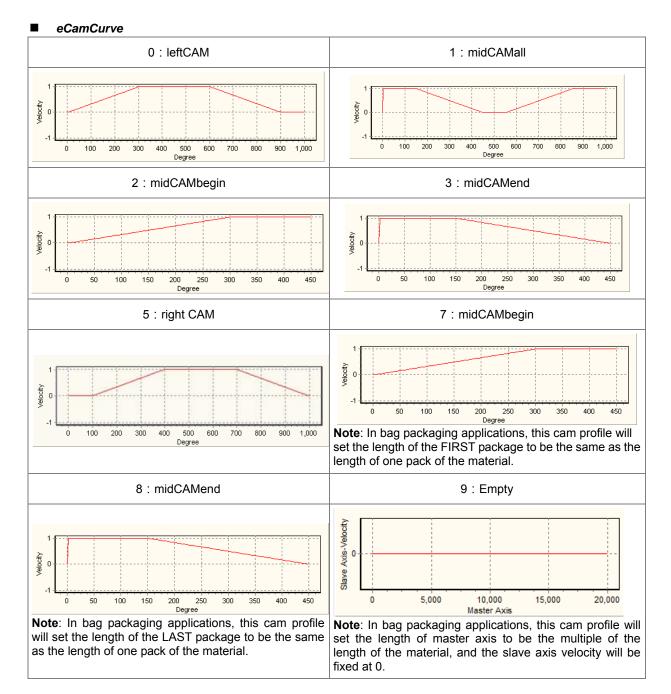

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the specified cam point is written into the cam curve.                                           | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFF(0)            |

| SyncBegin | The starting point to synchronizate | LREAL | K0~K2147483647(0) |
|-----------|-------------------------------------|-------|-------------------|
| SyncEnd   | The stopping point to synchronizate | LREAL | K0~K2147483647(0) |

### Outputs Update Timing

| Name          | Timing for shifting to True                                                                                                                | Timing for shifting to False                                                                               |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Done          | • When the specified cam point is written into the cam curve.                                                                              | <ul><li>When <i>Execute</i> shifts from True to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |
| Busy          | When Execute changes to True.                                                                                                              | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>               |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction. (error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False. (error code is cleared)                                   |
| SyncBegin     | • When <i>Done</i> shifts to True.                                                                                                         | • When <i>Done</i> shifts to True.                                                                         |
| SyncEnd       | • When <i>Done</i> shifts to True.                                                                                                         | • When <i>Done</i> shifts to True.                                                                         |


# Timing Diagram




\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

#### Explanation







# • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

# • Programming Example

Refer to the programming example of DFB\_CamCurveUpdate2 for the programming example and the methods of how to use DFB\_CamCurveUpdate2 to work with DFB\_CamCurve2 instructions.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_CamCurveUpdate2

| FB/FC | Description                                                                                    |         |      |  |
|-------|------------------------------------------------------------------------------------------------|---------|------|--|
| FB    | DFB_CamCurveUpdate2 updates the cam operation with the modified cam profile in the next cycle. |         |      |  |
|       | DFB_CamCurveUpdate2                                                                            |         |      |  |
|       |                                                                                                | En      | Eno. |  |
|       |                                                                                                | Execute | Done |  |
|       |                                                                                                | Slave   | Busy |  |

When the cam is in operation, the cam profile modified by DFB\_CamCurve2 will not be executed immediately, and the update requires to be triggered by DFB\_CamCurveUpdate2.

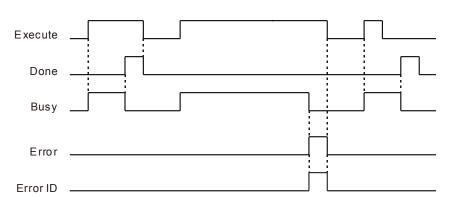
Error ErrorID

- When DFB\_CamCurveUpdate2 is triggered, the update will be valid in the next cycle.

### 5

### Inputs

| Name                  | Function                                            | Data type | Setting value<br>(Default value) | Timing for updating                                          |
|-----------------------|-----------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------|
| Execute               | Executes the instruction to update the cam profile. | BOOL      | True/False<br>(False)            | -                                                            |
| UpdateImme<br>diately | Update cam profile immediately in this cycle.       | BOOL      | True/False<br>(False)            | When <i>Execute</i> shifts to True and <i>Busy</i> is Fasle. |


### Outputs

| Name    | Function                                                                                                   | Data type | Output range (Default value)       |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------------|
| Done    | True when the cam curve is updated.                                                                        | BOOL      | True/False (False)                 |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)                 |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)                 |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 0x0000, 0x3100, 0x3101, 0x3102 (0) |

### Outputs Update Timing

| Name          | Timing for changing to True                                                                                                               | Timing for changing to False                                                                        |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Done          | • When the cam curve is updated.                                                                                                          | <ul><li>When the motion stops.</li><li>When <i>Error</i> shifts to True.</li></ul>                  |
| Busy          | When the instruction is executed                                                                                                          | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>        |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>(Error code is cleared)</li> </ul> |

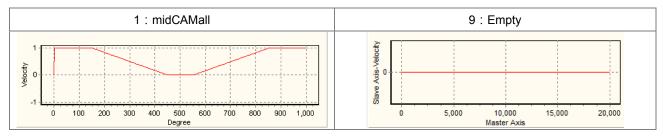
### Timing Diagram



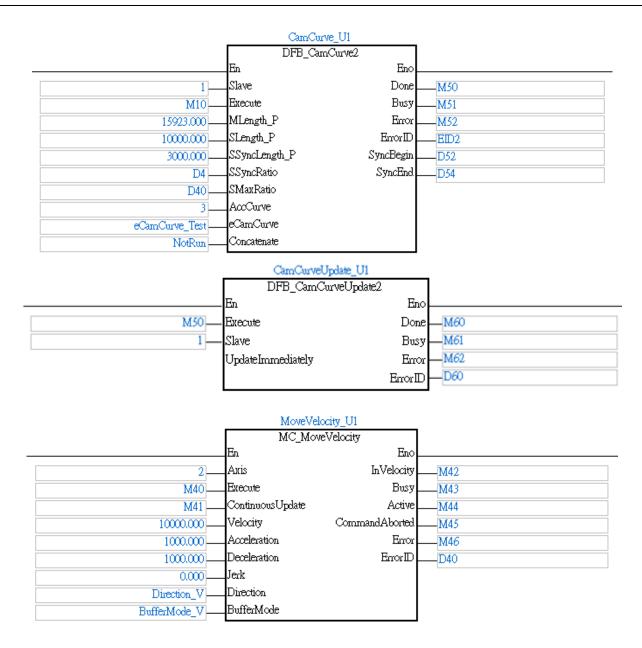
### In-Outs

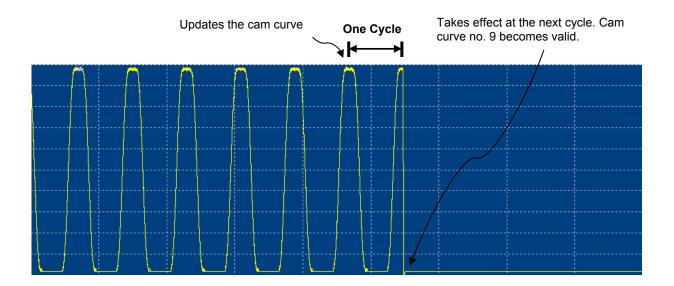
| Name  | Function          | Data type | Setting value<br>(Default value) | Timing for updating                                                   |
|-------|-------------------|-----------|----------------------------------|-----------------------------------------------------------------------|
| Slave | Slave axis number | WORD      | K1~K32<br>(0)                    | When <i>Enable</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.


### Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*


### • Programming Example


The example demonstrates the switching from cam curve 1 (*eCamCurve*=1) to cam curve 9 (*eCamCurve*=9) when the cam is in operation. To change the cam profile, you will have to modify the value in *eCamCurve* of DFB\_CamCurve2.

**Note**: In actual application, the common switching process would be from cam curve 1 to cam curve 8, then cam curve 9. The direct switching from cam curve 1 to cam curve 9 is simply for demonstrating the effects and results.



### AH Motion Controller - Motion Control Instructions Manual





- Set M10(*Execute*) to True to establish the specified cam curve no.1 (DFB\_CamCurve2). Set M50(*Execute*) to True to update the cam curve(DFB\_CamCurveupdate2). In this case, if SM400(*Enable*) is True, the current cam curve obtained at *CAMCurveNow* will indicate 1 (DFB\_CamCurveUpdateState).
- 2. Set M70 to True to enable the cam operation.
- 3. Set M40 to True to drive the master axis to move at 10,000pps.
- 4. Reset M10 and modify the value at eCamCurve to cam curve no. 9.
- 5. Set M10 to True again to establish the new cam curve, and set M50 to True to update the cam curve. The cam in operation will update its cam curve to cam curve no. 9 at the next cycle. When the cam curve is updated, *CAMCurveNow* of DFB\_CamCurveUpdateState2 will indicate "9".

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

| Categories     | Name                 | Description                                                                                                                                    |
|----------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                | DFB GroupAbsLinear   | DFB_GroupAbsLinear controls the axis group to perform linear interpolation to move to the specified absolute target position.                  |
|                | DFB_GroupRelLinear   | DFB_GroupAbsLinear controls the axis group to perform linear interpolation to move to the specified relative distance.                         |
| Group Motion   | DFB GroupAbsCircular | DFB_GroupAbsCircular controls the axis group to perform arc/circular or helix interpolation to move to the specified absolute target position. |
|                | DFB GroupRelCircular | DFB_GroupAbsCircular controls the axis group to perform arc/circular or helix interpolation to move a specified relative distance.             |
| Stop           | DFB_GroupStop        | DFB_GroupStop decelerates the group axes to stop.                                                                                              |
|                | DFB GroupEnable      | DFB_GroupEnable enables a group of axes for group motion.                                                                                      |
|                | DFB_GroupDisable     | DFB_GroupDisable disables the axis group with the specidied group number.                                                                      |
| Administrative | DFB GroupReset       | DFB_GroupReset resets the axis group which is in the state of "Errorstop".                                                                     |
|                | DFB_ReadGroupStatus  | DFB_ReadGroupStatus reads the axis numbers in an axis group, and indicates the status of the axis group at <i>GroupStatus</i> .                |

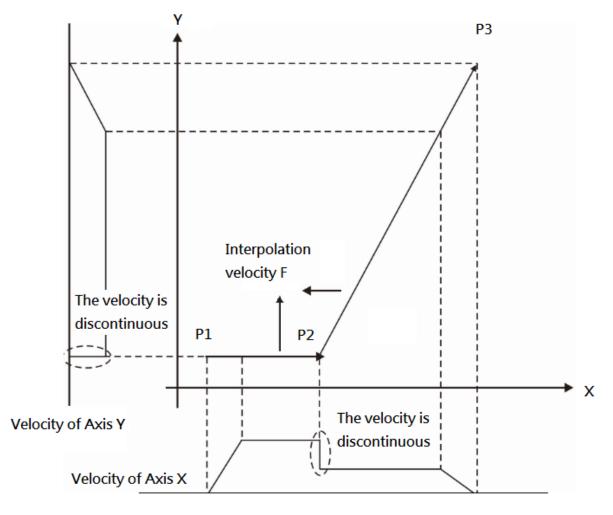
3.3.2 Multi-axis Motion Control Function Blocks

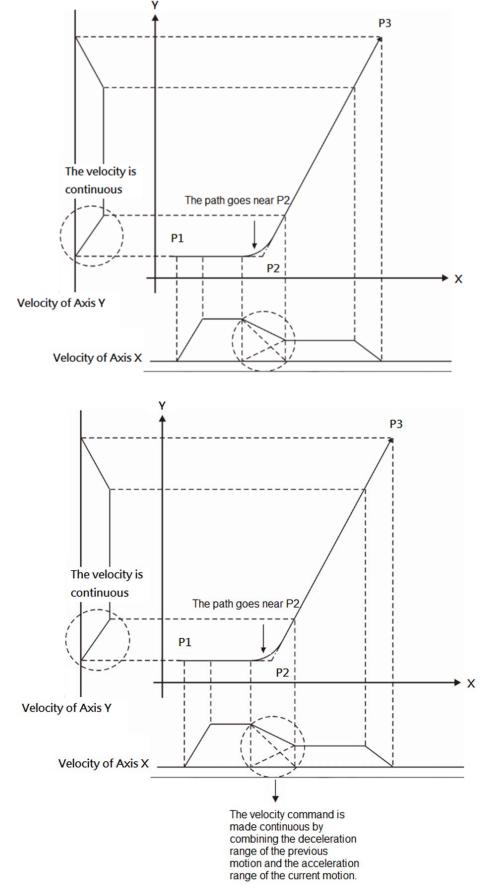
# DFB\_GroupAbsLinear

| FB/FC | Description                                                                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_GroupAbsLinear controls the axis group to perform linear interpolation to move to the specified absolute target position. |

| DFB_GroupAbsI  | .inear  |
|----------------|---------|
| En             | Eno     |
| GroupNum       | Done    |
| Execute        | Busy    |
| Position       | Active  |
| Velocity       | Aborted |
| BufferMode     | Error   |
| TransitiomMode | EnorID  |

Note: linear interpolation requires at least 2 axes to be enabled for the axis group.


# Inputs


| Name           | Function                                                                     | Data type                         | Setting value<br>(Default value)                                                                                             | Timing for updating                                             |
|----------------|------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| GroupNum       | Specifies the number of the axis group.                                      | WORD                              | 1~16<br>(0)                                                                                                                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| Execute        | Executes the instruction when <i>Execute</i> changes to True.                | BOOL                              | True/False<br>(False)                                                                                                        | -                                                               |
| Position       | Absolute target position<br>for each axis in the group.<br>(Unit: user unit) | LREAL[6]                          | [_,_,_,_,_]<br>Negative number or<br>positive number<br>([0,0,0,0,0,0])                                                      | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |
| Velocity       | Interpolation speed<br>(Unit: user unit/s)                                   | LREAL                             | Positive number<br>(0)                                                                                                       | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| BufferMode     | Specifies the buffering<br>behavior of the<br>instruction.                   | eMC_BUFF<br>ER_MODE* <sup>1</sup> | 0: mcAborting<br>1: mcBuffered<br>2: mcBlendingLow<br>3: mcBlendingPrevious<br>4: mcBlendingNext<br>5: mcBlendingHigh<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| TransitionMode | Specifies if a round<br>corner should be applied<br>during the transition*1  | WORD                              | 0: no effect<br>1: round corner<br>2: round corner but ignoring<br>the deceleration time (0)                                 | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |

### \*Note:

- 1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.
- 2. TransitionMode can be used to reduce the noise and vibration that may occur during the changes of the interpolation motion.

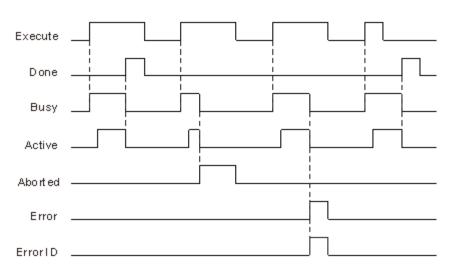
### TransitionMode: 0 (no effect)





TransitionMode: 1 (same motion as it is in deceleration of the current instruction)

### TransitionMode: 2 (same motion as it is in deceleration of the axis parameters)


# Outputs

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when absolute target position is reached.                                                             | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Active  | True when the axis is being controlled.                                                                    | BOOL      | True/False (False)           |
| Aborted | True when the instruction is aborted.                                                                      | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code when the error occurs.<br>Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

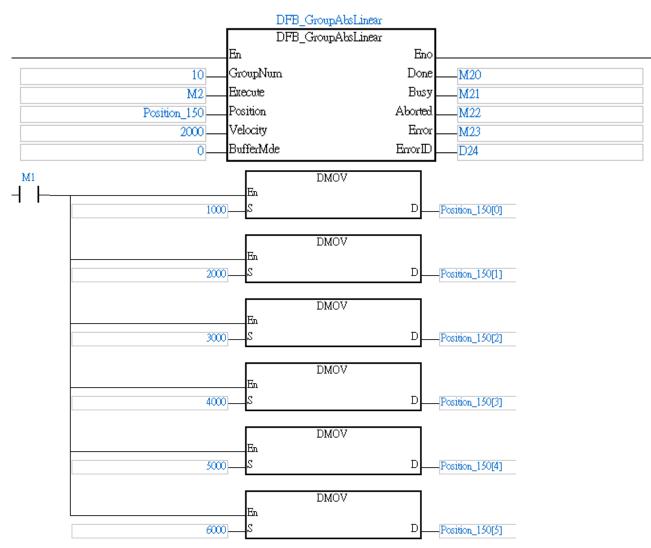
# Outputs Update Timing

| Name          | Timing for shifting to True                                                                                                                                                                                                                                                                                                                                          | Timing for shifting to False                                                                                                                                                                                                                                                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done          | <ul> <li>When the absolute positioning is completed.</li> </ul>                                                                                                                                                                                                                                                                                                      | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul>                                                                   |
| Busy          | • When <i>Execute</i> changes to True.                                                                                                                                                                                                                                                                                                                               | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>Aborted</i> shifts to True.</li> </ul>                                                                                                                                          |
| Active        | • When the motion on the axis is started                                                                                                                                                                                                                                                                                                                             | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True</li> <li>When <i>Aborted</i> shifts to True.</li> <li>If <i>Execute</i> is False and <i>Active</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Aborted       | <ul> <li>When this instruction is aborted by another instruction with the Buffer Mode set to mcAborting.</li> <li>When this instruction is aborted because of the execution of MC_Stop instruction.</li> <li>When the instruction is aborted by DFB_GroupStop instruction</li> <li>When the instruction is aborted by DFB_GroupImmediateStop instruction.</li> </ul> | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>If <i>Execute</i> is False and <i>Aborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                                                                                   |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                                                                                                                                                                            | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                                                                                           |

### Timing Diagram



# • Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

# • Programming Example

The example performs an linear interpolation from current position to the target position as below.

| Axis group | Target position |
|------------|-----------------|
| Axis1      | 1000            |
| Axis2      | 2000            |
| Axis3      | 3000            |
| Axis4      | 4000            |
| Axis5      | 5000            |
| Axis6      | 6000            |

| DFB_GroupEnable |                 |         |      |
|-----------------|-----------------|---------|------|
|                 | DFB_GroupEnable |         |      |
|                 | En              | Eno     |      |
| 10              | GroupNum        | Done    | M101 |
| M100            | Execute         | Busy    | M102 |
| 1               | AxisNumOrder_1  | Error   | M103 |
| 2               | AxisNumOrder_2  | ErrorID | D107 |
| 3               | AxisNumOrder_3  |         |      |
| 4               | AxisNumOrder_4  |         |      |
| 5               | AxisNumOrder_5  |         |      |
| 6               | AxisNumOrder_6  |         |      |



- When M2(*Execute*) changes to True, DFB\_GroupAbsLinear drives the axes to the absolute target position with linear interpolation.
- When the axes reach the specified target position (1000, 2000, 3000, 4000, 5000, 6000), M20(*Done*) changes to True, and M21 and M22 change to False.
- When M2(*Execute*) changes to False, M20 (*Done*) changes to False.
- When the axes reach the target position, re-execution of the instruction will not move any axes.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_GroupRelLinear

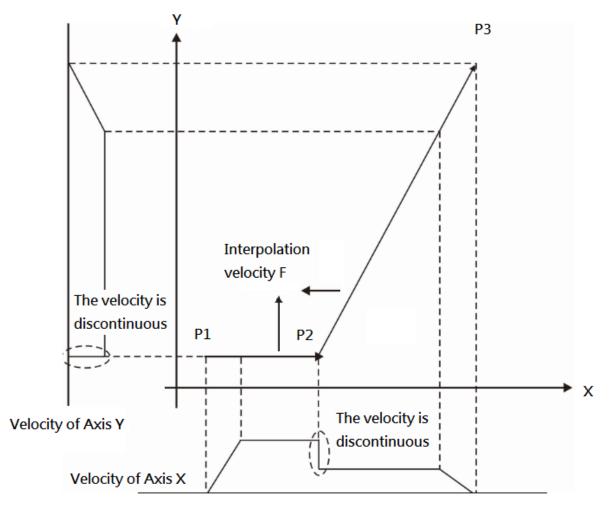
| FB/FC |
|-------|
|       |
| FB    |

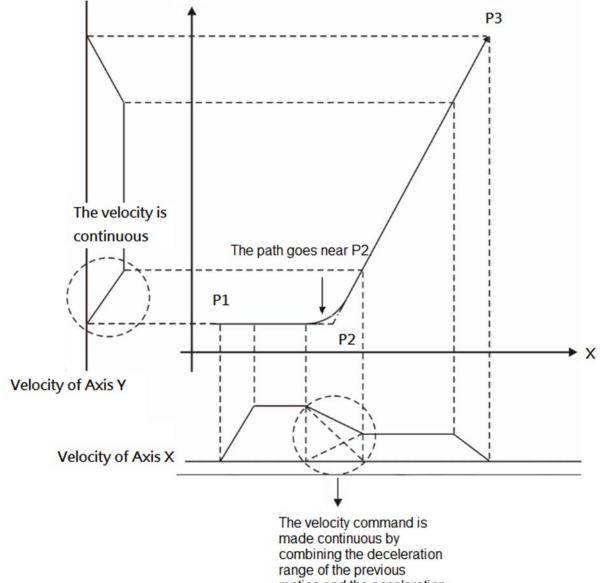
Description

DFB\_GroupAbsLinear controls the axis group to perform linear interpolation to move to the specified relative distance.

| DFB_GroupRelLinear |         |
|--------------------|---------|
| En                 | Eno     |
| GroupNum           | Done    |
| Execute            | Busy    |
| Distance           | Active  |
| Velocity           | Aborted |
| BufferMode         | Error   |
| TransitiomMode     | ErrorID |

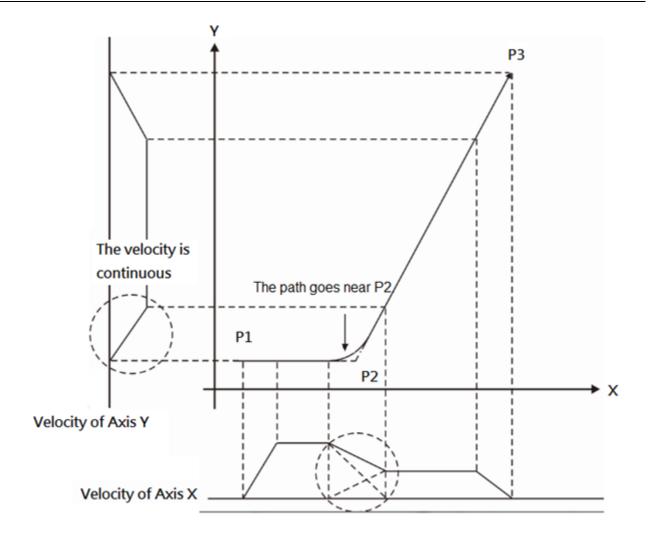
Note: linear interpolation requires at least 2 axes to be enabled for the axis group.


# Inputs


| Name           | Function                                                                                           | Data type             | Setting value<br>(Default value)                                                                                             | Timing for updating                                          |
|----------------|----------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| GroupNum       | Specifies the number of the axis group.                                                            | WORD                  | 1~16<br>(0)                                                                                                                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Execute        | Executes the instruction when <i>Execute</i> changes to True.                                      | BOOL                  | True/False<br>(False)                                                                                                        | -                                                            |
| Distance       | Relative distance to be<br>moved for each axis in<br>the group.<br>(Unit: user unit)* <sup>1</sup> | LREAL[6]              | [_,_,_,_,_]<br>Negative number or<br>positive number<br>([0,0,0,0,0,0])                                                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Velocity       | Interpolation speed<br>(Unit: user unit/s)*1                                                       | LREAL                 | Positive number<br>(0)                                                                                                       | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| BufferMode     | Specifies the buffering<br>behavior of the<br>instruction.                                         | eMC_BUFF<br>ER_MODE*1 | 0: mcAborting<br>1: mcBuffered<br>2: mcBlendingLow<br>3: mcBlendingPrevious<br>4: mcBlendingNext<br>5: mcBlendingHigh<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| TransitionMode | Specifies if a round<br>corner should be applied<br>during the transition* <sup>2</sup>            | WORD                  | <ul><li>0: no effect</li><li>1: round corner</li><li>2: round corner but ignoring<br/>the deceleration time (0)</li></ul>    | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

### \*Note:

- 1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.
- 2. TransitionMode can be used to reduce the noise and vibration that may occur during the changes of the interpolation motion.


### TransitionMode: 0 (no effect)



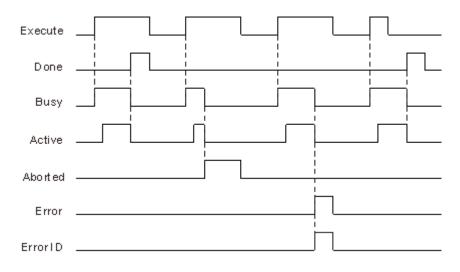


TransitionMode: 1 (same motion as it is in deceleration of the current instruction)

motion and the acceleration range of the current motion.



TransitionMode: 2 (same motion as it is in deceleration of the axis parameters)


# Outputs

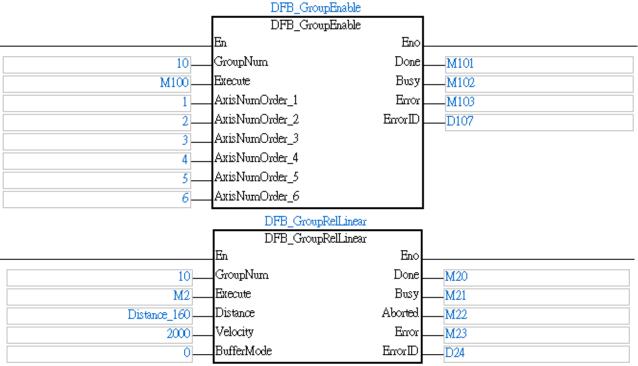
| Name    | Function                                                                                                | Data type | Output range (Default value) |
|---------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the target position is reached.                                                               | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Active  | True when the axis is being controlled.                                                                 | BOOL      | True/False (False)           |
| Aborted | True when the instruction is aborted.                                                                   | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

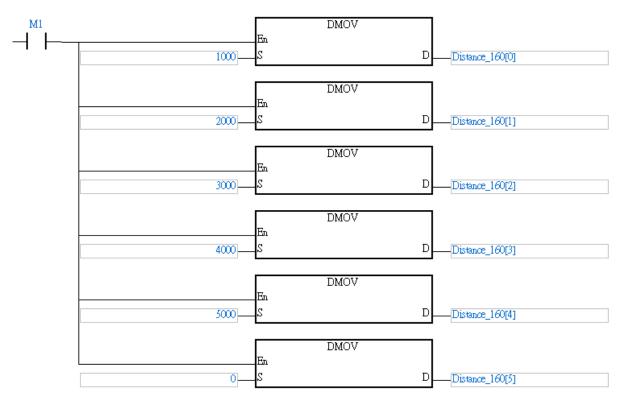
| Name           | Timing for shifting to True                                                                                                                                                                                                                                                                                                                                          | Timing for shifting to False                                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>When the absolute positioning is<br/>completed.</li> </ul>                                                                                                                                                                                                                                                                                                  | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                                                                                                                                                                                                                                               | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>Aborted</i> shifts to True.</li> </ul>                                                                        |
| Active         | • When the motion on the axis is started                                                                                                                                                                                                                                                                                                                             | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True</li> <li>When <i>Aborted</i> shifts to True.</li> </ul>                                                                         |
| Aborted        | <ul> <li>When this instruction is aborted by another instruction with the Buffer Mode set to mcAborting.</li> <li>When this instruction is aborted because of the execution of MC_Stop instruction.</li> <li>When the instruction is aborted by DFB_GroupStop instruction</li> <li>When the instruction is aborted by DFB_GroupImmediateStop instruction.</li> </ul> | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>If <i>Execute</i> is False and <i>Aborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                 |
| Error(ErrorID) | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                                                                                                                                                                            | • When <i>Execute</i> shifts from True to False. (Error code is cleared)                                                                                                                                            |

# Outputs Update Timing

# Timing Diagram




### Troubleshooting


- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", Error will change to True and the axis will stop moving. You can refer to ErrorID (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in AH Motion Controller - Operation Manual.

## **Programming Example**

The example performs an linear interpolation from current position to the target position as below.

| Axis group | Current position | Relative distance | Target position |
|------------|------------------|-------------------|-----------------|
| Axis1      | 1000             | 1000              | 2000            |
| Axis2      | 1000             | 2000              | 3000            |
| Axis3      | 1000             | 3000              | 4000            |
| Axis4      | 1000             | 4000              | 5000            |
| Axis5      | 1000             | 5000              | 6000            |
| Axis6      | 1000             | 0                 | 1000            |





- When M2(*Execute*) changes to True, MC\_GroupRelLinear drives the axes to move a relative distance to the target position with linear interpolation.
- When the specified relative distances (1000, 2000, 3000, 4000, 5000) are completed, M20(Done) changes to True, and M21 and M22 change to False.
- When M2(Execute) changes to False, M20(Done) changes to False.
- When the axes completed the specified relative distance(1000, 2000, 3000, 4000, 5000) and then M2 changes to True again, the instruction will be executed again to move another distance (1000, 2000, 3000, 4000, 5000) and reach the position of 3000, 5000,7000, 9000 and 11000.
- When the specified distance is completed, M20(Done) changes to True again.

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_GroupAbsCircular

| FB/FC | Description                                                                                                                                    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_GroupAbsCircular controls the axis group to perform arc/circular or helix interpolation to move to the specified absolute target position. |

| DFB_GroupAbsCircular |         |
|----------------------|---------|
| En                   | En¢.    |
| GroupNum             | Done    |
| Execute              | Busy    |
| DirectionCCW         | Active  |
| IPMode               | Aborted |
| Position             | Error   |
| AuxPosition          | ErrorID |
| Velocity             |         |
| SpiralTurns          |         |
| BufferMode           |         |
| TransitiomMode       |         |

**Note:** Arc/Helix interpolation requires at least 2 successive axis numbers to be specified starting from *AxisNumOrder\_1* to *AxisNumOrder\_2* of DFB\_GroupEnable, otherwise an error will occur.

### Inputs

| Name         | Function                                                                                                                                                                                 | Data type                     | Setting value<br>(Default value)                    | Timing for updating                                          |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| GroupNum     | Specifies the number of the axis group.                                                                                                                                                  | WORD                          | 1~16<br>(0)                                         | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Execute      | Executes the instruction when <i>Execute</i> changes to True.                                                                                                                            | BOOL                          | True/False<br>(False)                               | -                                                            |
| DirectionCCW | Specifies the direction for the arc/circular motion.* <sup>1</sup>                                                                                                                       | BOOL                          | True/False<br>(False)                               | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| IPMode       | Specifies the way to define the center of the circle.* <sup>2</sup>                                                                                                                      | eDFB_IPMO<br>DE* <sup>3</sup> | 0: radius_length<br>1: center_point                 | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Position     | Specifies the target<br>position for the 1 <sup>st</sup> and 2 <sup>nd</sup><br>axes, and the elevation of<br>the helix for the 3 <sup>rd</sup> axis.<br>(Unit: user unit)* <sup>3</sup> | LREAL[3]                      | [_,_,_]<br>Negative, positive value, 0<br>([0,0,0]) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| AuxPosition  | Specifies the value of radius(R) or the coordinate <i>s</i> (I, J) of the                                                                                                                | LREAL [2]                     | L,_]<br>Negative, positive value, 0<br>([0,0])      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

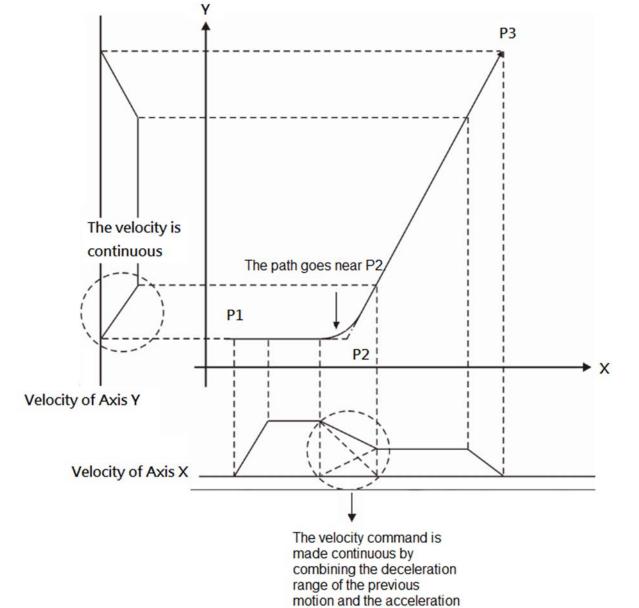
| Name           | Function                                                                                | Data type                         | Setting value<br>(Default value)                                                                                             | Timing for updating                                             |
|----------------|-----------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                | center of the circle.*2                                                                 |                                   |                                                                                                                              |                                                                 |
| Velocity       | Interpolation speed<br>(Unit: user unit/s) * <sup>3</sup>                               | LREAL                             | Positive value (0)                                                                                                           | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| SpiralTurns    | Specifies the number of spirals in a helix.                                             | DWORD                             | 0~65535                                                                                                                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| BufferMode     | Specifies the buffering<br>behavior of the<br>instruction.                              | eMC_BUFF<br>ER_MODE* <sup>3</sup> | 0: mcAborting<br>1: mcBuffered<br>2: mcBlendingLow<br>3: mcBlendingPrevious<br>4: mcBlendingNext<br>5: mcBlendingHigh<br>(0) | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |
| TransitionMode | Specifies if a round<br>corner should be applied<br>during the transition* <sup>2</sup> | WORD                              | <ul><li>0: no effect</li><li>1: round corner</li><li>2: round corner but ignoring<br/>the deceleration time (0)</li></ul>    | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |

### \*Note:

1. Parameters of DirectionCCW:

| State | Definition       |
|-------|------------------|
| False | Clockwise        |
| True  | Counterclockwise |

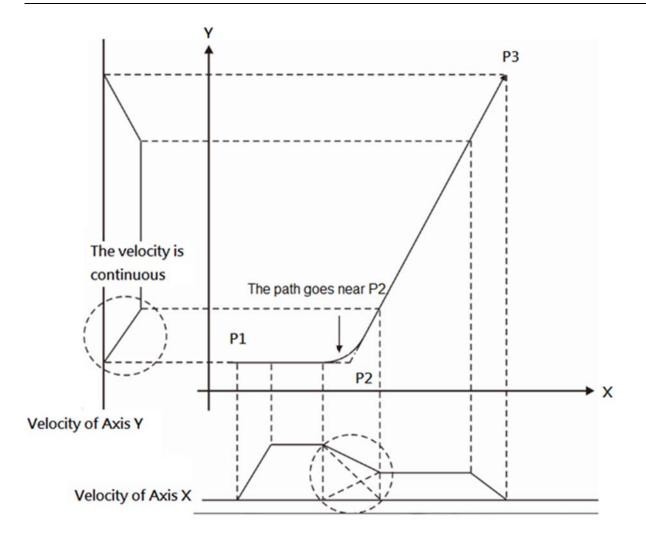

2. Parameters of *IPMode* and *AuxPosition*:


| Input value of IPMode | Definition            | Value 1 of AuxPosition | Value 2 of AuxPosition |
|-----------------------|-----------------------|------------------------|------------------------|
| 0                     | Radius(R)             | Length of radius(R)    | N/A                    |
| 1                     | Center of circle(I,J) | Value of I             | Value of J             |

3. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

4. TransitionMode can be used to reduce the noise and vibration that may occur during the changes of the interpolation motion.

### TransitionMode: 0 (no effect)





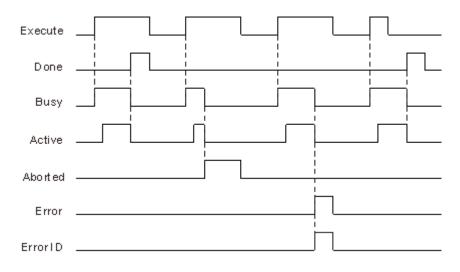

range of the current motion.

TransitionMode: 1 (same motion as it is in deceleration of the current instruction)

3-253



TransitionMode: 2 (same motion as it is in deceleration of the axis parameters)

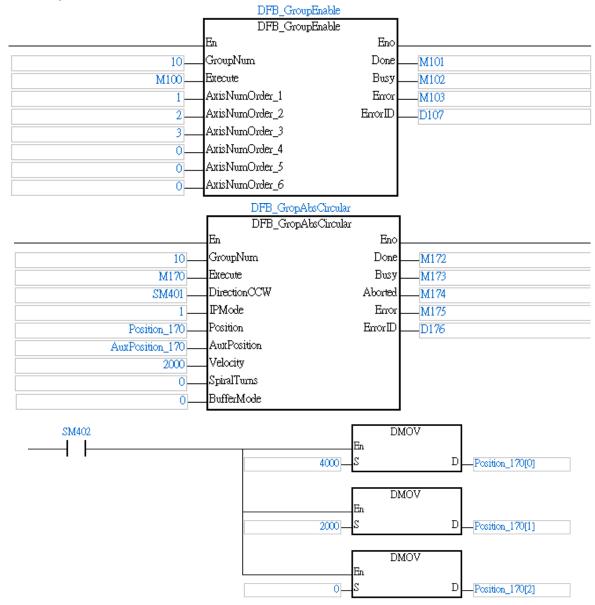

# • Outputs

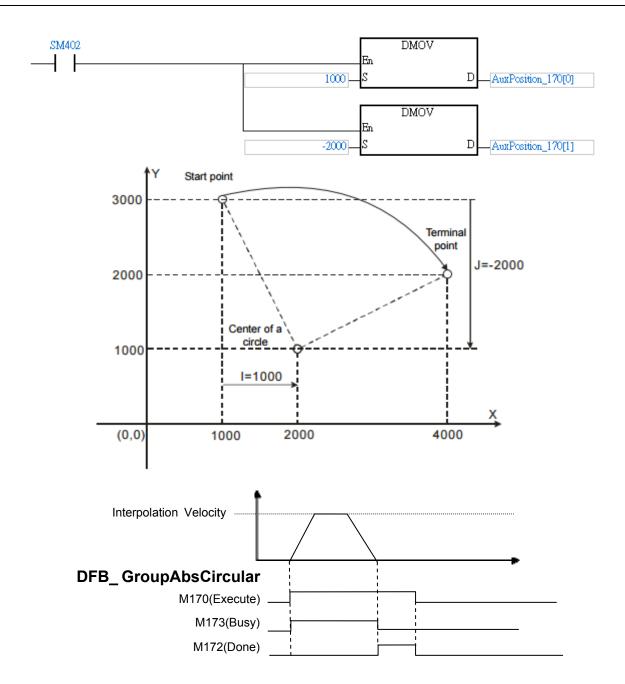
| Name    | Function                                                                                                | Data type | Output range (Default value) |
|---------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the target position is reached.                                                               | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Active  | True when the axis is being controlled.                                                                 | BOOL      | True/False (False)           |
| Aborted | True when the instruction is aborted.                                                                   | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

| Name           | Timing for shifting to True                                                                                                                                                                                                                                                                                                                                          | Timing for shifting to False                                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>When the absolute positioning is<br/>completed.</li> </ul>                                                                                                                                                                                                                                                                                                  | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                                                                                                                                                                                                                                               | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>Aborted</i> shifts to True.</li> </ul>                                                                        |
| Active         | • When the motion on the axis is started                                                                                                                                                                                                                                                                                                                             | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True</li> <li>When <i>Aborted</i> shifts to True.</li> </ul>                                                                         |
| Aborted        | <ul> <li>When this instruction is aborted by another instruction with the Buffer Mode set to mcAborting.</li> <li>When this instruction is aborted because of the execution of MC_Stop instruction.</li> <li>When the instruction is aborted by DFB_GroupStop instruction</li> <li>When the instruction is aborted by DFB_GroupImmediateStop instruction.</li> </ul> | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>If <i>Execute</i> is False and <i>Aborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                 |
| Error(ErrorID) | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                                                                                                                                                                            | • When <i>Execute</i> shifts from True to False. (Error code is cleared)                                                                                                                                            |

## Outputs Update Timing

# Timing Diagram





### Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

### • Programming Example

The example performs an arc interpolation from current position (1000, 3000) to the target position(4000, 2000) with clockwise interpolation.





- When M170(*Execute*) changes to True, DFB\_GroupAbsCircular drives the axes from the start point to the terminal point with clockwise arc interpolation.
- When the axes reaches the specified target position(4000,2000), M172(*Done*) changes to True and M173(*Busy*) changes to False.
- When M170(*Execute*) changes to False, M172(*Done*) changes to False.
- When the axes reach the target position, re-execution of the instruction will not move any axes because the absolute position is reached.

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_GroupRelCircular

| FB/FC | Description                                                                                                                        |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------|--|
| FB    | DFB_GroupAbsCircular controls the axis group to perform arc/circular or helix interpolation to move a specified relative distance. |  |

| DFB_GroupRelCircular |         |
|----------------------|---------|
| En                   | Eno.    |
| GroupNum             | Done.   |
| Execute              | Busy.   |
| DirectionCCW         | Active  |
| IPMode               | Aborted |
| Position             | Error   |
| AuxPosition          | EnorID  |
| Velocity             |         |
| SpiralTurns          |         |
| BufferMode           |         |
| TransitiomMode       |         |

**Note:** Arc/Helix interpolation requires at least 3 successive axis numbers to be specified starting from *AxisNumOrder\_1* to *AxisNumOrder\_3* of DFB\_GroupEnable, otherwise an error will occur.

### Inputs

| Name         | Function                                                                                             | Data type                     | Setting value<br>(Default value)                    | Timing for updating                                          |
|--------------|------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| GroupNum     | Specifies the number of the axis group.                                                              | WORD                          | 1~16<br>(0)                                         | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Execute      | Executes the instruction when <i>Execute</i> changes to True.                                        | BOOL                          | True/False<br>(False)                               | -                                                            |
| DirectionCCW | Specifies the direction for the arc/circular motion.* <sup>1</sup>                                   | BOOL                          | True/False<br>(False)                               | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| IPMode       | Specifies the way to define the center of the circle.* <sup>2</sup>                                  | eDFB_IPMO<br>DE* <sup>3</sup> | 0: radius_length<br>1: center_point                 | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Distance     | Specifies the distance<br>that each axis moves.<br>(Unit: user unit)                                 | LREAL[6]                      | [_,_,_]<br>Negative, positive value, 0<br>([0,0,0]) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| AuxPosition  | Specifies the value of radius(R) or the coordinates(I, J) of the center of the circle.* <sup>2</sup> | LREAL [2]                     | [_,_]<br>Negative, positive value, 0<br>([0,0])     | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

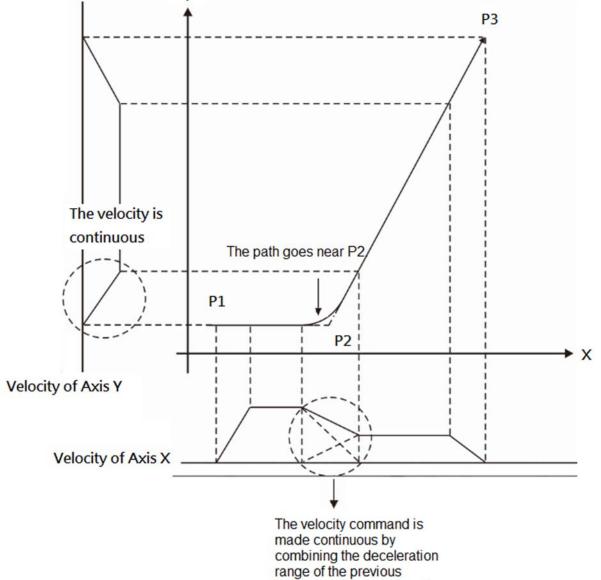
### Chapter 3 Motion Control Instructions

| Name           | Function                                                                                | Data type                         | Setting value<br>(Default value)                                                                                             | Timing for updating                                             |
|----------------|-----------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Velocity       | Interpolation speed<br>(Unit: user unit/s) * <sup>3</sup>                               | LREAL                             | Positive value (0)                                                                                                           | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| SpiralTurns    | Specifies the number of spirals in a helix.                                             | DWORD                             | 0~65535                                                                                                                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| BufferMode     | Specifies the buffering<br>behavior of the<br>instruction.                              | eMC_BUFF<br>ER_MODE* <sup>3</sup> | 0: mcAborting<br>1: mcBuffered<br>2: mcBlendingLow<br>3: mcBlendingPrevious<br>4: mcBlendingNext<br>5: mcBlendingHigh<br>(0) | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |
| TransitionMode | Specifies if a round<br>corner should be applied<br>during the transition* <sup>2</sup> | WORD                              | <ul><li>0: no effect</li><li>1: round corner</li><li>2: round corner but ignoring<br/>the deceleration time (0)</li></ul>    | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |

### \*Note:

1. Parameters of DirectionCCW:

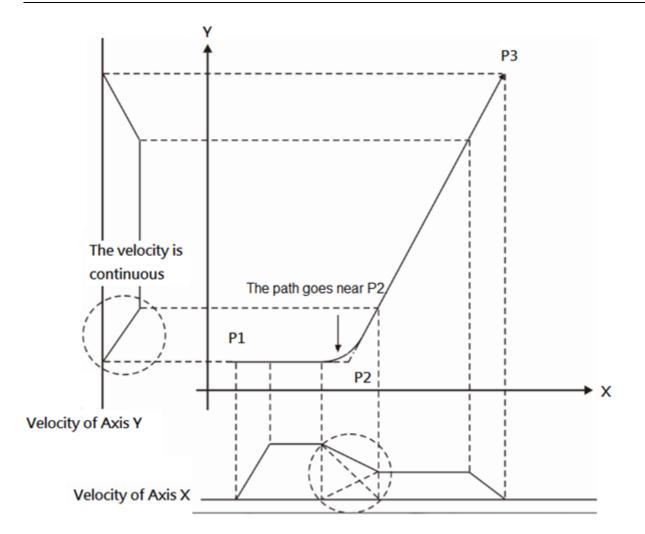

| State | Definition       |  |
|-------|------------------|--|
| False | Clockwise        |  |
| True  | Counterclockwise |  |


2. Parameters of IPMode and AuxPosition:

| Input value of IPMode | Definition            | Value 1 of AuxPosition | Value 2 of AuxPosition |
|-----------------------|-----------------------|------------------------|------------------------|
| 0                     | Radius(R)             | Length of radius(R)    | N/A                    |
| 1                     | Center of circle(I,J) | Value of I             | Value of J             |

- 3. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.
- 4. TransitionMode can be used to reduce the noise and vibration that may occur during the changes of the interpolation motion.

### TransitionMode: 0 (no effect)





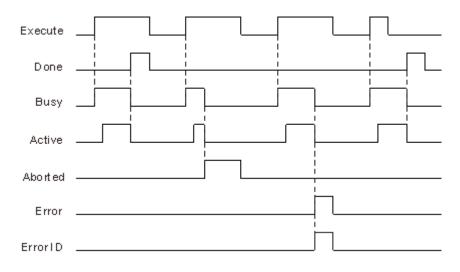

TransitionMode: 1 (same motion as it is in deceleration of the current instruction)

Y

combining the deceleration range of the previous motion and the acceleration range of the current motion.



### TransitionMode: 2 (same motion as it is in deceleration of the axis parameters)

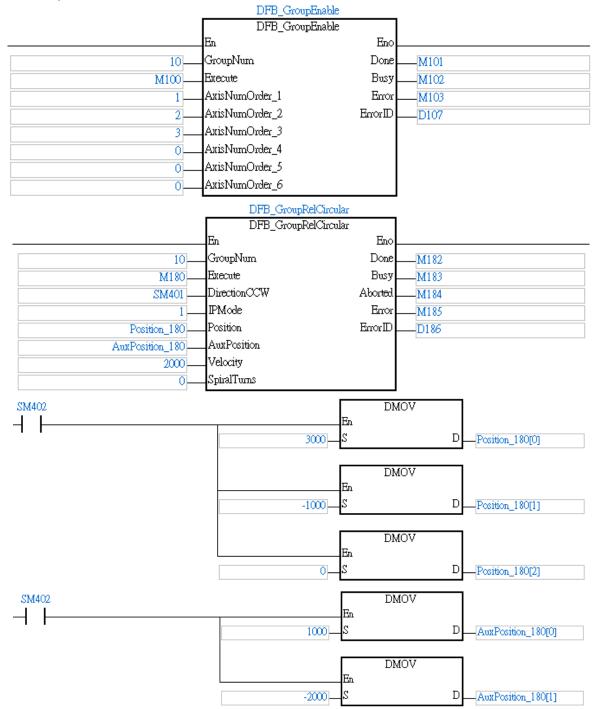

# Outputs

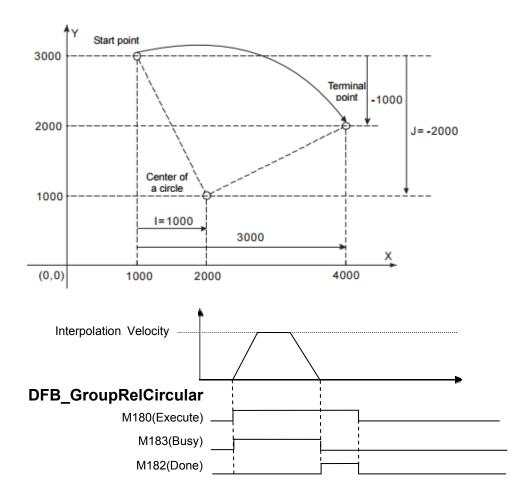
| Name    | Function                                                                                                | Data type | Output range (Default value) |
|---------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the target position is reached.                                                               | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                  | BOOL      | True/False (False)           |
| Active  | True when the axis is being controlled.                                                                 | BOOL      | True/False (False)           |
| Aborted | True when the instruction is aborted.                                                                   | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code when the error occurs. Refer to <b>Appendices</b> for error code descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

| Name           | Timing for shifting to True                                                                                                                                                                                                                                                                                                                                          | Timing for shifting to False                                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>When the absolute positioning is<br/>completed.</li> </ul>                                                                                                                                                                                                                                                                                                  | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                                                                                                                                                                                                                                               | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> <li>When <i>Aborted</i> shifts to True.</li> </ul>                                                                        |
| Active         | • When the motion on the axis is started                                                                                                                                                                                                                                                                                                                             | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True</li> <li>When <i>Aborted</i> shifts to True.</li> </ul>                                                                         |
| Aborted        | <ul> <li>When this instruction is aborted by another instruction with the Buffer Mode set to mcAborting.</li> <li>When this instruction is aborted because of the execution of MC_Stop instruction.</li> <li>When the instruction is aborted by DFB_GroupStop instruction</li> <li>When the instruction is aborted by DFB_GroupImmediateStop instruction.</li> </ul> | <ul> <li>When <i>Execute</i> shifts to False.</li> <li>If <i>Execute</i> is False and <i>Aborted</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul>                 |
| Error(ErrorID) | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul>                                                                                                                                                                                                                            | • When <i>Execute</i> shifts from True to False. (Error code is cleared)                                                                                                                                            |

# Outputs Update Timing

# Timing Diagram





### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*

# • Programming Example

The example performs an arc interpolation from current position (1000, 3000) to the target position(4000, 2000) with clockwise interpolation.





- When M180(*Execute*) changes to True, DFB\_GroupRelCircular drives the axes from the start point (1000, 300) to the terminal point (4000, 2000) with clockwise interpolation.
- When the axes reaches the specified target position(4000,2000), M182(*Done*) changes to True, and M183(*Busy*) changes to False.
- When M180(Execute) changes to False, M182(Done) changes to False.
- When the axes reach the target position, re-execution of the instruction will move another relative distance from current position according to the input parameters.
- When M180(*Execute*) changes to True, the axes will perform circular interpolation from the current point (4000, 2000).

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_GroupStop

| FB/FC | Description                                                |  |  |  |
|-------|------------------------------------------------------------|--|--|--|
| FB    | DFB_GroupStop decelerates the group axes to stop or pause. |  |  |  |
|       | DFB GrounStop                                              |  |  |  |

|         | DFB_GroupStop |          |
|---------|---------------|----------|
| En      |               | Eno.     |
| GroupN  | un            | Done.    |
| Execute |               | Busy.    |
| StopMod | le            | Error.   |
|         |               | ErrorID. |

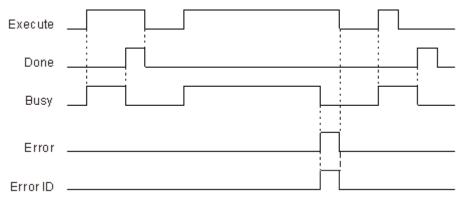
- The axis group specified by *GroupNum* will be decelerated to stop or pause.
- The group motion can be G-code motion, linear interpolation or circular interpolation.
- The axis states will enter Stopping after the execution of DFB\_GroupStop.
- The axis state Stopping will go till the velocity becomes zero or when *Execute* shifts to False. When the velocity becomes zeron, *Done* shifts to Ture. And when *Done* is True and *Execute* shifts to False, the axis state will enter Standby.

### Note:

 For more information about the axis states after DFB\_GroupStop is executed, refer to 7.4 State Transitions of AH Motion Controller – Operation Manual.

### Inputs

| Name     | Function                                | Data type | Setting value<br>(Default value) | Timing for updating                                                                                                                |
|----------|-----------------------------------------|-----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| GroupNum | Specifies the number of the axis group. |           | 1~32<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False.                                                                       |
| Execute  | BOOL                                    |           | True/False<br>(False)            | -                                                                                                                                  |
| StopMode | The axis stops.                         | WORD      | 0: Stop<br>1: Pause<br>(0)       | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False.<br>When <i>Execute</i> shifts to<br>Fault and <i>Done</i> is True. |


# Outputs

| Name    | Function                                                                                  | Data type | Output range (Default value) |
|---------|-------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the group motion is stopped.                                                    | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                    | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                  | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code | DWORD     | 16#0~16#FFFFFFF (0)          |

### Outputs Update Timing

| Name           | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                                                                                                                               |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | <ul> <li>When the group motion is stopped.</li> </ul>                                                                                     | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Busy           | • When <i>Execute</i> changes to True.                                                                                                    | <ul> <li>When <i>Done</i> shifts to True.</li> <li>When <i>Error</i> shifts to True.</li> </ul>                                                                                                            |
| Error(ErrorID) | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                  |

### Timing Diagram



### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, Error will change to True and the axis will stop moving. You can refer to ErrorID (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

# • Programming Example

The example uses DFB\_GroupStop to decelerate the ongoing group motion to stop.

Example 1: DFB\_GroupStop (0)

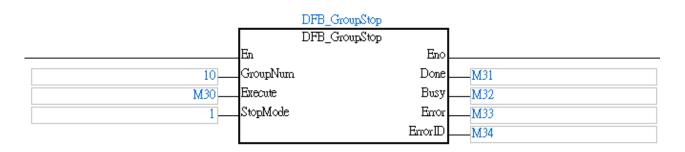
This examples shows 6 axes in linear interpolation to move from the current position to the relative target position (relative distance) and then use DFB\_GroupStop to have the axes in motion to decelerate to stop.

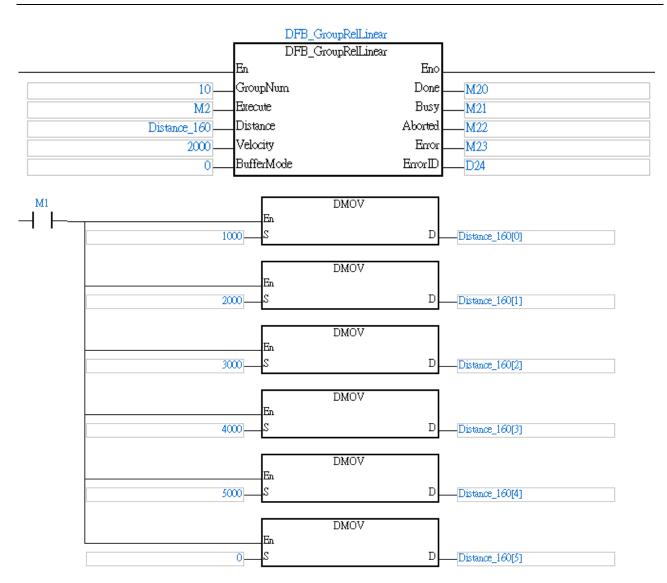
| Axis group | Current position | Relative distance | Target position |
|------------|------------------|-------------------|-----------------|
| Axis1      | 1000             | 1000              | 2000            |
| Axis2      | 1000             | 2000              | 3000            |
| Axis3      | 1000             | 3000              | 4000            |
| Axis4      | 1000             | 4000              | 5000            |
| Axis5      | 1000             | 5000              | 6000            |



1. Set M2 (Execute) to True, DFB\_GroupRelLinear start to do linear interpolation to move from the current position to the relative target position (relative distance).

- 2. Set M30 to True (mode: 0) before the on-going DFB\_GroupRelLinear is completed.
- 3. M22 (Aborted) changes to True, indicating the DFB\_GroupRelLinear is aborted.
- 4. M31 (Done) changes to True, when DFB\_GroupRelLinear decelerates to stop and the axis state is in Stopping.
- 5. When M30 (*Execute*) changes to False, the axis state is in Standby.


| Interpolation Velocity            | •    |
|-----------------------------------|------|
|                                   |      |
|                                   | Time |
| DFB_GroupRelLinear<br>M2(Execute) |      |
| M21 (Busy)                        |      |
| M20(Done)                         |      |
| M22(Aborted)                      |      |
| DFB_GroupSto                      | p    |
| M30(Execute)_                     |      |
| M32(Busy)_                        |      |
| M31(Done)                         |      |


The example uses DFB\_GroupStop to decelerate the ongoing group motion to pause.

#### Example 2: DFB\_GroupStop (0)

This examples shows 6 axes in linear interpolation to move from the current position to the relative target position (relative distance) and then use DFB\_GroupStop to have the axes in motion to decelerate to pause.

| Axis group | Current position | Relative distance | Target position |
|------------|------------------|-------------------|-----------------|
| Axis1      | 1000             | 1000              | 2000            |
| Axis2      | 1000             | 2000              | 3000            |
| Axis3      | 1000             | 3000              | 4000            |
| Axis4      | 1000             | 4000              | 5000            |
| Axis5      | 1000             | 5000              | 6000            |





1. Set M2 (Execute) to True, DFB\_GroupRelLinear start to do linear interpolation to move from the current

position to the relative target position (relative distance).

- 2. Set M30 to True (mode: 0) before the on-going DFB\_GroupRelLinear is completed.
- 3. M22 (Aborted) changes to True, indicating the DFB\_GroupRelLinear is aborted.
- 4. M31 (Done) changes to True, when DFB\_GroupRelLinear decelerates to stop and the axis state is in Stopping.
- 5. When M30 (Execute) changes to False, the axis state is in Standby.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_GroupEnable

| FB/FC | Description                                               |
|-------|-----------------------------------------------------------|
| FB    | DFB_GroupEnable enables a group of axes for group motion. |

| DFB_GroupEnable |         |
|-----------------|---------|
| En              | Eno     |
| GroupNum        | Done    |
| Execute         | Busy    |
| AxisNumOrder_1  | Error   |
| AxisNumOrder_2  | ErrorID |
| AxisNumOrder_3  |         |
| AxisNumOrder_4  |         |
| AxisNumOrder_5  |         |
| AxisNumOrder_6  |         |

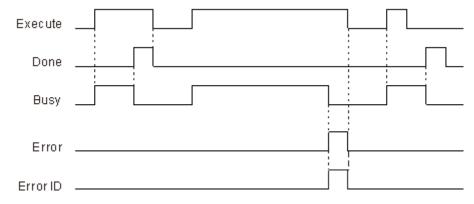
- When the specified axis group is enabled, it will change its state from "Disabled" to "Standby", and the designated axes in the group will change their state from "Standstill" to "Coordinated".
- When the instruction is executed, it will check whether the designated axes are in "Standstill", i.e. ready to be used for group motion, otherwise the specified axis group will enter "Errorstop". In this case, you will have to use DFB\_GroupReset to reset the error situation.

**Note:** refer to **7.4 State Transitions** of *AH Motion Controller – Operation Manual* for more information about state transitions.

| Name           | Function                                                          | Data type | Setting value<br>(Default value) | Timing for updating                                          |
|----------------|-------------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------|
| GroupNum       | Specifies the number of the axis group.                           | WORD      | 1~16<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Execute        | Writes in the parameters when <i>Execute</i> changes to True.     | BOOL      | True/False<br>(False)            | -                                                            |
| AxisNumOrder_1 | Designates the axis number for the 1 <sup>st</sup> axis (X-axis ) | WORD      | 1~32<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| AxisNumOrder_2 | Designates the axis number for the 2 <sup>nd</sup> axis (Y-axis ) | WORD      | 1~32<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| AxisNumOrder_3 | Designates the axis number for the 3 <sup>rd</sup> axis (Z-axis ) | WORD      | 1~32<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| AxisNumOrder_4 | Designates the axis number for the 4 <sup>th</sup> axis (A-axis ) | WORD      | 1~32<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| AxisNumOrder_5 | Designates the axis number for the 5 <sup>th</sup> axis (B-axis ) | WORD      | 1~32<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

### Inputs

| AxisNumOrder_6Designates the axis number for<br>the 6 <sup>th</sup> axis (C-axis )WORD1~32<br>(0)When Execute sh<br>True and Busy is |
|--------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------|


# Outputs

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the parameter setting is completed.                                                              | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

### Outputs Update Timing

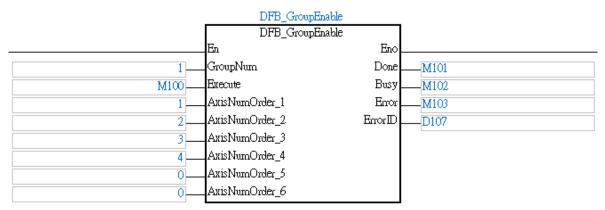
| Name           | Timing for shifting to True                                                                                         | Timing for shifting to False                                                                                                                                                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done           | • When the axis group is enabled                                                                                    | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Busy           | • When <i>Execute</i> changes to True.                                                                              | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                               |
| Error(ErrorID) | When an error occurs in the execution<br>conditions or input values for the<br>instruction.(Error code is recorded) | When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                                                                                                                                  |

### Timing Diagram



### • Function

- AxisNumOrder\_1~ AxisNumOrder\_6 indicate the 6 dimensions which are also the 6 axes of the coordinates: X,
   Y, Z, A, B, and C. You need to specify "0" to the axis number input which is not to be used.
- The first axis, *AxisNumOrder\_1*, should always be given an axis number.


- Linear interpolation requires at least 2 axes, which can be continuous or discontinuous, to be specified between AxisNumOrder\_1 and AxisNumOrder\_6.
- Arc interpolation and G-code require at least 3 successive axis numbers to be specified starting from AxisNumOrder\_1 to AxisNumOrder\_3. For G-code applications, you can refer to DFB\_GroupGcodeRun instruction.
- The setting range for axis number is between 1 and 32. The specified axis number should not be repeated among the inputs of *AxisNumOrder\_1* to *AxisNumOrder\_6*.

### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller* – *Operation Manual*.

## • Programming Example

You can use DFB\_GroupEnable to set up the number of axes in a group based on the limit and requirements of the coordinated axes for the actual applications.



- 1. If you want to use axis 1~ 4 to execute group motion for absolute positioning, firstly you need to set up the axis group by DFB\_GroupEnable.
- 2. Set M100 to True to specify axis 1~4 to the axis group number 1.
- 3. When M101 changes to True, the enabling of group axes is completed, and the axis group will change its state from "Disabled" to "Standby". Also, the designated axes in the group will change their state from "Standstill" to "Coordinated".
- 4. After the axis group is enabled, you can use group number 1 to perform the absolute positioning with interpolation.

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_GroupDisable

| FB/FC     | Description                                                               |
|-----------|---------------------------------------------------------------------------|
| FB        | DFB_GroupDisable disables the axis group with the specidied group number. |
| . <u></u> | DER Complication                                                          |

| DFB_GroupDisable |          |
|------------------|----------|
| En               | Eno.     |
| GroupNum         | Done.    |
| Execute          | Busy.    |
|                  | Error.   |
|                  | ErrorID. |

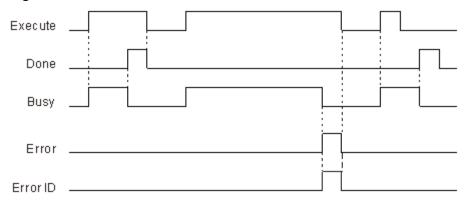
- The axes in the disabled group will be available for single axis motion.
- When the specified axis group is disabled, it will change its state from "Standby" to "Disabled", and the designated axes in the group will change their state from "Coordinated" to "Standstill".

Note: refer to 7.4 State Transitions of *AH Motion Controller – Operation Manual* for more information about state transitions.

### Inputs

| Name     | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating                                          |
|----------|---------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------|
| GroupNum | Specifies the number of the axis group.                       | WORD      | 1~16<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Execute  | Writes in the parameters when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                                                            |

## • Outputs

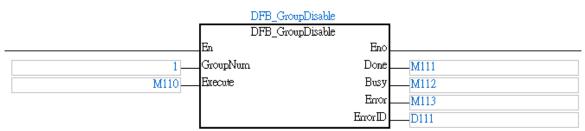

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the axis group is disabled.                                                                      | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

### Outputs Update Timing

| Name | Timing for shifting to True                                      | Timing for shifting to False                                                                                                                                                                               |  |
|------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Done | <ul> <li>When the parameter setting is<br/>completed.</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |  |

| Name           | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                 |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Busy           | • When <i>Execute</i> changes to True.                                                                                                    | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul> |
| Error(ErrorID) | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                  |

### Timing Diagram




## • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, Error will change to True and the axis will stop moving. You can refer to ErrorID (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

### • Programming Example

The example disables the axis group which is enabled by DFB\_GroupEnable.



- 1. Suppose that group number 1 is enabled by DFB\_GroupEnable. DFB\_GroupDisable can be used to disable group number 1, so as to perform single axis motion on the axes used in this axis group.
- 2. Set M110 to True the disable the axis group (1) which is designated by *GroupNum*.
- 3. When M111 changes to True, the disabling of group number 1 is completed.

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_GroupReset

| FB/FC | Description                                                                |  |
|-------|----------------------------------------------------------------------------|--|
| FB    | DFB_GroupReset resets the axis group which is in the state of "Errorstop". |  |
|       | DFB CompReset                                                              |  |

| DFB_GroupReset |         |
|----------------|---------|
| En             | Eno     |
| GroupNum       | Done    |
| Execute        | Busy    |
|                | Error   |
|                | ErrorID |

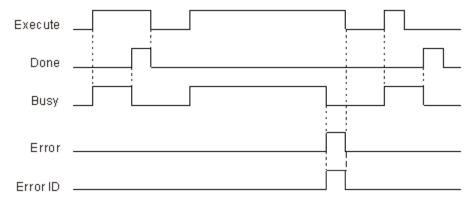
- The state of the axis group will enter "Standby" after DFB\_GroupReset is executed.
- The axis group will be available for group motion in "Standby" state.

**Note:** For more information about the state of axis as well as group and the timing to use DFB\_GroupReset, refer to **7.4 State Transitions** of *AH Motion Controller – Operation Manual*.

### Inputs

| Name     | Function                                                      | Data type | Setting value<br>(Default value) | Timing for updating                                          |
|----------|---------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------|
| GroupNum | Specifies the number of the axis group.                       | WORD      | 1~16<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Execute  | Executes the instruction when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                                                            |

### Outputs


| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the axis group is reset.                                                                         | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)          |

### Outputs Update Timing

| Name | Timing for shifting to True            | Timing for shifting to False                                                                                                                                                                        |  |
|------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Done | • When the axis group is reset         | <ul> <li>When Execute shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |  |
| Busy | • When <i>Execute</i> changes to True. | • When <i>Done</i> shifts to True.                                                                                                                                                                  |  |

| Name           | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
|                |                                                                                                                                           | • When <i>Error</i> shifts to True.                                         |  |
| Error(ErrorID) | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared) |  |

### Timing Diagram



# • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, Error will change to True and the axis will stop moving. You can refer to ErrorID (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_ReadGroupStatus

 FB/FC
 Description

 FB
 DFB\_ReadGroupStatus reads the axis numbers in an axis group, and indicates the status of the axis group at GroupStatus.

| DFB_ReadGr | oupStatus      |
|------------|----------------|
| En         | Eno.           |
| GroupNum   | Valid.         |
| Enable     | Error.         |
|            | ErrorID        |
|            | AxisNumOrder_1 |
|            | AxisNumOrder_2 |
|            | AxisNumOrder_3 |
|            | AxisNumOrder_4 |
|            | AxisNumOrder_5 |
|            | AxisNumOrder_6 |
|            | GroupStatus .  |

# • Inputs

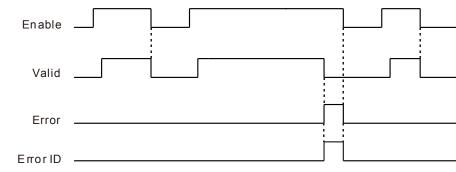
| Name     | Function                                                 | Data type | Setting value<br>(Default value) | Timing for updating                |
|----------|----------------------------------------------------------|-----------|----------------------------------|------------------------------------|
| GroupNum | Specifies the number of the axis group.                  | WORD      | 1~16<br>(0)                      | When <i>Enable</i> shifts to True. |
| Enable   | Reads the axis numbers and the status of the axis group. | BOOL      | True/False<br>(False)            | -                                  |

## Outputs

| Name           | Function                                                                                                     | Data type | Output range (Default value) |
|----------------|--------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Valid          | True when the axis group state at the output is available.                                                   | BOOL      | True/False (False)           |
| Error          | True if an error occurs.                                                                                     | BOOL      | True/False (False)           |
| ErrorID        | Indicates the error code if<br>an error occurs. Refer to<br><b>Appendices</b> for error<br>code descriptions | DWORD     | 16#0~16#FFFFFFF (0)          |
| AxisNumOrder_1 | Indicates the axis number for the 1 <sup>st</sup> axis (X-axis )                                             | WORD      | 0~32(0)                      |
| AxisNumOrder_2 | Indicates the axis number for the 2 <sup>nd</sup> axis (Y-axis )                                             | WORD      | 0~32(0)                      |

| Name           | Function                                                         | Data type                                 | Output range (Default value)                                                                                 |
|----------------|------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| AxisNumOrder_3 | Indicates the axis number for the 3 <sup>rd</sup> axis (Z-axis ) | WORD                                      | 0~32(0)                                                                                                      |
| AxisNumOrder_4 | Indicates the axis number for the 4 <sup>th</sup> axis (A-axis ) | WORD                                      | 0~32(0)                                                                                                      |
| AxisNumOrder_5 | Indicates the axis number for the 5 <sup>th</sup> axis (B-axis ) | WORD                                      | 0~32(0)                                                                                                      |
| AxisNumOrder_6 | Indicates the axis number for the 6 <sup>th</sup> axis (C-axis ) | WORD                                      | 0~32(0)                                                                                                      |
| GroupStatus    | Indicates the axis group status* <sup>1</sup>                    | eMC_GROUP_STATE_MA<br>CHINE* <sup>2</sup> | 0: GroupDisable<br>256: GroupStandby<br>512: GroupStopping<br>576: GroupMoving<br>768: GroupErrorStop<br>(0) |

### Note:

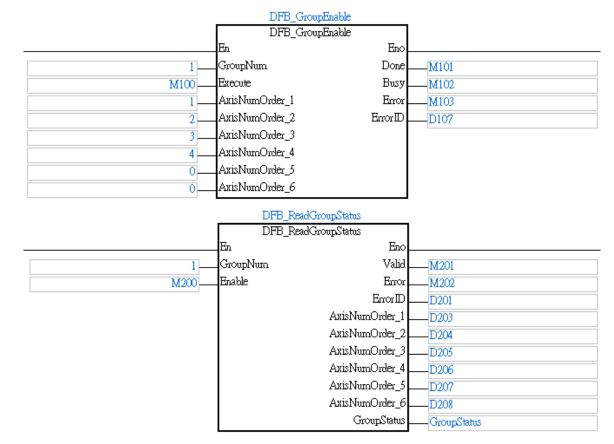

1. Refer to **7.4 State Transitions** of *AH Motion Controller – Operation Manual* for more information about state transitions.

2. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.

| Name                                 | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                    |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Valid                                | • When the axis group state at the output is available.                                                                                   | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |
| Error(ErrorID)                       | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | • When <i>Enable</i> shifts from True to False.<br>(Error code is cleared)                      |
| AxisNumOrder_1<br><br>AxisNumOrder_6 | Updates value continuously when <i>Enable</i> is True                                                                                     | Updates value continuously when <i>Enable</i> is True                                           |
| GroupStatus                          | Updates value continuously when <i>Enable</i> is True                                                                                     | Updates value continuously when <i>Enable</i> is True                                           |

### Outputs Update Timing

# Timing Diagram




### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual*.

### • Programming Example

The example uses DFB\_ReadGroupStatus to read the axis numbers and the group status when the specified group is enabled.



- 1. DFB\_GroupEnable is required to enable the axis group for executing coordinated motion in 4 axes (axis 1 to axis 4).
- 2. Set M100 to True to enable the axis group number 1 which uses axis 1 to axis 4.
- 3. M101(*Done*)=True indicates the completion of the enabling of axis group number 1. Group state will change from "Disabled" to "Standby", and the axis state in the group will change from "Standstill" to "Coordinated".
- 4. When the axis group is enabled, it can be used for executing coordinated motion or multi-axis interpolation.
- 5. When the group motion is in operation, you can read the status of axis group number 1 by DFB\_ReadGroupStatus .
- 6. Set M200 to True to read the axis numbers and the group state at the outputs of DFB\_ReadGroupStatus.

### Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

|           | Categories                | Name          | Description                                                                                                                                                 |
|-----------|---------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auxiliary | High speed counter        | DFB HCnt      | DFB_HCnt enables the specified high speed counter according to the specified parameters and monitors the count value.                                       |
|           | High speed<br>timer       | DFB_HTmr      | DFB_HTmr enables the specified high speed timer channel according to the specified parameters and monitors and timed value.                                 |
|           | DFB Compare<br>Comparison |               | DFB_Compare compares the designated source with a specified value and outputs the specified results on a desired device when the comparison result is True. |
|           |                           | DFB CmpOutRst | DFB_CmpOutRst monitors the output results and clears the output states triggered by the comparators.                                                        |
|           | Capture                   | DFB Capture2  | DFB_Capture2 captures the commanded pulses of the specified axis according to the designated external trigger deivce.                                       |

# 3.3.3 Auxiliary Motion Control Function Blocks

# DFB\_HCnt

| FB/FC | Description                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_HCnt enables the specified high speed counter according to the specified parameters and monitors the count value. |

| DFB_H(       | Int        |
|--------------|------------|
| En           | Eno        |
| Channel      | Valid      |
| Enable       | Busy       |
| ExtRstEN     | Error      |
| InputType    | ErrorID    |
| InitialValue | CountValue |

- You can specify the high speed counter to be enabled by *Channel*, the input pulse type by *InputType*, the initial value of the counter by *InitiaValue*, and trigger the corresponding X signal to clear the count value by setting *ExtRstEN* as True.
- To read the count value during the high speed counter operation, you can monitor the output CountValue.

| Name        | Function                                                                                                         | Data type                   | Setting value<br>(Default value)                                                                                     | Timing for updating               |
|-------------|------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Channel     | Specifies the counting channel of the high speed counter.                                                        | eDFB_H<br>CNT* <sup>1</sup> | 200: DFB_AC0<br>204: DFB_AC4<br>208: DFB_AC8<br>212: DFB_AC12<br>216: DFB_AC16<br>220: DFB_AC20<br>(0)* <sup>2</sup> | When <i>Enable</i> shifts to True |
| Enable      | Enables the specified high speed counter when <i>Enable</i> changes to True.                                     | BOOL                        | True/False(False)                                                                                                    | -                                 |
| ExtRstEN    | Resets the counter                                                                                               | BOOL                        | True/False(False)                                                                                                    | When Enable shifts to True        |
| InputType   | Input pulse type<br>U/D: counting up/down<br>P/D: pulse/direction<br>A/B: A/B-phase<br>4A/B: quadruple A/B-phase | eDFB_H<br>CNT_INT<br>YPE    | 0: UD<br>1: PD<br>2: AB<br>3: AB4<br>(0)                                                                             | When <i>Enable</i> shifts to True |
| InitiaValue | Initial value of the specified counter                                                                           | DWORD                       | Negative integer,<br>positive integer or 0<br>(0)                                                                    | When <i>Enable</i> shifts to True |

### Inputs

\*Note:

- 1. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.
- 2. The setting values, devices, corresponding terminals for *Channel* inputs:

| Channel | Setting value | Device | Corresponding terminals for counting |
|---------|---------------|--------|--------------------------------------|
| 0       | 200           | AC00   | X0.8, X0.9                           |
| 1       | 204           | AC04   | X0.10, X0.11                         |
| 2       | 208           | AC08   | X0.12, X0.13                         |
| 3       | 212           | AC12   | X0.14, X0.15                         |
| 4       | 216           | AC16   | X1.0, X1.1                           |
| 5       | 220           | AC20   | X1.2, X1.3                           |

3. For resetting the counter value, refer to the selected DFB\_Hcnt Channel and its corresponding terminals.

| Channel | Corresponding terminals for resetting |
|---------|---------------------------------------|
| 0       | X0.0                                  |
| 1       | X0.1                                  |
| 2       | X0.2                                  |
| 3       | X0.3                                  |
| 4       | X1.4                                  |
| 5       | X1.5                                  |

# Outputs

| Name       | Function                                                                                                   | Data type | Output range (Default value)                          |
|------------|------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|
| Valid      | True when the output value is valid.                                                                       | BOOL      | True/False (False)                                    |
| Busy       | True when the instruction is enabled.                                                                      | BOOL      | True/False (False)                                    |
| Error      | True if an error occurs.                                                                                   | BOOL      | True/False (False)                                    |
| ErrorID    | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)                                   |
| CountValue | Count value of the counter                                                                                 | DWORD     | Continuously updates value when <i>Valid</i> is True. |

### Outputs Update Timing

| Name  | Timing for shifting to True                                                          | Timing for shifting to False                                                                    |
|-------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Valid | • When the output value is valid; one scan cycle after <i>Enable</i> shifts to True. | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |
| Busy  | • When <i>Enable</i> shifts to True.                                                 | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |

2

| Error/ErrorID | • When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded) | • When <i>Execute</i> shifts from True to False.<br>(Error code is cleared) |
|---------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Timing Diagr  | am                                                                                                              |                                                                             |
|               | En able                                                                                                         |                                                                             |
|               | Busy                                                                                                            |                                                                             |
|               | Valid                                                                                                           |                                                                             |
|               | Error                                                                                                           | $\square$                                                                   |

\_\_\_\_\_

Error ID \_\_\_\_\_

Error \_\_\_\_\_

| FB/FC | Description                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_HTmr enables the specified high speed timer channel according to the specified parameters and monitors and timed value. |

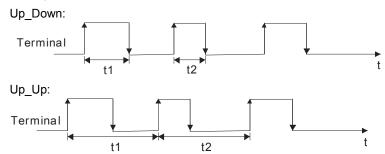
# DFB\_HTmr

| DFB         | _HTmr      |
|-------------|------------|
| En          | Eno        |
| Channel     | Valid      |
| Enable      | Busy       |
| TriggerMode | Error      |
|             | ErrorID    |
|             | TimerValue |

- You can specify the high speed timer to be enabled by *Channel* and the timing mode by *TriggerMode*.

- To read the timed value during the high speed timer operation, you can monitor the output *TimerValue*.

## • Inputs


| Name        | Function                                                                                                                                                                                                                                                                      | Data type | Setting value<br>(Default value)                                                    | Timing for updating                  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|--------------------------------------|
| Channel     | Specifies the timing channel of the high speed timer.                                                                                                                                                                                                                         | WORD      | 200: DFB_AC0<br>204: DFB_AC4<br>208: DFB_AC8<br>212: DFB_AC12<br>(0) * <sup>1</sup> | When <i>Enable</i> shifts to<br>True |
| Enable      | Enables the specified high speed timer when <i>Enable</i> changes to True.                                                                                                                                                                                                    | BOOL      | True/False(False)                                                                   | -                                    |
| TriggerMode | Timing mode settings* <sup>2</sup><br><b>Up_Down</b> : measuring the interval<br>between the rising edge and the<br>falling edge of a pulse.<br><b>Up_Up</b> : measuring the interval<br>between the rising edge of a pulse<br>and the rising edge of the following<br>pulse. | BOOL      | mcUp_Down: False<br>mcUp_Up: True<br>(False)                                        | When <i>Enable</i> shifts to<br>True |

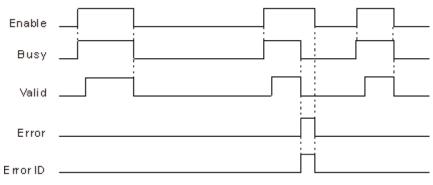
#### \*Note:

1. The setting value of Channel input

| Channel | Setting<br>value | Terminals |
|---------|------------------|-----------|
| 0       | 200              | X0.0      |
| 1       | 204              | X0.1      |
| 2       | 208              | X0.2      |
| 3       | 212              | X0.3      |

### 2. Timing mode



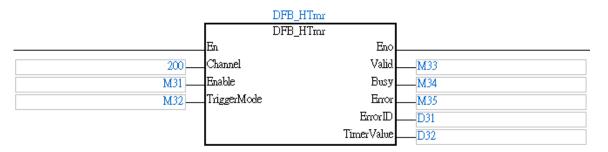

# Outputs

| Name       | Function                                                                                                   | Data type | Output range (Default value)                          |
|------------|------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|
| Valid      | True when the output value is valid                                                                        | BOOL      | True/False (False)                                    |
| Busy       | True when the instruction is enabled.                                                                      | BOOL      | True/False (False)                                    |
| Error      | True if an error occurs.                                                                                   | BOOL      | True/False (False)                                    |
| ErrorID    | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF (0)                                   |
| TimerValue | Timed value (Unit: 0.01us)                                                                                 | DWORD     | Continuously updates value when <i>Valid</i> is True. |

# Outputs Update Timing

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                    |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Valid         | • When the output value is valid; one scan cycle after <i>Enable</i> shifts to True.                                                      | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |
| Busy          | • When <i>Enable</i> shifts to True.                                                                                                      | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | When <i>Execute</i> shifts from True to False.<br>(Error code is cleared)                       |

### Timing Diagram




# • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

# • Programming Example

Using channel 0 (input X0.0) with the *TriggerMode* from True shifting to False to obtain a timer value of 10 seconds (*TimerValue*):



- 1. Set M32=ON to specify the timing mode as UP\_UP, measuring the interval between rising edge and falling edge of a pulse.
- 2. Set M31=ON to enable channel 0 for high speed timing.
- 3. Trigger the rising edge of X0.0 to start timing, and trigger the falling edge of X0.0 after 10 seconds.
- 4. Check the value in D32 to confirm if a timed value approximately equals to 10 seconds is recorded.

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_Compare

| FB/FC | Description                                                                                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FB    | DFB_Compare compares the designated source value and the setting value and then to Set or Reset the desired device when the comparison result is True or False. |

| DFB_Compare  |         |
|--------------|---------|
| En           | Eno     |
| Channel      | Valid   |
| Enable       | Busy    |
| Source       | Error   |
| CmpMode      | ErrorID |
| OutputDevice |         |
| OutputMode   |         |
| CmpValue     |         |

- You can specify the high speed comparator to be enabled by *Channel*, designate the comparison source by *Source*, and set the parameters for comparison by *CmpMode and CmpValue*.
- When the comparison result is True, DFB\_Compare will outputs the results according to the settings of *OutputDevice* and *OutputMode*.

| Name    | Function                                                                        | Data type     | Setting value<br>(Default value)                                                                                                                                                | Timing for updating                  |
|---------|---------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Channel | Specifies the number of the high speed comparator.                              | eDFB_CO<br>MP | 0: Ch0<br>1: Ch1<br>2: Ch2<br>3: Ch3<br>4: Ch4<br>5: Ch5<br>6: Ch6<br>7: Ch7<br>8: Ch8<br>9: Ch9<br>10: Ch10<br>11: Ch11<br>12: Ch12<br>13: Ch13<br>14: Ch14<br>15: Ch15<br>(0) | When <i>Enable</i><br>shifts to True |
| Enable  | Enables the specified high speed comparator when <i>Enable</i> changes to True. | BOOL          | True/False(False)                                                                                                                                                               | -                                    |

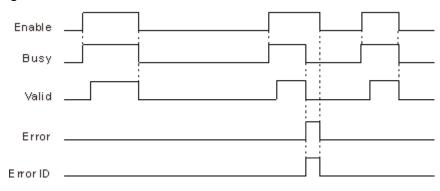
### Inputs

| Name         | Function                                                                                                                                                                                                                                                                                     | Data type                | Setting value<br>(Default value)                                                                                 | Timing for updating                  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Source       | Designates the source of the comparison.<br>0: Axis 1<br>1: Axis 2<br>2: Axis 3<br>3: Axis 4<br>4: DFB Hcnt CH0 setting value<br>5: DFB Hcnt CH1 setting value<br>6: DFB Hcnt CH2 setting value<br>7: DFB Hcnt CH3 setting value                                                             | eDFB_CO<br>MP_SOUR<br>CE | 0: Axis 1<br>1: Axis 2<br>2: Axis 3<br>3: Axis 4<br>4: DFB_AC0<br>5: DFB_AC4<br>6: DFB_AC4<br>6: DFB_AC12<br>(0) | When <i>Enable</i><br>shifts to True |
| CmpMode      | Comparison condition<br>0: Equal (=)<br>1: Bigger_Equal (≧)<br>2: Smaller_Equal (≦)                                                                                                                                                                                                          | eDFB_CO<br>MP_MOD*<br>1  | 0: Equal<br>1: Bigger_Equal<br>2: Smaller_Equal<br>(0)                                                           | When <i>Enable</i> shifts to True    |
| OutputDevice | Designates the output device when the<br>comparison result is True<br>0: set Y0.8<br>1: set Y0.9<br>2: set Y0.10<br>3: set Y0.11<br>4: reset DFB Hcnt CH0 setting value<br>5: reset DFB Hcnt CH1 setting value<br>6: reset DFB Hcnt CH2 setting value<br>7: reset DFB Hcnt CH3 setting value | eDFB_CO<br>MP_OUTD<br>EV | 0: SetY08<br>1: SetY09<br>2: SetY10<br>3: SetY11<br>4: RstAC0<br>5: RstAC4<br>6: RstAC8<br>7: RstAC12<br>(0)     | When <i>Enable</i> shifts to True    |
| OutputMode   | Specifies the output method<br>CmpSet: set ON the device<br>CmpRst: reset the device                                                                                                                                                                                                         | BOOL                     | mcCmpSet: True<br>mcCmpRst: False<br>(False)                                                                     | When <i>Enable</i> shifts to True    |
| CmpValue     | Specifies the comparison value                                                                                                                                                                                                                                                               | DWORD                    | Positive integer,<br>negative integer or<br>0<br>(0)                                                             | When <i>Enable</i><br>shifts to True |

\*Note:

1. Refer to **Section 2.4 Data Type Unit (DUT): ENUM** for explanation on using enumerations.

# Outputs

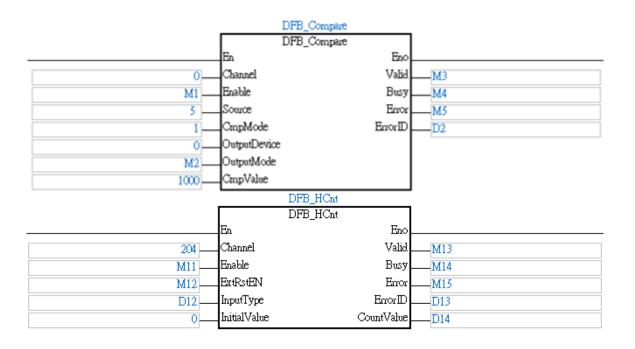

| Name    | Function                                     | Data type | Output range (Default value) |
|---------|----------------------------------------------|-----------|------------------------------|
| Valid   | True when the output value is valid.         | BOOL      | True/False (False)           |
| Busy    | True when the instruction is enabled.        | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                     | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs. | DWORD     | 16#0~16#FFFFFFF (0)          |

| Refer to Appendices for error code |  |
|------------------------------------|--|
| descriptions.                      |  |

### Outputs Update Timing

| Name          | Timing for shifting to True                                                                                                               | Timing for shifting to False                                                                    |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Valid         | • When the output value is valid; one scan cycle after <i>Enable</i> shifts to True.                                                      | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |
| Busy          | • When <i>Enable</i> shifts to True.                                                                                                      | <ul><li>When <i>Enable</i> shifts to False.</li><li>When <i>Error</i> shifts to True.</li></ul> |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | When <i>Enable</i> shifts from True to False.     (Error code is cleared)                       |

#### Timing Diagram




### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

### • Programming Example

This example compares the counting value of channel 1 (DFB\_Hcnt CH1) with the specified value 1000(CmpValue) with the condition of " $\geq$ " (*CmpMode*=1), and set Y0.8 (*OutputDevice*=0) =ON (*OutputMode*=True) when the comparison result is True.



- 1. Set M2(*OutputMode*) to True and *OutputDeivce*=0 to specify the output operation of the instruction when the comparison result is True: Set Y0.8=ON.
- 2. Set M1=ON to enable the comparator of number 0.
- 3. Set M11=ON to enable the counting on channel 1.
- 4. Confirm if Y0.8 is set to True when the count value in D14 is greater or equals to 1000.

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

3

# DFB\_CmpOutRst

| FB/FC | Description           |                                                                                                      |               |  |  |
|-------|-----------------------|------------------------------------------------------------------------------------------------------|---------------|--|--|
| FB    | DFB_CmpOutRst monitor | DFB_CmpOutRst monitors the output results and clears the output states triggered by the comparators. |               |  |  |
| ·     | DFB_CmpOutRst         |                                                                                                      |               |  |  |
|       |                       | En Drb_CmpO                                                                                          | uurst<br>Eno. |  |  |
|       |                       | Enable                                                                                               | Valid.        |  |  |
|       |                       | CLR_Y08                                                                                              | CMP_Y08       |  |  |
|       |                       | CLR_Y09                                                                                              | CMP_Y09       |  |  |
|       |                       | CLR_Y10                                                                                              | CMP_Y10       |  |  |
|       |                       | CLR_Y11                                                                                              | CMP_Y11       |  |  |

CLR\_C200Rst CMP\_C200Rst CLR\_C204Rst CMP\_C204Rst CLR\_C208Rst CMP\_C208Rst CLR\_C208Rst CMP\_C208Rst CLR\_C212Rst CMP\_C212Rst Busy

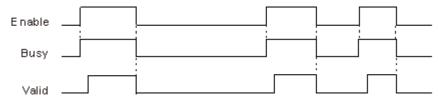
## Inputs

\_3

| Name       | Function                                                             | Data type | Setting value<br>(Default value) | Timing for updating                                    |
|------------|----------------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------|
| Enable     | Enables the<br>instruction when<br><i>Enable</i> changes to<br>True. | BOOL      | True/False(False)                | -                                                      |
| CLR_Y0 08  | Resets the output state.                                             | BOOL      | True/False(False)                | Continuously updates value when <i>Enable</i> is True. |
| CLR_Y0 09  | Resets the output state.                                             | BOOL      | True/False(False)                | Continuously updates value when <i>Enable</i> is True. |
| CLR_Y0 10  | Resets the output state.                                             | BOOL      | True/False(False)                | Continuously updates value when <i>Enable</i> is True. |
| CLR_Y0 11  | Resets the output state.                                             | BOOL      | True/False(False)                | Continuously updates value when <i>Enable</i> is True. |
| CLR_AC0Rst | Resets the output state.                                             | BOOL      | True/False(False)                | Continuously updates value when <i>Enable</i> is True. |
| CLR_AC4Rst | Resets the output state.                                             | BOOL      | True/False(False)                | Continuously updates value when <i>Enable</i> is True. |

### Chapter 3 Motion Control Instructions

| Name        | Function                 | Data type | Setting value<br>(Default value) | Timing for updating                                    |
|-------------|--------------------------|-----------|----------------------------------|--------------------------------------------------------|
| CLR_AC8Rst  | Resets the output state. | BOOL      | True/False(False)                | Continuously updates value when <i>Enable</i> is True. |
| CLR_AC12Rst | Resets the output state. | BOOL      | True/False(False)                | Continuously updates value when <i>Enable</i> is True. |


# Outputs

| Name        | Function                               | Data type | Output range (Default value) |
|-------------|----------------------------------------|-----------|------------------------------|
| Valid       | True when the output value is valid.   | BOOL      | True/False (False)           |
| CMP_Y0 08   | Indicates the comparison output states | BOOL      | True/False (False)           |
| CMP_Y0 09   | Indicates the comparison output states | BOOL      | True/False (False)           |
| CMP_Y0 10   | Indicates the comparison output states | BOOL      | True/False (False)           |
| CMP_Y0 11   | Indicates the comparison output states | BOOL      | True/False (False)           |
| CMP_AC0Rst  | Indicates the comparison output states | BOOL      | True/False (False)           |
| CMP_AC4Rst  | Indicates the comparison output states | BOOL      | True/False (False)           |
| CMP_AC8Rst  | Indicates the comparison output states | BOOL      | True/False (False)           |
| CMP_AC12Rst | Indicates the comparison output states | BOOL      | True/False (False)           |
| Busy        | True when the instruction is enabled.  | BOOL      | True/False (False)           |

# Outputs Update Timing


| Name                      | Timing for shifting to True                                                          | Timing for shifting to False                         |
|---------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|
| Valid                     | • When the output value is valid; one scan cycle after <i>Enable</i> shifts to True. | • When <i>Enable</i> shifts to False.                |
| CMP_Y0 08~<br>CMP_AC12Rst | Continuously updates value when <i>Valid</i> is True                                 | Continuously updates value when <i>Valid</i> is True |
| Busy                      | • When <i>Enable</i> shifts to True.                                                 | • When <i>Enable</i> shifts to False.                |

# Timing Diagram



### • Programming Example

This example uses DFB\_CmpOutRst to monitor and reset the comparison results activated by DFB\_Compare which compares the counting value of channel 1 (AC04) with the specified value 1000(CmpValue) with the condition of " $\geq$ " (*CmpMode*=1), and set Y0.8=ON when the comparison result is True. You can use DFB\_CmpOutRst to monitor if M31 (Y0.8) is ON. If you want to reset the output state of Y0.8, set the corresponding input M22 (*CLR\_Y0 08*) to ON for clearing the output state of Y0.8.



- 1. Set M11(*Enable*) to True to enable the counting on channel 1.
- 2. Set M2(*OutputMode*) to True and *OutputDeivce*=0 to specify the output operation of DFB\_Compare when the comparison result is True: Set Y0.8=ON.
- 3. Set M1=ON to enable the comparator of number 0.
- 4. Use DFB\_CmpOutRst to monitor if M31(*CMP\_Y0 08*) =ON and Y0.8 is set to True when the count value in D14 is greater or equals to 1000.
- 5. Set M22(CLR\_Y0 08) to True and M21(Enable) to True to clear the output state of Y0.8
- 6. Confirm if Y0.8 is reset and M31(*CMP\_Y0 08*) is False.

# • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

3

# DFB\_Capture2

| FB/FC | Description                                                                                                           |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| FB    | DFB_Capture2 captures the commanded pulses of the specified axis according to the designated external trigger deivce. |  |  |  |  |
|       | DFB_Capture2                                                                                                          |  |  |  |  |

| DFB           | _Capture2         |
|---------------|-------------------|
| En            | Eno.              |
| Channel       | Valid             |
| Enable        | Busy              |
| Source        | Error             |
| TriggerDevice | ErrorID           |
| InitialValue  | CapFlag           |
| MaskValue     | CapValue.         |
| DeltaMin      | CapValuePrevious  |
| DeltaMax      | Delta             |
| FirstMark     | CapLenBeyondFlag  |
|               | CapLenBeyondCoun~ |

# Inputs

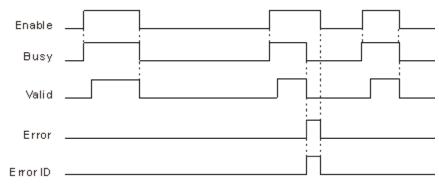
| Name    | Function                                                                                                                                                                                                                                                                                             | Data type                         | Setting value<br>(Default value)                                                                                 | Timing for updating                   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Channel | Specifies the number of the Capture.                                                                                                                                                                                                                                                                 | eDFB_CAP* <sup>1</sup>            | 0: Ch0<br>1: Ch1<br>2: Ch2<br>3: Ch3<br>4: Ch4<br>5: Ch5<br>6: Ch6<br>7: Ch7<br>(0)                              | When <i>Enable</i> shifts to<br>True. |
| Enable  | Enables the specified Capture when <i>Enable</i> changes to True.                                                                                                                                                                                                                                    | BOOL                              | True/False<br>(False)                                                                                            | -                                     |
| Source  | Designates the source of the<br>Capture.<br>0: Axis 1 current position<br>1: Axis 2 current position<br>2: Axis 3 current position<br>3: Axis 4 current position<br>4: DFB Hcnt CH0 setting value<br>5: DFB Hcnt CH1 setting value<br>6: DFB Hcnt CH2 setting value<br>7: DFB Hcnt CH3 setting value | eDFB_CAP_SO<br>URCE <sup>*1</sup> | 0: Axis 1<br>1: Axis 2<br>2: Axis 3<br>3: Axis 4<br>4: DFB_AC0<br>5: DFB_AC4<br>6: DFB_AC8<br>7: DFB_AC12<br>(0) | When <i>Enable</i> shifts to<br>True. |

| Name          | Function                                                                                                                                                                                                                                                                                                                                                                                                                         | Data type                           | Setting value<br>(Default value)                                                                                                                                 | Timing for updating                                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| TriggerDevice | Designates the external trigger<br>device for the Capture<br>0: trigger by X0.0 signal<br>1: trigger byX0.1 signal<br>2: trigger by X0.2 signal<br>3: trigger by X0.3 signal<br>8: trigger by X0.8 signal<br>9: trigger by X0.9 signal<br>10: trigger by X0.10 signal<br>11: trigger by X0.11 signal<br>12: trigger by X0.12 signal<br>13: trigger by X0.13 signal<br>14: trigger by X0.14 signal<br>15: trigger by X0.15 signal | eDFB_CAP_TRI<br>G_DEV* <sup>1</sup> | 0: X0p0<br>1: X0p1<br>2: X0p2<br>3: X0p3<br>8: X0p8<br>9: X0p9<br>10: X0p10<br>11: X0p10<br>11: X0p11<br>12: X0p12<br>13: X0p13<br>14: X0p14<br>15: X0p15<br>(0) | When <i>Enable</i> shifts to<br>True.                        |
| InitialValue  | Specifies the initial value of the reference for the mask range. (Unit: pulse)                                                                                                                                                                                                                                                                                                                                                   | LREAL                               | -2,147,483,648 ~<br>2,147,483,647<br>(0)                                                                                                                         | When <i>Enable</i> shifts to<br>True.                        |
| MaskValue     | Specifies the value used to<br>define the mask range<br>(Unit: pulse)                                                                                                                                                                                                                                                                                                                                                            | LREAL                               | 0~2,147,483,647<br>(0)                                                                                                                                           | When <i>Enable</i> shifts to<br>True.                        |
| DeltaMin      | Defines the minimum difference<br>between each Capture.<br>(Unit: pulse)<br><b>Note</b> : If <i>DeltaMin</i> and <i>DeltaMax</i><br>are both set to 0, the system will<br>not check if the difference<br>between between each Capture<br>is within proper range or not.                                                                                                                                                          | LREAL                               | -2,147,483,648 ~<br>2,147,483,647<br>(0)                                                                                                                         | Updates value<br>continuously hwen<br><i>Enable</i> is True. |
| DeltaMax      | Defines the maximum difference<br>between each Capture.<br>(Unit: pulse)<br><b>Note</b> : If <i>DeltaMin</i> and <i>DeltaMax</i><br>are both set to 0, the system will<br>not check if the difference<br>between between each Capture<br>is within proper range or not.                                                                                                                                                          | LREAL                               | -2,147,483,648 ~<br>2,147,483,647<br>(0)                                                                                                                         | Updates value<br>continuously hwen<br><i>Enable</i> is True. |
| FirstMark     | Selects the reference of the<br>mask range.<br>True: Use the first captured<br>value as the reference for the<br>mask range.                                                                                                                                                                                                                                                                                                     | BOOL                                | True/False<br>(False)                                                                                                                                            | When <i>Enable</i> shifts to<br>True.                        |

| Name | Function                                                          | Data type | Setting value<br>(Default value) | Timing for updating |
|------|-------------------------------------------------------------------|-----------|----------------------------------|---------------------|
|      | False: Use the initial value as the reference for the mask range. |           |                                  |                     |

\*Note:

2. Refer to Section 2.4 Data Type Unit (DUT): ENUM for explanation on using enumerations.


# Outputs

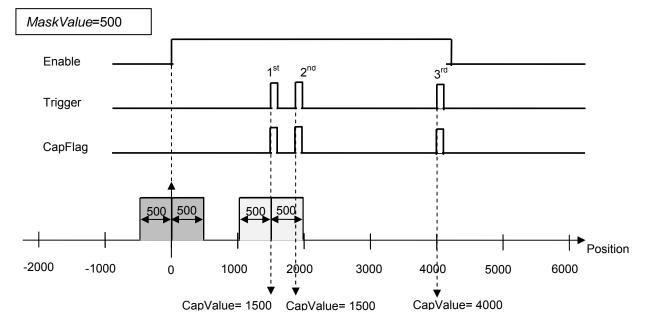
| Name              | Function                                                                                                                           | Data type | Output range (Default value)       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------|
| Valid             | True when the output value is valid.                                                                                               | BOOL      | True/False (False)                 |
| Busy              | True when the instruction is enabled.                                                                                              | BOOL      | True/False (False)                 |
| Error             | True if an error occurs.                                                                                                           | BOOL      | True/False (False)                 |
| ErrorID           | Indicates the error code if an error occurs. Refer to <b>Appendices</b> for error code descriptions.                               | DWORD     | 0x0000, 0x3100, 0x3101, 0x3102 (0) |
| CapFlag           | Indicates that the current Capture<br>is valid.<br>(The flag shifts to Ture for one<br>scan cycle and will be reset<br>immediatly) | BOOL      | True/False (False)                 |
| CapValue          | The captured value<br>(Unit: pulse)                                                                                                | LREAL     | -2,147,483,648 ~ 2,147,483,647 (0) |
| CapValuePrevious  | The previous captured value (Unit: pulse)                                                                                          | LREAL     | -2,147,483,648 ~ 2,147,483,647 (0) |
| Delta             | The difference between the<br>previous and the current captured<br>values.<br>(Unit: pulse)                                        | LREAL     | -2,147,483,648 ~ 2,147,483,647 (0) |
| CapLenBeyondFlag  | Indicates that a capture is failed.<br>(The flag shifts to Ture for one<br>scan cycle and will be reset<br>immediatly)             | BOOL      | True/False (False)                 |
| CapLenBeyondCount | Counts the number of the failed Capture.                                                                                           | DWORD     | 0~2,147,483,647 (0)                |

| Name                  | Timing for shifting to True                                                                                                                                                              | Timing for shifting to False                                                                                                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Valid                 | <ul> <li>When the values at the outputs are available.</li> </ul>                                                                                                                        | <ul> <li>When the motion stops.</li> <li>When <i>Enable</i> shifts to False.</li> <li>When <i>Error</i> shifts to True.</li> </ul> |
| Busy                  | • When the instruction is enabled.                                                                                                                                                       | • When <i>Enable</i> shifts to False.                                                                                              |
| Error/ErrorID         | <ul> <li>When the specified axis is already in motion.</li> <li>When an error occurs in the execution conditions or input values for the instruction.(Error code is recorded)</li> </ul> | <ul> <li>When <i>Enable</i> shifts from True to False.<br/>(Error code is cleared)</li> </ul>                                      |
| CapFlag               | Updates value continuously when <i>Valid</i> is True.                                                                                                                                    | Updates value continuously when <i>Valid</i> is True.                                                                              |
| CapValue              | Updates value continuously when <i>Valid</i> is True.                                                                                                                                    | Updates value continuously when <i>Valid</i> is True.                                                                              |
| CapValuePrevi<br>ous  | Updates value continuously when <i>Valid</i> is True.                                                                                                                                    | Updates value continuously when <i>Valid</i> is True.                                                                              |
| Delta                 | Updates value continuously when <i>Valid</i> is True.                                                                                                                                    | Updates value continuously when <i>Valid</i> is True.                                                                              |
| CapLenBeyon<br>dFlag  | Updates value continuously when <i>Valid</i> is True.                                                                                                                                    | Updates value continuously when <i>Valid</i> is True.                                                                              |
| CapLenBeyon<br>dCount | Updates value continuously when <i>Valid</i> is True.                                                                                                                                    | Updates value continuously when <i>Valid</i> is True.                                                                              |

### Outputs Update Timing

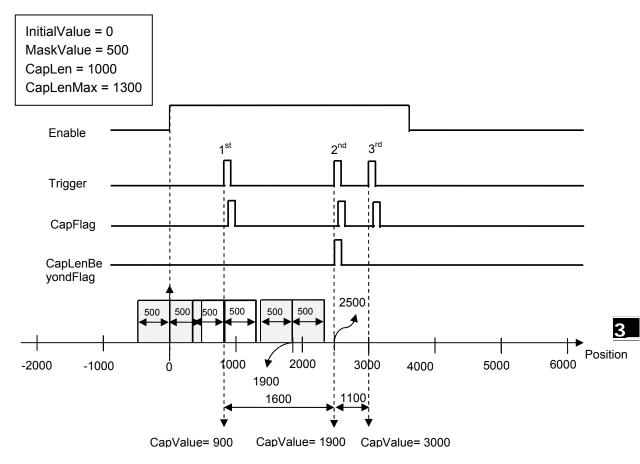
### Timing Diagram




### • Function

### MaskValue

Refer to the below diagram for the explanation of MaskValue:


1. Specify 500 to *MaskValue*, and 0 to *InitialValue*. When *Enable* is set to True, the initial value wille be the center reference of the mask range, and the mask range will be -500~500. Within the mask range, the Capture will be invalid.

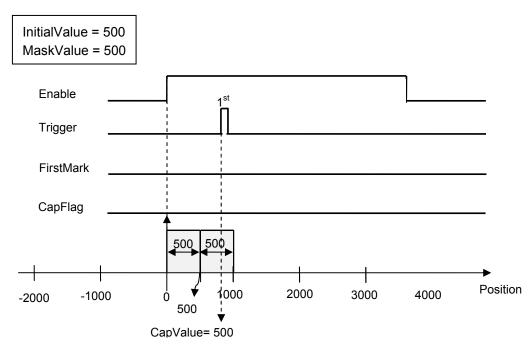
- In below diagram, the 1<sup>st</sup> Capture occurred out of the mask range (-500~500), so the captured value will change from 0 (initial value) to 1500.
- When the captured value changes to 1500, 1500 will become the reference center of the mask range, therefore the capture occurred within 1000~2000 will be invalid. When the 2<sup>nd</sup> Capture is triggered, the captured value will remain 1500.
- 4. When the 3<sup>rd</sup> Capture is triggered out of the mask range between 1000 and 2000, the captured value will be updated as 4000.



### ■ DeltaMin, DeltaMax, CapLenBeyondFlag, CapLenBeyondCount

- 1. DeltaMin/DeltaMax defines the minimum/maximum difference between each Capture.
- The function of *DeltaMin/DeltaMax* is to judge if a trigger mark is missed and the Capture is not executed. For example, if the value of *DeltaMin* is 1000 and *DeltaMax* is 1300, when the detected distance between 2 Capture exceeds 1000~1300, the system will flag this situation as trigger mark missing.
- 3. When a mark missing condition occurs, *CapLenBeyondFlag* shifts to Ture for one scan cycle and will be reset immediately. At the same time *CapLenBeyondCount* counts 1.
- 4. Refer to the below diagram for the explanation of these inputs and outputs:
  - a. *InitialValue*=0, so the mask range is between -500~500. The 1<sup>st</sup> Capture occurs at 900 which is bigger than the mask range, so the captured value is 900.
  - b. The 2<sup>nd</sup> Capture occurs at 2500. Because *DeltaMax* is set to 1300 and *DeltaMin* is set to 1100 (1100-1300), a trigger mark missing condition is flagged for a scan cycle.
  - c. The 3<sup>rd</sup> Capture occurs at 3700. Because the difference between 3700 and the previous captured value 2500 is 1200, which is within the range of 1100~1300 (*DeltaMin/DeltaMax*), also 3700 is out of the mask range 2000~3000, the captured value changes to 3700 in this case, and *CapLenBeyondFlag* will not change to True.

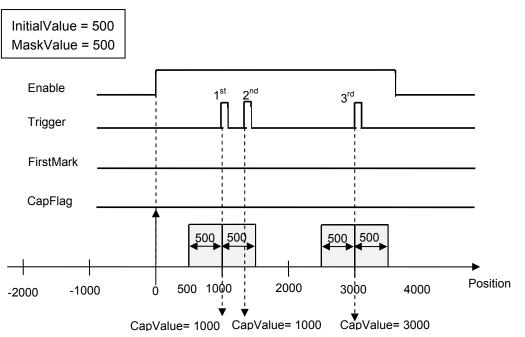



#### ■ FirstMark

FirstMark selects the reference of the mask range.

#### 1. FirstMark=False

When the instruction is enabled with the condition *FirstMark*=False, the instruction will use the initial value (*InitialValue*) as the reference center for the mask range when the first Capture occurs. Refer to below diagram:


- a. When *InitialValue*=600, the initial captured value will be 600 when the instruction is enabled. In this case, 600 will also be the reference center for the mask range when the first Capture occurs.
- b. Because *FirstMark*=False, the mask range will be 100~1100. In the diagram the 1<sup>st</sup> Capture occurs within the mask range, so the captured value will remain the initial value 600.



#### 2. FirstMark=True

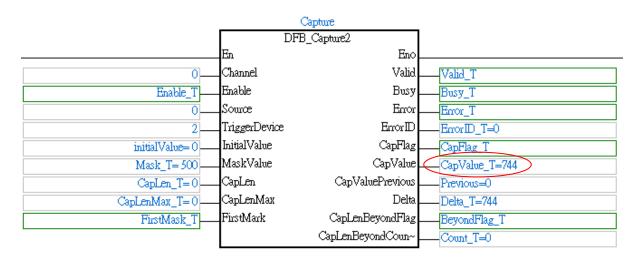
When the instruction is enabled with the condition *FirstMark*=True, the instruction will use the first captured value as the reference center for the mask range when the first Capture occurs. Refer to below diagram:

- a. When InitialValue=600, the initial captured value will be 600 when the instruction is enabled
- b. Because *FirstMark*=True, the instruction will use the first captured value as the reference center for the mask range. The mask function will be invalid until the first capture occurs. In the diagram the 1<sup>st</sup> Capture occurs at 1000, so the captured value changes from 600 to 1000, which is also the reference center of the mask range. The mask range will be 500~1500.
- c. The 2<sup>nd</sup> Capture occurs withn the mask range 500~1500, so the captured value remains 1000.
- d. The 3<sup>rd</sup> Capture occurs at 3000, which is out of the mask range 500~1500, so the captured value changes to 3000.



### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual.*


## • Programming Example

This example uses DFB\_Capture2 and MC\_MoveVelocity to perform the Capture function.

|                |               | Capture           | _            |
|----------------|---------------|-------------------|--------------|
|                | DF            | B_Capture2        |              |
|                | En            | Eno               |              |
| 0              | Channel       | Valid             |              |
| Enable_T       | Enable        | Busy              | Busy_T       |
| 0              | Source        | Error             | Error_T      |
| 2              | TriggerDevice | EnorID            | ErrorID_T=0  |
| initialValue=0 | InitialValue  | CapFlag           | CapFlag_T    |
| Mask_T= 500    | MaskValue     | CapValue          | CapValue_T=0 |
| CapLen_T=0     | CapLen        | CapValuePrevious  | Previous=0   |
| CapLenMax_T=0  | CapLenMax     | Delta             | Delta_T=0    |
| FirstMask_T    | FirstMark     | CapLenBeyondFlag  | BeyondFlag_T |
|                |               | CapLenBeyondCoun~ | Count_T=0    |

| MC_MoveVelocity             |                  |                |            |  |  |
|-----------------------------|------------------|----------------|------------|--|--|
|                             | MC_Move          | eVelocity      |            |  |  |
|                             | En               |                |            |  |  |
| 1                           | Axis             | InVelocity     | InVelocity |  |  |
| M20                         | Execute          | Busy           | M30        |  |  |
| M21                         | ContinuousUpdate | Active         | M31        |  |  |
| 100.000                     | Velocity         | CommandAborted | M32        |  |  |
| 10.000                      | Acceleration     | Error          | M33        |  |  |
| 10.000                      | Deceleration     | ErrorID        | D30=0      |  |  |
| 10.000                      | Jerk             |                |            |  |  |
| Direction_T=0               | Direction        |                |            |  |  |
| BufferMode_T=mcAborting (0) | BufferMode       |                |            |  |  |

- 1. Set *MaskValue*=500 and *InitialValue*=0. When the instruction is enabled, it will take the initial value 0 as the reference center of the mask range. The mask range will be -500~500, and the Capture occurs within this range will be invalid.
- The 1<sup>st</sup> Capture occurs at 744 which is out of the range of -500~500, so the captured value (*CapValue*) shows 744, as the below circled area.



When the captured value changes to 744, the instruction will tak 744 as the reference center for the mask range, i.e. Capture triggered within 244~1244 will not be valid. If the 2<sup>nd</sup> Capture occurs at 1000, the captured value will remain 744.

### Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

|        | Categories    | Name               | Description                                                                                                     |
|--------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
|        |               | DFB_ECATReset      | DFB_ECATReset resets an abnormal EtherCAT network.                                                              |
|        | Communication | DFB ECATServoRead  | DFB_ECATServoRead reads the values of parameters from the Delta servo drive specified on an EtherCAT network.   |
| etwork |               | DFB_ECATServoWrite | DFB_ECATServoWrite writes the values of parameters into the Delta servo drive specified on an EtherCAT network. |
| ž      |               | DFB_SDO_Read       | DFB_SDO_Read reads the values of parameters from the specified OD of the EtherCAT Slave via SDO.                |
|        |               | DFB SDO Write      | DFB_SDO_Write writes the values of parameters into the specified OD of the EtherCAT Slave via SDO.              |

## 3.3.4 Network Function Blocks

3

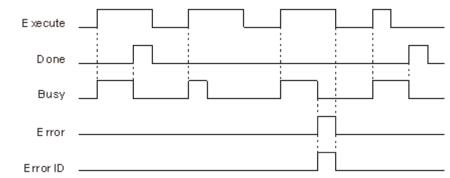
# DFB\_ECATReset

| FB/FC | Description                                        |                       |  |
|-------|----------------------------------------------------|-----------------------|--|
| FB    | DFB_ECATReset resets an abnormal EtherCAT network. |                       |  |
|       | DFB_ECATR<br>En<br>Execute                         | eset<br>Eno.<br>Done. |  |

Busy Error ErrorID

# Inputs

| Name    | Function                                                                                   | Data type | Setting value<br>(Default value) | Timing for updating |
|---------|--------------------------------------------------------------------------------------------|-----------|----------------------------------|---------------------|
| Execute | Executes the instruction to reset an EtherCAT network when <i>Execute</i> changes to True. | BOOL      | True/False<br>(False)            | -                   |


## • Outputs

| Name    | Function                                                                                                    | Data type | Output range (Default value) |
|---------|-------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | Indicates the completion of the network reset process.                                                      | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                      | BOOL      | True/False (False)           |
| Error   | True if an error occurs                                                                                     | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to t <b>Appendices</b> for error code<br>descriptions | DWORD     | 0, 16#3901, 16#3909          |

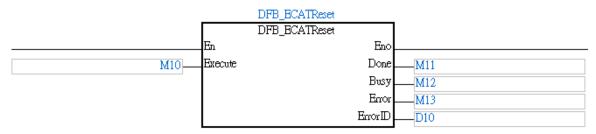
### Outputs Update Timing

| Name          | Timing for shiftng to True                                                                                                                | Timing for shifting to False                                                                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done          | <ul> <li>When network reset process is<br/>completed.</li> </ul>                                                                          | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, it will be True for only one period and immediately shift to False.</li> </ul> |
| Busy          | • When <i>Execute</i> shifts to True                                                                                                      | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                               |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction.(Error code is recorded)</li> </ul> | When Execute shifts from True to False.<br>(Error code is cleared)                                                                                                                                         |

#### Timing Diagram



#### • Function


After an EtherCAT network is reset by DFB\_ECATReset, users will have to use MC\_Power to enable the motion control CPU and the servo drive which are used in the EtherCAT network.

#### Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of "Errorstop", *Error* will change to True and the axis will stop moving. You can refer to *ErrorID* (Error Code) to address the problem.
- Information regarding error codes and indicators are attached as Appendices for a quick reference. The detailed troubleshooting procedures are explained in *AH Motion Controller Operation Manual*.

#### • Programming Example

When the EtherCAT network is abnormal, you can execute DFB\_ECATReset to reset the network. Set M10 to True and confirm if M11 changes to True, indicating the completion of the network reset process.



#### Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_ECATServoRead

FB/FC

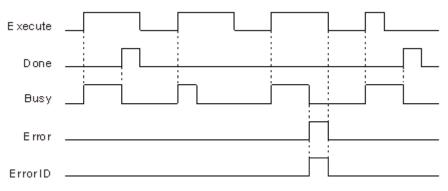
Description

DFB\_ECATServoRead reads the values of parameters from the Delta servo drive specified on an EtherCAT network.

| DFB_ECATServoRead |         |
|-------------------|---------|
| En                | Eno     |
| Axis              | Done    |
| Execute           | Busy    |
| Group             | Error   |
| Parameter         | ErrorID |
| Retry             | Value   |

### Inputs

| Name      | Function                                                                                                                                   | Data type | Setting value<br>(Default value) | Timing for updating                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------|
| Execute   | Executes the instruction when <i>Execute</i> changes to True. The value of the specified parameter will then be read from the servo drive. | BOOL      | True/False<br>(False)            | -                                                            |
| Group     | Group number<br>(Please refer to the user manual of the<br>applied Delta servo drive for more<br>information.)                             | WORD      | 0~9<br>(0)                       | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Parameter | Parameter number<br>(Please refer to the user manual of the<br>applied Delta servo drive for more<br>information.)                         | WORD      | 0~99<br>(0)                      | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Retry     | Number of times for auto-retry when an error occured on reading the parameter values.                                                      | WORD      | 0~65535<br>(0)                   | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |


## Outputs

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the specified data is read.                                                                      | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF<br>(0)       |

| Name          | Timing for changing to True                                                                                                                | Timing for changing to False                                                                                                                                                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done          | <ul> <li>When the value of the specified<br/>parameter is read.</li> </ul>                                                                 | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy          | • When <i>Execute</i> changes to True.                                                                                                     | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                                        |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction. (error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False. (error code is cleared)                                                                                                                                            |

### Outputs Update Timing

#### Timing Diagram



### In-Outs

| Name | Function              | Data type | Setting value<br>(Default value) | Timing for updating                                                    |
|------|-----------------------|-----------|----------------------------------|------------------------------------------------------------------------|
| Axis | Motion axis<br>number | WORD      | K1~Kn* (0)                       | When <i>Execute</i> is rising edge triggered and <i>Busy</i> is False. |

\*Note: Kn refers to the maximum supported axes of different models. For example, AH20EMC-5A supports K1~K32.

### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, Error will change to True and the axis will stop moving. You can refer to ErrorID (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller – Operation Manual.*

## • Programming Example

The example uses DFB\_ECATServoRead to read the values of the specified parameters from the Delta servo drive. For details of the servo parameters, refer to the manuals of the Delta servo drive.

|     | DFB_ECATSe |          |    |
|-----|------------|----------|----|
|     | DFB_ECATSe | ervoRead |    |
|     | En         | Eno.     |    |
| D1  | Axis       | Done     | M6 |
| M5  | Execute    | Busy     | M7 |
| D8  | Group      | Error    | M8 |
| D9  | Parameter  | EnorID   | D8 |
| D10 | Retry      | Value.   | D9 |

- 1. If you want to read the value of parameter P1-44, specifiy 1 to D8 (*Group*), 44 to D9 (*Parameter*) and the desired retry times to D10 (*Retry*).
- 2. Set M5 (*Execute*) to True to read the designated parameter and confirm the read value in D9 (*Value*).

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

## DFB\_ECATServoWrite

## FB/FC

FB

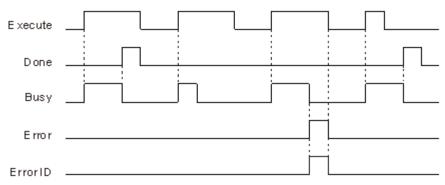
#### Description

DFB\_ECATServoWrite writes the values of parameters into the Delta servo drive specified on an EtherCAT network.

| DFB_ECATServoWrite |         |
|--------------------|---------|
| En                 | Eno     |
| Axis               | Done    |
| Execute            | Busy    |
| Group              | Enor    |
| Parameter          | EntorID |
| Value              |         |
| DataType           |         |

## Inputs

| Name      | Function                                                                                                                                               | Data type | Setting value<br>(Default value) | Timing for updating                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------|
| Execute   | Executes the instruction when<br><i>Execute</i> changes to True. The value<br>of the specified parameter will then be<br>written into the servo drive. | BOOL      | True/False<br>(False)            | -                                                            |
| Group     | Group number<br>(Please refer to the user manual of the<br>applied Delta servo drive for more<br>information.)                                         | WORD      | 0~9<br>(0)                       | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Parameter | Parameter number<br>(Please refer to the user manual of the<br>applied Delta servo drive for more<br>information.)                                     | WORD      | 0~99<br>(0)                      | When Execute shifts to True and <i>Busy</i> is False.        |
| Value     | Value of a parameter<br>(Please refer to the user manual of the<br>applied Delta servo drive for more<br>information.)                                 | DWORD     | 16#0~16#FFFFFF<br>F<br>(0)       | When Execute shifts to True and <i>Busy</i> is False.        |
| DataType  | Data length                                                                                                                                            | WORD      | 0: mc16bits: 0<br>1: mc32bits: 1 | When Execute shifts to True and Busy is False.               |
| Retry     | Number of times for auto-retry when<br>an error occured on reading the<br>parameter values.                                                            | WORD      | 0~65535<br>(0)                   | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

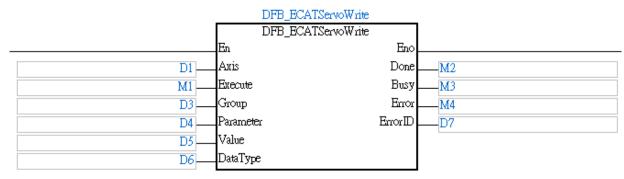

## Outputs

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the specified data is read.                                                                      | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | WORD      | 16#0~16#FFFFFFF<br>(0)       |

#### Outputs Update Timing

| Name          | Timing for changing to True                                                                                                                | Timing for changing to False                                                                                                                                                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done          | <ul> <li>When the value of the specified<br/>parameter is written.</li> </ul>                                                              | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy          | • When <i>Execute</i> changes to True.                                                                                                     | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                                        |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction. (error code is recorded)</li> </ul> | <ul> <li>When <i>Execute</i> shifts from True to False.<br/>(error code is cleared)</li> </ul>                                                                                                                      |

#### Timing Diagram




## • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, Error will change to True and the axis will stop moving. You can refer to ErrorID (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual*.

## • Programming Example

The example uses DFB\_ECATServoWrite to write the values of the specified parameters to the Delta servo drive. For details of the servo drive parameters, refer to the manuals of the Delta servo drive.



- 1. If you want to write 128 to the parameter P1-44, specifiy 1 to D3 (*Group*), 44 to D4 (*Parameter*), 128 to D5 (*Value*) and 0 to D6 (*Data Type*).
- 2. Set M1 (*Execute*) to True to write the value and confirm if M2 (*Done*) changes to True, indicating the completion of the data writing process.

### • Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

3

Retry

# DFB\_SDO\_Read

| FB/FC | Description                                                                                        |               |     |  |  |
|-------|----------------------------------------------------------------------------------------------------|---------------|-----|--|--|
| FB    | D DFB_SDO_Read reads the values of parameters from the specified OD of the EtherCAT Slave via SDO. |               |     |  |  |
|       |                                                                                                    | DFB_SDO_Read  |     |  |  |
|       | En E                                                                                               |               | no  |  |  |
|       | Slave                                                                                              | eAddress Do   | ne  |  |  |
|       | Exec                                                                                               | sute Bu       | sy  |  |  |
|       | ODI                                                                                                | ndex Err      | or. |  |  |
|       | ODS                                                                                                | ubIndex Error | D   |  |  |
|       | Data                                                                                               | Type Da       | ita |  |  |

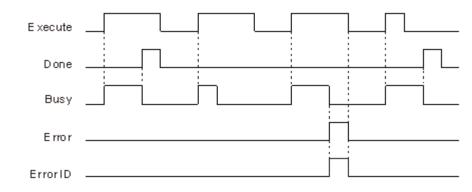
## • Inputs

3

| Name         | Function                                                                                                              | Data type | Setting value<br>(Default value)                                                                                                                                 | Timing for updating                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Execute      | Executes the instruction when <i>Execute</i> changes to True. The value of the specified parameter will then be read. | BOOL      | True/False<br>(False)                                                                                                                                            | -                                                               |
| SlaveAddress | ECAT Slave ID<br>(Refer to manuals of the device that is<br>used as slave)                                            | WORD      | 1~9999<br>(0)                                                                                                                                                    | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| ODIndex      | ECAT Slave ODIndex<br>(Refer to manuals of the device that is<br>used as slave)                                       | WORD      | Refer to<br>manuals of the<br>device that is<br>used as slave<br>(0)                                                                                             | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| ODSubIndex   | ECAT Slave ODSubIndex<br>(Refer to manuals of the device that is<br>used as slave)                                    | WORD      | Refer to<br>manuals of the<br>device that is<br>used as slave<br>(0)                                                                                             | When <i>Execute</i> shifts to True and <i>Busy</i> is False.    |
| DataType     | Bit lenghth of the data to be written in OD                                                                           | WORD      | 3: UINT08bits<br>0: UINT16bits<br>1: UINT32bits<br>2: UINT64bits<br>(reserved)<br>7: SINT08bits<br>4: SINT16bits<br>5: SINT32bits<br>6: SINT64bits<br>(reserved) | When <i>Execute</i> shifts to<br>True and <i>Busy</i> is False. |

## Chapter 3 Motion Control Instructions

|       |                                                                                       |     | 8: FLOAT32bits<br>(reserved)<br>9: FLOAT64bits<br>(reserved)<br>(0) |                                                              |
|-------|---------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------|--------------------------------------------------------------|
| Retry | Number of times for auto-retry when an error occured on reading the parameter values. | INT | 0~100<br>(0)                                                        | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

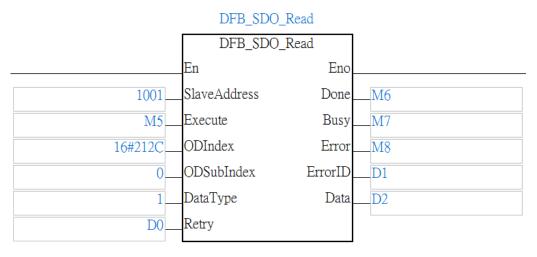

## Outputs

| Name    | Function                                                                                                   | Data type | Output range (Default value)        |
|---------|------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------|
| Done    | True when the specified data is read.                                                                      | BOOL      | True/False (False)                  |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)                  |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)                  |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF<br>(0)              |
| Data    | Data to be read                                                                                            | LREAL     | K-2147483648~<br>K2147483647<br>(0) |

## Outputs Update Timing

| Name          | Timing for changing to True                                                                                                                | Timing for changing to False                                                                                                                                                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done          | <ul> <li>When the value of the specified<br/>parameter is read.</li> </ul>                                                                 | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy          | • When <i>Execute</i> changes to True.                                                                                                     | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                                        |
| Error/ErrorID | <ul> <li>When an error occurs in the execution<br/>conditions or input values for the<br/>instruction. (error code is recorded)</li> </ul> | • When <i>Execute</i> shifts from True to False. (error code is cleared)                                                                                                                                            |

#### Timing Diagram




### Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, Error will change to True and the axis will stop moving. You can refer to ErrorID (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual.*

## • Programming Example

The example uses DFB\_SDO\_Read to read the values of the specified parameters from the slave 1001 (Delta ECAT servo drive). For details of the servo drive parameters and the contents of mapping OD, refer to the relative Delta manuals.



1. If you want to read the value of parameter P1-44, specifiy 0x212C to the filed of the Index and 0 to the field of SubIndex and make sure if the type of 0x212C is UDINT in the table of CoE Object-Dictionary in ECAT Builder. The DataType shuld be 1 and then specify a desired retry times to D0 (*Retry*).

| C | oE Object-Dicti | onary                 |        |
|---|-----------------|-----------------------|--------|
|   | Index           | Name                  | Туре   |
|   | 0x212A          | DRV's Parameter P1-42 | UINT   |
|   | 0x212B          | DRV's Parameter P1-43 | UINT   |
| • | 0x212C          | DRV's Parameter P1-44 | UDINT  |
|   | 0x212D          | DRV's Parameter P1-45 | UDINT  |
|   | 0x212E          | DRV's Parameter P1-46 | UDINT  |
|   | 0x212F          | DRV's Parameter P1-47 | UINT   |
|   | 0x2130          | DRV's Parameter P1-48 | UINT   |
|   | 0x2131          | DRV's Parameter P1-49 | UINT   |
|   | 0x2132          | DRV's Parameter P1-50 | UINT   |
|   | 0x2133          | DRV's Parameter P1-51 | UINT   |
|   | 0x2134          | DRV's Parameter P1-52 | UINT   |
|   | 0x2135          | DRV's Parameter P1-53 | UINT   |
|   | 0x2136          | DRV's Parameter P1-54 | UDINT  |
|   | 0x2137          | DRV's Parameter P1-55 | UINT   |
|   | 0x2138          | DRV's Parameter P1-56 | UINT   |
|   | 0x2139          | DRV's Parameter P1-57 | UINT   |
|   | 0x213A          | DRV's Parameter P1-58 | UINT   |
|   | 0x213B          | DRV's Parameter P1-59 | UINT 🗸 |

2. Set M5 (*Execute*) to True to read the OD data from the designated slave and when M6 (*Done*) changes to True, it indicates reading is complete; confirm the read value in D2 (*Value*).

### • Supported Products

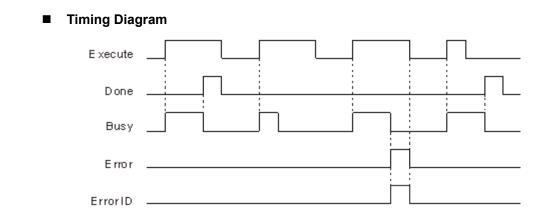
- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A

# DFB\_SDO\_Write

| FB/FC | Description                                                                                        |                   |         |   |  |
|-------|----------------------------------------------------------------------------------------------------|-------------------|---------|---|--|
| FB    | DFB_SDO_Write writes the values of parameters into the specified OD of the EtherCAT Slave via SDO. |                   |         |   |  |
|       |                                                                                                    | DFB_SDO_W         | rite    |   |  |
|       |                                                                                                    | En Eno            |         | - |  |
|       | -                                                                                                  | SlaveAddress Done |         | - |  |
|       | -                                                                                                  | Execute Busy      |         | - |  |
|       | -                                                                                                  | ODIndex           | Error   | - |  |
|       |                                                                                                    | ODSubIndex        | ErrorID | - |  |
|       | -                                                                                                  | Data              |         |   |  |
|       | -                                                                                                  | DataType          |         |   |  |
|       |                                                                                                    | Retry             |         |   |  |

## Inputs

| Name         | Function                                                                                                                 | Data type | Setting value<br>(Default value)                                     | Timing for updating                                          |
|--------------|--------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------|--------------------------------------------------------------|
| Execute      | Executes the instruction when <i>Execute</i> changes to True. The value of the specified parameter will then be written. | BOOL      | True/False<br>(False)                                                | -                                                            |
| SlaveAddress | ECAT Slave ID<br>(Refer to manuals of the device that is<br>used as slave)                                               | WORD      | 1~9999<br>(0)                                                        | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| ODIndex      | ECAT Slave ODIndex<br>(Refer to manuals of the device that is<br>used as slave)                                          | WORD      | Refer to<br>manuals of the<br>device that is<br>used as slave<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| ODSubIndex   | ECAT Slave ODSubIndex<br>(Refer to manuals of the device that is<br>used as slave)                                       | WORD      | Refer to<br>manuals of the<br>device that is<br>used as slave<br>(0) | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| Data         | Data to be written in OD                                                                                                 | LREAL     | K-2147483648~<br>K2147483647<br>(0)                                  | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |
| DataType     | Bit lenghth of the data to be written in OD                                                                              |           | 3: UINT08bits<br>0: UINT16bits<br>1: UINT32bits<br>2: UINT64bits     | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

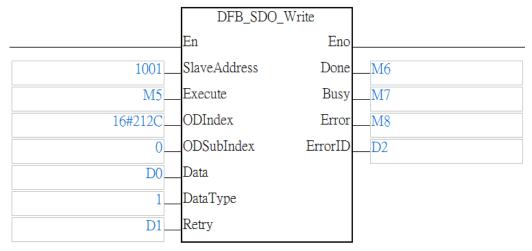

|       |                                                                                       |     | 7: SINT08bits<br>4: SINT16bits<br>5: SINT32bits<br>6: SINT64bits<br>(reserved)<br>8: FLOAT32bits<br>(reserved)<br>9: FLOAT64bits<br>(reserved)<br>(0) |                                                              |
|-------|---------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Retry | Number of times for auto-retry when an error occured on writing the parameter values. | INT | 0~100<br>(0)                                                                                                                                          | When <i>Execute</i> shifts to True and <i>Busy</i> is False. |

## Outputs

| Name    | Function                                                                                                   | Data type | Output range (Default value) |
|---------|------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Done    | True when the specified data is read.                                                                      | BOOL      | True/False (False)           |
| Busy    | True when the instruction is executed.                                                                     | BOOL      | True/False (False)           |
| Error   | True if an error occurs.                                                                                   | BOOL      | True/False (False)           |
| ErrorID | Indicates the error code if an error occurs.<br>Refer to <b>Appendices</b> for error code<br>descriptions. | DWORD     | 16#0~16#FFFFFFF<br>(0)       |

## Outputs Update Timing

| Name          | Timing for changing to True                                                                                      | Timing for changing to False                                                                                                                                                                                        |
|---------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Done          | <ul> <li>When the value of the specified<br/>parameter is written.</li> </ul>                                    | <ul> <li>When <i>Execute</i> shifts from True to False.</li> <li>If <i>Execute</i> is False and <i>Done</i> shifts to True, <i>Done</i> will be True for only one period and immediately shift to False.</li> </ul> |
| Busy          | • When <i>Execute</i> changes to True.                                                                           | <ul><li>When <i>Done</i> shifts to True.</li><li>When <i>Error</i> shifts to True.</li></ul>                                                                                                                        |
| Error/ErrorID | • When an error occurs in the execution conditions or input values for the instruction. (error code is recorded) | • When <i>Execute</i> shifts from True to False. (error code is cleared)                                                                                                                                            |




### • Troubleshooting

- If an error occurs during the execution of the instruction or when the axis is in the state of Errorstop, Error will change to True and the axis will stop moving. You can refer to ErrorID (Error Code) to address the problem.
- Information regarding error codes and indicators and the associated troubleshooting information are attached as Appendices for a quick reference. For the complete troubleshooting of the system, refer to *AH Motion Controller Operation Manual*.

### • Programming Example

The example uses DFB\_SDO\_Write to write the values of the specified parameters in the slave 1001 (Delta ECAT servo drive). For details of the servo drive parameters and the contents of mapping OD, refer to the relative Delta manuals.



- If you want to write 128 to the parameter P1-44, specifiy 0x212C to the filed of the Index and 0 to the field of SubIndex and make sure if the type of 0x212C is UDINT in the table of CoE Object-Dictionary in ECAT Builder. The DataType shuld be 1 and then specify a desired retry times to D1 (Retry).
- 2. Set M5 (Execute) to True to read the OD data from the designated slave and when M6 (Done) changes to True, it indicates writing is complete.

## Supported Products

- AH Motion Controller CPU: AHxxEMC-5A
- AH series motion control modules: AHxxEMC-5A



# Appendices

## **Table of Contents**

| A.1. | Table of Data Type Unit(DUT): Enum A                       | -2 |
|------|------------------------------------------------------------|----|
| A.2. | Error Codes and Troubleshooting A                          | -9 |
| A.2  | 1. Error Codes and IndicatorsA                             | -9 |
|      | AHxxEMC-5AA-:                                              | 11 |
|      | Analog I/O Modules and Temperature Measurement Modules A-4 | 40 |
|      | AH02HC-5A/AH04HC-5A                                        | 42 |
|      | AH05PM-5A/AH10PM-5A/AH15PM-5AA-4                           | 43 |
|      | AH20MC-5A A-4                                              | 44 |
|      | AH10EN-5A / AH15EN-5A A-4                                  | 45 |
|      | AH10SCM-5A / AH15SCM-5A A-4                                | 46 |
|      | AH10DNET-5A                                                | 46 |
|      | AH10PFBM-5A                                                | 47 |
|      | AH10PFBS-5A A-4                                            | 48 |
|      | AH10COPM-5A A-4                                            | 48 |
| A.2  | 2. Error Codes and Troubleshooting A-                      | 50 |
|      | AHxxEMC-5AA-                                               | 50 |
|      | Analog I/O Modules and Temperature Measurement Modules A-8 |    |
|      | AH02HC-5A/AH04HC-5AA-8                                     |    |
|      | AH05PM-5A/AH10PM-5A/AH15PM-5AA-8                           | 89 |
|      | AH20MC-5A A-9                                              | 90 |
|      | AH10EN-5A / AH15EN-5A A-9                                  | 92 |
|      | AH10SCM-5A / AH15SCM-5A A-9                                | 93 |
|      | AH10DNET-5AA-9                                             |    |
|      | AH10PFBM-5A A-9                                            | 94 |
|      | AH10PFBS-5A A-9                                            |    |
|      | AH10COPM-5A A-9                                            |    |
| A.2  |                                                            |    |
|      | Troubleshooting for the software limit errors A-           | 97 |
|      | Troubleshooting for the hardware limit errors A-           | 98 |

## A.1. Table of Data Type Unit(DUT): Enum

| Data Type        | Value                                                                                                                                                                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  | Applicable Function Block<br>Instruction and its Interface |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| eDFB_OUTTYPE     | 0: UD<br>1: PD<br>2: AB                                                                                                                                                                                                                                     | Setting pulse output type<br>0: clockwise /<br>counterclockwise pulse<br>output(counting up/down)<br>1: Pulse+Direction<br>2: A/B-phase                                                                                                                                                                                                                                                                                                      | DFB_AxisSetting2<br>Interface: <i>OutputType</i>           |
| eDFB_UNIT        | 0: Motor<br>1: Machine<br>2: Compound                                                                                                                                                                                                                       | Unit setting of the coordinate<br>system<br>0: motot unit<br>1: mechanical system<br>2: compound unit                                                                                                                                                                                                                                                                                                                                        | FB: DFB_AxisSetting2<br>Interface: <i>Unit</i>             |
| eDFB_MODE        | 4096: AxisIdle<br>256: AxisStopping<br>4353: AbsSeg1<br>4354: RelSeg1<br>4355: AbsSeg2<br>4356: RelSeg2<br>4357: TrSeg1<br>4358: Jog<br>4359: Mpg<br>4362: GearIn<br>4363: CamIn<br>4608: GcodeStopping<br>4609: GcodeRun<br>4864:<br>InterpolationStopping | 0x000: axis indling<br>0x100: axis stopping<br>0x101: absolute single-speed<br>motion<br>0x102: relative single-speed<br>motion<br>0x103: absolute two-speed<br>motion<br>0x104: relative two-speed<br>motion<br>0x105: triggering<br>single-speed motion<br>0x107: Jog motion<br>0x107: Jog motion<br>0x108: manual pulse<br>generator<br>0x108: manual pulse<br>10x108: electronic gear<br>0x108: electronic gear<br>0x108: electronic cam | DFB_AxisStatus<br>Interface: <i>Mode</i>                   |
| eDFB_SDODataType | 0: mc16bits<br>1: mc32bits                                                                                                                                                                                                                                  | 0: writing in 16-bit data<br>1: writing in 32-bit data                                                                                                                                                                                                                                                                                                                                                                                       | DFB_ECATServoWrite<br>Interface: <i>DataType</i>           |

| Data Type        | Value                | Description                   | Applicable Function Block<br>Instruction and its Interface |
|------------------|----------------------|-------------------------------|------------------------------------------------------------|
|                  |                      | 0: reading M devices from     |                                                            |
|                  |                      | SD card                       |                                                            |
|                  | 0: M_DEV             | 5: reading D devices from SD  |                                                            |
| eDFB_SELECT_DEV  | 5: D_DEV             | card                          | DFB_SDDevRead                                              |
|                  | 6: W_DEV             | 6: reading W devices from     | Interface: Device                                          |
|                  | 7: ALL               | SD card                       |                                                            |
|                  |                      | 7: reading (M/D/W) devices    |                                                            |
|                  |                      | from SD card                  |                                                            |
|                  |                      | 0: engaging when Capture 0    |                                                            |
|                  |                      | is triggered                  |                                                            |
|                  |                      | 1: engaging when Capture 1    |                                                            |
|                  |                      | is triggered                  |                                                            |
|                  | 0: ByCapture0        | 2: engaging when Capture 2    |                                                            |
|                  | 1: ByCapture1        | is triggered                  |                                                            |
|                  | 2: ByCapture2        | 3: engaging when Capture 3    |                                                            |
|                  | 3: ByCapture3        | is triggered                  | DFB_GearIn2/DFB_CamIn2                                     |
| eDFB_ENGAGE_TYPE | 4: ByCapture4        | 4: engaging when Capture 4    | Interface: <i>extTrgCAPno</i>                              |
|                  | 5: ByCapture5        | is triggered                  | intendee. extriger i no                                    |
|                  | 6: ByCapture6        | 5: engaging when Capture 5    |                                                            |
|                  | 7: ByCapture7        | is triggered                  |                                                            |
|                  | -1: Direct           | 6: engaging when Capture 6    |                                                            |
|                  |                      | is triggered                  |                                                            |
|                  |                      | 7: engaging when Capture 7    |                                                            |
|                  |                      | is triggered                  |                                                            |
|                  |                      | -1: engaging directly         |                                                            |
|                  |                      | Acceleration curve type       |                                                            |
|                  | 0: Polynomial_0order | 0: 0-order polynomial         | DFB_CamCurve/                                              |
| eDFB_ACC_CURVE   | 1: Polynomial_1order | (constant) curve              | DFB_CamCurve2/                                             |
|                  | 2: SingleHypot       | 1: 1st order polynomial curve | DFB_FlyCut2/                                               |
|                  | 3: Cycloid           | 2: single hypotenuse curve    | DFB_HorizontalFlowWrapper                                  |
|                  |                      | 3: cycloid curve              | Interface: AccCurve                                        |

#### AH Motion Controller – Motion Control Instructions Manual

| Data Type        | Value                                                                                        | Description                                                                                                                                                                                                                                                          | Applicable Function Block Instruction and its Interface                        |
|------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| eDFB_GEN_CURVE   | 0: leftCAM<br>5: rightCAM<br>1: midCAMall<br>9: midCAMzero<br>7: midCAMbegin<br>8: midCAMend | Cam curve type<br>0: left cam<br>5: right cam<br>1: middle cam<br>9: middle cam zero<br>7: middle cam begins<br>8: middle cam ends                                                                                                                                   | DFB_CamCurve /<br>DFB_CamCurve2/<br>DFB_FlyCut2<br>Interface: <i>eCamCurve</i> |
| eDFB_HCNT        | 0: AC0<br>1: AC4<br>2: AC8<br>3: AC12<br>4: AC16<br>6: AC20                                  | <ul> <li>High speed counters for<br/>motion control</li> <li>0: high speed counter 1</li> <li>1: high speed counter 2</li> <li>2: high speed counter 3</li> <li>3: high speed counter 4</li> <li>4: high speed counter 5</li> <li>6: high speed counter 6</li> </ul> | DFB_HCnt<br>Interface: <i>Channel</i>                                          |
| eDFB_HCNT_INTYPE | 0: UD<br>1: PD<br>2: AB<br>3: AB4                                                            | Setting pulse input type<br>0: clockwise /<br>counterclockwise pulse<br>output(counting up/down)<br>1: Pulse+Direction<br>2: A/B-phase<br>3: 4A/B-phase                                                                                                              | DFB_HCnt<br>Interface: <i>InputType</i>                                        |
| eDFB_HTMR        | 0: AC0<br>1: AC4<br>2: AC8<br>3: AC12                                                        | <ul> <li>High speed timers for motion</li> <li>control</li> <li>0: high speed timer 1</li> <li>1: high speed timer 2</li> <li>2: high speed timer 3</li> <li>3: high speed timer 4</li> </ul>                                                                        | DFB_HTmr<br>Interface: <i>Channel</i>                                          |

| Data Type        | Value            | Description                | Applicable Function Block<br>Instruction and its Interface |
|------------------|------------------|----------------------------|------------------------------------------------------------|
|                  | 0: Ch0           | 0: channel 0               |                                                            |
|                  | 1: Ch1           | 1: channel 1               |                                                            |
|                  | 2: Ch2           | 2: channel 2               |                                                            |
|                  | 3: Ch3           | 3: channel 3               | DFB_Compare                                                |
| eDFB_COMP        | 4: Ch4           | 4: channel 4               | Interface: Channel                                         |
|                  | 5: Ch5           | 5: channel 5               |                                                            |
|                  | 6: Ch6           | 6: channel 6               |                                                            |
|                  | 7: Ch7           | 7: channel 7               |                                                            |
|                  | 0: Axis1         | 0: Axis 1                  |                                                            |
|                  | 1: Axis2         | 1: Axis 2                  |                                                            |
|                  | 2: Axis3         | 2: Axis 3                  |                                                            |
|                  | 3: Axis4         | 3: Axis 4                  |                                                            |
| eDFB_COMP_SOURCE | 4: AC0           | 4: high speed counter 1    | DFB_Compare                                                |
|                  | 5: AC4           | 5: high speed counter 2    | Interface: Source                                          |
|                  | 6: AC8           | 6: high speed counter 3    |                                                            |
|                  | 7: AC12          | 7: high speed counter 4    |                                                            |
|                  | 8: AC16          | 8: high speed counter 5    |                                                            |
|                  | 0: Equal         | 0: equal                   |                                                            |
| eDFB_COMP_MODE   | 1: Bigger_Equal  | 1: bigger or equal         | DFB_Compare                                                |
|                  | 2: Smaller_Equal | 2: smaller or equal        | Interface: <i>Mode</i>                                     |
|                  |                  | 0: set Y0.8                |                                                            |
|                  |                  | 1: set Y0.9                |                                                            |
|                  | 0: SetY08        | 2: set Y0.10               |                                                            |
|                  | 1: SetY09        | 3: set Y0.11               |                                                            |
|                  | 2: SetY10        | 4: reset the value of high |                                                            |
| eDFB_COMP_OUTDEV | 3: SetY11        | speed counter 1            | DFB_Compare                                                |
|                  | 4: RstAC0        | 5: reset the value of high | Interface: OutPutDevice                                    |
|                  | 5: RstAC4        | speed counter 2            |                                                            |
|                  | 6: RstAC8        | 6: reset the value of high |                                                            |
|                  | 7: RstAC12       | speed counter 3            |                                                            |
|                  |                  | 7: reset the value of high |                                                            |
|                  |                  | speed counter 4            |                                                            |

#### AH Motion Controller – Motion Control Instructions Manual

| Data Type         | Value     | Description                 | Applicable Function Block<br>Instruction and its Interface |
|-------------------|-----------|-----------------------------|------------------------------------------------------------|
|                   | 0: Ch0    | 0: channel 0                |                                                            |
|                   | 1: Ch1    | 1: channel 1                |                                                            |
|                   | 2: Ch2    | 2: channel 2                | DFB_Capture/                                               |
|                   | 3: Ch3    | 3: channel 3                |                                                            |
| eDFB_CAP          | 4: Ch4    | 4: channel 4                | DFB_Capture2                                               |
|                   | 5: Ch5    | 5: channel 5                | Interface: Source                                          |
|                   | 6: Ch6    | 6: channel 6                |                                                            |
|                   | 7: Ch7    | 7: channel 7                |                                                            |
|                   | 0: X0p0   | 0: trigger by X0.0 signal   |                                                            |
|                   | 1: X0p1   | 1: trigger byX0.1 signal    |                                                            |
|                   | 2: X0p2   | 2: trigger by X0.2 signal   |                                                            |
|                   | 3: X0p3   | 3: trigger by X0.3 signal   |                                                            |
|                   | 8: X0p8   | 8: trigger by X0.8 signal   | DFB_Capture/                                               |
| eDFB_CAP_TRIG_DEV | 9: X0p9   | 9: trigger by X0.9 signal   | DFB_Capture2                                               |
|                   | 10: X0p11 | 10: trigger by X0.10 signal | Interface: TriggerDevice                                   |
|                   | 11: X0p11 | 11: trigger by X0.11 signal |                                                            |
|                   | 12: X0p12 | 12: trigger by X0.12 signal |                                                            |
|                   | 13: X0p13 | 13: trigger by X0.13 signal |                                                            |
|                   | 14: X0p14 | 14: trigger by X0.14 signal |                                                            |
|                   |           | 0: capture axis 1           |                                                            |
|                   |           | 1: capture axis 2           |                                                            |
|                   | 0: Axis1  | 2: capture axis 3           |                                                            |
|                   | 1: Axis2  | 3: capture axis 4           |                                                            |
|                   | 2: Axis3  | 4: capture high speed       |                                                            |
|                   | 3: Axis4  | counter 1                   | DFB_Capture/                                               |
| eDFB_CAP_SOURCE   | 4: AC0    | 5: capture high speed       | DFB_Capture2                                               |
| EDFB_CAF_SOURCE   | 5: AC4    | counter 2                   | Interface: Source                                          |
|                   | 6: AC8    | 6: capture high speed       |                                                            |
|                   | 7: AC12   | counter 3                   |                                                            |
|                   | 8: AC16   | 7: capture high speed       |                                                            |
|                   |           | counter 4                   |                                                            |
|                   |           | 8: capture high speed       |                                                            |
|                   |           | counter 5                   |                                                            |

| Data Type                   | Value                                                                                                                                                                                                                       | Description                                                                                                                                                                                                                                                                                                               | Applicable Function Block<br>Instruction and its Interface |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| eDFB_HALT_CLK_SOU<br>RCE    | 0: slaveEOP<br>1: masterEOP<br>2: extern                                                                                                                                                                                    | <ul><li>0: end point of slave cam</li><li>1: end point of master cam</li><li>2: external input of the<br/>function block</li></ul>                                                                                                                                                                                        | DFB_FlyCut2<br>Interface: <i>Halt_ClkSource</i>            |
| eMC_STATE_MACHINE           | 0: Unknown<br>1: ErrorStop<br>2: Disabled<br>3: Standstill<br>4: Homing<br>5: Stopping<br>6: ContinuousMotion<br>7: SynchronizedMotion<br>8: DiscreteMotion<br>9: Coordinated<br>10: CoordinatedHalt<br>11: CoordinatedStop | 0: Unknown<br>1: ErrorStop<br>2: Disabled<br>3: Standstill<br>4: Homing<br>5: Stopping<br>6: ContinuousMotion<br>7: SynchronizedMotion<br>8: DiscreteMotion<br>9: Coordinated<br>10: CoordinatedHalt<br>11: CoordinatedStop                                                                                               | -                                                          |
| eMC_GROUP_STATE_M<br>ACHINE | 0: GroupDisable<br>256: GroupStandby<br>512: GroupStopping<br>576: GroupMotion<br>768: GroupErrorStop                                                                                                                       | 0: GroupDisable<br>256: GroupStandby<br>512: GroupStopping<br>576: GroupMotion<br>768: GroupErrorStop                                                                                                                                                                                                                     |                                                            |
| eMC_BUFFER_MODE             | 0: mcAborting<br>1: mcBuffered<br>2: mcBlendingLow<br>3: mcBlendingPrevious<br>4: mcBlendingNext<br>5: mcBlendingHigh                                                                                                       | <ul> <li>0: aborting the ongoing motion</li> <li>1: buffering when ongoing motion is done</li> <li>2: blending with the lowest velocity</li> <li>3: blending with the velocity of the previous motion</li> <li>4: blending with the velocity of the next motion</li> <li>5: blending with the highest velocity</li> </ul> | Interface: <i>BufferMode</i>                               |

**A1** 

#### AH Motion Controller – Motion Control Instructions Manual

| Data Type             | Value                                                                                                                               | Description                                                                                                                                                             | Applicable Function Block<br>Instruction and its Interface                                                                                                                                                                                                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eMC_DIRECTION         | <ol> <li>1: mcPositiveDirection</li> <li>2: mcShortestWay</li> <li>3: mcNegativeDirection</li> <li>4: mcCurrentDirection</li> </ol> | <ol> <li>1: positive direction</li> <li>2: shortest way</li> <li>3: negative direction</li> <li>4: current direction</li> </ol>                                         | Interface: Direction                                                                                                                                                                                                                                                               |
| eMC_SOURCE            | 0:<br>mcCommandedValue<br>1: mcSetValue<br>2: mcActualValue                                                                         | 0: command value<br>1: set value<br>2: actual value                                                                                                                     | MC_ReadMotionState<br>Interface: <i>Source</i><br>MC_CamIn/ MC_GearIn/<br>MC_GearInPos<br>Interface: <i>MasterValueSource</i><br>MC_CombineAxes<br>Interface:<br><i>MasterValueSourceM1/</i><br><i>MasterValueSourceM2</i><br>MC_DigitalCamSwitch<br>Interface: <i>ValueSource</i> |
| eMC_SYNC_MODE         | 1: mcRampIn_Shortest<br>2: mcRampIn_Positive<br>3: mcRampIn_Negative                                                                | 1: (reserved)<br>2: (reserved)<br>3: (reserved)                                                                                                                         | MC_GearInPos<br>Interface: <i>SyncMode</i>                                                                                                                                                                                                                                         |
| eMC_START_MODE        | 0: mcJump<br>1: mcRampIn_Shortest<br>2: mcRampIn_Positive<br>3: mcRampIn_Negative<br>4: mcAbsolute<br>5: mcRelative                 | <ul> <li>0: jump in immediately</li> <li>1: shortest path</li> <li>2: positinve path</li> <li>3: negative path</li> <li>4: (reserved)</li> <li>5: (reserved)</li> </ul> | MC_CamIn<br>Interface: <i>StartMode</i>                                                                                                                                                                                                                                            |
| eMC_COMBINE_MODE      | 0: mcAddAxes<br>1: mcSubAxes                                                                                                        | 0: adding<br>1: subtracting                                                                                                                                             | MC_CombineAxes<br>Interface: <i>CombineMode</i>                                                                                                                                                                                                                                    |
| eMC_SERVOOFF_MOD<br>E | 0: mcAborting<br>1: mcBuffered                                                                                                      | 0: Aborting<br>1: mcBuffered                                                                                                                                            | MC_Power<br>Interface: <i>Mode</i>                                                                                                                                                                                                                                                 |

## A.2. Error Codes and Troubleshooting

When an error occurs, you can address the problem by the error codes and indicators and find out the corrective actions for troubleshooting the error. For detailed troubleshooting procedures, refer to *AH Motion Controller– Operation Manual*.

## A.2.1. Error Codes and Indicators

### Columns

| Error code |                                                   | CPU+    | LED indica | LED indicator status |  |
|------------|---------------------------------------------------|---------|------------|----------------------|--|
|            | Description*                                      | Status₽ |            | BUS<br>FAULT         |  |
| 16#000A₀   | Scan timeout↩<br>(SM8: The watchdog timer error)↩ | Stop₽   | Blinke     | OFF₽                 |  |
| 16#000B+3  | The program in the PLC is damaged.                | Stop₽   | ON₽        | OFF₽                 |  |
| ł          | 2                                                 | ↓<br>3  |            | 3                    |  |

| Iter | Items provided in the table |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | Error code                  | If the error occurs in the system, the error code is generated                                                                                                                                                                                                                                                                                                               |  |  |  |
| 2    | Description                 | The description of the error                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 3    | CPU status                  | If the error occurs, the CPU stops running, keeps running, or in the status defined by users.<br><b>Stop</b> : The CPU stops running when the error occurs.<br><b>Keep</b> : The CPU keeps running when the error occurs.<br><b>Self-defined</b> : The status of the CPU can be defined by users.<br>Please refer to section 8.2.1 in Operation Manual for more information. |  |  |  |
| 4    | LED<br>indicator<br>status  | LED indicator status: If the error occurs, the LED indicator is ON, OFF, or Blinking.<br><b>RUN:</b> Operating status of the CPU<br><b>ERROR</b> : Error status of the CPU<br><b>BUS FAULT</b> : Error status of the I/O bus<br><b>SYSTEM</b> : System status of the CPU                                                                                                     |  |  |  |

### • LED indicators

The AH Motion CPU can function as a motion CPU or a motion module. The effective LED indicators are different

according to the applications of AH Motion CPU, either in CPU mode or in Module mode:

| Mode | LED indicator | Description |
|------|---------------|-------------|
|------|---------------|-------------|

#### AH Motion Controller – Motion control Instructions Manual

|        | RUN       | Operating status of the CPU<br>ON: The user program is being executed.<br>OFF: The execution of the user program stops.<br>Blinking: The CPU runs in debug mode.                                                                      |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | ERROR     | Error status of the CPU<br>ON: A serious error occurs in the CPU.<br>OFF: The system is normal.<br>Blinking: A slight error occurs in the CPU.                                                                                        |
| CPU    | BUS FAULT | Error status of the I/O bus<br>ON: A serious error occurs in the I/O bus.<br>OFF: The I/O bus is normal.<br>Blinking: A slight error occurs in the I/O bus.                                                                           |
|        | SYSTEM    | System status of the CPU module<br>ON: The external input/output is forced ON/OFF.<br>OFF: The system is in the default status.<br>Blinking: The CPU module is being reset./The retained values in the devices are being<br>cleared . |
| Modulo | RUN       | Operating status of the motion CPU functioning as a motion module<br>ON: The user program is being executed.<br>OFF: The execution of the user program stops.<br>Blinking: The motion module runs in debug mode.                      |
| Module | ERROR     | Error status of the motion CPU functioning as a motion module<br>ON: A serious error occurs in the module.<br>OFF: The system is normal.<br>Blinking: A slight error occurs in the module.                                            |

#### AHxxEMC-5A

After a program is written into an AH Motion series CPU, the ERROR LED indicator will blink and an error flag will be ON if an error occurs in main program or amotion subroutine. The reason for the error occurring in the main program or amotion subroutine may be that the use of operands (devices) is incorrect, syntax is incorrect, or the setting of motion parameters is incorrect. You can know the reasons for the errors occurring in an AH Motion series CPU by means of the error codes (hexadecimal codes) stored in error registers.

#### Error flags and registers:

|                                                            | Program error | Motion error                                                      |
|------------------------------------------------------------|---------------|-------------------------------------------------------------------|
| SM*: Special auxiliary relay<br>SR*: Special data register | POU           | mn=10~41<br>(10: 1 <sup>st</sup> axis; 41: 32 <sup>nd</sup> axis) |
| Error flag                                                 | -             | AMmn49                                                            |
| Operation error                                            | SM0           | -                                                                 |
| The operation error is locked                              | SM1           | -                                                                 |
| Syntax (Instruction/Operand)<br>check error                | SM5           | -                                                                 |
| Operation error code                                       | SR0           | -                                                                 |
| Operation error address<br>(step)                          | SR1/SR2       | -                                                                 |
| Syntax check error code                                    | SR4           | ARmn41                                                            |
| Syntax check error address<br>(step)                       | SR5/SR6       | -                                                                 |

\*Note: you can refer to AH Motion Controller- Operation Manual for the detailed explanation of SM and SR.

#### Error codes and indicators

|            | Description                                     | CPU<br>Status | LED indicator<br>status |              |
|------------|-------------------------------------------------|---------------|-------------------------|--------------|
| Error code | Description                                     |               | ERROR                   | BUS<br>FAULT |
| 16#000A    | Scan timeout<br>(SM8: The watchdog timer error) | Stop          | Blinking                | Keep         |
| 16#000B    | The program in the PLC is damaged.              | Stop          | ON                      | Keep         |
| 16#000C    | The program downloaded to the PLC is incorrect. | Stop          | Blinking                | Keep         |

| Error code | Description                                                                          | CPU      |          | dicator<br>tus |
|------------|--------------------------------------------------------------------------------------|----------|----------|----------------|
| Endrode    | Description                                                                          | Status   | ERROR    | BUS<br>FAULT   |
| 16#000D    | The CPU parameter is damaged.                                                        | Stop     | ON       | Keep           |
| 16#000E    | The program or the parameter is being downloaded, and therefore the PLC can not run. | Stop     | Blinking | Keep           |
| 16#000F    | The original program in the PLC is damaged.                                          | Continue | Кеер     | Keep           |
| 16#0010    | The access to the memory in the CPU is denied.                                       | Stop     | ON       | Keep           |
| 16#0011    | The PLC ID is incorrect. (SM9)                                                       | Continue | ON       | Keep           |
| 16#0012    | The PLC password is incorrect.                                                       | Continue | ON       | Keep           |
| 16#0013    | The I/O module can not run/stop. (SM10)                                              | Stop     | Кеер     | ON             |
| 16#0014    | The procedure of restoring the system can not be executed. (SM9)                     | Stop     | ON       | ON             |
| 16#0015    | The module table is incorrect. (SM10)                                                | Stop     | ON       | Keep           |
| 16#0016    | The module setting is incorrect. (SM10)                                              | Stop     | ON       | Keep           |
| 16#0017    | The device which is associated with the data register is incorrect. (SM10)           | Stop     | ON       | Keep           |
| 16#0018    | The serial port is abnormal. (SM9)                                                   | Continue | Blinking | Keep           |
| 16#0019    | The USB is abnormal. (SM9)                                                           | Continue | Blinking | Keep           |
| 16#001A    | The contents of the system backup file (.dup file) are incorrect.                    | Continue | Blinking | Keep           |
| 16#001B    | Timed interrupt 0 is set incorrectly.                                                | Stop     | ON       | Keep           |
| 16#001C    | Timed interrupt 1 is set incorrectly.                                                | Stop     | ON       | Keep           |
| 16#001D    | Timed interrupt 2 is set incorrectly.                                                | Stop     | ON       | Keep           |
| 16#001E    | Timed interrupt 3 is set incorrectly.                                                | Stop     | ON       | Keep           |
| 16#001F    | The watchdog timer is set incorrectly.                                               | Stop     | ON       | Keep           |
| 16#0020    | The setting of the fixed scan time is incorrect.                                     | Stop     | ON       | Keep           |
| 16#0021    | The setting of the fixed scan time is incorrect.                                     | Stop     | ON       | Keep           |
| 16#0022    | The CPU parameter downloaded to the PLC is incorrect.                                | Stop     | ON       | Keep           |

|            |                                                                                                                                                 | CPU      | LED indicator<br>status |              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|--------------|
| Error code | Description                                                                                                                                     | Status   | ERROR                   | BUS<br>FAULT |
| 16#0023    | The Y state (STOP->RUN) section in the PLC Parameter Setting window is set incorrectly.                                                         | Stop     | ON                      | Keep         |
| 16#0024    | There is no IO module on the backplane.                                                                                                         | Continue | Keep                    | Keep         |
| 16#0026    | The Communication Ratio box in the Communication Loading of<br>Scan Time (%) section in the PLC Parameter Setting window is set<br>incorrectly. | Stop     | ON                      | Кеер         |
| 16#0027    | The latching auxiliary relay range which is set is incorrect.                                                                                   | Stop     | ON                      | Keep         |
| 16#0028    | The latching data register range which is set is incorrect.                                                                                     | Stop     | ON                      | Keep         |
| 16#0029    | The latching timer range which is set is incorrect.                                                                                             | Stop     | ON                      | Keep         |
| 16#002A    | The latching counter range which is set is incorrect.                                                                                           | Stop     | ON                      | Keep         |
| 16#002B    | The latching 32-bit counter range which is set is incorrect.                                                                                    | Stop     | ON                      | Keep         |
| 16#0033    | The communication setting of COM1 is incorrect. (SM9)                                                                                           | Continue | Blinking                | Keep         |
| 16#0034    | The setting of the station address of COM1 is incorrect. (SM9)                                                                                  | Continue | Blinking                | Keep         |
| 16#0035    | The setting of the communication type of COM1 is incorrect. (SM9)                                                                               | Continue | Blinking                | Keep         |
| 16#0038    | The communication setting of COM2 is incorrect. (SM9)                                                                                           | Continue | Blinking                | Keep         |
| 16#0039    | The setting of the station address of COM2 is incorrect. (SM9)                                                                                  | Continue | Blinking                | Keep         |
| 16#003A    | The setting of the communication type of COM2 is incorrect. (SM9)                                                                               | Continue | Blinking                | Keep         |
| 16#0050    | The memories in the latched special auxiliary relays are abnormal.                                                                              | Stop     | ON                      | Keep         |
| 16#0051    | The latched special data registers are abnormal.                                                                                                | Stop     | ON                      | Keep         |
| 16#0052    | The memories in the latched auxiliary relays are abnormal.                                                                                      | Stop     | ON                      | Keep         |
| 16#0053    | The latched timers are abnormal.                                                                                                                | Stop     | ON                      | Keep         |
| 16#0054    | The latched counters are abnormal.                                                                                                              | Stop     | ON                      | Keep         |
| 16#0055    | The latched 32-bit counters are abnormal.                                                                                                       | Stop     | ON                      | Keep         |
| 16#0056    | The memories in the latched timers are abnormal.                                                                                                | Stop     | ON                      | Keep         |
| 16#0057    | The memories in the latched counters are abnormal.                                                                                              | Stop     | ON                      | Keep         |

| Error code | Description                                                                                                                               | CPU      |          | dicator<br>Itus |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------------|
|            |                                                                                                                                           | Status   | ERROR    | BUS<br>FAULT    |
| 16#0058    | The memories in the latched 32-bit counters are abnormal.                                                                                 | Stop     | ON       | Keep            |
| 16#0059    | The latched data registers are abnormal.                                                                                                  | Stop     | ON       | Keep            |
| 16#005A    | The latched working registers are abnormal.                                                                                               | Stop     | ON       | Keep            |
| 16#005E    | The memory card is initialized incorrectly. (SM453)                                                                                       | Continue | Blinking | Keep            |
| 16#005F    | The data is read from the inexistent file in the memory card, or the data is written into the inexistent file in the memory card. (SM453) | Continue | Blinking | Keep            |
| 16#0061    | The capacity of the memory card is not large enough. (SM453)                                                                              | Continue | Blinking | Keep            |
| 16#0062    | The memory card is write protected. (SM453)                                                                                               | Continue | Blinking | Keep            |
| 16#0063    | An error occurs when the data is written into the memory card.<br>(SM453)                                                                 | Continue | Blinking | Keep            |
| 16#0064    | The file in the memory card can not be read. (SM453)                                                                                      | Continue | Blinking | Keep            |
| 16#0065    | The file in the memory card is a read-only file. (SM453)                                                                                  | Continue | Blinking | Keep            |
| 16#0066    | An error occurs when the system is backupped.                                                                                             | Continue | Blinking | Keep            |
| 16#0067    | The length of the restored system data exceeds the system data length of CPU module                                                       | Continue | Blinking | Кеер            |
| 16#1401    | An error occurs when the data in the I/O module is accessed. (SM9)                                                                        | Stop     | Keep     | ON              |
| 16#1402    | The actual arrangement of the I/O modules is not consistent with the module table. (SM9)                                                  | Stop     | Кеер     | ON              |
| 16#1403    | An error occurs when the data is read from the module. (SM9)                                                                              | Stop     | Keep     | ON              |
| 16#1405    | The setting parameter of the module is not found. (SM9)                                                                                   | Stop     | Keep     | ON              |
| 16#140B    | The number of network modules exceeds the limit. (SM9)                                                                                    | Stop     | Keep     | ON              |
| 16#140C    | The checksum of the high-speed data exchange is incorrect.                                                                                | Stop     | Кеер     | ON              |
| 16#140D    | The ID of the actual power supply module is not the same as the ID of the power supply module set in HWCONFIG. (SM9)                      | Stop     | Кеер     | ON              |
| 16#140E    | The amount of data exchanged at a high speed exceeds the maximum amount supported.                                                        | Stop     | Кеер     | ON              |

|            |                                                                                                                                                                                                 | CPU          | LED indicator<br>status |              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|--------------|
| Error code | Description                                                                                                                                                                                     | Status       | ERROR                   | BUS<br>FAULT |
| 16#140F    | High-speed data exchange error                                                                                                                                                                  | Stop         | Keep                    | ON           |
| 16#1801    | There is no interrupt service routine in the CPU module.                                                                                                                                        | Continue     | Keep                    | Кеер         |
| 16#2000    | There is no END in the program in the PLC. (SM5)                                                                                                                                                | Stop         | Blinking                | Keep         |
| 16#2001    | The program is incorrect. There is a syntax error.                                                                                                                                              | Stop         | Blinking                | Keep         |
| 16#2002    | GOEND is used incorrectly. (SM5)                                                                                                                                                                | Stop         | Blinking                | Keep         |
| 16#2003    | The devices used in the program exceed the range. (SM0/SM5)                                                                                                                                     | Self-defined | Blinking                | Keep         |
| 16#2004    | The part of the program specified by the label used in CJ/JMP is incorrect, or the label is used repeatedly. (SM0/SM5)                                                                          | Stop         | Blinking                | Кеер         |
| 16#2005    | The N value used in MC is not the same as the corresponding N value used in MCR, or the number of N values used in MC is not the same as the number of N values used in MCR. (SM5)              | Stop         | Blinking                | Keep         |
| 16#2006    | The N values used in MC do not start from 0, or the N values used in MC are not continuous. (SM5)                                                                                               | Stop         | Blinking                | Keep         |
| 16#2007    | The operands used in ZRST are not used properly. (SM5)                                                                                                                                          | Stop         | Blinking                | Кеер         |
| 16#200A    | Invalid instruction (SM5)                                                                                                                                                                       | Stop         | Blinking                | Кеер         |
| 16#200B    | The operand <b>n</b> or the other constant operands exceed the range. (SM0/SM5)                                                                                                                 | Self-defined | Blinking                | Keep         |
| 16#200C    | The operands overlap. (SM0/SM5)                                                                                                                                                                 | Self-defined | Blinking                | Keep         |
| 16#200D    | An error occurs when the binary number is converted into the binary-coded decimal number. (SM0/SM5)                                                                                             | Self-defined | Blinking                | Кеер         |
| 16#200E    | The string does not end with 0x00. (SM0/SM5)                                                                                                                                                    | Self-defined | Blinking                | Keep         |
| 16#200F    | The instruction does not support the modification by an index register. (SM5)                                                                                                                   | Stop         | Blinking                | Кеер         |
| 16#2010    | <ol> <li>The instruction does not support the device.</li> <li>Encoding error</li> <li>The instruction is a 16-bit instruction, but the constant operand is<br/>a 32-bit code. (SM5)</li> </ol> | Stop         | Blinking                | Кеер         |

|            |                                                                                                            | CPU          | LED indicator<br>status |              |
|------------|------------------------------------------------------------------------------------------------------------|--------------|-------------------------|--------------|
| Error code | Description                                                                                                | Status       | ERROR                   | BUS<br>FAULT |
| 16#2011    | The number of operands is incorrect. (SM5)                                                                 | Stop         | Blinking                | Keep         |
| 16#2012    | Incorrect division operation (SM0/SM5).                                                                    | Self-defined | Blinking                | Keep         |
| 16#2013    | The value exceeds the range of values which can be represented by the floating-point numbers. (SM0/SM5)    | Self-defined | Blinking                | Кеер         |
| 16#2014    | The task designated by TKON/TKOFF is incorrect, or exceeds the range. (SM5)                                | Stop         | Blinking                | Кеер         |
| 16#2015    | There are more than 32 levels of nested program structures supported by CALL. (SM0)                        | Self-defined | Blinking                | Keep         |
| 16#2016    | There are more than 32 levels of nested program structures supported by FOR/NEXT. (SM0/SM5)                | Self-defined | Blinking                | Keep         |
| 16#2017    | The number of times FOR is used is different from the number of times NEXT is used. (SM5)                  | Stop         | Blinking                | Keep         |
| 16#2018    | There is a label after FEND, but there is no SRET. Or there is SRET, but there is no label. (SM5)          | Stop         | Blinking                | Keep         |
| 16#2019    | The interrupt task is not after FEND. (SM5)                                                                | Stop         | Blinking                | Keep         |
| 16#201A    | IRET/SRET is not after FEND. (SM5)                                                                         | Stop         | Blinking                | Keep         |
| 16#201B    | There is an interrupt task, but there is no IRET.<br>There is IRET, but there is not interrupt task. (SM5) | Stop         | Blinking                | Кеер         |
| 16#201C    | End is not at the end of the program. (SM5)                                                                | Stop         | Blinking                | Keep         |
| 16#201D    | There is CALL, but there is no MAR. (SM5)                                                                  | Stop         | Blinking                | Keep         |
| 16#201E    | The function code used in MODRW is incorrect. (SM102/SM103)                                                | Self-defined | Blinking                | Keep         |
| 16#201F    | The length of the data set in MODRW is incorrect. (SM102/SM103)                                            | Self-defined | Blinking                | Keep         |
| 16#2020    | The communication command received by using MODRW is incorrect. (SM102/SM103)                              | Self-defined | Blinking                | Кеер         |
| 16#2021    | The checksum of the command received by using MODRW is incorrect. (SM102/SM103)                            | Self-defined | Blinking                | Кеер         |

|            |                                                                                              |              | LED indicator |              |
|------------|----------------------------------------------------------------------------------------------|--------------|---------------|--------------|
| Error code | Description                                                                                  | CPU          | status        |              |
|            |                                                                                              | Status       | ERROR         | BUS<br>FAULT |
| 16#2022    | The format of the command used in MODRW does not conform to the ASCII format. (SM102/SM103)  | Self-defined | Blinking      | Keep         |
| 16#2023    | There is a communication timeout when MODRW is executed. (SM102/SM103)                       | Self-defined | Blinking      | Keep         |
| 16#2024    | The setting value of the communication timeout is invalid when RS is executed. (SM102/SM103) | Self-defined | Blinking      | Keep         |
| 16#2025    | There is a communication timeout when RS is executed. (SM102/SM103)                          | Self-defined | Blinking      | Keep         |
| 16#2026    | The interrupt number used in RS is incorrect.                                                | Self-defined | Кеер          | Кеер         |
| 16#2027    | The execution of FWD is abnormal.                                                            | Self-defined | Blinking      | Keep         |
| 16#2028    | The execution of REV is abnormal.                                                            | Self-defined | Blinking      | Keep         |
| 16#2029    | The execution of STOP is abnormal.                                                           | Self-defined | Blinking      | Keep         |
| 16#202A    | The execution of RSDT is abnormal.                                                           | Self-defined | Blinking      | Keep         |
| 16#202B    | The execution of RSTEF is abnormal.                                                          | Self-defined | Blinking      | Keep         |
| 16#202C    | I/O interrupt service routine 0 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#202D    | I/O interrupt service routine 1 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#202E    | I/O interrupt service routine 2 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#202F    | I/O interrupt service routine 3 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#2030    | I/O interrupt service routine 4 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#2031    | I/O interrupt service routine 5 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#2032    | I/O interrupt service routine 6 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#2033    | I/O interrupt service routine 7 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#2034    | I/O interrupt service routine 8 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#2035    | I/O interrupt service routine 9 does not exist.                                              | Stop         | Blinking      | Keep         |
| 16#2036    | I/O interrupt service routine 10 does not exist.                                             | Stop         | Blinking      | Keep         |



| Error code | Description                                           | CPU<br>Status | LED indicator<br>status |              |
|------------|-------------------------------------------------------|---------------|-------------------------|--------------|
|            |                                                       |               | ERROR                   | BUS<br>FAULT |
| 16#2037    | I/O interrupt service routine 11 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2038    | I/O interrupt service routine 12 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2039    | I/O interrupt service routine 13 does not exist.      | Stop          | Blinking                | Keep         |
| 16#203A    | I/O interrupt service routine 14 does not exist.      | Stop          | Blinking                | Keep         |
| 16#203B    | I/O interrupt service routine 15 does not exist.      | Stop          | Blinking                | Keep         |
| 16#203C    | I/O interrupt service routine 16 does not exist.      | Stop          | Blinking                | Keep         |
| 16#203D    | I/O interrupt service routine 17 does not exist.      | Stop          | Blinking                | Keep         |
| 16#203E    | I/O interrupt service routine 18 does not exist.      | Stop          | Blinking                | Keep         |
| 16#203F    | I/O interrupt service routine 19 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2040    | I/O interrupt service routine 20 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2041    | I/O interrupt service routine 21 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2042    | I/O interrupt service routine 22 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2043    | I/O interrupt service routine 23 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2044    | I/O interrupt service routine 24 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2045    | I/O interrupt service routine 25 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2046    | I/O interrupt service routine 26 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2047    | I/O interrupt service routine 27 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2048    | I/O interrupt service routine 28 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2049    | I/O interrupt service routine 29 does not exist.      | Stop          | Blinking                | Keep         |
| 16#204A    | I/O interrupt service routine 30 does not exist.      | Stop          | Blinking                | Keep         |
| 16#204B    | I/O interrupt service routine 31 does not exist.      | Stop          | Blinking                | Keep         |
| 16#2054    | External interrupt service routine 40 does not exist. | Stop          | Blinking                | Keep         |
| 16#2055    | External interrupt service routine 41 does not exist. | Stop          | Blinking                | Keep         |
| 16#2056    | External interrupt service routine 42 does not exist. | Stop          | Blinking                | Keep         |

|            |                                                       | CPU    |          | dicator<br>tus |
|------------|-------------------------------------------------------|--------|----------|----------------|
| Error code | Description                                           | Status | ERROR    | BUS<br>FAULT   |
| 16#2057    | External interrupt service routine 43 does not exist. | Stop   | Blinking | Keep           |
| 16#2058    | External interrupt service routine 44 does not exist. | Stop   | Blinking | Keep           |
| 16#2059    | External interrupt service routine 45 does not exist. | Stop   | Blinking | Keep           |
| 16#205A    | External interrupt service routine 46 does not exist. | Stop   | Blinking | Keep           |
| 16#205B    | External interrupt service routine 47 does not exist. | Stop   | Blinking | Keep           |
| 16#205C    | External interrupt service routine 48 does not exist. | Stop   | Blinking | Keep           |
| 16#205D    | External interrupt service routine 49 does not exist. | Stop   | Blinking | Keep           |
| 16#205E    | External interrupt service routine 50 does not exist. | Stop   | Blinking | Keep           |
| 16#205F    | External interrupt service routine 51 does not exist. | Stop   | Blinking | Keep           |
| 16#2060    | External interrupt service routine 52 does not exist. | Stop   | Blinking | Keep           |
| 16#2061    | External interrupt service routine 53 does not exist. | Stop   | Blinking | Keep           |
| 16#2062    | External interrupt service routine 54 does not exist. | Stop   | Blinking | Keep           |
| 16#2063    | External interrupt service routine 55 does not exist. | Stop   | Blinking | Keep           |
| 16#2064    | External interrupt service routine 56 does not exist. | Stop   | Blinking | Keep           |
| 16#2065    | External interrupt service routine 57 does not exist. | Stop   | Blinking | Keep           |
| 16#2066    | External interrupt service routine 58 does not exist. | Stop   | Blinking | Keep           |
| 16#2067    | External interrupt service routine 59 does not exist. | Stop   | Blinking | Keep           |
| 16#2068    | External interrupt service routine 60 does not exist. | Stop   | Blinking | Keep           |
| 16#2069    | External interrupt service routine 61 does not exist. | Stop   | Blinking | Keep           |
| 16#206A    | External interrupt service routine 62 does not exist. | Stop   | Blinking | Keep           |
| 16#206B    | External interrupt service routine 63 does not exist. | Stop   | Blinking | Keep           |
| 16#206C    | External interrupt service routine 64 does not exist. | Stop   | Blinking | Keep           |
| 16#206D    | External interrupt service routine 65 does not exist. | Stop   | Blinking | Keep           |
| 16#206E    | External interrupt service routine 66 does not exist. | Stop   | Blinking | Keep           |

|            |                                                       | CPU    |          | dicator<br>tus |
|------------|-------------------------------------------------------|--------|----------|----------------|
| Error code | Description                                           | Status | ERROR    | BUS<br>FAULT   |
| 16#206F    | External interrupt service routine 67 does not exist. | Stop   | Blinking | Keep           |
| 16#2070    | External interrupt service routine 68 does not exist. | Stop   | Blinking | Keep           |
| 16#2071    | External interrupt service routine 69 does not exist. | Stop   | Blinking | Keep           |
| 16#2072    | External interrupt service routine 70 does not exist. | Stop   | Blinking | Keep           |
| 16#2073    | External interrupt service routine 71 does not exist. | Stop   | Blinking | Keep           |
| 16#2074    | External interrupt service routine 72 does not exist. | Stop   | Blinking | Keep           |
| 16#2075    | External interrupt service routine 73 does not exist. | Stop   | Blinking | Keep           |
| 16#2076    | External interrupt service routine 74 does not exist. | Stop   | Blinking | Keep           |
| 16#2077    | External interrupt service routine 75 does not exist. | Stop   | Blinking | Keep           |
| 16#2078    | External interrupt service routine 76 does not exist. | Stop   | Blinking | Keep           |
| 16#2079    | External interrupt service routine 77 does not exist. | Stop   | Blinking | Keep           |
| 16#207A    | External interrupt service routine 78 does not exist. | Stop   | Blinking | Keep           |
| 16#207B    | External interrupt service routine 79 does not exist. | Stop   | Blinking | Keep           |
| 16#207C    | External interrupt service routine 80 does not exist. | Stop   | Blinking | Keep           |
| 16#207D    | External interrupt service routine 81 does not exist. | Stop   | Blinking | Keep           |
| 16#207E    | External interrupt service routine 82 does not exist. | Stop   | Blinking | Keep           |
| 16#207F    | External interrupt service routine 83 does not exist. | Stop   | Blinking | Keep           |
| 16#2080    | External interrupt service routine 84 does not exist. | Stop   | Blinking | Keep           |
| 16#2081    | External interrupt service routine 85 does not exist. | Stop   | Blinking | Keep           |
| 16#2082    | External interrupt service routine 86 does not exist. | Stop   | Blinking | Keep           |
| 16#2083    | External interrupt service routine 87 does not exist. | Stop   | Blinking | Keep           |
| 16#2084    | External interrupt service routine 88 does not exist. | Stop   | Blinking | Keep           |
| 16#2085    | External interrupt service routine 89 does not exist. | Stop   | Blinking | Keep           |
| 16#2086    | External interrupt service routine 90 does not exist. | Stop   | Blinking | Keep           |

|            |                                                        | CPU    | LED indicator<br>status |              |
|------------|--------------------------------------------------------|--------|-------------------------|--------------|
| Error code | Description                                            | Status | ERROR                   | BUS<br>FAULT |
| 16#2087    | External interrupt service routine 91 does not exist.  | Stop   | Blinking                | Keep         |
| 16#2088    | External interrupt service routine 92 does not exist.  | Stop   | Blinking                | Keep         |
| 16#2089    | External interrupt service routine 93 does not exist.  | Stop   | Blinking                | Keep         |
| 16#208A    | External interrupt service routine 94 does not exist.  | Stop   | Blinking                | Keep         |
| 16#208B    | External interrupt service routine 95 does not exist.  | Stop   | Blinking                | Keep         |
| 16#208C    | External interrupt service routine 96 does not exist.  | Stop   | Blinking                | Keep         |
| 16#208D    | External interrupt service routine 97 does not exist.  | Stop   | Blinking                | Keep         |
| 16#208E    | External interrupt service routine 98 does not exist.  | Stop   | Blinking                | Keep         |
| 16#208F    | External interrupt service routine 99 does not exist.  | Stop   | Blinking                | Keep         |
| 16#2090    | External interrupt service routine 100 does not exist. | Stop   | Blinking                | Keep         |
| 16#2091    | External interrupt service routine 101 does not exist. | Stop   | Blinking                | Keep         |
| 16#2092    | External interrupt service routine 102 does not exist. | Stop   | Blinking                | Keep         |
| 16#2093    | External interrupt service routine 103 does not exist. | Stop   | Blinking                | Keep         |
| 16#2094    | External interrupt service routine 104 does not exist. | Stop   | Blinking                | Keep         |
| 16#2095    | External interrupt service routine 105 does not exist. | Stop   | Blinking                | Keep         |
| 16#2096    | External interrupt service routine 106 does not exist. | Stop   | Blinking                | Keep         |
| 16#2097    | External interrupt service routine 107 does not exist. | Stop   | Blinking                | Keep         |
| 16#2098    | External interrupt service routine 108 does not exist. | Stop   | Blinking                | Keep         |
| 16#2099    | External interrupt service routine 109 does not exist. | Stop   | Blinking                | Keep         |
| 16#209A    | External interrupt service routine 110 does not exist. | Stop   | Blinking                | Keep         |
| 16#209B    | External interrupt service routine 111 does not exist. | Stop   | Blinking                | Keep         |
| 16#209C    | External interrupt service routine 112 does not exist. | Stop   | Blinking                | Keep         |
| 16#209D    | External interrupt service routine 113 does not exist. | Stop   | Blinking                | Keep         |
| 16#209E    | External interrupt service routine 114 does not exist. | Stop   | Blinking                | Keep         |

|            |                                                        | CPU    | LED in sta | dicator<br>tus |
|------------|--------------------------------------------------------|--------|------------|----------------|
| Error code | Description                                            | Status | ERROR      | BUS<br>FAULT   |
| 16#209F    | External interrupt service routine 115 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A0    | External interrupt service routine 116 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A1    | External interrupt service routine 117 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A2    | External interrupt service routine 118 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A3    | External interrupt service routine 119 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A4    | External interrupt service routine 120 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A5    | External interrupt service routine 121 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A6    | External interrupt service routine 122 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A7    | External interrupt service routine 123 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A8    | External interrupt service routine 124 does not exist. | Stop   | Blinking   | Keep           |
| 16#20A9    | External interrupt service routine 125 does not exist. | Stop   | Blinking   | Keep           |
| 16#20AA    | External interrupt service routine 126 does not exist. | Stop   | Blinking   | Keep           |
| 16#20AB    | External interrupt service routine 127 does not exist. | Stop   | Blinking   | Keep           |
| 16#20AC    | External interrupt service routine 128 does not exist. | Stop   | Blinking   | Keep           |
| 16#20AD    | External interrupt service routine 129 does not exist. | Stop   | Blinking   | Keep           |
| 16#20AE    | External interrupt service routine 130 does not exist. | Stop   | Blinking   | Keep           |
| 16#20AF    | External interrupt service routine 131 does not exist. | Stop   | Blinking   | Keep           |
| 16#20B0    | External interrupt service routine 132 does not exist. | Stop   | Blinking   | Keep           |
| 16#20B1    | External interrupt service routine 133 does not exist. | Stop   | Blinking   | Keep           |
| 16#20B2    | External interrupt service routine 134 does not exist. | Stop   | Blinking   | Keep           |
| 16#20B3    | External interrupt service routine 135 does not exist. | Stop   | Blinking   | Keep           |
| 16#20B4    | External interrupt service routine 136 does not exist. | Stop   | Blinking   | Keep           |
| 16#20B5    | External interrupt service routine 137 does not exist. | Stop   | Blinking   | Keep           |
| 16#20B6    | External interrupt service routine 138 does not exist. | Stop   | Blinking   | Keep           |

|            |                                                        | CPU    |          | dicator<br>tus |
|------------|--------------------------------------------------------|--------|----------|----------------|
| Error code | Description                                            | Status | ERROR    | BUS<br>FAULT   |
| 16#20B7    | External interrupt service routine 139 does not exist. | Stop   | Blinking | Keep           |
| 16#20B8    | External interrupt service routine 140 does not exist. | Stop   | Blinking | Keep           |
| 16#20B9    | External interrupt service routine 141 does not exist. | Stop   | Blinking | Keep           |
| 16#20BA    | External interrupt service routine 142 does not exist. | Stop   | Blinking | Keep           |
| 16#20BB    | External interrupt service routine 143 does not exist. | Stop   | Blinking | Keep           |
| 16#20BC    | External interrupt service routine 144 does not exist. | Stop   | Blinking | Keep           |
| 16#20BD    | External interrupt service routine 145 does not exist. | Stop   | Blinking | Keep           |
| 16#20BE    | External interrupt service routine 146 does not exist. | Stop   | Blinking | Keep           |
| 16#20BF    | External interrupt service routine 147 does not exist. | Stop   | Blinking | Keep           |
| 16#20C0    | External interrupt service routine 148 does not exist. | Stop   | Blinking | Keep           |
| 16#20C1    | External interrupt service routine 149 does not exist. | Stop   | Blinking | Keep           |
| 16#20C2    | External interrupt service routine 150 does not exist. | Stop   | Blinking | Keep           |
| 16#20C3    | External interrupt service routine 151 does not exist. | Stop   | Blinking | Keep           |
| 16#20C4    | External interrupt service routine 152 does not exist. | Stop   | Blinking | Keep           |
| 16#20C5    | External interrupt service routine 153 does not exist. | Stop   | Blinking | Keep           |
| 16#20C6    | External interrupt service routine 154 does not exist. | Stop   | Blinking | Keep           |
| 16#20C7    | External interrupt service routine 155 does not exist. | Stop   | Blinking | Keep           |
| 16#20C8    | External interrupt service routine 156 does not exist. | Stop   | Blinking | Keep           |
| 16#20C9    | External interrupt service routine 157 does not exist. | Stop   | Blinking | Keep           |
| 16#20CA    | External interrupt service routine 158 does not exist. | Stop   | Blinking | Keep           |
| 16#20CB    | External interrupt service routine 159 does not exist. | Stop   | Blinking | Keep           |
| 16#20CC    | External interrupt service routine 160 does not exist. | Stop   | Blinking | Keep           |
| 16#20CD    | External interrupt service routine 161 does not exist. | Stop   | Blinking | Keep           |
| 16#20CE    | External interrupt service routine 162 does not exist. | Stop   | Blinking | Keep           |

|            |                                                        | CDU           |          | dicator<br>tus |
|------------|--------------------------------------------------------|---------------|----------|----------------|
| Error code | Description                                            | CPU<br>Status | ERROR    | BUS<br>FAULT   |
| 16#20CF    | External interrupt service routine 163 does not exist. | Stop          | Blinking | Keep           |
| 16#20D0    | External interrupt service routine 164 does not exist. | Stop          | Blinking | Keep           |
| 16#20D1    | External interrupt service routine 165 does not exist. | Stop          | Blinking | Keep           |
| 16#20D2    | External interrupt service routine 166 does not exist. | Stop          | Blinking | Keep           |
| 16#20D3    | External interrupt service routine 167 does not exist. | Stop          | Blinking | Keep           |
| 16#20D4    | External interrupt service routine 168 does not exist. | Stop          | Blinking | Keep           |
| 16#20D5    | External interrupt service routine 169 does not exist. | Stop          | Blinking | Keep           |
| 16#20D6    | External interrupt service routine 170 does not exist. | Stop          | Blinking | Keep           |
| 16#20D7    | External interrupt service routine 171 does not exist. | Stop          | Blinking | Keep           |
| 16#20D8    | External interrupt service routine 172 does not exist. | Stop          | Blinking | Keep           |
| 16#20D9    | External interrupt service routine 173 does not exist. | Stop          | Blinking | Keep           |
| 16#20DA    | External interrupt service routine 174 does not exist. | Stop          | Blinking | Keep           |
| 16#20DB    | External interrupt service routine 175 does not exist. | Stop          | Blinking | Keep           |
| 16#20DC    | External interrupt service routine 176 does not exist. | Stop          | Blinking | Keep           |
| 16#20DD    | External interrupt service routine 177 does not exist. | Stop          | Blinking | Keep           |
| 16#20DE    | External interrupt service routine 178 does not exist. | Stop          | Blinking | Keep           |
| 16#20DF    | External interrupt service routine 179 does not exist. | Stop          | Blinking | Keep           |
| 16#20E0    | External interrupt service routine 180 does not exist. | Stop          | Blinking | Keep           |
| 16#20E1    | External interrupt service routine 181 does not exist. | Stop          | Blinking | Keep           |
| 16#20E2    | External interrupt service routine 182 does not exist. | Stop          | Blinking | Keep           |
| 16#20E3    | External interrupt service routine 183 does not exist. | Stop          | Blinking | Keep           |
| 16#20E4    | External interrupt service routine 184 does not exist. | Stop          | Blinking | Keep           |
| 16#20E5    | External interrupt service routine 185 does not exist. | Stop          | Blinking | Keep           |
| 16#20E6    | External interrupt service routine 186 does not exist. | Stop          | Blinking | Keep           |

|            | r code Description CPU                                 | CPU    | LED indicator<br>status |              |
|------------|--------------------------------------------------------|--------|-------------------------|--------------|
| Error code | Description                                            | Status | ERROR                   | BUS<br>FAULT |
| 16#20E7    | External interrupt service routine 187 does not exist. | Stop   | Blinking                | Keep         |
| 16#20E8    | External interrupt service routine 188 does not exist. | Stop   | Blinking                | Keep         |
| 16#20E9    | External interrupt service routine 189 does not exist. | Stop   | Blinking                | Keep         |
| 16#20EA    | External interrupt service routine 190 does not exist. | Stop   | Blinking                | Keep         |
| 16#20EB    | External interrupt service routine 191 does not exist. | Stop   | Blinking                | Keep         |
| 16#20EC    | External interrupt service routine 192 does not exist. | Stop   | Blinking                | Keep         |
| 16#20ED    | External interrupt service routine 193 does not exist. | Stop   | Blinking                | Keep         |
| 16#20EE    | External interrupt service routine 194 does not exist. | Stop   | Blinking                | Keep         |
| 16#20EF    | External interrupt service routine 195 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F0    | External interrupt service routine 196 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F1    | External interrupt service routine 197 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F2    | External interrupt service routine 198 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F3    | External interrupt service routine 199 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F4    | External interrupt service routine 200 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F5    | External interrupt service routine 201 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F6    | External interrupt service routine 202 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F7    | External interrupt service routine 203 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F8    | External interrupt service routine 204 does not exist. | Stop   | Blinking                | Keep         |
| 16#20F9    | External interrupt service routine 205 does not exist. | Stop   | Blinking                | Keep         |
| 16#20FA    | External interrupt service routine 206 does not exist. | Stop   | Blinking                | Keep         |
| 16#20FB    | External interrupt service routine 207 does not exist. | Stop   | Blinking                | Keep         |
| 16#20FC    | External interrupt service routine 208 does not exist. | Stop   | Blinking                | Keep         |
| 16#20FD    | External interrupt service routine 209 does not exist. | Stop   | Blinking                | Keep         |
| 16#20FE    | External interrupt service routine 210 does not exist. | Stop   | Blinking                | Keep         |

|            |                                                        | CPU    |          | dicator<br>tus |
|------------|--------------------------------------------------------|--------|----------|----------------|
| Error code | Description                                            | Status | ERROR    | BUS<br>FAULT   |
| 16#20FF    | External interrupt service routine 211 does not exist. | Stop   | Blinking | Keep           |
| 16#2100    | External interrupt service routine 212 does not exist. | Stop   | Blinking | Keep           |
| 16#2101    | External interrupt service routine 213 does not exist. | Stop   | Blinking | Keep           |
| 16#2102    | External interrupt service routine 214 does not exist. | Stop   | Blinking | Keep           |
| 16#2103    | External interrupt service routine 215 does not exist. | Stop   | Blinking | Keep           |
| 16#2104    | External interrupt service routine 216 does not exist. | Stop   | Blinking | Keep           |
| 16#2105    | External interrupt service routine 217 does not exist. | Stop   | Blinking | Keep           |
| 16#2106    | External interrupt service routine 218 does not exist. | Stop   | Blinking | Keep           |
| 16#2107    | External interrupt service routine 219 does not exist. | Stop   | Blinking | Keep           |
| 16#2108    | External interrupt service routine 220 does not exist. | Stop   | Blinking | Keep           |
| 16#2109    | External interrupt service routine 221 does not exist. | Stop   | Blinking | Keep           |
| 16#210A    | External interrupt service routine 222 does not exist. | Stop   | Blinking | Keep           |
| 16#210B    | External interrupt service routine 223 does not exist. | Stop   | Blinking | Keep           |
| 16#210C    | External interrupt service routine 224 does not exist. | Stop   | Blinking | Keep           |
| 16#210D    | External interrupt service routine 225 does not exist. | Stop   | Blinking | Keep           |
| 16#210E    | External interrupt service routine 226 does not exist. | Stop   | Blinking | Keep           |
| 16#210F    | External interrupt service routine 227 does not exist. | Stop   | Blinking | Keep           |
| 16#2110    | External interrupt service routine 228 does not exist. | Stop   | Blinking | Keep           |
| 16#2111    | External interrupt service routine 229 does not exist. | Stop   | Blinking | Keep           |
| 16#2112    | External interrupt service routine 230 does not exist. | Stop   | Blinking | Keep           |
| 16#2113    | External interrupt service routine 231 does not exist. | Stop   | Blinking | Keep           |
| 16#2114    | External interrupt service routine 232 does not exist. | Stop   | Blinking | Keep           |
| 16#2115    | External interrupt service routine 233 does not exist. | Stop   | Blinking | Keep           |
| 16#2116    | External interrupt service routine 234 does not exist. | Stop   | Blinking | Keep           |

| Error code | Description                                                                                  | CPU      | LED in sta | dicator<br>tus |
|------------|----------------------------------------------------------------------------------------------|----------|------------|----------------|
| Endrode    | Description                                                                                  | Status   | ERROR      | BUS<br>FAULT   |
| 16#2117    | External interrupt service routine 235 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2118    | External interrupt service routine 236 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2119    | External interrupt service routine 237 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#211A    | External interrupt service routine 238 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#211B    | External interrupt service routine 239 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#211C    | External interrupt service routine 240 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#211D    | External interrupt service routine 241 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#211E    | External interrupt service routine 242 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#211F    | External interrupt service routine 243 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2120    | External interrupt service routine 244 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2121    | External interrupt service routine 245 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2122    | External interrupt service routine 246 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2123    | External interrupt service routine 247 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2124    | External interrupt service routine 248 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2125    | External interrupt service routine 249 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2126    | External interrupt service routine 250 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2127    | External interrupt service routine 251 does not exist.                                       | Stop     | Blinking   | Keep           |
| 16#2128    | An action in a sequential function chart is incorrectly assigned qualifiers related to time. | Stop     | Blinking   | Keep           |
| 16#2129    | The modifier R is assigned to an action in a sequential function chart incorrectly.          | Stop     | Blinking   | Keep           |
| 16#3040    | Data in the E-CAM exceeds the range or does not exist.                                       | Continue | Кеер       | Keep           |
| 16#3100    | Input parameters exceed the available setting range.                                         | Continue | Blinking   | Keep           |
| 16#3102    | An error occurs in a sub-function block inside the function block.                           | Continue | Blinking   | Keep           |

| Error code | Description                                                                                          | CPU      | LED indicator<br>status |              |
|------------|------------------------------------------------------------------------------------------------------|----------|-------------------------|--------------|
|            | Description                                                                                          | Status   | ERROR                   | BUS<br>FAULT |
| 16#3103    | The distance between the detecting sensors used for identifying exeptional bags is a negative value. | Continue | Blinking                | Keep         |
| 16#3104    | Phasing is executed again before the previous phasing is completed.                                  | Continue | Blinking                | Keep         |
| 16#3105    | Superimposing is executed again before the previous superimposing is completed.                      | Continue | Blinking                | Keep         |
| 16#3106    | Chain position compensation is triggered before the previous compensation is completed.              | Continue | Blinking                | Keep         |
| 16#3107    | Film axis position compensation is triggered before the previous compensation is completed.          | Continue | Blinking                | Keep         |
| 16#3108    | Knife position compensation is triggered before the previous compensation is completed.              | Continue | Blinking                | Keep         |
| 16#3400    | Motion axis number is incorrect.                                                                     | Continue | Keep                    | Keep         |
| 16#3401    | SDO Data Type setting error (0~199)                                                                  | Continue | Keep                    | Keep         |
| 16#3404    | The number of the counting channel exceeds the available setting range.                              | Continue | Keep                    | Keep         |
| 16#3405    | A negative value is given to Velocity.                                                               | Continue | Blinking                | Keep         |
| 16#340A    | Homing mode setting error.                                                                           | Continue | Blinking                | Keep         |
| 16#340B    | Target distance is 0.                                                                                | Continue | Blinking                | Keep         |
| 16#3410    | User unit setting error; or the output pulse type setting error.                                     | Continue | Blinking                | Keep         |
| 16#3411    | Velocity factor overrides setting error.                                                             | Continue | Blinking                | Keep         |
| 16#3414    | Pulse type setting error in DFB_HCnt.                                                                | Continue | Кеер                    | Keep         |
| 16#3415    | Comparison confdition setting error in DFB_Compare.                                                  | Continue | Кеер                    | Keep         |
| 16#3419    | Master axis position is negative value.                                                              | Continue | Blinking                | Keep         |
| 16#341B    | Maxmimum speed setting error.                                                                        | Continue | Blinking                | Keep         |
| 16#3429    | G-code compiling error.                                                                              | Continue | Keep                    | Keep         |

|            |                                                                                          | CPU      | LED indicator<br>status |              |
|------------|------------------------------------------------------------------------------------------|----------|-------------------------|--------------|
| Error code | Description                                                                              | Status   | ERROR                   | BUS<br>FAULT |
| 16#342A    | G-code pogram source error.                                                              | Continue | Кеер                    | Keep         |
| 16#342B    | G-code ID setting error.                                                                 | Continue | Keep                    | Keep         |
| 16#342C    | Gcode is in operation.                                                                   | Continue | Кеер                    | Keep         |
| 16#342D    | Gcode grammer is being checked.                                                          | Continue | Keep                    | Keep         |
| 16#342E    | The setting of the Gcode Filter is out of the range.                                     | Continue | Keep                    | Keep         |
| 16#3430    | This group number already exists.                                                        | Continue | Keep                    | Keep         |
| 16#3431    | Motion axis number is repeated in the same group in DFB_GroupEnable.                     | Continue | Кеер                    | Кеер         |
| 16#3432    | The specified group number does not exist.                                               | Continue | Keep                    | Keep         |
| 16#3433    | The number of axes is insufficient for the specified group axes motion.                  | Continue | Кеер                    | Кеер         |
| 16#3434    | DFB_GroupDisable is executed when group motion is in progress.                           | Continue | Keep                    | Keep         |
| 16#3435    | Motion axis number is repeated between different groups when DFB_GroupEnable is enabled. | Continue | Кеер                    | Кеер         |
| 16#3436    | The axis number of the first order should be a positive number other than 0.             | Continue | Кеер                    | Кеер         |
| 16#3437    | The group number exceeds the setting range.                                              | Continue | Кеер                    | Keep         |
| 16#3438    | The designated group is in "ErrorStop" state.                                            | Continue | Keep                    | Keep         |
| 16#343A    | Group is executing the function block ImmediateStop.                                     | Continue | Keep                    | Keep         |
| 16#343B    | Errors occur in other axes of the group.                                                 | Continue | Blinking                | Keep         |
| 16#3461    | The required communication parameters for PDO settings are not specified.                | Continue | Blinking                | Кеер         |
| 16#3463    | The designated ECAT Slave does not exist.                                                | Continue | Кеер                    | Keep         |
| 16#3500    | The axis is not in "Ready" state.                                                        | Continue | Blinking                | Keep         |
| 16#3501    | The selected channel has been used in FB.                                                | Continue | Blinking                | Keep         |
| 16#3502    | It is not allowed to set positions.                                                      | Continue | Blinking                | Keep         |
| 16#3505    | An error occurs when writing cam data.                                                   | Continue | Keep                    | Keep         |
| 16#3506    | The axis is in "Coordinated" state.                                                      | Continue | Blinking                | Keep         |

|            |                                                                                             | CPU      | LED indicator<br>status |              |
|------------|---------------------------------------------------------------------------------------------|----------|-------------------------|--------------|
| Error code | Description                                                                                 | Status   | ERROR                   | BUS<br>FAULT |
| 16#3507    | The axis is in "ErrorStop" state.                                                           | Continue | Blinking                | Keep         |
| 16#3508    | The axis is not in "StandStill" state.                                                      | Continue | Blinking                | Keep         |
| 16#3509    | The axis is in "Stopping" state.                                                            | Continue | Blinking                | Keep         |
| 16#350B    | The time to acceleration is too short.                                                      | Continue | Blinking                | Keep         |
| 16#350C    | The time to deceleration is too short.                                                      | Continue | Blinking                | Keep         |
| 16#350D    | The CAM data length for reading is out of the setting range.                                | Continue | Blinking                | Keep         |
| 16#350E    | The CAM data length for writing is out of the setting range.                                | Continue | Blinking                | Keep         |
| 16#350F    | The axis is in "Synchronized" state.                                                        | Continue | Blinking                | Keep         |
| 16#3512    | Cam data does not exist.                                                                    | Continue | Keep                    | Keep         |
| 16#3526    | The movement error occurs before the axis.                                                  | Continue | Blinking                | Keep         |
| 16#3600    | The state of axis is incorrect.                                                             | Continue | Blinking                | Keep         |
| 16#3601    | The limit of the number of buffering instructions is reached                                | Continue | Blinking                | Keep         |
| 16#3602    | A multiple instructions which are not allowed to be executed at the same time are executed. | Continue | Blinking                | Кеер         |
| 16#3603    | Buffermode parameter setting error                                                          | Continue | Blinking                | Keep         |
| 16#3604    | Errors occur on the motion direction of the function block                                  | Continue | Blinking                | Keep         |
| 16#3605    | P1 exceeds the available range                                                              | Continue | Blinking                | Keep         |
| 16#3606    | P2 exceeds the available range                                                              | Continue | Blinking                | Keep         |
| 16#3607    | V1 exceeds the available range                                                              | Continue | Blinking                | Keep         |
| 16#3608    | V2 exceeds the available range                                                              | Continue | Blinking                | Keep         |
| 16#3612    | It has reached the positive limit.                                                          | Continue | Blinking                | Keep         |
| 16#3613    | It has reached the negative limit.                                                          | Continue | Blinking                | Keep         |
| 16#3614    | The servo limit is exceeded.                                                                | Continue | Blinking                | Keep         |
| 16#3617    | The acceleration exceeds the setting range.                                                 | Continue | Blinking                | Keep         |
| 16#3618    | The disceleration exceeds the setting range.                                                | Continue | Blinking                | Keep         |
| 16#3619    | The station address does not exist.                                                         | Continue | Keep                    | Keep         |
| 16#3620    | The schedule buffer section of SDO is full.                                                 | Continue | Keep                    | Keep         |
| 16#3622    | SDO OD data type is not matched.                                                            | Continue | Keep                    | Keep         |

|            |                                                                                     | CPU      |          | dicator<br>tus |
|------------|-------------------------------------------------------------------------------------|----------|----------|----------------|
| Error code | Description                                                                         | Status   | ERROR    | BUS<br>FAULT   |
| 16#3623    | SDO is overtime.                                                                    | Continue | Keep     | Keep           |
| 16#3624    | SDO data written error                                                              | Continue | Keep     | Keep           |
| 16#3625    | SDO data reading error                                                              | Continue | Keep     | Keep           |
| 16#3626    | SDO retry time exceeds the setting range.                                           | Continue | Keep     | Keep           |
| 16#3800    | Motion network disconnected during the execution of the instruction.                | Continue | Blinking | Кеер           |
| 16#3801    | EtherCAT axis error occurs on the motion network                                    | Continue | Blinking | Keep           |
| 16#3900    | Failed to re-connect to the motion network.                                         | Continue | Blinking | Keep           |
| 16#3904    | Motion network master can not read Slave parameters via SDO.                        | Continue | Blinking | Keep           |
| 16#3905    | Motion network master can not write Slave parameters via SDO.                       | Continue | Blinking | Keep           |
| 16#3906    | Torque limit setting error in MC_SetTorqueLimit                                     | Continue | Blinking | Keep           |
| 16#3907    | The function is not available for imaginary axes.                                   | Continue | Blinking | Keep           |
| 16#3909    | The motion network is currently executing other network functions.                  | Continue | Blinking | Keep           |
| 16#390C    | Error occurred on the axis during operation.                                        | Continue | Blinking | Keep           |
| 16#3910    | Disengage when the axes are not in engaging state.                                  | Continue | Blinking | Keep           |
| 16#3911    | Software limit error                                                                | Continue | Blinking | Keep           |
| 16#3912    | The value in the input contact of the function block exceeds the rotary axis range. | Continue | Blinking | Keep           |
| 16#3913    | Synchronization for engagement fails                                                | Continue | Blinking | Keep           |
| 16#3914    | GearInPos velocity is set too small                                                 | Continue | Blinking | Keep           |
| 16#3915    | GearInPos jerk is set too small                                                     | Continue | Blinking | Keep           |
| 16#3916    | GearInPos engagement time is set too small                                          | Continue | Blinking | Keep           |
| 16#3917    | GearInPos the velocity of the main axis is 0 when the engagement started            | Continue | Blinking | Keep           |
| 16#3918    | The enagement velocity is larger than the AxisVelocityMax                           | Continue | Blinking | Keep           |
| 16#3919    | GearInPos the main axis moves in opposite direction                                 | Continue | Blinking | Keep           |
| 16#3920    | GearInPost the acceleration is set too small.                                       | Continue | Blinking | Keep           |
| 16#3921    | GearInPosMasterStartDist is out of range.                                           | Continue | Blinking | Keep           |
| 16#3922    | GearInPos engaging displacement is too small.                                       | Continue | Blinking | Keep           |
| 16#3923    | GearInPos engaging displacement is too large.                                       | Continue | Blinking | Keep           |

| Error code | Description                                                                                          | CPU      | LED indicator<br>status |              |
|------------|------------------------------------------------------------------------------------------------------|----------|-------------------------|--------------|
| Error code |                                                                                                      | Status   | ERROR                   | BUS<br>FAULT |
| 16#3924    | GearInPos the velocity of the main axis starts to change when engaging started.                      | Continue | Blinking                | Keep         |
| 16#3950    | Capture cannot be used when the pulse speed is beyond 1MHz.                                          | Continue | Keep                    | Keep         |
| 16#3951    | CamCurve wrong input (for example, Concatenate cannot be true or other parameters are out of range.) | Continue | Кеер                    | Keep         |
| 16#3953    | Capture uses the same channel number repeatedly.                                                     | Continue | Keep                    | Keep         |
| 16#3954    | Torque ramp fail to write                                                                            | Continue | Blinking                | Keep         |
| 16#3955    | Torque velocity fail to write                                                                        | Continue | Blinking                | Keep         |
| 16#3A00    | CAM table setting error                                                                              | Continue | Blinking                | Keep         |
| 16#3A01    | CamIn master setting error                                                                           | Continue | Blinking                | Keep         |
| 16#3A02    | CamIn CAM table changed too soon                                                                     | Continue | Blinking                | Keep         |
| 16#3A03    | CamIn activation mode setting exceeds the available range                                            | Continue | Blinking                | Keep         |
| 16#3A04    | CamIn start mode setting exceeds the available range                                                 | Continue | Blinking                | Keep         |
| 16#3A05    | CamIn master scaling is set to 0.0                                                                   | Continue | Blinking                | Keep         |
| 16#3A06    | CamIn slave scaling is set to 0.0                                                                    | Continue | Blinking                | Keep         |
| 16#3A10    | CamIn master start position is set too Small.                                                        | Continue | Blinking                | Keep         |
| 16#3A13    | CamIn the velocity is set too small.                                                                 | Continue | Blinking                | Keep         |
| 16#3A15    | CamIn jerk is set too small                                                                          | Continue | Blinking                | Keep         |
| 16#3A16    | CamIn maximum acceleration is set too small                                                          | Continue | Blinking                | Keep         |
| 16#3A17    | CamIn Start mode distance is set too small                                                           | Continue | Blinking                | Keep         |
| 16#3A18    | CamIn Start mode distance is set too large                                                           | Continue | Blinking                | Keep         |
| 16#3A19    | Too many CamIn are wait to start                                                                     | Continue | Blinking                | Keep         |
| 16#3A20    | Master is moving in the negative direction.                                                          | Continue | Blinking                | Keep         |
| 16#3A21    | CamIn is cancelled when it is not in "CamIn" state.                                                  | Continue | Blinking                | Keep         |
| 16#3D00    | EtherCAT ENI file does not match current hardware configuration.                                     | Continue | Blinking                | Keep         |
| 16#3D01    | Slave lost in motion network.                                                                        | Continue | Blinking                | Keep         |
| 16#3D03    | EtherCAT DC time is set too small                                                                    | Continue | Blinking                | Keep         |
| 16#6001    | Illegal IP address (SM1107)                                                                          | Continue | Blinking                | Keep         |
| 16#6002    | Illegal netmask address (SM1107)                                                                     | Continue | Blinking                | Keep         |
| 16#6003    | Illegal gateway mask (SM1107)                                                                        | Continue | Blinking                | Keep         |

|            |                                                                                                                                  | CPU<br>Status | LED indicator<br>status |              |
|------------|----------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|--------------|
| Error code | Description                                                                                                                      |               | ERROR                   | BUS<br>FAULT |
| 16#6004    | The IP address filter is set incorrectly. (SM1108)                                                                               | Continue      | Blinking                | Keep         |
| 16#6006    | The static ARP table is set incorrectly. (SM1108)                                                                                | Continue      | Blinking                | Keep         |
| 16#600D    | The RJ45 port is not connected. (SM1100)                                                                                         | Continue      | Keep                    | Keep         |
| 16#620D    | The length of the data which needs to be sent in <b>a UDP Socket</b><br><b>Configuration</b> window is illegal.                  | Continue      | Keep                    | Keep         |
| 16#6212    | There is no response from the remote device after the timeout period.                                                            | Continue      | Keep                    | Кеер         |
| 16#6213    | The data received exceeds the limit.                                                                                             | Continue      | Keep                    | Keep         |
| 16#6214    | The remote device refuses the connection.                                                                                        | Continue      | Keep                    | Keep         |
| 16#6400    | The number of TCP connections reaches the upper limit, or the flag which is related to the sending of the data is not set to ON. | Continue      | Кеер                    | Кеер         |
| 16#6401    | The remote device aborts the connection.                                                                                         | Continue      | Keep                    | Keep         |
| 16#6402    | There is no response from the remote device after the timeout period.                                                            | Continue      | Кеер                    | Кеер         |
| 16#6403    | The remote IP address used in the applied instruction is illegal.                                                                | Continue      | Кеер                    | Keep         |
| 16#6404    | The MODBUS function code not supported is received.                                                                              | Continue      | Кеер                    | Keep         |
| 16#6405    | The number of data which will be received is not consistent with the actual length of the data.                                  | Continue      | Keep                    | Keep         |
| 16#6501    | The remote device involved in the data exchange does not respond after the timeout period. (SM828~SM955)                         | Continue      | OFF                     | OFF          |
| 16#6502    | The remote device involved in the data exchange does not respond correctly. (SM828~SM955)                                        | Continue      | OFF                     | OFF          |
| 16#6700    | MODBUS TCP data exchange initialization error                                                                                    | Continue      | Keep                    | Кеер         |
| 16#6701    | MODBUS TCP data exchange timeout                                                                                                 | Continue      | Кеер                    | Keep         |
| 16#6702    | MODBUS TCP data receiving error                                                                                                  | Continue      | Кеер                    | Keep         |
| 16#7002    | This function is not available for CPU modules.                                                                                  | Continue      | Keep                    | Keep         |

| <b>Enner</b> and a | Description                                                                                                  | CPU      | LED indicator<br>status |              |
|--------------------|--------------------------------------------------------------------------------------------------------------|----------|-------------------------|--------------|
| Error code         |                                                                                                              | Status   | ERROR                   | BUS<br>FAULT |
| 16#7203            | Invalid access code                                                                                          | Continue | Keep                    | Keep         |
| 16#7401            | Function code error                                                                                          | Continue | Keep                    | Keep         |
| 16#7402            | The packet exceeds the max. data length.                                                                     | Continue | Keep                    | Keep         |
| 16#7407            | Non-ASCII characters exist in the command.                                                                   | Continue | Keep                    | Keep         |
| 16#7408            | PLC is in RUN mode                                                                                           | Continue | Keep                    | Keep         |
| 16#740A            | The CPU memory is being written or failed to be written.                                                     | Continue | Keep                    | Keep         |
| 16#740B            | The Clear or Reset operation is in progress.                                                                 | Continue | Keep                    | Keep         |
| 16#740C            | The backplane number in a communication command is incorrect.                                                | Continue | Keep                    | Keep         |
| 16#740D            | The slot number in a communication command is incorrect.                                                     | Continue | Keep                    | Keep         |
| 16#740E            | Error occurs when the memory is being cleared.                                                               | Continue | Keep                    | Keep         |
| 16#740F            | Communication timeout                                                                                        | Continue | Keep                    | Keep         |
| 16#7410            | The function code for responding the instruction is inconsistent.                                            | Continue | Keep                    | Keep         |
| 16#7412            | Data cannot be downloaded to CPU becaue SW1 is ON.                                                           | Continue | Keep                    | Keep         |
| 16#757D            | The number of times users can enter the PLC password is 0.                                                   | Continue | Keep                    | Keep         |
| 16#757E            | Incorrect PLC password                                                                                       | Continue | Keep                    | Keep         |
| 16#8105            | The contents of the program downloaded are incorrect.<br>The program syntax is incorrect.                    | Continue | Keep                    | Keep         |
| 16#8106            | The contents of the program downloaded are incorrect.<br>The length of the execution code exceeds the limit. | Continue | Кеер                    | Кеер         |
| 16#8107            | The contents of the program downloaded are incorrect.<br>The length of the source code exceeds the limit.    | Continue | Кеер                    | Кеер         |
| 16#8230            | The CPU parameter downloaded is incorrect.<br>The IP address is illegal.                                     | Continue | Blinking                | Кеер         |
| 16#8231            | The CPU parameter downloaded is incorrect.<br>The netmask address is illegal.                                | Continue | Blinking                | Кеер         |

|            |                                                                                                    |          |          | dicator      |
|------------|----------------------------------------------------------------------------------------------------|----------|----------|--------------|
| Error code | Description                                                                                        | CPU      | status   |              |
|            |                                                                                                    | Status   | ERROR    | BUS<br>FAULT |
| 16#8232    | The CPU parameter downloaded is incorrect.<br>The gateway address is illegal.                      | Continue | Blinking | Keep         |
| 16#8233    | The CPU parameter downloaded is incorrect.<br>The IP address filter is set incorrectly.            | Continue | Blinking | Keep         |
| 16#8235    | The CPU parameter downloaded is incorrect.<br>The static ARP table is set incorrectly.             | Continue | Blinking | Кеер         |
| 16#8236    | A CPU parameter downloaded is incorrect. The NTP client service is set incorrectly.                | Continue | Кеер     | Keep         |
| 16#8240    | A CPU parameter downloaded is incorrect. The data exchange by means of Ethernet is set incorrectly | Continue | Кеер     | Keep         |
| 16#8242    | Gcode Data ERROR                                                                                   | Continue | Blinking | Keep         |
| 16#8243    | ECAM Data ERROR                                                                                    | Continue | Blinking | Keep         |
| 16#8244    | ENI Data ERROR                                                                                     | Continue | Blinking | Keep         |
| 16#8245    | EtherCat Data ERROR                                                                                | Continue | Blinking | Keep         |
| 16#8246    | Axes Parameters Data ERROR                                                                         | Continue | Blinking | Кеер         |
| 16#8247    | External Gcode Data ERROR                                                                          | Continue | Blinking | Keep         |
| 16#8522    | A module configuration is being scanned.                                                           | Continue | Keep     | Кеер         |
| 16#853B    | An I/O module is not configured.(wirte error)                                                      | Continue | Кеер     | Keep         |
| 16#853C    | An I/O module does not exist. (wirte error)                                                        | Continue | Кеер     | Keep         |
| 16#854B    | An I/O module is not configured. (read error)                                                      | Continue | Keep     | Keep         |
| 16#854C    | An I/O module does not exist. (read error)                                                         | Continue | Keep     | Keep         |
| 16#8572    | The checksum of the module configuration table is incorrect.                                       | Continue | Keep     | Keep         |
| 16#8576    | The checksum of the module parameter setting is incorrect.                                         | Continue | Keep     | Keep         |
| 16#857A    | The checksum of the module parameter mapping table is incorrect.                                   | Continue | Keep     | Keep         |
| 16#85E1    | An I/O interrupt number is incorrect.                                                              | Continue | Keep     | Keep         |
| 16#85E2    | An I/O interrupt service routine does not exist.                                                   | Continue | Keep     | Keep         |
| 16#860F    | System restoration error                                                                           | Continue | Keep     | Keep         |

| Error code | Description                                                        | CPU      | LED indicator<br>status |              |
|------------|--------------------------------------------------------------------|----------|-------------------------|--------------|
| LITOR CODE |                                                                    | Status   | ERROR                   | BUS<br>FAULT |
| 16#8611    | No memory card exists, or the memory card format is incorrect.     | Continue | Keep                    | Keep         |
| 16#9A33    | An error occurs when COM1 communicates with slave 19 by Modbus.    | Continue | Keep                    | Keep         |
| 16#9A34    | An error occurs when COM1 communicates with slave 20 by Modbus.    | Continue | Keep                    | Keep         |
| 16#9A35    | An error occurs when COM1 communicates with slave 21 by Modbus.    | Continue | Keep                    | Keep         |
| 16#9A47    | COM1 receives no response from slave 7 by Modbus.                  | Continue | Кеер                    | Keep         |
| 16#9B01    | An error occurs when the Modbus connection of COM2 is initialized. | Continue | Keep                    | Keep         |
| 16#9B21    | An error occurs when COM2 communicates with slave 1 by MODBUS.     | Continue | Keep                    | Keep         |
| 16#9B22    | An error occurs when COM2 communicates with slave 2 by MODBUS.     | Continue | Keep                    | Keep         |
| 16#9B23    | An error occurs when COM2 communicates with slave 3 by MODBUS.     | Continue | Кеер                    | Кеер         |
| 16#9B24    | An error occurs when COM2 communicates with slave 4 by MODBUS.     | Continue | Кеер                    | Keep         |
| 16#9B25    | An error occurs when COM2 communicates with slave 5 by MODBUS.     | Continue | Keep                    | Keep         |
| 16#9B26    | An error occurs when COM2 communicates with slave 6 by MODBUS.     | Continue | Keep                    | Keep         |
| 16#9B27    | An error occurs when COM2 communicates with slave 7 by MODBUS.     | Continue | Кеер                    | Keep         |
| 16#9B28    | An error occurs when COM2 communicates with slave 8 by MODBUS.     | Continue | Кеер                    | Keep         |
| 16#9B29    | An error occurs when COM2 communicates with slave 9 by MODBUS.     | Continue | Кеер                    | Keep         |

|            |                                                                 | CPU      | LED in sta | dicator<br>tus |
|------------|-----------------------------------------------------------------|----------|------------|----------------|
| Error code | Description                                                     | Status   | ERROR      | BUS<br>FAULT   |
| 16#9B2A    | An error occurs when COM2 communicates with slave 10 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B2B    | An error occurs when COM2 communicates with slave 11 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B2C    | An error occurs when COM2 communicates with slave 12 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B2D    | An error occurs when COM2 communicates with slave 13 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B2E    | An error occurs when COM2 communicates with slave 14 by MODBUS. | Continue | Кеер       | Кеер           |
| 16#9B2F    | An error occurs when COM2 communicates with slave 15 by MODBUS. | Continue | Кеер       | Кеер           |
| 16#9B30    | An error occurs when COM2 communicates with slave 16 by MODBUS. | Continue | Кеер       | Кеер           |
| 16#9B31    | An error occurs when COM2 communicates with slave 17 by MODBUS. | Continue | Кеер       | Кеер           |
| 16#9B32    | An error occurs when COM2 communicates with slave 18 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B33    | An error occurs when COM2 communicates with slave 19 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B34    | An error occurs when COM2 communicates with slave 20 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B35    | An error occurs when COM2 communicates with slave 21 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B36    | An error occurs when COM2 communicates with slave 22 by MODBUS. | Continue | Кеер       | Keep           |
| 16#9B37    | An error occurs when COM2 communicates with slave 23 by MODBUS. | Continue | Кеер       | Keep           |

| Farranda   | Description                                                     | CPU      |       | dicator<br>tus |
|------------|-----------------------------------------------------------------|----------|-------|----------------|
| Error code | Description                                                     | Status   | ERROR | BUS<br>FAULT   |
| 16#9B38    | An error occurs when COM2 communicates with slave 24 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B39    | An error occurs when COM2 communicates with slave 25 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B3A    | An error occurs when COM2 communicates with slave 26 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B3B    | An error occurs when COM2 communicates with slave 27 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B3C    | An error occurs when COM2 communicates with slave 28 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B3D    | An error occurs when COM2 communicates with slave 29 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B3E    | An error occurs when COM2 communicates with slave 30 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B3F    | An error occurs when COM2 communicates with slave 31 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B40    | An error occurs when COM2 communicates with slave 32 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B41    | COM2 receives no response from slave 1 by MODBUS.               | Continue | Кеер  | Keep           |
| 16#9B42    | COM2 receives no response from slave 2 by MODBUS.               | Continue | Keep  | Keep           |
| 16#9B43    | COM2 receives no response from slave 3 by MODBUS.               | Continue | Keep  | Keep           |
| 16#9B44    | COM2 receives no response from slave 4 by MODBUS.               | Continue | Keep  | Keep           |
| 16#9B45    | COM2 receives no response from slave 5 by MODBUS.               | Continue | Keep  | Keep           |
| 16#9B46    | COM2 receives no response from slave 6 by MODBUS.               | Continue | Keep  | Keep           |
| 16#9B47    | COM2 receives no response from slave 7 by MODBUS.               | Continue | Keep  | Keep           |
| 16#9B48    | COM2 receives no response from slave 8 by MODBUS.               | Continue | Keep  | Keep           |
| 16#9B49    | COM2 receives no response from slave 9 by MODBUS.               | Continue | Keep  | Keep           |

| Error code | Description                                        | CPU      |       | dicator<br>tus |
|------------|----------------------------------------------------|----------|-------|----------------|
|            | Description                                        | Status   | ERROR | BUS<br>FAULT   |
| 16#9B4A    | COM2 receives no response from slave 10 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B4B    | COM2 receives no response from slave 11 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B4C    | COM2 receives no response from slave 12 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B4D    | COM2 receives no response from slave 13 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B4E    | COM2 receives no response from slave 14 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B4F    | COM2 receives no response from slave 15 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B50    | COM2 receives no response from slave 16 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B51    | COM2 receives no response from slave 17 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B52    | COM2 receives no response from slave 18 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B53    | COM2 receives no response from slave 19 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B54    | COM2 receives no response from slave 20 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B55    | COM2 receives no response from slave 21 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B56    | COM2 receives no response from slave 22 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B57    | COM2 receives no response from slave 23 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B58    | COM2 receives no response from slave 24 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B59    | COM2 receives no response from slave 25 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B5A    | COM2 receives no response from slave 26 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B5B    | COM2 receives no response from slave 27 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B5C    | COM2 receives no response from slave 28 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B5D    | COM2 receives no response from slave 29 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B5E    | COM2 receives no response from slave 30 by MODBUS. | Continue | Keep  | Keep           |
| 16#9B5F    | COM2 receives no response from slave 31 by MODBUS. | Continue | Кеер  | Keep           |
| 16#9B60    | COM2 receives no response from slave 32 by MODBUS. | Continue | Кеер  | Keep           |

#### Analog I/O Modules and Temperature Measurement Modules

|            |                                                                                                     | LED indicator statu |        |
|------------|-----------------------------------------------------------------------------------------------------|---------------------|--------|
| Error code | Description                                                                                         | CPU                 | Module |
|            |                                                                                                     | BUS FAULT           | ERROR  |
| 16#A000    | The signal received by channel 0 exceeds the range of inputs which can be received by the hardware. | Blink               | king   |
| 16#A001    | The signal received by channel 1 exceeds the range of inputs which can be received by the hardware. | Blink               | king   |
| 16#A002    | The signal received by channel 2 exceeds the range of inputs which can be received by the hardware. | Blink               | king   |
| 16#A003    | The signal received by channel 3 exceeds the range of inputs which can be received by the hardware. | Blink               | king   |
| 16#A004    | The signal received by channel 4 exceeds the range of inputs which can be received by the hardware. | Blink               | king   |
| 16#A005    | The signal received by channel 5 exceeds the range of inputs which can be received by the hardware. | Blinking            |        |
| 16#A006    | The signal received by channel 6 exceeds the range of inputs which can be received by the hardware. | Blinking            |        |
| 16#A007    | The signal received by channel 7 exceeds the range of inputs which can be received by the hardware. | Blink               | king   |
| 16#A400    | The signal received by channel 0 exceeds the range of inputs which can be received by the hardware. | O                   | N      |
| 16#A401    | The signal received by channel 1 exceeds the range of inputs which can be received by the hardware. | O                   | N      |
| 16#A402    | The signal received by channel 2 exceeds the range of inputs which can be received by the hardware. | ON                  |        |
| 16#A403    | The signal received by channel 3 exceeds the range of inputs which can be received by the hardware. | ON                  |        |
| 16#A404    | The signal received by channel 4 exceeds the range of inputs which can be received by the hardware. | OI                  | N      |

|            |                                                                                                     | LED indicator st |        |  |
|------------|-----------------------------------------------------------------------------------------------------|------------------|--------|--|
| Error code | Description                                                                                         | CPU              | Module |  |
|            |                                                                                                     | BUS FAULT        | ERROR  |  |
| 16#A405    | The signal received by channel 5 exceeds the range of inputs which can be received by the hardware. | 10               | N      |  |
| 16#A406    | The signal received by channel 6 exceeds the range of inputs which can be received by the hardware. | 10               | N      |  |
| 16#A407    | The signal received by channel 7 exceeds the range of inputs which can be received by the hardware. | 10               | N      |  |
| 16#A600    | Hardware failure                                                                                    | 10               | N      |  |
| 16#A601    | The external voltage is abnormal.                                                                   | 10               | N      |  |
| 16#A602    | Internal error<br>The CJC is abnormal.                                                              | 10               | N      |  |
| 16#A603    | Internal error<br>The factory correction is abnormal.                                               | 10               | N      |  |
| 16#A800    | The signal received by channel 0 exceeds the range of inputs which can be received by the hardware. | OF               | F      |  |
| 16#A801    | The signal received by channel 1 exceeds the range of inputs which can be received by the hardware. | OF               | F      |  |
| 16#A802    | The signal received by channel 2 exceeds the range of inputs which can be received by the hardware. | OF               | F      |  |
| 16#A803    | The signal received by channel 3 exceeds the range of inputs which can be received by the hardware. | OF               | F      |  |
| 16#A804    | The signal received by channel 4 exceeds the range of inputs which can be received by the hardware. | OF               | F      |  |
| 16#A805    | The signal received by channel 5 exceeds the range of inputs which can be received by the hardware. | OF               | OFF    |  |
| 16#A806    | The signal received by channel 6 exceeds the range of inputs which can be received by the hardware. | OF               | OFF    |  |
| 16#A807    | The signal received by channel 7 exceeds the range of inputs which can be received by the hardware. | OF               | F      |  |

\*With regard to the errors related to the input signals' exceeding the range of inputs which can be received by the

<u>A2</u>

hardware and the conversion values' exceeding the limits, whether the error code generated is within the range between 16#A000 and 16#A00F, within the range between 16#A400 and 16#A40F, or within the range between 16#A800~16#A80F depends on the LED indicator status defined by users.

#### AH02HC-5A/AH04HC-5A

|            |                                                           | LED indicator stat |        |  |
|------------|-----------------------------------------------------------|--------------------|--------|--|
| Error code | Description                                               | CPU                | Module |  |
|            |                                                           | BUS FAULT          | ERROR  |  |
| 16#A001    | The linear accumulation in channel 0 exceeds the range.   | Blinking           |        |  |
| 16#A002    | The scale set for channel 0 exceeds the range.            | Blink              | king   |  |
| 16#A003    | The number of cycles set for channel 0exceeds the range.  | Blink              | king   |  |
| 16#A004    | The comparison value set for channel 0 exceeds the range. | Blink              | king   |  |
| 16#A005    | A limit value set for channel 0 is incorrect.             | Blink              | king   |  |
| 16#A006    | The interrupt number set for channel 0 exceeds the range. | Blink              | king   |  |
| 16#A011    | The linear accumulation in channel 1 exceeds the range.   | Blink              | king   |  |
| 16#A012    | The scale set for channel 1 exceeds the range.            | Blink              | king   |  |
| 16#A013    | The number of cycles set for channel 1 exceeds the range. | Blink              | king   |  |
| 16#A014    | The comparison value set for channel 1 exceeds the range. | Blink              | king   |  |
| 16#A015    | A limit value set for channel 1 is incorrect.             | Blink              | king   |  |
| 16#A016    | The interrupt number set for channel 1 exceeds the range. | Blinking           |        |  |
| 16#A021    | The linear accumulation in channel 2 exceeds the range.   | Blink              | king   |  |
| 16#A022    | The scale set for channel 2 exceeds the range.            | Blink              | king   |  |
| 16#A023    | The number of cycles set for channel 2 exceeds the range. | Blink              | king   |  |
| 16#A024    | The comparison value set for channel 2 exceeds the range. | Blink              | king   |  |
| 16#A025    | A limit value set for channel 2 is incorrect.             | Blink              | king   |  |
| 16#A026    | The interrupt number set for channel 2 exceeds the range. | Blink              | king   |  |
| 16#A031    | The linear accumulation in channel 3 exceeds the range.   | Blink              | king   |  |
| 16#A032    | The scale set for channel 3 exceeds the range.            | Blink              | king   |  |
| 16#A033    | The number of cycles set for channel 3 exceeds the range. | Blink              | king   |  |
| 16#A034    | The comparison value set for channel 3 exceeds the range. | Blink              | king   |  |
| 16#A035    | A limit value set for channel 3 is incorrect.             | Blink              | king   |  |
| 16#A036    | The interrupt number set for channel 3 exceeds the range. | Blink              | king   |  |

#### AH05PM-5A/AH10PM-5A/AH15PM-5A

|            |                                                                                               |                  | itor status |
|------------|-----------------------------------------------------------------------------------------------|------------------|-------------|
| Error code | Description                                                                                   | CPU              | Module      |
|            |                                                                                               | <b>BUS FAULT</b> | Error       |
| 16#A002    | The subroutine has no data.                                                                   | Blink            | king        |
| 16#A003    | CJ, CJN, and JMP have no matching pointers.                                                   | Blink            | king        |
| 16#A004    | There is a subroutine pointer in the main program.                                            | Blink            | king        |
| 16#A005    | Lack of the subroutine                                                                        | Blink            | king        |
| 16#A006    | The pointer is used repeatedly in the same program.                                           | Blink            | king        |
| 16#A007    | The subroutine pointer is used repeatedly.                                                    | Blink            | king        |
| 16#A008    | The pointer used in JMP is used repeatedly in different subroutines.                          | Blink            | king        |
| 16#A009    | The pointer used in JMP is the same as the pointer used in CALL.                              | Blink            | king        |
| 16#A00A    | The pointer used in JMP is the same as a subroutine pointer.                                  | Blink            | king        |
| 16#A00B    | Target position (I) of the single speed is incorrect.                                         | Blink            | king        |
| 16#A00C    | Target position (II) of the single-axis motion is incorrect.                                  | Blinking         |             |
| 16#A00D    | The setting of speed (I) of the single-axis motion is incorrect.                              | Blinking         |             |
| 16#A00E    | The setting of speed (II) of the single-axis motion is incorrect.                             | Blink            | king        |
| 16#A00F    | The setting of the speed ( $V_{RT}$ ) of returning to zero is incorrect.                      | Blink            | king        |
| 16#A010    | The setting of the deceleration ( $V_{CR}$ ) of returning to zero is incorrect.               | Blink            | king        |
| 16#A011    | The setting of the JOG speed is incorrect.                                                    | Blink            | king        |
| 16#A012    | The positive pulses generated by the single-axis clockwise motion are inhibited.              | Blink            | king        |
| 16#A013    | The negative pulses generated by the single-axis counterclockwise motion are inhibited.       | Blink            | king        |
| 16#A014    | The limit switch is reached.                                                                  | Blink            | king        |
| 16#A015    | The device which is used exceeds the device range.                                            | Blink            | king        |
| 16#A017    | An error occurs when the device is modified by a 16-bit index register/32-bit index register. | Blink            | king        |
| 16#A018    | The conversion into the floating-point number is incorrect.                                   | Blink            | king        |
| 16#A019    | The conversion into the binary-coded decimal number is incorrect.                             | Blink            | king        |
| 16#A01A    | Incorrect division operation (The divisor is 0.)                                              | Blink            | king        |

|            |                                                                                | LED indicator status |        |
|------------|--------------------------------------------------------------------------------|----------------------|--------|
| Error code | Description                                                                    | CPU                  | Module |
|            |                                                                                | BUS FAULT            | Error  |
| 16#A01B    | General program error                                                          | Blinl                | king   |
| 16#A01C    | LD/LDI has been used more than nine times.                                     | Blinking             |        |
| 16#A01D    | There is more than one level of nested program structure supported by RPT/RPE. | Blinl                | king   |
| 16#A01E    | SRET is used between RPT and RPE.                                              | Blin                 | king   |
| 16#A01F    | There is no M102 in the main program, or there is no M2 in the motion program. | Blin                 | king   |
| 16#A020    | The wrong instruction is used, or the device used exceeds the range.           | Blinking             |        |

#### AH20MC-5A

|            |                                                                                 | LED indicator sta |          |  |
|------------|---------------------------------------------------------------------------------|-------------------|----------|--|
| Error code | Description                                                                     | CPU               | Module   |  |
|            |                                                                                 |                   | ERROR    |  |
| 16#A002    | The subroutine has no data.                                                     | Blink             | king     |  |
| 16#A003    | CJ, CJN, and JMP have no matching pointers.                                     | Blink             | king     |  |
| 16#A004    | There is a subroutine pointer in the main program.                              | Blink             | king     |  |
| 16#A005    | Lack of the subroutine                                                          | Blink             | king     |  |
| 16#A006    | The pointer is used repeatedly in the same program.                             | Blinking          |          |  |
| 16#A007    | The subroutine pointer is used repeatedly.                                      | Blink             | king     |  |
| 16#A008    | The pointer used in JMP is used repeatedly in different subroutines.            | Blinking          |          |  |
| 16#A009    | The pointer used in JMP is the same as the pointer used in CALL.                | Blink             | king     |  |
| 16#A00B    | Target position (I) of the single speed is incorrect.                           | Blink             | king     |  |
| 16#A00C    | Target position (II) of the single-axis motion is incorrect.                    | Blink             | king     |  |
| 16#A00D    | The setting of speed (I) of the single-axis motion is incorrect.                | Blink             | king     |  |
| 16#A00E    | The setting of speed (II) of the single-axis motion is incorrect.               | Blink             | king     |  |
| 16#A00F    | The setting of the speed ( $V_{RT}$ ) of returning to zero is incorrect.        | Blink             | Blinking |  |
| 16#A010    | The setting of the deceleration ( $V_{CR}$ ) of returning to zero is incorrect. | Blink             | Blinking |  |
| 16#A011    | The setting of the JOG speed is incorrect.                                      | Blink             | king     |  |

|            |                                                                                               | LED indica       | tor status |
|------------|-----------------------------------------------------------------------------------------------|------------------|------------|
| Error code | Description                                                                                   | CPU              | Module     |
|            |                                                                                               | <b>BUS FAULT</b> | ERROR      |
| 16#A012    | The positive pulses generated by the single-axis clockwise motion are inhibited.              | Blinl            | king       |
| 16#A013    | The negative pulses generated by the single-axis counterclockwise motion are inhibited.       | Blinl            | king       |
| 16#A014    | The limit switch is reached.                                                                  | Blinl            | king       |
| 16#A015    | The device which is used exceeds the device range.                                            | Blinl            | king       |
| 16#A017    | An error occurs when the device is modified by a 16-bit index register/32-bit index register. | Blinking         |            |
| 16#A018    | The conversion into the floating-point number is incorrect.                                   | Blinking         |            |
| 16#A019    | The conversion into the binary-coded decimal number is incorrect.                             | Blinl            | king       |
| 16#A01A    | Incorrect division operation (The divisor is 0.)                                              | Blinl            | king       |
| 16#A01B    | General program error                                                                         | Blinl            | king       |
| 16#A01C    | LD/LDI has been used more than nine times.                                                    | Blinl            | king       |
| 16#A01D    | There is more than one level of nested program structure supported by RPT/RPE.                | Blinking         |            |
| 16#A01E    | SRET is used between RPT and RPE.                                                             | Blinl            | king       |
| 16#A01F    | Incorrect division operation (The divisor is 0.)                                              | Blinl            | king       |
| 16#A020    | The wrong instruction is used, or the device used exceeds the range.                          | Blinl            | king       |

# AH10EN-5A / AH15EN-5A

|            |                                                                        | LED indica | ator status |
|------------|------------------------------------------------------------------------|------------|-------------|
| Error code | Description                                                            | CPU        | Module      |
|            |                                                                        | BUS FAULT  | Error       |
| 16#A001    | The IP address of host 1 conflicts with another system on the network. | Blinking   |             |
| 16#A002    | The IP address of host 2 conflicts with another system on the network. | Blinking   |             |
| 16#A003    | DHCP for host 1 fails.                                                 | Blinking   |             |
| 16#A004    | DHCP for host 2 fails.                                                 | Blinking   |             |
| 16#A401    | Hardware error                                                         | ON         |             |
| 16#A402    | The initialization of the system fails.                                | ON         |             |

# AH10SCM-5A / AH15SCM-5A

|            |                                                                      |           | LED indicator status |  |  |
|------------|----------------------------------------------------------------------|-----------|----------------------|--|--|
| Error code | Error code Description                                               | CPU       | Module               |  |  |
|            |                                                                      | BUS FAULT | ERROR                |  |  |
| 16#A002    | The setting of the UD Link is incorrect, or the communication fails. | Blinking  |                      |  |  |
| 16#A401    | Hardware error                                                       | ON        |                      |  |  |
| 16#A804    | The communication through the communication port is incorrect.       | OFF       |                      |  |  |
| 16#A808    | MODBUS communication error                                           | OFF       |                      |  |  |

#### AH10DNET-5A

|            |                                                       | LED indicator status |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|------------|-------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Error code | Description                                           | CPU                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dule          |
|            |                                                       | BUS FAULT            | ModelMSNSThe greenThe redlight blinks.light is ON.The greenThe greenlight blinks.light is ON.The redThe redlight blinks.light blinks.The orangeThe orangelight is ON.light is ON.The greenThe redlight is ON.light is ON.The redIthe redlight is ON.light is ON.The redIthe redlight blinks.light is ON.The redThe redlight blinks.light is ON.The redThe greenlight is ON.light blinks.The redThe greenlight is ON.light blinks. |               |
| 16#A0F0    | The node ID of AH10DNET-5A is the same as other node  | The red              | The green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The red       |
| 10#7010    | ID on the network, or exceeds the range.              | light blinks.        | light blinks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | light is ON.  |
| 16#A0F1    | No slave is put on the scan list of AH10DNET-5A.      | The red              | The green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The green     |
| TO#AUPT    | No slave is put on the scan list of ATTODINE 1-5A.    | light blinks.        | light blinks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | light is ON.  |
| 16#A0F2    | The working voltage of AH10DNET-5A is low.            | The red              | The red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The red       |
| TO#AUF2    | The working voltage of AH todive 1-5A is low.         | light blinks.        | light blinks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | light blinks. |
| 16#A0F3    | A H10DNET 5A option the test made                     | The red              | The orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The orange    |
| 10#AUF3    | AH10DNET-5A enters the test mode.                     | light blinks.        | light is ON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | light is ON.  |
|            |                                                       | The red              | The green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The red       |
| 16#A0F4    | The bus of AH10DNET-5A is switched OFF.               | light blinks.        | light is ON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | light is ON.  |
|            | AH10DNET-5A detects that there is no network power    | The red              | The red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The red       |
| 16#A0F5    | supply to the DeviceNet.                              | light blinks.        | light blinks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | light is ON.  |
| 16#A0F6    | Something is wrong with the internal memory of        | The red              | The red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The green     |
| IO#AUFO    | AH10DNET-5A.                                          | light blinks.        | light is ON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | light blinks. |
| 16#A0F7    | Something is wrong with the data exchange unit of     | The red              | The red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The green     |
| IO#AUF7    | AH10DNET-5A.                                          | light blinks.        | light is ON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | light blinks. |
| 16#A0F8    | The product ID of AH10DNET-5A is incorrect.           | The red              | The red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The green     |
| IO#AUFO    | The product in of AH tonne 1-SA is incorrect.         | light blinks.        | light is ON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | light blinks. |
|            | An error occurs when the data is read from            | The red              | The red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The red       |
| 16#A0F9    | AH10DNET-5A, or when the data is written into         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|            | AH10DNET-5A.                                          | light blinks.        | light is ON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | light is ON.  |
| 16#4054    | The node ID of AH10DNET-5A is the same as that of the | The red              | The green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The red       |
| 16#A0FA    | slave set in the scan list.                           | light blinks.        | light is ON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | light is ON.  |

|            |                                                 | LEC              | LED indicator status |              |  |
|------------|-------------------------------------------------|------------------|----------------------|--------------|--|
| Error code | Description                                     | CPU              | Module               |              |  |
|            |                                                 | <b>BUS FAULT</b> | MS                   | NS           |  |
| 40//4050   | The data exchange between AH10DNET and AH CPU   | The red          | The green            | The green    |  |
| 16#A0FB    | failed.                                         | light blinks.    | light is ON.         | light is ON. |  |
|            | Errors occur in the slaves, on the module of an | The red          | The red              | The green    |  |
| 16#A0FC    | AHRTU-DNET backplane, or on the AHRTU-DNET      |                  |                      | Ū            |  |
|            | backplane connection.                           | light blinks.    | light blinks.        | light is ON. |  |

## AH10PFBM-5A

| Error    |                                            | LED indicator status |              |              |                           |
|----------|--------------------------------------------|----------------------|--------------|--------------|---------------------------|
| code     | Description                                | -                    | PU           |              | DULE                      |
|          |                                            | BUS FAULT            | RUN          | SYS          | DP                        |
| 16#A001  | The master is not set.                     | The red              | The green    | The green    | The green                 |
|          |                                            | light blinks.        | light is ON. | light is ON. | light blinks.             |
| 16#A003  | The master station enters the test mode.   | The red              | The green    | The green    | The green                 |
| 10//1000 |                                            | light blinks.        | light is ON. | light is ON. | light is ON.              |
| 16#A005  | A timeout occurs when chips inside the     | The red              | The green    | The green    | The green                 |
| 10#A003  | master station communicate.                | light blinks.        | light is ON. | light is ON. | light is ON.              |
| 16#A00B  | A timeout occurs when AH10PFBM-5A          | The red              | The green    | The green    | The green                 |
| 10#A00B  | exchanges data exchange with a PLC.        | light blinks.        | light is ON. | light is ON. | light is ON.              |
| 16#A402  | The PLC does not assign the I/O mapping    | The red              | The green    | The green    | The green<br>light is ON. |
| 10#A402  | area to the master.                        | light is ON.         | light is ON. | light is ON. | light is ON.              |
| 40#4404  |                                            | The red              | The green    | The green    | The green                 |
| 16#A404  | Master initializing error                  | light is ON.         | light is ON. | light is ON. | light is ON.              |
| 16#A406  |                                            | The red              | The green    | The green    | The green                 |
| 10#A400  | Internal storage unit error                | light is ON.         | light is ON. | light is ON. | light is ON.              |
| 16#A407  | Dete and an antite man                     | The red              | The green    | The green    | The green                 |
| 10#A407  | Data exchange unit error                   | light is ON.         | light is ON. | light is ON. | light is ON.              |
| 16#4409  |                                            | The red              | The green    | The green    | The green                 |
| 16#A408  | Master serial number detection error       | light is ON.         | light is ON. | light is ON. | light is ON.              |
|          | The master detects that all the slaves are | The red              | 055          | The green    | The red light             |
| 404450   | offline.                                   | light is ON.         | OFF          | light is ON. | is ON.                    |
| 16#A4E2  | The master detects that some of the slaves | The red              | 055          | The green    | The red light             |
|          | are offline.                               | light is ON.         | OFF          | light is ON. | blinks.                   |
|          | The master detects that an error occurs in | The red              | The green    | The green    | The green                 |
| 16#A4E6  | the module connected to AHRTU-PFBS-5A.     | light is ON.         | light is ON. | light is ON. | light is ON.              |

### AH10PFBS-5A

|            |                                                                                                                                                                   | LED              | indicator status |                                                                                                                                                                                                                                              |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Error code | Description                                                                                                                                                       | CPU MODULE       | ULE              |                                                                                                                                                                                                                                              |  |
|            |                                                                                                                                                                   | BUS FAULT        | RUN              | NET                                                                                                                                                                                                                                          |  |
| 16#A4F0    | The node address of AH10PFBS-5A exceeds the valid                                                                                                                 | The red light is | The green        | The green                                                                                                                                                                                                                                    |  |
| 10#741.0   | range.                                                                                                                                                            | ON.              | light is ON.     | DULE<br>NET<br>The green<br>light is ON.<br>The green<br>light is ON.                                                    |  |
| 16#A4F1    |                                                                                                                                                                   | The red light is | The green        | The green                                                                                                                                                                                                                                    |  |
| 10#A4F1    | Internal hardware error                                                                                                                                           | ON.              | light is ON.     | DULE<br>The green<br>light is ON.<br>The green<br>light is ON. |  |
| 16#A4F2    | Description                                                                                                                                                       | The red light is | The green        | The green                                                                                                                                                                                                                                    |  |
| 10#A4F2    | Parameter error                                                                                                                                                   | ON.              | light is ON.     | light is ON.                                                                                                                                                                                                                                 |  |
| 16#A4F3    |                                                                                                                                                                   | The red light is | The green        | The green                                                                                                                                                                                                                                    |  |
| 10#A4F3    | Configuration error                                                                                                                                               | ON.              | light is ON.     | light is ON.                                                                                                                                                                                                                                 |  |
| 16#A4F4    |                                                                                                                                                                   | The red light is | The green        | The green                                                                                                                                                                                                                                    |  |
| 10#A4F4    | GPIO detection error                                                                                                                                              | ON.              | light is ON.     | ight is ON. light is ON.                                                                                                                                                                                                                     |  |
| 16#A4F5    |                                                                                                                                                                   | The red light is |                  | The green                                                                                                                                                                                                                                    |  |
| 10#741.3   | AH10PFBS-5A enters the mode of factory test.                                                                                                                      | ON.              |                  | light is ON.                                                                                                                                                                                                                                 |  |
| 16#A4F6    | 1. AH10PFBS-5A has not been connected to the PROFIBUS-DP network.                                                                                                 | The red light is | The green        | The red light                                                                                                                                                                                                                                |  |
|            | 2. PROFIBUS-DP master has not configured AH10PFBS-5A slave or the configured node address of AH10PFBS-5A is inconsistent with that of the actually connected one. | ON.              | light is ON.     | in ON                                                                                                                                                                                                                                        |  |

#### AH10COPM-5A

|            |                                                                       | LED indicator status |         |
|------------|-----------------------------------------------------------------------|----------------------|---------|
| Error code | Description                                                           | CPU                  | Module  |
|            |                                                                       | BUS FAULT            | ERROR   |
|            |                                                                       |                      | The red |
| 16#A0B0    | AH10COPM-5A does not send a heartbeat message after a set period of   | Dlinking             | light   |
| TO#AUDU    | time.                                                                 | Blinking             | flashes |
|            |                                                                       |                      | twice.  |
| 16#A0B1    | The length of a PDO that a slave station sends is not the same as the | Blinking             | OFF     |
| TO#AUDT    | length of the PDO set in the node list.                               | Billiking            | OFF     |
|            |                                                                       |                      | The red |
| 16#A0B2    | The master station selected does not send a node guarding message     | Blinking             | light   |
| TO#AUDZ    | after a set period of time.                                           | Dilliking            | flashes |
|            |                                                                       |                      | twice.  |
| 16#A0E0    | AH10COPM-5A receives an emergency message from a slave station.       | Blinking             | OFF     |
| 40// 4054  | The length of a PDO that a slave station sends is not the same as the | Blinking             | OFF     |
| 16#A0E1    | length of the PDO set in the node list.                               | Blinking             | UFF     |

|            |                                                                                      | LED indicator status |                                       |
|------------|--------------------------------------------------------------------------------------|----------------------|---------------------------------------|
| Error code | Description                                                                          | CPU                  | Module                                |
|            |                                                                                      | BUS FAULT            | ERROR                                 |
| 16#A0E2    | AH10COPM-5A does not receive a PDO from a slave station.                             | Blinking             | OFF                                   |
| 16#A0E3    | An automatic SDO is not downloaded successfully.                                     | Blinking             | OFF                                   |
| 16#A0E4    | A PDO parameter is not set successfully.                                             | Blinking             | OFF                                   |
| 16#A0E5    | A key parameter is set incorrectly.                                                  | Blinking             | OFF                                   |
| 16#A0E6    | The actual network configuration is not the same as the network configuration set.   | Blinking             | OFF                                   |
| 16#A0E7    | The control of the errors in a slave station is not sent after a set period of time. | Blinking             | The red<br>light<br>flashes<br>twice. |
| 16#A0E8    | The master station address is the same as a slave station address.                   | Blinking             | OFF                                   |
| 16#A0F1    | No slave station is added to the node list in CANopen builder.                       | Blinking             | OFF                                   |
| 16#A0F3    | An error occurs in AH10COPM-5A.                                                      | Blinking             | OFF                                   |
| 16#A0F4    | The bus used is off.                                                                 | Blinking             | The red<br>light is<br>ON.            |
| 16#A0F5    | The node address of AH10COPM-5A is set incorrectly.                                  | Blinking             | OFF                                   |
| 16#A0F6    | Internal error: An error occurs in the manufacturing process in the factory.         | Blinking             | OFF                                   |
| 16#A0F7    | Internal error: GPIO error                                                           | Blinking             | OFF                                   |
| 16#A0F8    | Hardware error                                                                       | Blinking             | OFF                                   |
| 16#A0F9    | Low voltage                                                                          | Blinking             | OFF                                   |
| 16#A0FA    | An error occurs in the firmware of AH10COPM-5A.                                      | Blinking             | OFF                                   |
| 16#A0FB    | The transmission registers in AH10COPM-5A are full.                                  | Blinking             | OFF                                   |
| 16#A0FC    | The reception registers in AH10COPM-5A are full.                                     | Blinking             | OFF                                   |

# A.2.2. Error Codes and Troubleshooting

### AHxxEMC-5A

You can get the corrective actions from the tables below according to the error codes.

# **ERROR Indicator ON**

| Error Code | Description                                                      | Corrective action                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#000B    | The program in the PLC is damaged.                               | Download the program again.                                                                                                                                                                                                                                                                                                                                                                        |
| 16#000D    | The CPU parameters are damaged.                                  | Reset the CPU parameter, and download it.                                                                                                                                                                                                                                                                                                                                                          |
| 16#0010    | The access to the memory in the CPU is denied.                   | Download the program or parameters again. If the problem still occurs, please contact the manufacturer.                                                                                                                                                                                                                                                                                            |
| 16#0011    | The PLC ID is incorrect. (SM9)                                   | Please check the PLC ID.                                                                                                                                                                                                                                                                                                                                                                           |
| 16#0012    | The PLC password is incorrect.<br>(SM9)                          | Please check the PLC password.                                                                                                                                                                                                                                                                                                                                                                     |
| 16#0014    | The procedure of restoring the system can not be executed. (SM9) | The contents of the system backup file are incorrect, or the file does not exist in the path specified. If the file exists and the procedure of restoring the system can not be executed, please back up the system again. If the error still occurs, please contact the manufacturer. (You can refer to <i>AH Motion Controller – Operation Manual</i> for more details about using memory cards) |
| 16#0015    | The module table is incorrect.<br>(SM10)                         | The module table stored in the CPU module is incorrect.<br>Compare the module table in HWCONFIG with the actual<br>module configuration, and download the module table<br>again.                                                                                                                                                                                                                   |
| 16#0016    | The module setting is incorrect.<br>(SM10)                       | The module setting stored in the CPU module is incorrect.<br>Check whether the version of the module inserted in the<br>slot is the same as the version of the module in<br>HWCONFIG. After the version of the module is updated,<br>users can download the module setting again.                                                                                                                  |
| 16#0017    | The data register exceeds the device range. (SM10)               | The data register stored in the CPU module exceeds the device range. Check whether the module parameter in HWCONFIG is correct, and download the module parameter again.                                                                                                                                                                                                                           |

| Error Code | Description                                                                                                                                           | Corrective action                                                                                    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 16#001B    | Timed interrupt 0 is set incorrectly.                                                                                                                 | Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.                       |
| 16#001C    | Timed interrupt 1 is set incorrectly.                                                                                                                 | Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.                       |
| 16#001D    | Timed interrupt 2 is set incorrectly.                                                                                                                 | Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.                       |
| 16#001E    | Timed interrupt 3 is set incorrectly.                                                                                                                 | Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.                       |
| 16#001F    | The watchdog timer is set incorrectly.                                                                                                                | Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.                       |
| 16#0020    | The setting of the fixed scan time is incorrect.                                                                                                      | Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.                       |
| 16#0021    | The setting of the fixed scan time is incorrect.                                                                                                      | Set the CPU parameter in HWCONFIG again, and download the CPU parameter again.                       |
| 16#0022    | The CPU parameter downloaded to the PLC is incorrect.                                                                                                 | Download the CPU parameter again.                                                                    |
| 16#0023    | CPU parameters setting error. The<br>state of Y devices when the CPU is<br>set from STOP to RUN is incorrect                                          | Adjust the CPU parameters setting in HWCONFIG and download it to PLC again.                          |
| 16#0026    | The Communication Ratio box in<br>the Communication Loading of Scan<br>Time (%) section in the PLC<br>Parameter Setting window is set<br>incorrectly. | Reset the CPU or set the CPU to the default settings, and download the program and parameters again. |
| 16#0027    | The latching auxiliary relay range which is set is incorrect.                                                                                         | Reset the CPU or set the CPU to the default settings, and download the program and parameters again. |
| 16#0028    | The latching data register range which is set is incorrect.                                                                                           | Reset the CPU or set the CPU to the default settings, and download the program and parameters again. |
| 16#0029    | The latching timer range which is set is incorrect.                                                                                                   | Reset the CPU or set the CPU to the default settings, and download the program and parameters again. |

## AH Motion Controller – Motion control Instructions Manual

| Error Code | Description                                                        | Corrective action                                                                                                             |
|------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 16#002A    | The latching counter range which is set is incorrect.              | Reset the CPU or set the CPU to the default settings, and download the program and parameters again.                          |
| 16#002B    | The latching 32-bit counter range which is set is incorrect.       | Reset the CPU or set the CPU to the default settings, and download the program and parameters again.                          |
| 16#0050    | The memories in the latched special auxiliary relays are abnormal. | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#0051    | The latched special data registers are abnormal.                   | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#0052    | The memories in the latched auxiliary relays are abnormal.         | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#0053    | The latched timers are abnormal.                                   | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#0054    | The latched counters are abnormal.                                 | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#0055    | The latched 32-bit counters are abnormal.                          | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#0056    | The memories in the latched timers are abnormal.                   | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#0057    | The memories in the latched counters are abnormal.                 | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#0058    | The memories in the latched 32-bit counters are abnormal.          | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |

| Error Code | Description                                 | Corrective action                                                                                                             |
|------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 16#0059    | The latched data registers are abnormal.    | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |
| 16#005A    | The latched working registers are abnormal. | After users reset the CPU module or restore it to the factory setting, they can download the program and the parameter again. |

## ERROR Indicator Blinking

| Error Code | Description                                                                          | Corrective action                                                                                                                                                         |
|------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#000A    | Scan timeout<br>(SM8: The watchdog timer error)                                      | <ol> <li>Check the setting of the watchdog timer in<br/>HWCONFIG.</li> <li>Check whether the program causes the long scan time</li> </ol>                                 |
| 16#000C    | The program downloaded to the PLC is incorrect.                                      | After users compile the program again, they can download the program again.                                                                                               |
| 16#000E    | The program or the parameter is being downloaded, and therefore the PLC can not run. | After the program or the parameter is downloaded to the PLC, users can try to run the PLC.                                                                                |
| 16#0018    | The serial port is abnormal. (SM9)                                                   | Retry the connection. If the error still occurs, please contact the factory.                                                                                              |
| 16#0019    | The USB is abnormal. (SM9)                                                           | Retry the connection. If the error still occurs, please contact the factory.                                                                                              |
| 16#001A    | The contents of the system backup file (.dup file) are incorrect.                    | Create the system backup file again.                                                                                                                                      |
| 16#0033    | The communication setting of COM1 is incorrect. (SM9)                                | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the communication port parameter for the CPU<br/>module in HWCONFIG again.</li> </ol> |
| 16#0034    | The setting of the station address of COM1 is incorrect. (SM9)                       | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the communication port parameter for the CPU<br/>module in HWCONFIG again.</li> </ol> |

# AH Motion Controller – Motion control Instructions Manual

| Error Code | Description                                                                                             | Corrective action                                                                                                                                                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#0035    | The setting of the communication type of COM1 is incorrect. (SM9)                                       | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the communication port parameter for the CPU<br/>module in HWCONFIG again.</li> </ol>                                                         |
| 16#0038    | The communication setting of COM2 is incorrect. (SM9)                                                   | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the communication port parameter for the CPU<br/>module in HWCONFIG again.</li> </ol>                                                         |
| 16#0039    | The setting of the station address of COM2 is incorrect. (SM9)                                          | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the communication port parameter for the CPU<br/>module in HWCONFIG again.</li> </ol>                                                         |
| 16#003A    | The setting of the communication type of COM2 is incorrect. (SM9)                                       | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the communication port parameter for the CPU<br/>module in HWCONFIG again.</li> </ol>                                                         |
| 16#0066    | An error occurs when the system is backed up.                                                           | <ol> <li>Check whether the memory card is normal, and<br/>whether the capacity of the memory card is large<br/>enough.</li> <li>Retry the backup procedure. If the error still occurs,<br/>please contact the factory.</li> </ol> |
| 16#0067    | The size of the PLC parameters restored<br>exceeds the size of the PLC parameters<br>of the CPU module. | The error code is appeared to indicate alarm only.                                                                                                                                                                                |
| 16#2000    | There is no END in the program in the PLC. (SM5)                                                        | <ol> <li>Compile the program again, and download the<br/>program again.</li> <li>Reinstall ISPSoft, compile the program again, and<br/>download the program again.</li> </ol>                                                     |
| 16#2001    | The program is incorrect. There is a syntax error.                                                      | Check the program, compile the program again, and download the program again.                                                                                                                                                     |
| 16#2002    | GOEND is used incorrectly. (SM5)                                                                        | Check the program, compile the program again, and download the program again.                                                                                                                                                     |

| Error Code | Description                                                                                                                                                                                    | Corrective action                                                             |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 16#2003    | The devices used in the program exceed the range. (SM0/SM5)                                                                                                                                    | Check the program, compile the program again, and download the program again. |
| 16#2004    | The part of the program specified by the<br>label used in CJ/JMP is incorrect, or the<br>label is used repeatedly. (SM0/SM5)                                                                   | Check the program, compile the program again, and download the program again. |
| 16#2005    | The N value used in MC is not the same<br>as the corresponding N value used in<br>MCR, or the number of N values used in<br>MC is not the same as the number of N<br>values used in MCR. (SM5) | Check the program, compile the program again, and download the program again. |
| 16#2006    | The N values used in MC do not start<br>from 0, or the N values used in MC are<br>not continuous. (SM5)                                                                                        | Check the program, compile the program again, and download the program again. |
| 16#2007    | The operands used in ZRST are not used properly. (SM5)                                                                                                                                         | Check the program, compile the program again, and download the program again. |
| 16#200A    | Invalid instruction (SM5)                                                                                                                                                                      | Check the program, compile the program again, and download the program again. |
| 16#200B    | The operand <b>n</b> or the other constant operands exceed the range. (SM0/SM5)                                                                                                                | Check the program, compile the program again, and download the program again. |
| 16#200C    | The operands overlap. (SM0/SM5)                                                                                                                                                                | Check the program, compile the program again, and download the program again. |
| 16#200D    | An error occurs when the binary number<br>is converted into the binary-coded<br>decimal number. (SM0/SM5)                                                                                      | Check the program, compile the program again, and download the program again. |
| 16#200E    | The string does not end with 0x00.<br>(SM0/SM5)                                                                                                                                                | Check the program, compile the program again, and download the program again. |
| 16#200F    | The instruction does not support the modification by an index register. (SM5)                                                                                                                  | Check the program, compile the program again, and download the program again. |

| Error Code | Description                                                                                                                                                                                 | Corrective action                                                                                                                                                             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#2010    | <ol> <li>The instruction does not support the device.</li> <li>Encoding error</li> <li>The instruction is a 16-bit instruction, but the constant operand is a 32-bit code. (SM5)</li> </ol> | Check the program, compile the program again, and download the program again.                                                                                                 |
| 16#2011    | The number of operands is incorrect.<br>(SM5)                                                                                                                                               | Check the program, compile the program again, and download the program again.                                                                                                 |
| 16#2012    | Incorrect division operation (SM0/SM5).                                                                                                                                                     | Check the program, compile the program again, and download the program again.                                                                                                 |
| 16#2013    | The value exceeds the range of values<br>which can be represented by the<br>floating-point numbers. (SM0/SM5)                                                                               | Check the program, compile the program again, and download the program again.                                                                                                 |
| 16#2014    | The task designated by TKON/TKOFF is incorrect, or exceeds the range. (SM5)                                                                                                                 | Check the program, compile the program again, and download the program again.                                                                                                 |
| 16#2015    | There are more than 32 levels of nested<br>program structures supported by CALL.<br>(SM0)                                                                                                   | Check the program, compile the program again, and download the program again.                                                                                                 |
| 16#2016    | There are more than 32 levels of nested<br>program structures supported by<br>FOR/NEXT. (SM0/SM5)                                                                                           | Check the program, compile the program again, and download the program again.                                                                                                 |
| 16#2017    | The number of times FOR is used is<br>different from the number of times NEXT<br>is used. (SM5)                                                                                             | Check the program, compile the program again, and download the program again.                                                                                                 |
| 16#2018    | There is a label after FEND, but there is<br>no SRET. Or there is SRET, but there is<br>no label. (SM5)                                                                                     | <ol> <li>Compile the program again, and download the<br/>program again.</li> <li>Reinstall ISPSoft, compile the program again, and<br/>download the program again.</li> </ol> |
| 16#2019    | The interrupt task is not after FEND.<br>(SM5)                                                                                                                                              | <ol> <li>Compile the program again, and download the<br/>program again.</li> <li>Reinstall ISPSoft, compile the program again, and<br/>download the program again.</li> </ol> |

| Error Code | Description                                                                                                      | Corrective action                                                                                                                                                              |
|------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#201A    | IRET/SRET is not after FEND. (SM5)                                                                               | <ol> <li>Compile the program again, and download the<br/>program again.</li> <li>Reinstall ISPSoft, compile the program again, and<br/>download the program again.</li> </ol>  |
| 16#201B    | There is an interrupt task, but there is no<br>IRET.<br>There is IRET, but there is not interrupt<br>task. (SM5) | <ol> <li>Compile the program again, and download the<br/>program again.</li> <li>Reinstall ISPSoft, compile the program again, and<br/>download the program again.</li> </ol>  |
| 16#201C    | End is not at the end of the program.<br>(SM5)                                                                   | <ol> <li>Compile the program again, and download the<br/>program again.</li> <li>Reinstall ISPSoft, compile the program again, and<br/>download the program again.</li> </ol>  |
| 16#201D    | There is CALL, but there is no MAR.<br>(SM5)                                                                     | <ol> <li>Compile the program again, and download the<br/>program again.</li> <li>Reinstall ISPSoft, compile the program again, and<br/>download the program again.</li> </ol>  |
| 16#201E    | The function code used in MODRW is incorrect. (SM102/SM103)                                                      | Check the usage of the instruction and the setting of the operands. Please refer to the explanation of the instruction MODRW in AH500 Programming Manual for more information. |
| 16#201F    | The length of the data set in MODRW is incorrect. (SM102/SM103)                                                  | Check the usage of the instruction and the setting of the operands. Please refer to the explanation of the instruction MODRW in AH500 Programming Manual for more information. |
| 16#2020    | The communication command received<br>by using MODRW is incorrect.<br>(SM102/SM103)                              | Check whether the slave supports the function code and the specified operation.                                                                                                |
| 16#2021    | The checksum of the command received<br>by using MODRW is incorrect.<br>(SM102/SM103)                            | <ol> <li>Check whether there is noise, and retry the sending of<br/>the command.</li> <li>Check whether the slave operates normally.</li> </ol>                                |
| 16#2022    | The format of the command used in<br>MODRW does not conform to the ASCII<br>format. (SM102/SM103)                | Make sure that the format of the command conforms to the ASCII format.                                                                                                         |

| Error Code              | Description                                                                                                    | Corrective action                                                                                                                                                         |
|-------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#2023                 | There is a communication timeout when MODRW is executed. (SM102/SM103)                                         | Check whether the slave operates normally, and whether the connection is normal.                                                                                          |
| 16#2024                 | The setting value of the communication<br>timeout is invalid when RS is executed.<br>(SM102/SM103)             | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the communication port parameter for the CPU<br/>module in HWCONFIG again.</li> </ol> |
| 16#2025                 | There is a communication timeout when RS is executed. (SM102/SM103)                                            | Check whether the slave operates normally, and whether the connection is normal.                                                                                          |
| 16#2026                 | The interrupt number used in RS is incorrect.                                                                  | Check whether the the interrupt service routine used in RS is downloaded.                                                                                                 |
| 16#2027                 | The execution of FWD is abnormal.                                                                              | Please refer to AH500 Programming Manual, and check the instruction FWD.                                                                                                  |
| 16#2028                 | The execution of REV is abnormal.                                                                              | Please refer to AH500 Programming Manual, and check the instruction REV.                                                                                                  |
| 16#2029                 | The execution of STOP is abnormal.                                                                             | Please refer to AH500 Programming Manual, and check the instruction STOP.                                                                                                 |
| 16#202A                 | The execution of RSDT is abnormal.                                                                             | Please refer to AH500 Programming Manual, and check the instruction RSDT.                                                                                                 |
| 16#202B                 | The execution of RSTEF is abnormal.                                                                            | Please refer to AH500 Programming Manual, and check the instruction RSTEF.                                                                                                |
| 16#202C<br> <br>16#204B | I/O interrupt service routine 0 does not<br>exist.<br> <br>I/O interrupt service routine 31 does not<br>exist. | Download I/O interrupt service routine 0 (I/O interrupt 0)<br> <br>Download I/O interrupt service routine 31 (I/O interrupt<br>31)                                        |
| 16#2054<br>             | External interrupt service routine 40 does not exist.                                                          | Download external interrupt service routine 40 (external interrupt 40)                                                                                                    |
| 16#2127                 | External interrupt service routine 251 does not exist.                                                         | Download external interrupt service routine 251 (external interrupt 251)                                                                                                  |

| Error Code | Description                                                                                                 | Corrective action                                                                                                                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#2128    | An action in a sequential function chart is<br>incorrectly assigned qualifiers related to<br>time.(SM0/SM1) | Check whether qualifiers related to time are duplicated when setting SFC action.                                                                                                                                                                                    |
| 16#2129    | The modifier R is assigned to an action in<br>a sequential function chart incorrectly.<br>(SM0/SM1)         | Check whether there are conflict settings between properties when setting SFC action.                                                                                                                                                                               |
| 16#3040    | Data in E-CAM exceeds the setting range or does not exist.                                                  | <b>Cause</b> : the E-CAM number has been input in the function block but it exceeds the setting range <b>Action</b> : modify the E-CAM number and set it within the setting range                                                                                   |
| 16#3100    | Input parameters exceed the available setting range.                                                        | Check whether the input parameters exceed the available setting range.                                                                                                                                                                                              |
| 16#3102    | An error occurs in a sub-function block inside the function block.                                          | Re-execute the function block instruction.                                                                                                                                                                                                                          |
| 16#3103    | The distance between the detecting<br>sensors used for identifying exeptional<br>bags is a negative value.  | Check whether the positions of the detecting sensors are correct.                                                                                                                                                                                                   |
| 16#3104    | Phasing is executed again before the previous phasing is completed.                                         | <ul><li>Cause: the instruction is executed again when <i>Done</i> is still False.</li><li>Action: re-execute the instruction again.</li></ul>                                                                                                                       |
| 16#3105    | Superimposing is executed again before<br>the previous superimposing is<br>completed.                       | Cause: the instruction is executed again when <i>Done</i> is still False.<br>Action: re-execute the instruction again.                                                                                                                                              |
| 16#3106    | Chain position compensation is triggered<br>before the previous compensation is<br>completed.               | <ul> <li>Cause: the master axis moves too fast to allow the previous compensation to be finished. In this case, the compensation is triggered again.</li> <li>Action: adjust all packaging related parameters according to the application requirements.</li> </ul> |
| 16#3107    | Film axis position compensation is<br>triggered before the previous<br>compensation is completed.           | <ul> <li>Cause: the master axis moves too fast to allow the previous compensation to be finished. In this case, the compensation is triggered again.</li> <li>Action: adjust all packaging related parameters according to the application requirements.</li> </ul> |

| Error Code | Description                                                                                   | Corrective action                                                                                                                                                                                                                                                  |
|------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#3108    | Knife position compensation is triggered<br>before the previous compensation is<br>completed. | <ul> <li>Cause: the master axis moves too fast to allow the previous compensation to be finished. In this case, the compensation is triggered again.</li> <li>Action: adjust all packaging related parameters according to the application requirements</li> </ul> |
| 16#3405    | A negative or 0 is given to <i>Velocity</i> .                                                 | <b>Cause</b> : the value given to <i>Velocity</i> is negative or 0.<br><b>Action</b> : set the velocity to a positive value and re-execute the instruction.                                                                                                        |
| 16#340A    | Homing mode setting error.                                                                    | <ul><li>Cause: homing mode is not set to a value between 1 and 35.</li><li>Action: set homing mode to a value between 1 and 35 and re-execute the instruction.</li></ul>                                                                                           |
| 16#340B    | Target distance is 0.                                                                         | <b>Cause</b> : target distance of this instruction is not set to 0.<br><b>Action</b> : set target distance to a positive value and re-execute the instruction.                                                                                                     |
| 16#3410    | User unit setting error; or the output pulse type setting error.                              | <ul> <li>Cause: user unit setting of this instruction is not set to 0~2.</li> <li>Action: set the user unit to 0~2 and re-execute the instruction.</li> </ul>                                                                                                      |
| 16#3411    | Velocity factor overrides setting error.                                                      | <ul> <li>Cause: velocity factor of this instruction is not set to 0~500.</li> <li>Action: set the velocity factor to 0~500 and re-execute the instruction.</li> </ul>                                                                                              |
| 16#3419    | Master axis position is negative value.                                                       | <ul> <li>Cause: master axis position is set to a negative value or</li> <li>0.</li> <li>Action: set the master axis position to a positive value and re-execute the instruction.</li> </ul>                                                                        |
| 16#341B    | Maxmimum speed setting error.                                                                 | <b>Cause</b> : maxmimum speed is not set to1~1,000,000.<br><b>Action</b> : set the maxmimum speed to 1~1,000,000 and re-execute the instruction.                                                                                                                   |
| 16#343B    | Error occurred in the other axis of the group                                                 | <b>Cause</b> : error occurred in the other axis of the group <b>Action</b> : use DFB_GroupReset to clear the error code                                                                                                                                            |

| Error Code | Description                                                              | Corrective action                                                                                                                                                                                                                                                 |
|------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#3461    | The required communication parameters for PDO settings are not specified | <ul> <li>Cause: the required communication parameters for PDO settings are not specified when the function block is in execution.</li> <li>Action: re-execute ECAT Builder and specify the required parameters for the function block.</li> </ul>                 |
| 16#3500    | The axis is not in the ready state.                                      | Cause: the axis is busy<br>Action: stop the current operation or wait till the<br>operation stops                                                                                                                                                                 |
| 16#3502    | The position is not allowed for setup.                                   | <b>Cause:</b> the target position of the function block exceeds<br>the software limit or an axis of rotation or the position is<br>an illegal one.<br><b>Action:</b> set up a new target position                                                                 |
| 16#3506    | The axis is in "Coordinated"                                             | Cause: the axis is in "Coordinated" when MC_stop is<br>executed.<br>Action: confirm that <i>Execute</i> =Fasle and <i>Done</i> =True in<br>MC_Stop. Use DFB_GroupReset to reset the axis to<br>"Standby" and use DFB_GroupDisable to disable the<br>group motion. |
| 16#3507    | The axis is in "ErrorStop"                                               | <ul><li>Cause: The axis is in "ErrorStop" when the instruction is executed.</li><li>Action: use MC_Reset to reset the axis error status.</li></ul>                                                                                                                |
| 16#3508    | The axis is not in "Standstill"                                          | Cause: the axis is not in "Standstill" when the instruction<br>is executed.<br>Action: execute MC_Reset and confirm is the axis is in<br>"Standstill"                                                                                                             |
| 16#3509    | The axis is in the "Stopping" state                                      | Cause: the axis is in the "Stopping" state.<br>Action: close the MC_Stop function block and have the<br>state go back to StandStill                                                                                                                               |
| 16#350B    | The acceleration time for the axis is too short.                         | <b>Cause:</b> the accleration time for the axis is set too short.<br><b>Action:</b> adjust the accleration or increase the time to acclerate for the axis.                                                                                                        |
| 16#350C    | The deceleration time for the axis is too short.                         | <b>Cause:</b> the deceleration time for the axis is set too short.<br><b>Action:</b> adjust the deceleration or increase the time to decelerate for the axis.                                                                                                     |
| 16#350D    | The E-CAM data exceeds the to-read range                                 | Cause: the to-read data length exceeds the setting range<br>Action: adjust the to-read data length (1~256)                                                                                                                                                        |

| Error Code | Description                                                                                       | Corrective action                                                                                                                                                                                                                                                                                                                                      |
|------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#350E    | The E-CAM data exceeds the to-be written range.                                                   | <b>Cause:</b> the to-read data length exceeds the setting range <b>Action:</b> adjust the to-read data length (1~256)                                                                                                                                                                                                                                  |
| 16#350F    | The axis is in the "Synchronized" state.                                                          | <b>Cause:</b> the axis is in the "Synchronized" state when the MC_SetOverride is started <b>Action:</b> do not have the axis in the "Synchronized" state                                                                                                                                                                                               |
| 16#3526    | Error occurs in the previous movement of the axis                                                 | Cause: error occurs in the axis<br>Action: clear error                                                                                                                                                                                                                                                                                                 |
| 16#3600    | The state of axis is incorrect.                                                                   | <ul> <li>Cause: the axis is not in the ready state to execute the instruction.</li> <li>Action: this error will cause the axis state to be in ErrorStop; users need to execute MC_Reset to have the axis state back to StandStill. Check the state description and see if there are any contradictions.</li> </ul>                                     |
| 16#3601    | The limit of the number of buffering instructions is reached                                      | Cause: the number of buffering instructions (with buffer<br>mode enabled) reached 20.<br>Action: 1. The error status will lead the axis to<br>"ErrorStop". In this case, execute MC_Reset to set the<br>axis back to "Standstill". 2. Make sure the total number of<br>buffering instructions is less than 20 before executing<br>current instruction. |
| 16#3602    | A multiple instructions which are not<br>allowed to be executed at the same time<br>are executed. | Cause: the instruction is executed when another<br>instruction is in execution at the same time. (Both do not<br>support simultaneously execution)<br>Action: use MC_Reset to clear the axis error, and set the<br>axis state to "StandStill."                                                                                                         |
| 16#3603    | Buffermode parameter setting error                                                                | <b>Cause</b> : the set value in <i>Buffermode</i> is not valid.<br><b>Action</b> :use MC_Reset to clear the axis error, and specify the input parameters again.                                                                                                                                                                                        |
| 16#3604    | Errors occur on the motion direction of the function block                                        | <b>Cause</b> : the moving direction of the axis is not correct.<br><b>Action</b> : use MC_Reset to clear the axis error, and specify the input parameters again.                                                                                                                                                                                       |

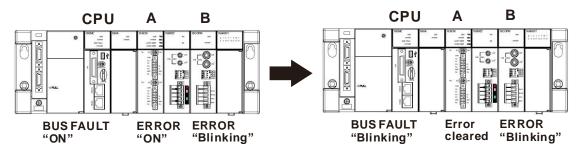
| Error Code | Description                                 | Corrective action                                                                                                                                                                                                   |
|------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#3605    | P1 exceeds the available range              | <ul> <li>Cause: the target position is not specified with an available value.</li> <li>Action: use MC_Reset to clear the axis error, and specify the input parameters again.</li> </ul>                             |
| 16#3606    | P2 exceeds the available range              | <ul><li>Cause: the target position is not specified with an available value.</li><li>Action: use MC_Reset to clear the axis error, and specify the input parameters again.</li></ul>                                |
| 16#3607    | V1 exceeds the available range              | <ul> <li>Cause: the target velocity is not specified with an available value.</li> <li>Action: use MC_Reset to clear the axis error, and specify the input parameters again.</li> </ul>                             |
| 16#3608    | V2 exceeds the available range              | <ul><li>Cause: the target velocity is not specified with an available value.</li><li>Action: use MC_Reset to clear the axis error, and specify the input parameters again.</li></ul>                                |
| 16#3612    | It has reached the positive limit.          | Cause: positive limit is reached.<br>Action: use MC_Reset to clear the axis error, and move<br>the position potively or negatively to the proprer position.                                                         |
| 16#3613    | It has reached the negative limit.          | Cause: negative limit is reached.<br>Action: use MC_Reset to clear the axis error, and move<br>the position potively or negatively to the proprer position.                                                         |
| 16#3614    | The servo limit is exceeded.                | Cause: the sevo drive limit is reached.<br>Action: use MC_Reset to clear the axis error, and move<br>the position potively or negatively to the proprer position.                                                   |
| 16#3617    | The acceleration exceeds the setting range. | <b>Cause:</b> when executing, the acceleration exceeds the maximum acceleration value, or buffering exceeds the maximum acceleration value.<br><b>Action:</b> set up the function block or the acceleration value   |
| 16#3618    | The deceleration exceeds the setting range. | <b>Cause: :</b> when executing, the acceleration exceeds the maximum deceleration value, or buffering exceeds the maximum deceleration value.<br><b>Action:</b> set up the function block or the deceleration value |

| Error Code | Description                                                          | Corrective action                                                                                                                                                                                                                                                        |
|------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#3800    | Motion network disconnected during the execution of the instruction. | Check whether the network cable is detached or the network is disconnected.                                                                                                                                                                                              |
| 16#3801    | EtherCAT axis error occurs on the motion network                     | Cause: the motion axis reports an alarm or an error<br>during the motion.<br>Action: read the axis states and errors by using related<br>function blocks, and reset the axis error by using<br>MC_Reset.                                                                 |
| 16#3900    | Failed to re-connect to the motion network.                          | <ul><li>Cause: After the motion network is reset, the CPU cannot re-connect to the motion network.</li><li>Action: 1. Check whether the network cable is detached or the network is disconnected. 2. Check whether the connected servo drive is powered on.</li></ul>    |
| 16#3904    | Motion network master can not read<br>Slave parameters via SDO.      | Check whether the parameter reading settings of Group<br>and Parameter matches the available range of the servo<br>drive.                                                                                                                                                |
| 16#3905    | Motion network master can not write<br>Slave parameters via SDO.     | <ol> <li>Check whether the parameter writing settings of Group<br/>and Parameter matches the available range of the servo<br/>drive.</li> <li>Check whether the specified values to be written are<br/>within the available setting range for the parameters.</li> </ol> |
| 16#3906    | Torque limit setting error in<br>MC_SetTorqueLimit                   | <ul> <li>Cause: the specified value for <i>PositiveValue</i> or <i>NegtiveValue</i> is invalid.</li> <li>Action: Check whether the specified value for <i>PositiveValue</i> or <i>NegtiveValue</i> is within available setting range of the servo drive.</li> </ul>      |
| 16#3907    | The function is not available for imaginary axes.                    | <b>Cause:</b> the function is not for imaginary axis.<br><b>Action:</b> change the imaginary axis to the real axis                                                                                                                                                       |
| 16#3909    | The motion network is currently executing other network functions.   | Check the read/write status of SDO to see if the motion network is executing other network functions.                                                                                                                                                                    |
| 16#390C    | Axis error occurs during the movement.                               | <b>Cause:</b> Axis error occurs during the movement.<br><b>Action:</b> the system will send the function block with the axis state back and users can learn what the error code is and then use MC_Rest to clear this error.                                             |

| Error Code | Description                                                                | Corrective action                                                                                                                                                                                                               |
|------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#3910    | Cancel the engagement when there is no engagement.                         | <b>Cause:</b> not executing the mc_gearin, mc_gearinpos,<br>mc_combineaxes, but to execute mc_gearout<br><b>Action:</b> when the axis does not execute mc_gearin,<br>mc_gearinpos, mc_combineaxes, do not execute<br>mc_gearout |
| 16#3911    | Software limit error                                                       | Cause: the axis reached the software limit.<br>Action: use MC_Reset to clear the error and use<br>MC_MoveAbsolute, MC_MoveRelative,<br>MC_MoveVelocity or DFB_MPG to move the axis back to<br>the proper range.                 |
| 16#3912    | The input contact of the funciton block exceeds the axis of rotation range | <b>Cause:</b> The input contact of the funciton block exceeds the axis of rotation range <b>Action:</b> modify the input to have it within the axis of rotation range                                                           |
| 16#3913    | Synchronization for engagement fails                                       | Cause: before completing the engagement, the velocity<br>of the main axis has changed<br>Action: before completing the engagement, do not<br>change the velocity of the main axis                                               |
| 16#3914    | GearInPos velocity is set too small                                        | Cause: maximum velocity of GearInPos has set too<br>small<br>Action: set a bigger maximum velocity                                                                                                                              |
| 16#3915    | GearInPos jerk is set too small                                            | Cause: maximum jerk of GearInPos has set too small Action: set a bigger maximum jerk                                                                                                                                            |
| 16#3916    | GearInPos engagement time is set too small                                 | Cause: GearInPos engagement time too short<br>Action: increase the MasterStartDistance                                                                                                                                          |
| 16#3917    | GearInPos the velocity of the main axis is 0 when the engagement started   | <b>Cause:</b> GearInPos the velocity of the main axis is 0<br>when the engagement started<br><b>Action:</b> not to set the velocit of the main axis 0                                                                           |
| 16#3918    | The enagement velocity is larger than the AxisVelocityMax                  | <b>Cause:</b> The enagement velocity is larger than the AxisVelocityMax <b>Action:</b> modify the maximum of the axis velocity                                                                                                  |
| 16#3919    | GearInPos the main axis moves in opposite direction                        | <b>Cause:</b> GearInPos the main axis moves in opposite direction<br><b>Action:</b> make the main axis and the auxiliary axis move in the same direction                                                                        |
| 16#3920    | GearInPos acceleration is set too small                                    | Cause: the acceleration or deceleration is set too small Action: increase the acceleration or deceleration                                                                                                                      |
| 16#3921    | GearInPosMasterStartDist out of range                                      | Cause: MasterStartDist setting out of range<br>Action: check the starting and ending position of the<br>enagement                                                                                                               |
| 16#3922    | GearInPos slave synchnoization position is set too small                   | <b>Cause:</b> SlaveSyncPosition is set too small<br><b>Action:</b> increase the setting value of SlaveSyncPosition,<br>or increase the acceleration or deceleration                                                             |



| Error Code | Description                                                                 | Corrective action                                                                                                                                                    |
|------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#3923    | GearInPos slave synchnoization position is set too big                      | <b>Cause:</b> SlaveSyncPosition is set too big<br><b>Action:</b> decrease the setting value of<br>SlaveSyncPosition, or increase the acceleration or<br>deceleration |
| 16#3924    | GearInPos the velocity of the main axis changes when the engagement started | Cause: before InSync, the velocity of the main axis<br>changes<br>Action: before InSync, fix the velocity of the main axis                                           |
| 16#3954    | Torque ramp fail to write                                                   | Cause: TorqueRamp is set to 0.<br>Action: TorqueRamp cannot be set as 0.                                                                                             |
| 16#3955    | Torque velocity fail to write                                               | Cause: MC_TorqueControl value is not supported by the servo<br>Action: check the servo manual to see the supported setting range                                     |
| 16#3A00    | CAM table setting error                                                     | <b>Cause:</b> the designated CAM Table is not existed.<br><b>Action:</b> add a newCAM Table or set up a new setting in an existed CAM Table                          |
| 16#3A01    | CamIn master setting error                                                  | <b>Cause:</b> setting error in the source of the master axis <b>Action:</b> set up the source of the master axis again                                               |
| 16#3A02    | CamIn CAM table changed too soon                                            | Cause: CamIn change to another CAM table when the one started has not finished Action: enable the CAM function again                                                 |
| 16#3A03    | CamIn activation mode setting exceeds the available range                   | <b>Cause:</b> Activation Mode is not 0 or 1<br><b>Action:</b> set up the setting vale and restart the CAM funciton                                                   |
| 16#3A04    | CamIn start mode setting exceeds the available range                        | <b>Cause:</b> CAM Start Mode setting value is not within the range 0~3 <b>Action:</b> set the CAM Start Mode value in the range                                      |
| 16#3A05    | CamIn master scaling is set to 0.0                                          | <b>Cause:</b> CAM Master Scaling is set to 0<br><b>Action:</b> set the Master Scaling to a value other than 0<br>and restart CAM again                               |
| 16#3A06    | CamIn slave scaling is set to 0.0                                           | <b>Cause:</b> CAM Slave Scaling is set to 0<br><b>Action:</b> set the Slave Scaling to a value other than 0 and restart CAM                                          |
| 16#3A10    | CamIn master start position is set too<br>Small.                            | <b>Cause:</b> CAM master start positon is set too small <b>Action:</b> set the Start Position value bigger and restart CMA                                           |
| 16#3A13    | CamIn the velocity is set too small.                                        | <b>Cause:</b> CAM Start Mode velocity is set too small <b>Action:</b> set the velocity to a bigger value and restart CAM                                             |
| 16#3A15    | CamIn jerk is set too small                                                 | <b>Cause:</b> the jerk for the CAM Start Mode is set too small <b>Action:</b> set the jerk value to a bigger value and restart CAM                                   |
| 16#3A16    | CamIn maximum acceleration is set too small                                 | Cause: CAM Start Mode maximum acceleration is set<br>too small<br>Action: set the maximum acceleration to a bigger value<br>and restart CAM                          |


| Error Code | Description                                                      | Corrective action                                                                                                                                                                                |
|------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#3A17    | CamIn Start mode distance is set too small                       | <b>Cause:</b> CAM Start Mode distance is set too small <b>Action:</b> set the Sync Position to a bigger value and restart CAM                                                                    |
| 16#3A18    | CamIn Start mode distance is set too large                       | <b>Cause:</b> CAM Start Mode distance is set too large <b>Action:</b> set the Sync Position to a smaller value and restart CAM                                                                   |
| 16#3A19    | Too many CamIn are wait to start                                 | Cause: more than 5 sets of CAMs are waiting to start on<br>the same axis<br>Action: do not start all 5 CAMs at the same time                                                                     |
| 16#3A20    | Master is moving in the negative direction.                      | <b>Cause:</b> Master is moving in the negative direction while the slave is in the middle of the CAM movement. <b>Action:</b> use MC_Reset to clear error                                        |
| 16#3A21    | CamIn is cancelled when it is not in<br>"CamIn" state.           | Cause: designated Slave axis is not in "CamIn" state.<br>Action: use MC_Reset to clear error                                                                                                     |
| 16#3D00    | EtherCAT ENI file does not match current hardware configuration. | <ul><li>Cause: EtherCAT ENI file in the system does not match current EtherCAT configuration.</li><li>Action: download again the ENI file that matches current EtherCAT configuration.</li></ul> |
| 16#3D01    | Slave lost in motoin network                                     | Cause: slave lost during the motion network<br>communication.<br>Action: reconnect to the motion netowrk                                                                                         |
| 16#3D03    | EtherCAT DC time is set too small                                | Cause: EtherCAT DC time setting error<br>8-axis minimum 500us; 16-axis minimum 1000us; 32-axis<br>minimum 2000us<br>Action: check the current axis number and set up the DC<br>time again        |
| 16#6001    | Illegal IP address (SM1107)                                      | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the Ethernet parameter for the CPU module in<br/>HWCONFIG again.</li> </ol>                                  |
| 16#6002    | Illegal netmask address                                          | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the Ethernet parameter for the CPU module in<br/>HWCONFIG again.</li> </ol>                                  |



| Error Code | Description                               | Corrective action                                                                                                                                               |
|------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#6003    | Illegal gateway mask                      | <ol> <li>Check the program and the related special data<br/>registers.</li> <li>Set the Ethernet parameter for the CPU module in<br/>HWCONFIG again.</li> </ol> |
| 16#6004    | The IP address filter is set incorrectly. | Set the Ethernet parameter for the CPU module in HWCONFIG again.                                                                                                |
| 16#6006    | The static ARP table is set incorrectly.  | Set the Ethernet parameter for the CPU module in HWCONFIG again.                                                                                                |
| 16#8242    | Gcode Data ERROR                          | 1. Use ISPSoft to download Gcode again                                                                                                                          |
| 16#8243    | ECAM Data ERROR                           | 1. Use ISPSoft to download internal E-CAM again                                                                                                                 |
| 16#8244    | ENI Data ERROR                            | 1. Use ECAT Builder to download the Ethernet parameter again                                                                                                    |
| 16#8245    | EtherCat Data ERROR                       | 1. Use ECAT Builder to download the Ethernet parameter again                                                                                                    |
| 16#8246    | Axes Parameters Data ERROR                | 1. Use ISPSoft to download axes parameters again                                                                                                                |
| 16#8247    | External Gcode Data ERROR                 | 1. Make sure the SD card is installed and use ISPSoft to download the external Gcode                                                                            |

### **BUS FAULT Indicator ON**

The BUS FAULT indicator on the CPU would be ON to indicate an error on CPU, or to indicate an error on I/O module together with the ERROR indicator on an I/O module. If an error occurs in an I/O module, the status of the BUS FAULT indicator on the CPU will be the same as that of the ERROR indicator on the I/O module. If multiple errors occur in the I/O modules, the BUS FAULT indicator on the CPU will keep ON (not blinking). For example, if the ERROR indicator on module A is ON and the ERROR indicator on module B blinks, the BUS FAULT indicator will keep ON. When the error in I/O module A is cleared, module B will blink and the BUS FAULT indicator will blink as well. Refer to the section **A.5.1** for more information about the indicator behaviors of each module.



You can get the corrective actions for the CPU errors indicated by the BUS FAULT indicator from the table below. If the error code you obtained is not listed in the table below, you can check if an error occurs on the I/O modules. Refer to the following content of this section for more information about the troubleshooting for I/O modules.

| Error Code | Description                                                                                                             | Corrective action                                                                                                                                                                                                                                                                                     |
|------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#0013    | The I/O module can not run/stop.<br>(SM10)                                                                              | Check whether the setting of the parameter for the module is<br>correct. If the setting is correct, please check whether the<br>module breaks down. If the error still occurs, please contact<br>the manufacturer.                                                                                    |
| 16#0014    | The procedure of restoring the system can not be executed. (SM9)                                                        | The contents of the system backup file are incorrect, or the<br>file does not exist in the path specified. If the file exists and<br>the procedure of restoring the system can not be executed,<br>please backing up the system again. If the error still occurs,<br>please contact the manufacturer. |
| 16#1401    | An error occurs when the data in the I/O module is accessed. (SM9)                                                      | Please contact the factory.                                                                                                                                                                                                                                                                           |
| 16#1402    | The actual arrangement of the I/O<br>modules is not consistent with the<br>module table. (SM9)                          | Check whether the module table in HWCONFIG is consistent with the actual arrangement of the I/O modules.                                                                                                                                                                                              |
| 16#1403    | An error occurs when the data is read from the module. (SM9)                                                            | Check whether the module operates normally. If the error still occurs, please contact the factory.                                                                                                                                                                                                    |
| 16#1405    | The setting parameter of the module is not found. (SM9)                                                                 | Set the parameter in HWCONFIG again, and download it.                                                                                                                                                                                                                                                 |
| 16#140B    | The number of network modules exceeds the limit. (SM9)                                                                  | Please decrease the number of network modules to the number supported by the system.                                                                                                                                                                                                                  |
| 16#140C    | The checksum of the high-speed data exchange is incorrect                                                               | Please check the version of the firmware installed on the module, and contact the factory.                                                                                                                                                                                                            |
| 16#140D    | The ID of the actual power supply<br>module is not the same as the ID of<br>the power supply module set in<br>HWCONFIG. | Check whether the power supply configuration in<br>HWCONFIG is consistenet with the actial arrangement of the<br>power supply module.                                                                                                                                                                 |
| 16#140E    | The amount of data exchanged at a high speed exceeds the maximum amount supported.                                      | Check the firmware version and contact the supplier.                                                                                                                                                                                                                                                  |
| 16#140F    | High-speed data exchange error                                                                                          | Check the firmware version and contact the supplier.                                                                                                                                                                                                                                                  |

#### **BUS FAULT Indicator Blinking**

If the BUS FAULT indicator blinks, check the operating state of the module. Refer to sections **A.5.1** for more information about the indicators behaviors of each module, and refer to the following content of this section for more information about the troubleshooting for I/O modules.

#### Others

| Error Code | Description                                                                                                                      | Corrective action                                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 16#000F    | The original program in the PLC is damaged.                                                                                      | After users compile the program again, they can download the program again.                                                           |
| 16#0024    | There is no IO module on the backplane.                                                                                          | Check whether the IO module is on the backplane.                                                                                      |
| 16#005E    | The memory card is initialized incorrectly. (SM453)                                                                              | Check whether the memory card breaks down.                                                                                            |
| 16#005F    | The file to be read does not exist in<br>the memory card; or the file<br>directory to write in a file does not<br>exist. (SM453) | Check whether the file name and file directory is correct.                                                                            |
| 16#0061    | The storage capacity of the<br>memory card is not enough.<br>(SM453)                                                             | Check whether the storage capacity of the memory card is enough, or whether the memory card breaks down.                              |
| 16#0062    | The memory card is write-protected. (SM453)                                                                                      | Check whether the memory card is write-protected.                                                                                     |
| 16#0063    | An error occurs when the data is<br>written into the memory card.<br>(SM453)                                                     | Check whether the file path is correct, or whether the memory card breaks down.                                                       |
| 16#0064    | The file in the memory card can not be read. (SM453)                                                                             | Check whether the file path is correct, or whether the file is damaged.                                                               |
| 16#0065    | The file in the memory card is a read-only file. (SM453)                                                                         | Users need to set the file so that the file is not a read-only file.                                                                  |
| 16#1801    | There is no interrupt service routine in the CPU module.                                                                         | Check whether a corresponding interrupt service routine is created in the PLC program (24V LV Detection)                              |
| 16#3400    | Axis setting error (1~32)                                                                                                        | Cause: motion axis number is not between 1 and 32<br>Action: set the axis number between 1 and 32 and re-execut<br>the function block |

| Error Code | Description                                          | Corrective action                                                         |
|------------|------------------------------------------------------|---------------------------------------------------------------------------|
| 16#3401    | SDO DataType setting error (0, 100)                  | Cause: data type cannot be matched with the object library                |
| 10#3401    | SDO DataType setting error (0~199)                   | Action: confirm the object library of the slave station                   |
|            | The number of the abannel evened                     | Cause: the input channel exceeds the setting range                        |
| 16#3404    | The number of the channel exceeds                    | Action: set up the channel number for input again and                     |
|            | the available setting range                          | re-execute the function block                                             |
|            |                                                      | Cause: the pulse type range is set other than 0~3                         |
| 16#3414    | Pulse type counter setting error                     | Action: set up the pulse type range and re-execute the                    |
|            |                                                      | function block                                                            |
|            |                                                      | <b>Cause:</b> the comparison condition is set other than 0~2              |
| 16#3415    | Comparison condition setting error                   | Action: set up the comparison condition again and re-execute              |
|            |                                                      | the function block                                                        |
|            |                                                      | Cause: G code file contains unsupported G code or the format              |
|            |                                                      | is wrong                                                                  |
| 16#3429    | Gcode format error                                   | Action: check the G code file contents and replace the                    |
|            |                                                      | unsupported G code with a supported one or fix the G code                 |
|            |                                                      | format. After that re-download the G code file.                           |
|            |                                                      | Cause: the designated G code file cannot be found in the AH               |
|            |                                                      | Motion Controller PLC or the external SD card.                            |
| 16#342A    | Gcode program source error                           | Action: set up the Gcode ID in the function block and make                |
|            |                                                      | sure the designated file is in the AH Motion Contoller PLC or             |
|            |                                                      | the external SD card. Re-execute the function block.                      |
|            |                                                      | <b>Cause:</b> the value of the Gcode ID is not 1 ~ 136                    |
| 16#342B    | GcodeID setting error                                | Action: set up the GcodeID between 1 and 136 and re-execute               |
|            |                                                      | the function block.                                                       |
|            |                                                      | Cause: the corresponding axis is executing                                |
| 10//0100   |                                                      | DFB_GroupGcodeRun.                                                        |
| 16#342C    | Gcode is in operation                                | Action: after the DFB_GroupGcodeRun is complete,                          |
|            |                                                      | re-execute the function block.                                            |
|            |                                                      | Cause: the corresponding axis is executing                                |
| 16#342D    | Gcode grammar is being checked.                      | DFB_GroupGcodeSyntax.<br>Action: after the DFB_GroupGcodeRun is complete, |
|            |                                                      | re-execute the function block.                                            |
|            |                                                      | <b>Cause:</b> The setting of the Gcode Filter is out of the range,        |
|            | The setting of the Goode Filter is                   | over 1000 or less than 0.                                                 |
| 16#342E    | The setting of the Gcode Filter is out of the range. | Action: set up a reasonable value in Gcode Filter and                     |
|            |                                                      | re-execute the function block.                                            |
| 16#3430    | GroupNum already exists.                             | Cause: GroupNum already exists.                                           |
|            |                                                      | Action: use DFB_GroupReset to clear this error.                           |

| Error Code | Description                                  | Corrective action                                                |
|------------|----------------------------------------------|------------------------------------------------------------------|
|            |                                              | Cause: DFB_GroupEnable, one of the AxisNumorder1~                |
| 4040404    | Motion axis number is used                   | AxisNumorder6 is used repeatly in the same group.                |
| 16#3431    | repeatly in the same group.                  | Action: set up the AxisNumorder again and re-execute the         |
|            |                                              | function block                                                   |
| 40,00,400  | The specified group number does              | Cause: The specified group number does not exist.                |
| 16#3432    | not exist.                                   | Action: set up an valid group name and enable it.                |
|            |                                              | Cause: The number of axes is insufficient for the specified      |
|            | The number of axes is insufficient           | group axes motion.                                               |
| 40//0400   | for the specified group axes                 | Action: set up the group name of the function block, the axis    |
| 16#3433    | motion.                                      | number should be as many as required, for example, a liner       |
|            | motion.                                      | interpolation motion requires 2 axes while an arc interpolation  |
|            |                                              | motion requires 3 axes to complete the task.                     |
|            |                                              | Cause: DFB_GroupDisable is executed when group motion is         |
| 16#3434    | DFB_GroupDisable is executed                 | in progress.                                                     |
|            | when group motion is in progress.            | Action: use DFB_GroupReset to clear this error.                  |
|            | The same motion avia number in               | Cause: DFB_GroupEnable, one of the AxisNumorder1~                |
|            | The same motion axis number is               | AxisNumorder6 is used repeatly in the different groups.          |
| 16#3435    | used repeatly in the different               | Action: set up the AxisNumorder again and re-execute the         |
|            | groups.                                      | function block.                                                  |
|            |                                              | Cause: AxisNumorder1 is a negative number or zero in             |
|            | The axis number of the first order           | DFB_GroupEnable.                                                 |
| 16#3436    | should be a positive number or a             | Action: set up the value of AxisNumorder1 again and              |
|            | number other than 0.                         | re-execute the function block.                                   |
|            | <b>T</b> he many much as a set of the        | <b>Cause:</b> the value in GroupNum is not in the range of 1~16. |
| 16#3437    | The group number exceeds the                 | Action: set up the value of GroupNum again and re-execute        |
|            | setting range.                               | the function block.                                              |
|            | The designated group is in                   | Cause: the designated group is in "ErrorStop" state.             |
| 16#3438    | "ErrorStop" state.                           | Action: use DFB_GroupReset to clear the error                    |
|            | Group is executing the function              | Cause: group is executing the function block ImmediateStop.      |
| 16#343A    | block ImmediateStop.                         | Action: use DFB_GroupReset to clear the error                    |
|            | The designated ECAT Claus dasa               | Cause: the designated ECAT Slave does not exist.                 |
| 16#3463    | The designated ECAT Slave does               | Action: make sure the designated ECAT Slave can perform          |
|            | not exist.                                   | axis operation.                                                  |
|            |                                              | Cause: the channel to be set has already been used               |
| 16#3501    | The selected channel has been<br>used in FB. | Action: select a channel that is not used or free the used       |
|            |                                              | channel for setup                                                |
|            | An error occurs when writing CAM             | Cause: read the CAM data but to find the data is not as it is    |
| 16#3505    | data.                                        | written.                                                         |
|            |                                              | Action: re-execute the CAM function block to write               |
|            |                                              | Cause: CAM data does not exist.                                  |
| 16#3512    | CAM data does not exist.                     | Action: make sure the CAM data is correct and download the       |
|            |                                              | CAM data again.                                                  |

| Error Code | Description                                                                                                   | Corrective action                                                                                                                                                                                                                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | The station address does not                                                                                  | Cause: The station address does not exist.                                                                                                                                                                                                                                                                                                                          |
| 16#3619    | exist.                                                                                                        | Action: check the address is existed and clear the error and                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                               | re-execute the function block.                                                                                                                                                                                                                                                                                                                                      |
|            | The schedule buffer section of SDO                                                                            | Cause: The schedule buffer section of SDO is full.                                                                                                                                                                                                                                                                                                                  |
| 16#3620    | is full.                                                                                                      | <b>Action:</b> wait till the schedule buffer secton of SDO is less full and re-execute the function block.                                                                                                                                                                                                                                                          |
|            |                                                                                                               | Cause: SDO OD data type is not matched.                                                                                                                                                                                                                                                                                                                             |
| 16#3622    | SDO OD data type is not matched.                                                                              | Action: check the OD data type is correct and re-execute the function block.                                                                                                                                                                                                                                                                                        |
|            |                                                                                                               | Cause: SDO is overtime.                                                                                                                                                                                                                                                                                                                                             |
| 16#3623    | SDO is overtime.                                                                                              | Action: check the connection and re-execute the function block.                                                                                                                                                                                                                                                                                                     |
| 16#202.4   | SDO data written error                                                                                        | Cause: error occurs in the slave                                                                                                                                                                                                                                                                                                                                    |
| 16#3624    | SDO data written entit                                                                                        | Action: solve the problem and re-execute the function block                                                                                                                                                                                                                                                                                                         |
| 40//0005   | SDO data reading error                                                                                        | Cause: error occurs in the slave                                                                                                                                                                                                                                                                                                                                    |
| 16#3625    |                                                                                                               | Action: solve the problem and re-execute the function block                                                                                                                                                                                                                                                                                                         |
|            | SDO retry time exceeds the setting                                                                            | Cause: SDO retry time exceeds the setting range.                                                                                                                                                                                                                                                                                                                    |
| 16#3626    | range.                                                                                                        | Action: check the address and re-execute the function block                                                                                                                                                                                                                                                                                                         |
| 16#3950    | Capture cannot be used when the pulse speed is beyond 1MHz.                                                   | Cause: Capture cannot be used when the pulse speed is<br>beyond 1MHz<br>Action: slow dow the pulse speed and re-execute the<br>function block                                                                                                                                                                                                                       |
| 16#3951    | CamCurve wrong input (for<br>example, Concatenate cannot be<br>true or other parameters are out of<br>range.) | Cause: CamCurve contact input parameters are out of range<br>Action: (1) turn the PLC off and then on, and execute the<br>DFB_CamCure2 and set concatenate option to false. After<br>the execution of the function block is done, set the<br>concatenate to true and then execute the DFB_CamCure2.<br>(2) check the other parameters to see if they are reasonable |
| 16#3953    | Capture uses the same channel number repeatedly.                                                              | <ul><li>Cause: DFB-Capture FB uses the same channel number repeatedly at the same time.</li><li>Action: use other unused channel number instead.</li></ul>                                                                                                                                                                                                          |
| 16#600D    | The RJ45 port is not connected.<br>(SM1100)                                                                   | Cause: RJ45 prot is not connected.<br>Action: check the communication cable                                                                                                                                                                                                                                                                                         |
|            | The length of the data which                                                                                  | 1. Check the program and the related special data registers.                                                                                                                                                                                                                                                                                                        |
| 16#620D    | needs to be sent in a UDP Socket                                                                              | 2. Set the Ethernet parameter for the CPU module in                                                                                                                                                                                                                                                                                                                 |
|            | Configuration window is illegal.                                                                              | HWCONFIG again.                                                                                                                                                                                                                                                                                                                                                     |
| 16#6212    | There is no response from the remote device after the timeout period.                                         | Make sure that the remote device is connected.                                                                                                                                                                                                                                                                                                                      |

| Error Code | Description                                                                                                                               | Corrective action                                                                                                                                                                            |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#6213    | The data received exceeds the limit.                                                                                                      | <ol> <li>Check the program and the related special data registers.</li> <li>Set the Ethernet parameter for the CPU module in<br/>HWCONFIG again.</li> </ol>                                  |
| 16#6214    | The remote device refuses the connection.                                                                                                 | Make sure that the remote device operates normally.                                                                                                                                          |
| 16#6400    | The number of TCP connections<br>reaches the upper limit, or the flag<br>which is related to the sending of<br>the data is not set to ON. | <ol> <li>Check whether the flag which is related to the sending of<br/>the data in the program is modified.</li> <li>Retry the setting of the flag and the sending of the packet.</li> </ol> |
| 16#6401    | The remote device aborts the connection.                                                                                                  | Check whether the remote device support the MODBUS port (502).                                                                                                                               |
| 16#6402    | There is no response from the remote device after the timeout period.                                                                     | Check whether the remote device operate normally.                                                                                                                                            |
| 16#6403    | The remote IP address used in the applied instruction is illegal.                                                                         | Check whether the program is correct.                                                                                                                                                        |
| 16#6404    | The MODBUS function code not<br>supported is received.                                                                                    | Check the command transmitted from the remote device.                                                                                                                                        |
| 16#6405    | The number of data which will be received is not consistent with the actual length of the data.                                           | Check the command transmitted from the remote device.                                                                                                                                        |
| 16#6501    | The remote device involved in the data exchange does not respond after the timeout period. (SM828~SM955)                                  | Check the device whose connection number corresponds to the error flag, and check whether it is connected normally.                                                                          |
| 16#6502    | The remote device involved in the data exchange does not respond correctly. (SM828~SM955)                                                 | Check the device whose connection number corresponds to the error flag, and check whether it is connected normally.                                                                          |
| 16#6700    | MODBUS TCP data exchange initialization error                                                                                             | Check the setting value and download the data again.                                                                                                                                         |
| 16#6701    | MODBUS TCP data exchange timeout                                                                                                          | Confirm if the device to be connected supports MODBUS communication protocol.                                                                                                                |
| 16#6702    | MODBUS TCP data receiving error                                                                                                           | Confirm if the device to be connected supports MODBUS communication protocol.                                                                                                                |

| Error Code | Description                                                               | Corrective action                                                                   |
|------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 16#7002    | This function is not available for CPU modules.                           | Check the CPU firmware version.                                                     |
| 16#7203    | Invalid access code                                                       | Check the content of the packet sent by the device to be connected.                 |
| 16#7401    | Function code error                                                       | Check the content of the packet sent by the device to be connected.                 |
| 16#7402    | The packet exceeds the max. data length.                                  | Check the content of the packet sent by the device to be connected.                 |
| 16#7407    | Non-ASCII characters exist in the command.                                | Check the content of the packet sent by the device to be connected.                 |
| 16#7408    | PLC is in RUN mode                                                        | Data download for program or CPU parameters is not allowed when PLC is in RUN mode. |
| 16#740A    | The CPU memory is being written<br>or failed to be written.               | Flash/SD card is being written. Please try again later.                             |
| 16#740B    | The Clear or Reset operation is in progress.                              | The RST/CLR operation is in progress. Please try again later.                       |
| 16#740C    | The backplane number in a<br>communication command is<br>incorrect.       | Please check the PLC firmware and the software version and contact the supplier.    |
| 16#740D    | The slot number in a<br>communication command is<br>incorrect.            | Please check the PLC firmware and the software version and contact the supplier.    |
| 16#740E    | Error occurs when clearing the memory                                     | Please try again. If the error occurs again, contact the supplier.                  |
| 16#740F    | Communication timeout                                                     | Check if the device to be connected is in normal operation.                         |
| 16#7410    | The received Function Code<br>doesn't match the current Function<br>Code. | Check the packet content sent by the remote device.                                 |
| 16#7412    | Data cannot be downloaded to CPU because SW1 is ON.                       | Confirm that SW1 is OFF.                                                            |
| 16#757D    | The number of times users can enter the PLC password is 0.                | The password retry limit is reached. Please power on the PLC again.                 |
| 16#757E    | Incorrect PLC password                                                    | Check if the password is correct.                                                   |
|            | 1                                                                         | <u> </u>                                                                            |

| Error Code | Description                                                                                                        | Corrective action                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 16#8105    | The contents of the program<br>downloaded are incorrect.<br>The program syntax is incorrect.                       | Download the program again.                                                                                                                   |
| 16#8106    | The contents of the program<br>downloaded are incorrect.<br>The length of the execution code<br>exceeds the limit. | Download the program again.                                                                                                                   |
| 16#8107    | The contents of the program<br>downloaded are incorrect.<br>The length of the source code<br>exceeds the limit.    | Download the program again.                                                                                                                   |
| 16#8230    | The CPU parameter downloaded is<br>incorrect.<br>The IP address is illegal.                                        | Check the network related parameter which is downloaded to the CPU.                                                                           |
| 16#8231    | The CPU parameter downloaded is<br>incorrect.<br>The netmask address is illegal.                                   | Check the network related parameter which is downloaded to the CPU.                                                                           |
| 16#8232    | The CPU parameter downloaded is<br>incorrect.<br>The gateway address is illegal.                                   | Check the network related parameter which is downloaded to the CPU.                                                                           |
| 16#8233    | The CPU parameter downloaded is<br>incorrect.<br>The IP address filter is set<br>incorrectly.                      | Check the network related parameter which is downloaded to the CPU.                                                                           |
| 16#8235    | The CPU parameter downloaded is<br>incorrect.<br>The static ARP table is set<br>incorrectly.                       | <ol> <li>Check the Ethernet parameters of the CPU in HWCONFIG.</li> <li>Check if CPU firmware version matches the HWCONFIG version</li> </ol> |
| 16#8236    | The CPU parameter downloaded is<br>incorrect: wrong NTP settings                                                   | <ol> <li>Check the Ethernet parameters of the CPU in HWCONFIG.</li> <li>Check if CPU firmware version matches the HWCONFIG version</li> </ol> |
| 16#8240    | The CPU parameter downloaded is incorrect: Ether iLink                                                             | Redownload the parameters after modifying the configurations                                                                                  |
| 16#8522    | Auto scanning is in prograss                                                                                       | Auto scanning of module configuration is in progress. Please try again later.                                                                 |
| 16#853B    | An I/O module is not configured.(wirte error)                                                                      | Check if the module configuration in HWCONFIG is correct.                                                                                     |

| Error Code | Description                                                                       | Corrective action                                                                                                                                                                                                                                                                         |
|------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#853C    | An I/O module does not exist. (wirte error)                                       | Check if the module configuration in HWCONFIG is correct.                                                                                                                                                                                                                                 |
| 16#854B    | An I/O module is not configured.<br>(read error)                                  | Check if the module configuration in HWCONFIG is correct.                                                                                                                                                                                                                                 |
| 16#854C    | An I/O module does not exist. (read error)                                        | Check if the module configuration in HWCONFIG is correct.                                                                                                                                                                                                                                 |
| 16#8572    | The checksum of the module configuration table is incorrect.                      | Please check the PLC firmware and the software version and contact the supplier.                                                                                                                                                                                                          |
| 16#8576    | The checksum of the module parameter setting is incorrect.                        | Please check the PLC firmware and the software version and contact the supplier.                                                                                                                                                                                                          |
| 16#867A    | The checksum of the module<br>parameter mapping table is<br>incorrect.            | Please check the PLC firmware and the software version and contact the supplier.                                                                                                                                                                                                          |
| 16#85E1    | An I/O interrupt number is incorrect.                                             | Please check the PLC firmware version and contact the supplier.                                                                                                                                                                                                                           |
| 16#85E2    | An I/O interrupt service routine does not exist.                                  | Please check if the corresponding interrupt program for the CPU is downloaded.                                                                                                                                                                                                            |
| 16#860F    | System restoration error                                                          | The contents of the system backup file are incorrect, or the file does not exist in the path specified. If the file exists and the procedure of restoring the system can not be executed, please backing up the system again. If the error still occurs, please contact the manufacturer. |
| 16#8611    | No memory card exists, or the memory card format is incorrect.                    | The system cannot detect the memory card. Format the memory card and try again.                                                                                                                                                                                                           |
| 16#9A33    | An error occurs when COM1<br>communicates with slave 19 by<br>Modbus or PLC Link. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol>                                                                                                                                             |
| 16#9A34    | An error occurs when COM1<br>communicates with slave 20 by<br>Modbus or PLC Link. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol>                                                                                                                                             |
| 16#9A35    | An error occurs when COM1<br>communicates with slave 21 by<br>Modbus or PLC Link. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol>                                                                                                                                             |

| Error Code | Description                                                                  | Corrective action                                                                                                                             |
|------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 16#9A47    | COM1 receives no response from<br>slave 7 by Modbus or PLC Link.<br>(SM1591) | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B01    | An error occurs when the Modbus connection of COM2 is initialized.           | Reset the parameters of Modbus conection of COM2 in the HWCONFIG.                                                                             |
| 16#9B21    | An error occurs when COM2<br>communicates with slave 1 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B22    | An error occurs when COM2<br>communicates with slave 2 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B23    | An error occurs when COM2<br>communicates with slave 3 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B24    | An error occurs when COM2<br>communicates with slave 4 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B25    | An error occurs when COM2<br>communicates with slave 5 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B26    | An error occurs when COM2<br>communicates with slave 6 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B27    | An error occurs when COM2<br>communicates with slave 7 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B28    | An error occurs when COM2<br>communicates with slave 8 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B29    | An error occurs when COM2<br>communicates with slave 9 by<br>MODBUS.         | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |

| Error Code | Description                                                           | Corrective action                                                                                                                         |
|------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 16#9B2A    | An error occurs when COM2<br>communicates with slave 10 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B2B    | An error occurs when COM2<br>communicates with slave 11 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B2C    | An error occurs when COM2<br>communicates with slave 12 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B2D    | An error occurs when COM2<br>communicates with slave 13 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B2E    | An error occurs when COM2<br>communicates with slave 14 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B2F    | An error occurs when COM2<br>communicates with slave 15 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B30    | An error occurs when COM2<br>communicates with slave 16 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B31    | An error occurs when COM2<br>communicates with slave 17 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B32    | An error occurs when COM2<br>communicates with slave 18 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B33    | An error occurs when COM2<br>communicates with slave 19 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |

| Error Code | Description                                                           | Corrective action                                                                                                                             |
|------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 16#9B34    | An error occurs when COM2<br>communicates with slave 20 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B35    | An error occurs when COM2<br>communicates with slave 21 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B36    | An error occurs when COM2<br>communicates with slave 22 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B37    | An error occurs when COM2<br>communicates with slave 23 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B38    | An error occurs when COM2<br>communicates with slave 24 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B39    | An error occurs when COM2<br>communicates with slave 25 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B3A    | An error occurs when COM2<br>communicates with slave 26 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B3B    | An error occurs when COM2<br>communicates with slave 27 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B3C    | An error occurs when COM2<br>communicates with slave 28 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B3D    | An error occurs when COM2<br>communicates with slave 29 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |

| Error Code | Description                                                           | Corrective action                                                                                                                             |
|------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 16#9B3E    | An error occurs when COM2<br>communicates with slave 30 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B3F    | An error occurs when COM2<br>communicates with slave 31 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B40    | An error occurs when COM2<br>communicates with slave 32 by<br>MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B41    | COM2 receives no response from slave 1 by MODBUS.                     | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B42    | COM2 receives no response from slave 2 by MODBUS.                     | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B43    | COM2 receives no response from slave 3 by MODBUS.                     | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B44    | COM2 receives no response from slave 4 by MODBUS.                     | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B45    | COM2 receives no response from slave 5 by MODBUS.                     | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B46    | COM2 receives no response from slave 6 by MODBUS.                     | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B47    | COM2 receives no response from slave 7 by MODBUS.                     | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |

A-81

| Error Code | Description                                        | Corrective action                                                                                                                             |
|------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 16#9B48    | COM2 receives no response from slave 8 by MODBUS.  | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B49    | COM2 receives no response from slave 9 by MODBUS.  | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B4A    | COM2 receives no response from slave 10 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B4B    | COM2 receives no response from slave 11 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B4C    | COM2 receives no response from slave 12 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B4D    | COM2 receives no response from slave 13 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B4E    | COM2 receives no response from slave 14 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B4F    | COM2 receives no response from slave 15 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B50    | COM2 receives no response from slave 16 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B51    | COM2 receives no response from slave 17 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |

| Error Code | Description                                        | Corrective action                                                                                                                             |
|------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 16#9B52    | COM2 receives no response from slave 18 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B53    | COM2 receives no response from slave 19 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B54    | COM2 receives no response from slave 20 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B55    | COM2 receives no response from slave 21 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B56    | COM2 receives no response from slave 22 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B57    | COM2 receives no response from slave 23 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B58    | COM2 receives no response from slave 24 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B59    | COM2 receives no response from slave 25 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B5A    | COM2 receives no response from slave 26 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B5B    | COM2 receives no response from slave 27 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |

| Error Code | Description                                        | Corrective action                                                                                                                             |
|------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 16#9B5C    | COM2 receives no response from slave 28 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B5D    | COM2 receives no response from slave 29 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B5E    | COM2 receives no response from slave 30 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B5F    | COM2 receives no response from slave 31 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |
| 16#9B60    | COM2 receives no response from slave 32 by MODBUS. | <ol> <li>Check the communication setting between the connecting<br/>devices.</li> <li>Check if the communication cable is damaged.</li> </ol> |

# Analog I/O Modules and Temperature Measurement Modules

| Error code | Description                                                                                                                                    | Corrective action                                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A000    | The signal received by channel 0<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator blinks.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 0 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A001    | The signal received by channel 1<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator blinks.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 1 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A002    | The signal received by channel 2<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator blinks.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 2 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A003    | The signal received by channel 3<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator blinks.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 3 exceeds<br>the range of inputs which can be received by the hardware. |

| Error code | Description                                                                                                                                    | Corrective action                                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A004    | The signal received by channel 4<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator blinks.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 4 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A005    | The signal received by channel 5<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator blinks.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 5 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A006    | The signal received by channel 6<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator blinks.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 6 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A007    | The signal received by channel 7<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator blinks.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 7 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A400    | The signal received by channel 0<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is ON.)  | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 0 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A401    | The signal received by channel 1<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is ON.)  | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 1 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A402    | The signal received by channel 2<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is ON.)  | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 2 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A403    | The signal received by channel 3<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is ON.)  | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 3 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A404    | The signal received by channel 4<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is ON.)  | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 4 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A405    | The signal received by channel 5<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is ON.)  | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 5 exceeds<br>the range of inputs which can be received by the hardware. |

| Error code | Description                                                                                                                                    | Corrective action                                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A406    | The signal received by channel 6<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is ON.)  | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 6 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A407    | The signal received by channel 7<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is ON.)  | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 7 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A600    | Hardware failure                                                                                                                               | <ol> <li>Check whether the backplane is normal.</li> <li>Check whether the module operate normally.</li> </ol>                                                  |
| 16#A601    | The external voltage is abnormal.                                                                                                              | Check whether the external 24 V power supply to the module is normal.                                                                                           |
| 16#A602    | Internal error<br>The CJC is abnormal.                                                                                                         | Please contact the manufacturer.                                                                                                                                |
| 16#A603    | Internal error<br>The factory correction is abnormal.                                                                                          | Please contact the manufacturer.                                                                                                                                |
| 16#A800    | The signal received by channel 0<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is OFF.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 0 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A801    | The signal received by channel 1<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is OFF.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 1 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A802    | The signal received by channel 2<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is OFF.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 2 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A803    | The signal received by channel 3<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is OFF.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 3 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A804    | The signal received by channel 4<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is OFF.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 4 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A805    | The signal received by channel 5<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is OFF.) | Check the module parameter in HWCONFIG.<br>Check whether The signal received by channel 5 exceeds<br>the range of inputs which can be received by the hardware. |

| Error code | Description                                                                                                                                    | Corrective action                                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A806    | The signal received by channel 6<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is OFF.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 6 exceeds<br>the range of inputs which can be received by the hardware. |
| 16#A807    | The signal received by channel 7<br>exceeds the range of inputs which<br>can be received by the hardware.<br>(The ERROR LED indicator is OFF.) | Check the module parameter in HWCONFIG.<br>Check whether the signal received by channel 7 exceeds<br>the range of inputs which can be received by the hardware. |

#### AH02HC-5A/AH04HC-5A

| Error code | Description                                               | Corrective action                                                                                                                        |
|------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A001    | The linear accumulation in channel 1 exceeds the range.   | To clear the linear accumulation, users need to set bit 1 in CR0 to ON by means of FROM/TO.                                              |
| 16#A002    | The scale set for channel 1 exceeds the range.            | Check the module parameter in HWCONFIG.<br>The scale set for channel 1 should be in the range of 0 to 32767.                             |
| 16#A003    | The number of cycles set for channel 1exceeds the range.  | Check the module parameter in HWCONFIG.<br>The number of cycles set for channel 1 should be in the<br>range of 2 to 60.                  |
| 16#A004    | The comparison value set for channel 1 exceeds the range. | Check the module parameter in HWCONFIG.<br>The comparison value set for channel 1 should be in the<br>range of -9999999999 to 999999999. |
| 16#A005    | A limit value set for channel 1 is incorrect.             | Check the module parameter in HWCONFIG.<br>A limit value of set for channel 1 should be in the range of<br>-200000 to 200000.            |
| 16#A006    | The interrupt number set for channel 1 exceeds the range. | Check the module parameter in HWCONFIG.<br>The interrupt number set for channel 1 should be in the<br>range of 0 to 31.                  |
| 16#A011    | The linear accumulation in channel 1 exceeds the range.   | To clear the linear accumulation, users need to set bit 1 in CR28 to ON by means of FROM/TO.                                             |
| 16#A012    | The scale set for channel 2 exceeds the range.            | Check the module parameter in HWCONFIG.<br>The scale set for channel 2 should be in the range of 0 to 32767.                             |
| 16#A013    | The number of cycles set for channel 2 exceeds the range. | Check the module parameter in HWCONFIG.<br>The number of cycles set for channel 2 should be in the<br>range of 2 to 60.                  |
| 16#A014    | The comparison value set for channel 2 exceeds the range. | Check the module parameter in HWCONFIG.<br>The comparison value set for channel 2 should be in the<br>range of -9999999999 to 999999999. |

| Error code | Description                                               | Corrective action                                                                                                                        |
|------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A015    | A limit value set for channel 2 is incorrect.             | Check the module parameter in HWCONFIG.<br>A limit value of set for channel 2 should be in the range of<br>-200000 to 200000.            |
| 16#A016    | The interrupt number set for channel 2 exceeds the range. | Check the module parameter in HWCONFIG.<br>The interrupt number set for channel 2 should be in the<br>range of 0 to 31.                  |
| 16#A021    | The linear accumulation in channel 3 exceeds the range.   | To clear the linear accumulation, users need to set bit 1 in CR56 to ON by means of FROM/TO.                                             |
| 16#A022    | The scale set for channel 3 exceeds the range.            | Check the module parameter in HWCONFIG.<br>The scale set for channel 3 should be in the range of 0 to<br>32767.                          |
| 16#A023    | The number of cycles set for channel 3 exceeds the range. | Check the module parameter in HWCONFIG.<br>The number of cycles set for channel 3 should be in the<br>range of 2 to 60.                  |
| 16#A024    | The comparison value set for channel 3 exceeds the range. | Check the module parameter in HWCONFIG.<br>The comparison value set for channel 3 should be in the<br>range of -9999999999 to 999999999. |
| 16#A025    | A limit value set for channel 3 is incorrect.             | Check the module parameter in HWCONFIG.<br>A limit value of set for channel 3 should be in the range of<br>-200000 to 200000.            |
| 16#A026    | The interrupt number set for channel 3 exceeds the range. | Check the module parameter in HWCONFIG.<br>The interrupt number set for channel 3 should be in the<br>range of 0 to 31.                  |
| 16#A031    | The linear accumulation in channel 4 exceeds the range.   | To clear the linear accumulation, users need to set bit 1 in CR84 to ON by means of FROM/TO.                                             |
| 16#A032    | The scale set for channel 4 exceeds the range.            | Check the module parameter in HWCONFIG.<br>The scale set for channel 4 should be in the range of 0 to 32767.                             |
| 16#A033    | The number of cycles set for channel 4 exceeds the range. | Check the module parameter in HWCONFIG.<br>The number of cycles set for channel 4 should be in the<br>range of 2 to 60.                  |
| 16#A034    | The comparison value set for channel 4 exceeds the range. | Check the module parameter in HWCONFIG.<br>The comparison value set for channel 4 should be in the<br>range of -9999999999 to 999999999. |
| 16#A035    | A limit value set for channel 4 is incorrect.             | Check the module parameter in HWCONFIG.<br>A limit value of set for channel 4 should be in the range of<br>-200000 to 200000.            |
| 16#A036    | The interrupt number set for channel 4 exceeds the range. | Check the module parameter in HWCONFIG.<br>The interrupt number set for channel 4 should be in the<br>range of 0 to 31.                  |

### AH05PM-5A/AH10PM-5A/AH15PM-5A

The programs and the setting which are mentioned in the table below are edited in PMSoft version 2.02 or above.

| Error code | Description                                                                            | Corrective action                                                                                                                                   |
|------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A002    | The subroutine has no data.                                                            | A program should be written in the subroutine.                                                                                                      |
| 16#A003    | CJ, CJN, and JMP have no matching pointers.                                            | Write the pointers which match CJ, CJN, and JMP respectively.                                                                                       |
| 16#A004    | There is a subroutine pointer in the main program.                                     | The subroutine pointer can not be in the main program.                                                                                              |
| 16#A005    | Lack of the subroutine                                                                 | The nonexistent subroutine can not be called.                                                                                                       |
| 16#A006    | The pointer is used repeatedly in the same program.                                    | The pointer can not be used repeatedly in the same program.                                                                                         |
| 16#A007    | The subroutine pointer is used repeatedly.                                             | The subroutine pointer can not be used repeatedly.                                                                                                  |
| 16#A008    | The pointer used in JMP is used repeatedly in different subroutines.                   | The pointer used in JMP can not be used repeatedly in different subroutines.                                                                        |
| 16#A009    | The pointer used in JMP is the same as the pointer used in CALL.                       | The pointer used in JMP can not be the same as the pointer used in CALL.                                                                            |
| 16#A00A    | The pointer used in JMP is the same as a subroutine pointer.                           | The pointer used in JMP can not be the same as a subroutine pointer.                                                                                |
| 16#A00B    | Target position (I) of the single speed is incorrect.                                  | The target position (I) of the single speed should be set correctly.                                                                                |
| 16#A00C    | Target position (II) of the single-axis motion is incorrect.                           | Check whether target position (II) of the single-axis motion<br>and target position (I) of the single-axis motion are in<br>opposite directions.    |
| 16#A00D    | The setting of speed (I) of the single-axis motion is incorrect.                       | Set the speed of the single-axis motion.                                                                                                            |
| 16#A00E    | The setting of speed (II) of the single-axis motion is incorrect.                      | The setting value can not be zero.                                                                                                                  |
| 16#A00F    | The setting of the speed ( $V_{RT}$ ) of returning to zero is incorrect.               | Set the speed of returning to zero properly. (The setting value can not be zero.)                                                                   |
| 16#A010    | The setting of the deceleration (V <sub>CR</sub> ) of returning to zero is incorrect.  | Set the speed of returning to zero. The deceleration should<br>be less than the speed of returning to zero. (The setting<br>value can not be zero.) |
| 16#A011    | The setting of the JOG speed is incorrect.                                             | The setting value can not be zero.                                                                                                                  |
| 16#A012    | The positive pulses generated by<br>the single-axis clockwise motion are<br>inhibited. | The error occurs because the limit sensor is triggered.<br>Check the status of the limit sensor, and check whether the<br>motor operates normally.  |



| Error code | Description                                                                                   | Corrective action                                                                                                                                  |
|------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A013    | The negative pulses generated by the single-axis counterclockwise motion are inhibited.       | The error occurs because the limit sensor is triggered.<br>Check the status of the limit sensor, and check whether the<br>motor operates normally. |
| 16#A014    | The limit switch is reached.                                                                  | The error occurs because the limit sensor is triggered.<br>Check the status of the limit sensor, and check whether the<br>motor operates normally. |
| 16#A015    | The device which is used exceeds the device range.                                            | Use the device which does not exceed the device range.                                                                                             |
| 16#A017    | An error occurs when the device is modified by a 16-bit index register/32-bit index register. | Use the16-bit index register/32-bit index register which does not exceed the device range.                                                         |
| 16#A018    | The conversion into the floating-point number is incorrect.                                   | Modify the operation to prevent the abnormal number from occurring.                                                                                |
| 16#A019    | The conversion into the<br>binary-coded decimal number is<br>incorrect.                       | Modify the operation to prevent the abnormal number from occurring.                                                                                |
| 16#A01A    | Incorrect division operation (The divisor is 0.)                                              | Modify the operation to prevent the divisor from being zero.                                                                                       |
| 16#A01B    | General program error                                                                         | Modify the program to make the syntax correct.                                                                                                     |
| 16#A01C    | LD/LDI has been used more than nine times.                                                    | Modify the program to prevent LD/LDI from being used more than nine times.                                                                         |
| 16#A01D    | There is more than one level of<br>nested program structure supported<br>by RPT/RPE.          | Modify the program to prevent more than one level of nested program structure supported by RPT/RPE from being used.                                |
| 16#A01E    | SRET is used between RPT and RPE.                                                             | Modify the program to prevent SRET from being used between RPT and RPE.                                                                            |
| 16#A01F    | There is no M102 in the main program, or there is no M2 in the motion program.                | Modify the program so that there is M102 in the main program, or modify the program so that there is M2 in the motion program.                     |
| 16#A020    | The wrong instruction is used, or the device used exceeds the range.                          | Check and modify the program to prevent the wrong<br>instruction from being used, or check whether the device<br>used exceeds the device range.    |

### AH20MC-5A

The programs and the setting which are mentioned in the table below are edited in PMSoft version 2.02 or above.

| Error code | Description                                 | Corrective action                                             |
|------------|---------------------------------------------|---------------------------------------------------------------|
| 16#A002    | The subroutine has no data.                 | A program should be written in the subroutine.                |
| 16#A003    | CJ, CJN, and JMP have no matching pointers. | Write the pointers which match CJ, CJN, and JMP respectively. |

| Error code | Description                                                                             | Corrective action                                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A004    | There is a subroutine pointer in the main program.                                      | The subroutine pointer can not be in the main program.                                                                                              |
| 16#A005    | Lack of the subroutine                                                                  | The nonexistent subroutine can not be called.                                                                                                       |
| 16#A006    | The pointer is used repeatedly in the same program.                                     | The pointer can not be used repeatedly in the same program.                                                                                         |
| 16#A007    | The subroutine pointer is used repeatedly.                                              | The subroutine pointer can not be used repeatedly.                                                                                                  |
| 16#A008    | The pointer used in JMP is used repeatedly in different subroutines.                    | The pointer used in JMP can not be used repeatedly in different subroutines.                                                                        |
| 16#A009    | The pointer used in JMP is the same as the pointer used in CALL.                        | The pointer used in JMP can not be the same as the pointer used in CALL.                                                                            |
| 16#A00A    | The pointer used in JMP is the same as a subroutine pointer.                            | The pointer used in JMP can not be the same as a subroutine pointer.                                                                                |
| 16#A00B    | Target position (I) of the single speed is incorrect.                                   | The target position (I) of the single speed should be set correctly.                                                                                |
| 16#A00C    | Target position (II) of the single-axis motion is incorrect.                            | Check whether target position (II) of the single-axis motion<br>and target position (I) of the single-axis motion are in<br>opposite directions.    |
| 16#A00D    | The setting of speed (I) of the single-axis motion is incorrect.                        | Set the speed of the single-axis motion.                                                                                                            |
| 16#A00E    | The setting of speed (II) of the single-axis motion is incorrect.                       | The setting value can not be zero.                                                                                                                  |
| 16#A00F    | The setting of the speed ( $V_{RT}$ ) of returning to zero is incorrect.                | Set the speed of returning to zero properly. (The setting value can not be zero.)                                                                   |
| 16#A010    | The setting of the deceleration (V <sub>CR</sub> ) of returning to zero is incorrect.   | Set the speed of returning to zero. The deceleration should<br>be less than the speed of returning to zero. (The setting<br>value can not be zero.) |
| 16#A011    | The setting of the JOG speed is incorrect.                                              | The setting value can not be zero.                                                                                                                  |
| 16#A012    | The positive pulses generated by the single-axis clockwise motion are inhibited.        | The error occurs because the limit sensor is triggered.<br>Check the status of the limit sensor, and check whether the<br>motor operates normally.  |
| 16#A013    | The negative pulses generated by the single-axis counterclockwise motion are inhibited. | The error occurs because the limit sensor is triggered.<br>Check the status of the limit sensor, and check whether the<br>motor operates normally.  |
| 16#A014    | The limit switch is reached.                                                            | The error occurs because the limit sensor is triggered.<br>Check the status of the limit sensor, and check whether the<br>motor operates normally.  |

| Error code | Description                                                                                         | Corrective action                                                                                                                               |
|------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A015    | The device which is used exceeds the device range.                                                  | Use the device which does not exceed the device range.                                                                                          |
| 16#A017    | An error occurs when the device is<br>modified by a 16-bit index<br>register/32-bit index register. | Use the 16-bit index register/32-bit index register which does not exceed the device range.                                                     |
| 16#A018    | The conversion into the floating-point number is incorrect.                                         | Modify the operation to prevent the abnormal number from occurring.                                                                             |
| 16#A019    | The conversion into the<br>binary-coded decimal number is<br>incorrect.                             | Modify the operation to prevent the abnormal number from occurring.                                                                             |
| 16#A01A    | Incorrect division operation (The divisor is 0.)                                                    | Modify the operation to prevent the divisor from being zero.                                                                                    |
| 16#A01B    | General program error                                                                               | Modify the program to make the syntax correct.                                                                                                  |
| 16#A01C    | LD/LDI has been used more than nine times.                                                          | Modify the program to prevent LD/LDI from being used more than nine times.                                                                      |
| 16#A01D    | There is more than one level of<br>nested program structure supported<br>by RPT/RPE.                | Modify the program to prevent more than one level of<br>nested program structure supported by RPT/RPE from<br>being used.                       |
| 16#A01E    | SRET is used between RPT and RPE.                                                                   | Modify the program to prevent SRET from being used between RPT and RPE.                                                                         |
| 16#A01F    | There is no M102 in the main program, or there is no M2 in the motion program.                      | Modify the program so that there is M102 in the main program, or modify the program so that there is M2 in the motion program.                  |
| 16#A020    | The wrong instruction is used, or the device used exceeds the range.                                | Check and modify the program to prevent the wrong<br>instruction from being used, or check whether the device<br>used exceeds the device range. |

### AH10EN-5A/AH15EN-5A

| Error code  | Description                             | Remedy                                                     |
|-------------|-----------------------------------------|------------------------------------------------------------|
|             | The IP address of host 1 conflicts      | 1. Contact the network administrator, and check whether    |
| 16#A001     | with another system on the              | the IP address is correct.                                 |
|             | network.                                | 2. Check the module parameter in HWCONFIG.                 |
|             | The IP address of host 2 conflicts      | 1. Contact the network administrator, and check whether    |
| 16#A002     | with another system on the              | the IP address is correct.                                 |
|             | network.                                | 2. Check the module parameter in HWCONFIG.                 |
| 16#A003     | DHCP for host 1 fails.                  | Please contact the network administrator                   |
| 16#A004     | DHCP for host 2 fails.                  | Please contact the network administrator                   |
| 10// 10/    |                                         | Please restore the hardware to the factory setting. If the |
| 16#A401     | Hardware error                          | error still occurs, please contact the factory.            |
| 4.0 // 4.00 |                                         | Please restore the system to the factory setting. If the   |
| 16#A402     | The initialization of the system fails. | error still occurs, please contact the factory.            |

| Error code | Description                                                          | Corrective action                                                                                                                                                               |
|------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A002    | The setting of the UD Link is incorrect, or the communication fails. | Check the setting in SCMSoft, and download the setting again.                                                                                                                   |
| 16#A401    | Hardware error                                                       | Please contact the manufacturer.                                                                                                                                                |
| 16#A804    | The communication through the communication port is incorrect.       | <ol> <li>Check whether the communication cable is connected<br/>well.</li> <li>Check the parameter in HWCONFIG, and the parameter.<br/>Download the parameter again.</li> </ol> |
| 16#A808    | MODBUS communication error                                           | <ol> <li>Check whether the communication cable is connected<br/>well.</li> <li>Check the parameter in HWCONFIG, and the parameter.<br/>Download the parameter again.</li> </ol> |

### AH10SCM-5A / AH15SCM-5A

### AH10DNET-5A

| Error code | Description                                                                                               | Remedy                                                                                                                                                                                                                                                                                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A0F0    | The node ID of<br>AH10DNET-5A is the<br>same as other node ID on<br>the network, or exceeds<br>the range. | Make sure that the node ID of AH10DNET-5A is the only one on the network. If the node ID of AH10DNET-5A is not the only one on the network, please change the node ID, and supply power to AH10DNET-5 again.                                                                                                                                                              |
| 16#A0F1    | No slave is put on the scan list of AH10DNET-5A.                                                          | Put slaves on the scan list, and then download the scan list to AH10DNET-5A.                                                                                                                                                                                                                                                                                              |
| 16#A0F2    | The working voltage of<br>AH10DNET-5A is low.                                                             | Check whether the working voltage of AH10DNET-5A and that of<br>an AH500 series CPU module are normal.                                                                                                                                                                                                                                                                    |
| 16#A0F3    | AH10DNET-5A enters the test mode.                                                                         | Switch IN 1 on the module OFF, and supply power to AH10DNET-5A again.                                                                                                                                                                                                                                                                                                     |
| 16#A0F4    | The bus of AH10DNET-5A<br>becomes OFF.                                                                    | <ol> <li>Check whether the communication cable is normal, and whether<br/>the shielded cable is grounded.</li> <li>Check whether the serial transmission speeds of other devices<br/>on the network are the same.</li> <li>Check whether the both ends of the cable are connected to 121<br/>Ω terminal resistors.</li> <li>Supply power to AH10DNET-5A again.</li> </ol> |
| 16#A0F5    | AH10DNET-5A detects<br>that there is no power<br>supply to the DeviceNet<br>network.                      | Check whether the communication cable is normal, and whether the network power supply is normal.                                                                                                                                                                                                                                                                          |
| 16#A0F6    | Something is wrong with the internal memory of AH10DNET-5A.                                               | Supply power to AH10DNET-5A again. If the error still occurs, please contact the factory.                                                                                                                                                                                                                                                                                 |

| Error code | Description                                                                                                                  | Remedy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A0F7    | Something is wrong with the data exchange unit of AH10DNET-5A.                                                               | Supply power to AH10DNET-5A again. If the error still occurs, please contact the factory.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16#A0F8    | The product ID of<br>AH10DNET-5A is<br>incorrect.                                                                            | Supply power to AH10DNET-5A again. If the error still occurs, please contact the factory.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16#A0F9    | An error occurs when the<br>data is read from<br>AH10DNET-5A, or when<br>the data is written into<br>AH10DNET-5A.            | Supply power to AH10DNET-5A again. If the error still occurs, please contact the factory.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16#A0FA    | The node ID of<br>AH10DNET-5A is the<br>same as that of the slave<br>set on the scan list.                                   | Method 1: Set the node ID of AH10DNET-5A again. The new node<br>ID can not be the same as the node ID of the slave set on the scan<br>list. Supply power to AH10DNET-5A again.<br>Method 2: Put no slave on the scan list, and download the blank<br>scan list to AH10DNET-5A through the simulated online mode in<br>the software. Supply power to AH10DNET-5A again.                                                                                                                             |
| 16#A0FB    | The data exchange<br>between AH10DNET and<br>AH CPU failed.                                                                  | Supply power to the AH10DNET and AH CPU and try to exchange data again. If the issue continuses, contact the factory.                                                                                                                                                                                                                                                                                                                                                                              |
| 16#A0FC    | Errors occur in the slaves,<br>on the module of an<br>AHRTU-DNET backplane,<br>or on the AHRTU-DNET<br>backplane connection. | Check whether the node number has changed.<br>Check if the network connection cable is secured and working fine.<br>Check if the network transmission cable does not exceed the<br>maximum communication distance (refer to AH500 module manual<br>section 10.3.3 for more information). Do not exceed the maximum<br>communication distance to ensure a stable network.<br>Check if the module on the backplane is working fine.<br>Check if the AHRTU-DNET backplane connection is working fine. |

### AH10PFBM-5A

| Error<br>code | Description                                                                 | Remedy                                                                                               |
|---------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 16#A001       | The master is not set.                                                      | Download appropriate setting.                                                                        |
| 16#A003       | The master station enters the test mode.                                    | Just repower it.                                                                                     |
| 16#A005       | A timeout occurs when chips<br>inside the master station<br>communicate.    | Download the appropriate configuration again. If the error still occurs, please contact the factory. |
| 16#A00B       | A timeout occurs when<br>AH10PFBM-5A exchanges data<br>exchange with a PLC. | Repower AH10PFBM-5A . If the error still occurs, please contact the factory.                         |
| 16#A402       | The PLC does not assign the I/O mapping area to the master.                 | Assign the appropriate I/O mapping area to the master via ISPSoft.                                   |

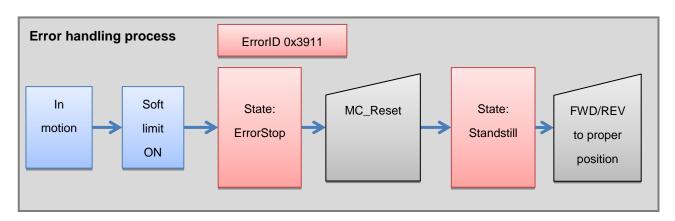
| Error<br>code | Description                                                                       | Remedy                                                                                                                                                      |
|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A404       | Master initializing error                                                         | Contact the factory if the error still exists after repowering AH10PFBM-5A.                                                                                 |
| 16#A406       | Internal storage unit error                                                       | Contact the factory if the error still exists after repowering AH10PFBM-5A.                                                                                 |
| 16#A407       | Data exchange unit error                                                          | Contact the factory if the error still exists after repowering AH10PFBM-5A.                                                                                 |
| 16#A408       | Master serial number detection error                                              | Contact the factory if the error still exists after repowering AH10PFBM-5A.                                                                                 |
| 16#A4E2       | The master detects that the slave is offline.                                     | <ol> <li>Check whether the PROFIBUS-DP bus connection is normal.</li> <li>Check whether both of the ends of the network have terminal resistors.</li> </ol> |
| 16#A4E6       | The master detects that an error occurs in the module connected to AHRTU-PFBS-5A. | Check the modules connected to AHRTU-PFBS-5A.                                                                                                               |

### AH10PFBS-5A

| Error<br>code | Description                                                                                                                                                                                                                  | Remedy                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A4F0       | The node address of<br>AH10PFBS-5A exceeds the<br>valid range.                                                                                                                                                               | The node address of AH10PFBS-5A must be in the range of 1 to 125.                                                                                                                                                                                                                                                                                                                              |
| 16#A4F1       | Internal hardware error                                                                                                                                                                                                      | If the error still exists after repowering AH10PFBS-5A, replace it with a new one.                                                                                                                                                                                                                                                                                                             |
| 16#A4F2       | Parameter error                                                                                                                                                                                                              | Check whether the GSD file AH10PFBS-5A is using is correct.                                                                                                                                                                                                                                                                                                                                    |
| 16#A4F3       | Configuration error                                                                                                                                                                                                          | Check whether the GSD file AH10PFBS-5A is using is correct.                                                                                                                                                                                                                                                                                                                                    |
| 16#A4F4       | GPIO detection error                                                                                                                                                                                                         | If the error still exists after repowering AH10PFBS-5A, replace it with a new one.                                                                                                                                                                                                                                                                                                             |
| 16#A4F5       | AH10PFBS-5A enters the mode of factory test.                                                                                                                                                                                 | Repower AH10PFBS-5A after setting its node address between 1~125.                                                                                                                                                                                                                                                                                                                              |
| 16#A4F6       | <ol> <li>AH10PFBS-5A has not<br/>been connected to the<br/>PROFIBUS-DP network.</li> <li>PROFIBUS-DP master has<br/>not configured<br/>AH10PFBS-5A slave or the<br/>configured node address of<br/>AH10PFBS-5A is</li> </ol> | <ol> <li>Check whether the communication cable between AH10PFBS-5A<br/>and PROFIBUS-DP master is in normal status.</li> <li>Ensure that AH10PFBS-5A slave has been configured to<br/>PROFIBUS-DP master and the configured node address of<br/>AH10PFBS-5A is consistent with that of the actually connected<br/>one.</li> <li>Check whether the PROFIBUS-DP master works normally.</li> </ol> |

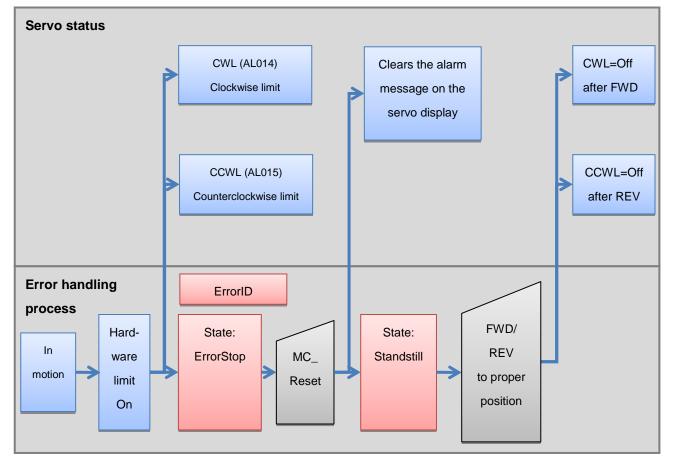
| Error<br>code | Description                   | Remedy |
|---------------|-------------------------------|--------|
|               | inconsistent with that of the |        |
|               | actually connected one.       |        |

### AH10COPM-5A


| Error code | Description                                                                                                            | Remedy                                                                                                                                                     |
|------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A0B0    | AH10COPM-5A does not send a<br>heartbeat message after a set<br>period of time.                                        | Check whether the bus cable on the CANopen network created is connected correctly.                                                                         |
| 16#A0B1    | The length of a PDO that a slave<br>station sends is not the same as the<br>length of the PDO set in the node<br>list. | Set the length of the PDO in the slave station again, and then download the setting to AH10COPM-5A.                                                        |
| 16#A0B2    | The master station selected does<br>not send a node guarding message<br>after a set period of time.                    | Check whether the bus cable on the CANopen network created is connected correctly.                                                                         |
| 16#A0E0    | AH10COPM-5A receives an<br>emergency message from a slave<br>station.                                                  | Use the function block CANopen_EMCY to read relevant information.                                                                                          |
| 16#A0E1    | The length of a PDO that a slave<br>station sends is not the same as the<br>length of the PDO set in the node<br>list. | Set the length of the PDO in the slave station again, and then download the setting to AH10COPM-5A.                                                        |
| 16#A0E2    | AH10COPM-5A does not receive a PDO from a slave station.                                                               | Make sure that the PDOs in the slave station are set correctly.                                                                                            |
| 16#A0E3    | An automatic SDO is not<br>downloaded successfully.                                                                    | Make sure that the automatic SDO is et correctly.                                                                                                          |
| 16#A0E4    | A PDO parameter is not set successfully.                                                                               | Make sure that the setting of the PDO parameter is legal.                                                                                                  |
| 16#A0E5    | A key parameter is set incorrectly.                                                                                    | Make sure that the slave stations connected are the same as the slave stations set.                                                                        |
| 16#A0E6    | The actual network configuration is not the same as the network configuration set.                                     | Make sure that the power supplied to the slave stations<br>connected is normal and the network created is connected<br>correctly.                          |
| 16#A0E7    | The control of the errors in a slave station is not sent after a set period of time.                                   |                                                                                                                                                            |
| 16#A0E8    | The master station address is the same as a slave station address.                                                     | Set the master station address or the slave station address<br>again, and make sure the new station address is not the<br>same as a slave station address. |

| Error code | Description                                                                  | Remedy                                                                                                                                                                                                                      |
|------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16#A0F1    | No slave station is added to the node list in CANopen builder.               | Add slave stations to the node list, and download the configuration to AH10COPM-5A.                                                                                                                                         |
| 16#A0F3    | An error occurs in AH10COPM-5A.                                              | Download parameters again. If the error still occurs, please replace AH10COPM-5A.                                                                                                                                           |
| 16#A0F4    | The bus used is off.                                                         | Please check whether the bus cable on the CANopen<br>network created is connected correctly, make sure that the<br>serial transmission speeds of all the nodes on the network<br>are the same, and power AH10COPM-5A again. |
| 16#A0F5    | The node address of<br>AH10COPM-5A is set incorrectly.                       | The node address of AH10COPM-5A must be in the range of 1 to 127.                                                                                                                                                           |
| 16#A0F6    | Internal error: An error occurs in the manufacturing process in the factory. | Power AH10COPM-5A again. If the error still occurs, please replace AH10COPM-5A.                                                                                                                                             |
| 16#A0F7    | Internal error: GPIO error                                                   |                                                                                                                                                                                                                             |
| 16#A0F8    | Hardware error                                                               |                                                                                                                                                                                                                             |
| 16#A0F9    | Low voltage                                                                  | Make sure that the power supplied to AH10COPM-5A is normal.                                                                                                                                                                 |
| 16#A0FA    | An error occurs in the firmware of AH10COPM-5A.                              | Power AH10COPM-5A again.                                                                                                                                                                                                    |
| 16#A0FB    | The transmission registers in AH10COPM-5A are full.                          | Please make sure that the bus cable on the CANopen<br>network created is connected correctly, and power<br>AH10COPM-5A again.                                                                                               |
| 16#A0FC    | The reception registers in AH10COPM-5A are full.                             | Please make sure that the bus cable on the CANopen<br>network created is connected correctly, and power<br>AH10COPM-5A again.                                                                                               |

# A.2.3. Troubleshooting for Limitation Errors


### Troubleshooting for the software limit errors

The controller system checks the software limits before or during the motion by the error code 0x3911. When the operation exceeds the software limits, the error code will be indicated and the axis will enter "ErrorStop". Servo drive will not report this error since the error handling in this case is controlled by the controller. Note: for details on the software limit setups, refert to ISPSoft manual. Do not set the values too close to the value of the software upper limit.



### Troubleshooting for the hardware limit errors

When the servo drive is driving a motion, the servo will stop when CWL(Clockwise limit) or CCWL(Counterclockwise limit) is On, no matter it's running forward or reversely. AL014(CWL) or AL015(CCWL) will indicate such error.

