

Digitized Automation for a Changing World

Delta CNC Machine Solution NC5 Series - MLC Application Manual

Preface

Thank you for choosing this product. Before using the product, please read through this manual carefully in order to ensure the correct use of the product. In addition, please place the manual safely for quick reference whenever is needed.

This manual includes:

- List of MLC devices
- MLC basic instructions
- Introduction to MLC application instructions
- List of MLC application instructions
- MLC Special M, D commands and functions
- MLC application examples

Features of NC5 series controllers

- Built-in 32-bit highspeed dual CPU for multi-task execution and performance improvement
- Friendly HMI Interface
- Auto tuning interface are provided for optimizing the machine's performance efficiency
- CNC Soft software tools to facilitate the development of customized images
- USB interface to facilitate data access, data backup, and parameters copy
- Spindle forms for users to choose between communication type and analog voltage type
- Serial I/O modules for flexible I/O contacts configuration

How to use this manual:

This manual can be used as reference while learning NC controllers. It lists instructions, special M and D commands, as well as instructs how to edit MLC with application examples. Before using and setting this product, please read through this manual carefully.

DELTA technical services

Please consult the distributors or DELTA customer service center if any problem occurs.

Safety Precautions

- Please follow the instruction of pin definition when wiring. Ground is a must.
- When the power is being supplied, do not disconnect the controller, change the wiring, or touch the power supply.

Please pay close attention to the following safety precautions during inspecting, installation, operating, maintenance and troubleshooting.

The symbols of "DANGER", "WARNING" and "STOP" represent:

It indicates the potential hazards. It is possible to cause severe injury or fatal harm if not follow the instructions.

It indicates the potential hazards. It is possible to cause minor injury or lead to serious damage of the product or even malfunction if not follow the instructions.

It indicates the absolute prohibited activity. It is possible to damage the product or cannot be used due to malfunction if not follow the instructions.

Installation

Please follow the installation instructions in this manual; otherwise it may cause damage to the equipment.

It is prohibited to expose the product to the environment containing water, corrosive gas, inflammable gas etc. Otherwise, electric shock or fire may occur.

Wiring

Connect the ground terminals to a Class 3 ground system. Ground resistance should not exceed 100 Ω. Improper grounding may result in communication error, electric shock, or fire.

Operation

- Use the MLCEditor software to correctly configure the I/O functions, or it may cause abnormal operation.
- Properly set the parameters before operating the machine, or it may cause abnormal operation or malfunction.

Do not change the wiring when the power is on, or it may cause electric shock or personnel injury.

Maintenance and Inspection

- Do not touch the internal part of the controller when the power is on, or it may cause electric shock.
- STOP
- Do not touch the wiring terminals within 10 minutes after turning off the power, or the residual voltage may cause electric shock.
- Cut off the power before replacing the backup battery. Ensure to check the system settings again after replacing the battery.
- Do not block the ventilation holes when operating the controller, or poor heat dissipation may lead to controller malfunction.

Wiring Method

- Power: connect a 24 V_{DC} power to the controller and do the wiring according to the specifications to avoid danger.
- Wire selection: use stranded wires and multi-core shielded-pair wires for all signal cables.
 - The local I/O and remote I/O of the controller require an external 24 V_{DC} power supply to output and input signals normally.

Wiring of Communication Circuit

Ensure the wiring between the controller and the servo drive is firmly connected, or loose connection may result in abnormal operation.

For the differences among the various versions, please refer to DELTA's website for the latest information (<u>https://downloadcenter.deltaww.com/en-US/DownloadCenter</u>).

(This page is intentionally left blank.)

Table of Contents

1

MLC Devices

1.1	List o	f MLC devices ······ 1-2
	1.1.1	Quantity and setting ranges of MLC devices
	1.1.2	Settings of MLC devices 1-3
1.2	Valu	es and constants ······ 1-5
	1.2.1	Binary number (BIN)······ 1-5
	1.2.2	Decimal number (DEC) ······ 1-6
1.3	Digita	l input / output relays (X, Y) ······ 1-7
	1.3.1	Functions of digital input / output relays ······ 1-8
1.4	Auxili	ary relay (M)······ 1-9
	1.4.1	Functions of the auxiliary relay······ 1-9
1.5	User-	defined alarm relay (A) ······ 1-10
	1.5.1	Function of user-defined alarm relay ····· 1-10
1.6	Timer	· (T)······ 1-11
	1.6.1	Functions of the timer ····· 1-11
1.7	Coun	ter (C) ····· 1-12
	1.7.1	Functions of the counter 1-12
1.8	Regis	ters (D, V, Z)
	1.8.1	Data register (D) ······ 1-14
	1.8.2	Index registers (V, Z) ····· 1-15
1.9	Indica	ators (P) · · · · · · · · · 1-16

2

Basic MLC Instructions

2.1	List o	f basic instructions ····· 2-3
2.2	Desci	ription of basic instructions ····· 2-5
	2.2.1	General instructions 2-5
		LD : Load contact A····· 2-5
		LDI : Load contact B····· 2-5
		AND : Serial connect contact A ····· 2-6
		ANI : Serial connect contact B ····· 2-6
		OR : Parallel connect contact A
		ORI : Parallel connect contact B ····· 2-7
		ANB : Serial connect circuit block

	ORB : Parallel connect circuit block ····· 2-8	}
	MPS : Store in stack 2-9)
	MRD : Read stack (stack pointer remains) ····· 2-9)
	MPP : Retrieve from stack ····· 2-9)
2.2.2	Output instructions 2-1	0
	OUT : Drive coil 2-1	0
	SET : Action remains (ON) 2-1	0
	RST : Clear contact or register 2-1	1
2.2.3	Timer and counter 2-1	2
	TMR : 16-bit timer ····· 2-1	2
	CNT : 16-bit counter ····· 2-1	2
	DCNT : 32-bit counter 2-1	3
	LDP : Start rising edge detection 2-1	4
2.2.4	Contact rising / falling edge detection instructions	4
	LDF : Start falling edge detection	4
	ANDP : Serial connection of rising edge detection	5
	ANDF : Serial connection of falling edge detection 2-1	5
	ORP : Parallel connection of rising edge detection 2-1	6
	ORF : Parallel connection of falling edge detection	6
2.2.5	Upper and lower differential output instructions	7
	PLS : Upper differential output	7
	PLF : Lower differential output ····· 2-1	8
2.2.6	End instruction ····· 2-1	8
	END : Program ends ····· 2-1	8
2.2.7	Other instructions 2-1	9
	NOP : No operation 2-1	9
	INV : Invert the operation result ····· 2-1	9
	P : Indicator ····· 2-2	20

MLC Application Instructions Overview

3.1	List o	f application instructions ······ 3-2
3.2	Desci	iptions of the application instructions ······ 3-4
	3.2.1	Table format of application instructions 3-4
	3.2.2	Input of application instructions
	3.2.3	Operand length (16-bit or 32-bit instruction)
	3.2.4	Instruction execution type
	3.2.5	Specified object of the operand
	3.2.6	Devices of the operand ······ 3-6
	3.2.7	Data processing of the word devices formed by bit devices
3.3	Proce	essing numeric values with application instructions ······ 3-8

3.4	Modify operands with index registers V and Z ······ 3-2
3.5	Application instruction index ····································
NLC	Application Instructions Description
4.1	Loop control instructions ······ 4-3
	API-00 CJ: Conditional jump ······ 4-3
	API-01 CALL: Call subroutine······ 4-6
	API-02 SRET: End of subroutine 4-6
	API-06 FEND: End of main program ······ 4-9
	API-07 FOR: Start of nested loop 4-1
	API-08 NEXT: End of nested loop ······ 4-1
4.2	Transmission and comparison instructions ······ 4-1
	API-09 MOV: Move data ······ 4-1
	API-10 CML: Invert and transfer ······ 4-1
	API-11 BCD: Convert BIN data to BCD data ······ 4-1
	API-12 BIN: Convert BCD data to BIN data ······ 4-1
4.3	Arithmetic and logic operation instructions 4-1
	API-13 ADD: BIN addition 4-1
	API-14 SUB: BIN subtraction
	API-15 MUL: BIN multiplication 4-2
	API-16 DIV: BIN division ····· 4-2
	API-17 INC: Plus one (BIN) 4-2
	API-18 DEC: Minus one (BIN) ······ 4-2
	API-19 WAND: AND operation 4-2
	API-20 WOR: OR operation 4-2
	API-21 WXOR: XOR operation 4-2
	API-22 NEG: Take the negative number (Two's complement)
4.4	Rotate and shift instructions 4-3
	API-23 ROR: Rotate right 4-3
	API-24 ROL: Rotate left ······ 4-3
4.5	Data processing instructions 4-3
	API-25 ZRST: Zone reset ······ 4-3
	API-26 DECO: Decoder ······ 4-3
	API-27 ENCO: Encoder ······ 4-3
	API-28 BON: Bit state monitoring 4-3
4.6	Shortcut instructions 4-3
	API-34 ALT: On / Off alternation ······ 4-3
4.7	Contact type comparison instructions
	API-39 to 44 LDX: Compare the contact type ······ 4-4
	API-45 to 50 AND%: Compare the contact type 4-4

	API-51 to 56 OR X: Compare the contact type ······ 4-42
	API-57 VRT: Logical switch table 4-43
4.8	Floating-point number operation instructions 4-44
	API-58 FADD: Binary floating-point number addition 4-44
	API-59 FSUB: Binary floating-point number subtraction ······ 4-45
	API-60 FMUL: Binary floating-point number multiplication
	API-61 FDIV: Binary floating-point number division ······ 4-47
	API-62 FCMP: Compare binary floating-point numbers 4-48
	API-63 FINT: Convert binary floating-point number to BIN integer
	API-64 FDOT: Convert BIN integer to binary floating-point number
	API-65 FRAD: convert degrees to radians 4-51
	API-66 FDEG: convert radians to degrees 4-52

5

MLC Special M Relay and Special D Register

5.1	Definition of MLC special M relay and special D register	5-2
5.2	List of special M and special D·····	5-4
	5.2.1 List of special M (MLC to System) ·····	5-4
	5.2.1.1 M21000 to M29999 ·····	5-4
	5.2.1.2 M49000 to M49899 ·····	5-23
	5.2.2 List of special M (System Status)	5-24
	5.2.2.1 M30000 to M38999 ·····	5-24
	5.2.3 List of special D (MLC to System) ·····	5-52
	5.2.3.1 D20000 to D28999 ·····	5-52
	5.2.3.2 D49000 to D49899 ·····	5-76
	5.2.4 List of special D (System Status) ·····	5-77
	5.2.4.1 D30000 to D38999 ·····	5-77
5.3	Special M and special D functions ·····	5-104
	5.3.1 Mode switching ·····	5-104
	5.3.2 NC Processing	5-105
	5.3.3 Axis Status ·····	5-106
	5.3.4 Homing Origin ·····	5-109
	5.3.5 JOG Control ·····	5-110
	5.3.6 MPG Control	5-110
	5.3.7 Skip Control (G31) ·····	5-111
	5.3.8 One-Button Macro Call	5-111
	5.3.9 MLC Axis Control ·····	5-112
	5.3.10 M, S, T Codes	5-114
	5.3.11 Axes Synchronous Control	5-115
	5.3.12 Axes Command Transfer Control ·····	5-115
	5.3.13 Spindle	5-116

5.3.14 Tool Magazine 5-120
5.3.15 NC System
5.3.16 NC Read Bit Status from Special M ······ 5-125
5.3.17 NC Write Bit Control to Special M ······ 5-127
5.3.18 NC Read Data Status from Special D
5.3.19 NC Write Data to Special M ······ 5-131
5.3.20 EtherCAT Communication Information
5.3.21 Robot arm control 5-134

6 MLC Special M Relay and Special D Register

6.1 Mode Switch
6.2 Machining, Single Block, and Feed Rate Override
6.3 MPG 6-9
6.4 JOG Move 6-11
6.5 INC Move 6-14
6.6 Rapid Move 6-17
6.7 Homing 6-20
6.8 M / S / T Codes Execution 6-22
6.9 1st Software Limit / Hardware Limit Cancellation ····· 6-27
6.10 Spindle Control ····· 6-30
6.11 Spindle Gear Ratio Switch 6-37
6.12 One-button Macro Call ····· 6-41
6.13 Tool Magazine Control with I/O ······ 6-45
6.14 MLC Axes Control
6.15 Synchronous Control and Command Transfer ····· 6-56
6.16 Synchronous Gantry Control 6-62
6.17 Devices Information Monitor ····· 6-65
6.18 Robot ARM Control 6-69
6.19 Axes Oscillation Control

CNC Alarm Information

A.1 CNC Alarm Categories ····· A-2
A.2 CNC System Alarms ····· A-2
A.2.1 NC Instruction Errors A-3
A.2.2 NC Axis Alarms ····· A-9
A.2.3 NC Motion Interpolation Alarms ······ A-11
A.2.4 NC Kernel Alarms ······ A-12

B

Special Memory

B CNC Special # Variable ······B-	-2
B.1 Constant Variable B-	-2
B.1.1 Null Variable (#0)······B-	-2
B.1.2 Constant Variable (#20000~#20012) ····· B-	-3
B.2 Alarm Variable ······B··B··B··B··B··B··B-	-4
B.2.1 Macro Defined Alarm (#20020) ······B	-4
B.3 Field Special Variables ······B	-4
B.3.1 User-Defined Coordinate (#20021) ······B	-4
B.3.2 Multi-Z Axis Synchronize (#20022) ······B	-4
B.4 NC System Status ······B-	-5
B.4.1 Servo Parameter Read and Write (#20023, #20024) ······B-	-5
B.4.2 System Time (#20025, #20026) ······ B-	-5
B.4.3 NC System Mode (#20300~#20330) ····· B-	-5
B.4.4 NC Command Status (#20400~#20411) ····· B-	-6
B.4.5 Coordinate Information (#21000~#21079) ·····B-	-6
B.4.6 G54-G59 Workpiece Coordinate (#22000~#23183) B-	-7
B.5 Tool Management and Breakpoints······B-	-8
B.5.1 Tool Magazine (#24001~#24004) ····· B-	-8
B.5.2 Breakpoint Search (#24039~#24095)······B-	-8
B.6 MLC Exchange Variable······B-	-10
B.6.1 MLC M Relay Write to # Variable (#25000~#25127)B-	-10
B.6.2 MLC Word D Register Write to # Variable (#25128~#25255) ······B-	-11
B.6.3 # Variable Write to MLC M Relay (#25256~#25383) B-	-12
B.6.4 # Variable Write to MLC D Register (#25384~#25511) ······B-	-13
B.7 Tool Management ······B-	-14
B.7.1 Tool Length (#26000~#41999) ····· B-	-14
B.7.2 Tool Wear (#42000~#57999) ······ B-	-14
B.7.3 Tool Radius/ Status (#42000~#57999)····· B-	-15
B.7.4 Tool Tolerance (#61000~#76999) ····· B-	-15
B.7.5 Tool Lifetime Target (#77000~92999) ······B-	-16
B.7.6 Tool Lifetime Accumulation (#93000~108999) ······	-17
B.7.7 Tool Lifetime (#192000~195999) ····· B-	-17

MLC Devices

This chapter describes the functions, quantity, and definitions of the MLC devices.

1.1 List of MLC devices 1-2
1.1.1 Quantity and setting ranges of MLC devices ·······························1-2
1.1.2 Settings of MLC devices ······1-3
1.2 Values and constants 1-5
1.2.1 Binary number (BIN) ······1-5
1.2.2 Decimal number (DEC)······1-6
1.3 Digital input / output relays (X, Y) ······ 1-7
1.3.1 Functions of digital input / output relays ······ 1-8
1.4 Auxiliary relay (M) ······1-9
1.4.1 Functions of the auxiliary relay ······ 1-9
1.5 User-defined alarm relay (A) ······ 1-10
1.5.1 Function of user-defined alarm relay ······ 1-10
1.6 Timer (T)
1.6.1 Functions of the timer ······ 1-11
1.7 Counter (C)
1.7.1 Functions of the counter 1-12
1.8 Registers (D, V, Z) ····· 1-14
1.8.1 Data register (D)
1.8.2 Index registers (V, Z) ······ 1-15
1.9 Indicators (P)

1.1 List of MLC devices

The NC series MLC contains a variety of devices listed as follows.

Туре	Device	Ite	m	Qu	uantity	Setting range	
	х	External i	nput relay	0 ~ 511	512 points in total	I/O	
	Y	External o	utput relay	0 ~ 511	512 points in total	I/O	
Relav	М	Auxilia	ry relay	0 ~ 65,535	65,535 points in total	I/O	
(Bit)	А	Ala	ırm	0 ~ 511	512 points in total	I/O	
	т	Tin	ner	0 ~ 255	256 points in total	I/O ∖ Word	
	C	Countor	16-bit	0 ~ 63	80		
	C	Counter	32-bit	64 ~ 79	points in total	i/U × Word	
	т	Timer	16-bit	0 ~ 255	256 points in total	0 ~ 65,535	
Register (Word)	с	C Counter	16-bit	0 ~ 63	80 points in total	0 ~ 65,535	
			32-bit	64 ~ 79		-2,147,483,648 ~ +2,147,483,647	
	D	Data register	16-bit	0 ~ 65,535	65,535 points in total	-32,768 ~ +32,767	
	V	Index register	16-bit	0 ~ 7	8 points in total	-32,768 ~ +32,767	
	Z	Index register 16-bit		0 ~ 7	8 points in total	-32,768 ~ +32,767	
Indicator	Р	Jump indicator		0 ~ 255	256 points in total	-	
Constant	К	Decimal		N/A	N/A	-32,768 ~ +32,767 (16-bit range) -2,147,483,648 ~ +2,147,483,647 (32-bit range)	
Float	F	Floating-point		N/A	N/A	-99,999.999 ~ +99,999.999	

1.1.1 Quantity and setting ranges of MLC devices

1.1.2 Settings of MLC devices

De	evice name	Function and range				Total points		
Input signal X (Bit)		On board	MPG	Reserved	Machine operation panel I/O	Remote I/O	512	
		X0 ~ X31	X32 ~ X39	X40 ~ X63	X64 ~ X255	X256 ~ X511		
Ou	tput signal Y (Bit)	On board	Reserved		Machine operation panel I/O	Remote I/O	512	
		Y0 ~ Y31	Y32	~ Y63	Y64 ~ Y255	Y256 ~ Y511		
		General purpose	Reserved	MLC → System (NC)	Special M (MLC)	System (NC) \rightarrow MLC		
		M0 ~ M14999	M15000 ~ M19999	M20000 ~ M28999	M29000 ~ M29999	M30000 ~ M38999		
Aux	iliary relay M	Special M	Reserved	MLC → System (HMI)	Reserved	System (HMI) → MLC	65,536	
	(Bit)	M39000 ~ M39999	M40000 ~ M48999	M49000 ~ M49999	M50000 ~ M58999	M59000 ~ M59999		
	Retentive M	Reserved	N/A	N/A	N/A			
		M60000 ~ M61999	M62000 ~ M65535	N/A	N/A	N/A		
L A	lser define larm A (Bit)			A0 ~ A511			512	
imer T	Bit	T0 T20		~ T199 (Unit:100 ms) 00 ~ T255 (Unit:10 ms)			256	
F	Word		T0 ~ T2	55 (16-bit, range	e: 0 - 65535)			
	Bit			C0 ~ C79				
unter C	Word	16-bit (co - C0	it (counting up) 32-bit C0 - C63		: (counting up / down) C64 ~ C79		80	
Col	& DWord	Countin 0 – 6	g range 5,535	Counting range -2,147,483,648 ~ +2,147,483,647				
		General purpose	Reserved	MLC → System (NC)	Special D (MLC)	System (NC) \rightarrow MLC		
		D0 ~ D9999	D10000 ~ D19999	D20000 ~ D28999	D29000 ~ D29999	D30000 ~ D38999		
Data register D (Word)	Special D	Reserved	MLC → System (HMI)	Reserved	System (HMI) → MLC	65,536		
(Wold)		D39000 ~ D39999	D40000 ~ D48999	D49000 ~ D49999	D50000 ~ D58999	D59000 ~ D59999		
		Retentive D	Reserved	N/A	N/A	N/A		
		D60000 ~ D61999	D62000 ~ D65535	N/A	N/A	N/A		

1

Device name	Function and range		
Register V (Word)	V0 ~ V7 (-32,768 ~ +32,767)		
Register Z (Word)	Z0 ~ Z7 (-32,768 ~ +32,767)		
Jump indicator P	For CJ and CALL: P0 - P255		
		-32,768 ~ +32,767 (16-bit operation)	N/A
Constant K	Decimal constant	-2,147,483,648 ~ +2,147,483,647 (32-bit operation)	N/A
Floating-point number F	Floating-point with 3 decimal point places	-99,999.999 ~ +99,999.999	N/A

1.2 Values and constants

The NC series MLC performs operations for different control purposes using the data types as follows. See the following descriptions for each data type.

1.2.1 Binary number (BIN)

The MLC performs operations and stores values with binary numbers. The binary numbers and related terms are as follows.

- 1. Bit: the basic unit of binary values, either 0 or 1.
- 2. Nibble: composed of four consecutive bits (such as bit0 to bit3), representing the values 0 to 15 in decimal or 0 to F in hexadecimal.
- 3. Byte: composed of two consecutive nibbles (8 bits, such as bit0 to bit7), representing 00 to FF in hexadecimal.
- 4. Word: composed of two consecutive bytes (16 bits, such as bit0 to bit15), representing the 4-digit values 0000 to FFFF in hexadecimal.
- 5. Double Word: composed of two consecutive words (32 bits, such as bit0 to bit31), representing the 8-digit values 00000000 to FFFFFFF in hexadecimal.

Figure 1.2.1.1 Relationship between nibble, byte, word, and double word in a binary system

1.2.2 Decimal number (DEC)

The MLC performs operations and stores values with binary numbers. On the other hand, it uses decimal numbers for the following items.

- 1. Device number:
 - Numbers for external input devices: X0 ~ X511.
 Numbers for external output devices: Y0 ~ Y511.
 - Numbers for devices of M, A, T, C, D, V, Z, and P, such as M10 and T30.
- 2. Constant K:
 - In the MLC, a decimal value is prefixed with a "K". For example, K100 indicates the decimal value 100.
 - A constant K is used as a setting value for the timer (T) or counter (C). For example, TMR T0 K50.
 - In an application instruction, it is used as an operator. For example, MOV K123 D0.
 - Note: a combination of K and a bit device (X, Y, M, or A) represents data in the format of nibble, byte, word, or double word. For example, K2Y10 and K4M100. In this case, K1 - K4 represent a 4-bit, 8-bit, 12-bit, and 16-bit data respectively.
- 3. Floating-point F:

In the MLC, a floating-point value is prefixed with an "F". In an application instruction, it is used as an operator. For example, FADD F12.3 F0 D0.

1.3 Digital input / output relays (X, Y)

In the MLC, the numbers of the inputs and outputs start from X0 and Y0 respectively, including on-board I/O, I/O on the machine operation panel, and remote I/O.

Digital Inputs / Outputs					
Int	erface	Digital Inputs X		Digital Outputs Y	
On-b	oard I/O	X0 ~ X31		Y0 ~ Y31	-
Ν	//PG	X32 ~ X39		-	
Re	served	X40 ~ X63		Y32 ~ Y63	
I/O on panel		X64 ~ X255		Y64 ~ Y255	
	Station 1	X256 ~ X287	Total	Y256 ~ Y287	Total 512
	Station 2	X288 ~ X319		Y288 ~ Y319	
	Station 3	X320 ~ X351	512	Y320 ~ Y351	
Remote I/O	Station 4	X352 ~ X383		Y352 ~ Y383	
(EtherCAT)	Station 5	X384 ~ X415		Y384 ~ Y415	
	Station 6	X416 ~ X447		Y416 ~ Y447	
	Station 7	X448 ~ X479		Y448 ~ Y479	
	Station 8	X480 ~ X511		Y480 ~ Y511	

Note: the starting numbers of input / output points on the expansion I/O correspond to the connecting station number. There are 8 stations in total with up to 256 input and output points respectively.

1.3.1 Functions of digital input / output relays

The input / output relays can control the logic in the MLC actions. The following describes the relay functions and state changes.

- Input of X devices: connects to the input device and reads the input signal to the MLC. Contact A or B of each input contact X can be used for unlimited times in the program. The input contact X becomes ON when the input device becomes ON, and vice versa.
- Output of Y devices: outputs the ON or OFF signal to drive the load connecting to the contact. The output contact can be divided into relays and transistors. Contact type A or B can be used for unlimited times in the program.

Pay attention to the following when using the output contacts.

It is suggested to use a unique number for the output coil in the program, or the output state is determined by the last circuit which outputs Y according to the MLC program scan principle. See the following figure for illustration.

The final output of Y0 is determined by circuit ②. That is, if X10 is ON, Y0 is ON; if X10 is OFF, Y0 is OFF.

1.4 Auxiliary relay (M)

The auxiliary relay makes MLC programming easily. It starts from M0, including generalpurpose relays, retentive relays, system special relays, and MLC special relays. See the following for details.

Auxiliary relay (M)				
Definition	Address range	Points	Retentive	
General purpose	M0 ~ M14999	15,000	-	
Reserved	M15000 ~ M19999	5,000	-	
System special M MLC \rightarrow System (NC)	M20000 ~ M28999	9,000	-	
MLC special M	M29000 ~ M29999	1,000	-	
System special M System (NC) \rightarrow MLC	M30000 ~ M38999	9,000	-	
System reserved special M	M39000 ~ M39999	1,000	-	
Reserved	M40000 ~ M48999	9,000	-	
HMI special M MLC → System (HMI)	M49000 ~ M49999	1,000	-	
Reserved	M50000 ~ M58999	10,000	-	
HMI special M System (HMI) → MLC	M59000 ~ M59999	1,000	-	
Retentive M	M60000 ~ M61999	2,000	1	
Reserved	M62000 ~ M65535	3,536	-	

1.4.1 Functions of the auxiliary relay

Same as the output relay Y, the auxiliary relay M has output coil and A & B type contacts, which can be used for unlimited times in the program. You can use the auxiliary relay M to combine the control loop but cannot directly drive the external load. There are three types of auxiliary relays.

1. General purpose relay:

Range between M0 to M1499, if a power failure occurs during MLC operation, the status of the relay is reset to OFF and remains Off when power is resumed.

2. Retentive auxiliary relay:

Range between M60000 to M61999, if a power failure occurs during MLC operation, the status of the relay is retained and the status remains after power is resumed.

3. Special auxiliary relay:

Range between M15000 to M59999, for exchanging status or signals of NC, MLC and HMI. Each special relay has its own specific function. Do not use the undefined ones.

1.5 User-defined alarm relay (A)

You can use the user-defined alarm relay to trigger alarms with specific I/O actions for finding the user-defined errors when programming the MLC. The alarm relay starts from A0.

User-defined alarm relay (A)				
Definition	Address range	Points	Retentive	
General purpose	A0 - A511	512	-	

1.5.1 Function of user-defined alarm relay

Same as the output relay Y, the user-defined alarm relay A has output coil and A & B type contacts, and they can be used for unlimited times in the program. You can use the user-defined alarm relay A to combine the control loop but cannot directly drive the external load. If a power failure occurs during MLC operation, the status of the general-purpose user-defined alarm relay is reset to OFF and remains OFF when power is resumed.

1.6 Timer (T)

Users can use these timer to count with specific I/O actions to have the device execute the programmed action after being triggered for a specific period of time when programming the MLC.

Timer (T)				
Definition	Unit	Address range	Points	Retentive
General purpose	100 ms	T0 - T199	200	-
General purpose	10 ms	T200 - T255	56	-

1.6.1 Functions of the timer

The MLC timer offers 10 ms and 100 ms increments and counts up. When the current time of the timer reaches the setting time, the output coil is ON. The setting value a decimal K, or you can specify the data register D as the setting value.

Timer: the general purpose timer starts to count when the TMR instruction is executed. When the TMR instruction is in execution, once the setting time is reached, the output coil is ON. See the following diagram.

When X0 is ON, the timer T0 counts by the increment of 100 ms. Once the current value of the timer is equal to the setting value K100, the output coil T0 is ON. When X0 is OFF or a power failure occurs, the current value of the timer T0 is reset to 0, and the output coil T0 is OFF.

Methods for specifying the setting value are as follows.

The actual setting value of the timer = $\underline{\text{time unit } x \text{ setting value}}$.

Constant K: directly specify the constant K as the setting value.

Register D: indirectly specify the data in register D as the setting value.

1.7 Counter (C)

Users can use the counter to count with specific I/O actions to have the elements execute the programmed actions after being triggered for specific times when programming the MLC.

Counter (C)					
Definition	Unit	Address range	Points	Retentive	
Up counter	16-bit	C0 - C63	64	-	
Up counter	32-bit	C64 - C77	16	-	

Item	16-bit counter	32-bit counter		
Туре		General purpose		
Count direction		Counting up		
Setting value	0 to 65,535 -2,147,483,648 to +2,147,483,647			
		Constant K or register D		
Type of setting value	Constant K or register D	(when assign to register D, system will take two registers at once)		
Value changing	Stop counting once the setting value is reached			
Output contact	The contact is ON and remains ON once the setting value is reached			
Reset	The RST or ZRST instruction resets the current value to 0 and the contact to OFF.			
Contact action	The contacts are ON after the MLC scan is complete.			

1.7.1 Functions of the counter

When the input signal of the counter pulse changes from OFF to ON, the current value of the counter increments by 1. If the input signal remains ON, the current value continues to increment by 1. When the current value of the counter reaches the setting value, the output coil will remain as ON. Counter can use the constant K or the data register D as the setting value

The actual setting value of the counter.

Constant K: directly specify the constant K as the setting value.

Register D: indirectly specify the data in register D as the setting value. When call by 32-bit counter, system will occupy two consecutive registers at once

■ 16-bit counter: C0 - C63

The setting range of the 16-bit counter is K0 - K65,535. When the setting value is K0 or K1, the output C contact is ON upon the first count.

■ 32-bit counter: C64 - C79

The setting range of the 32-bit counter is K-2,147,483,648 to K+2,147,483,647. When the setting value is K0 or K1, the output C contact is ON upon the first count. To use the data register D, two consecutive data registers are required for one setting value.

Example:

- 1. When X0 is ON, the RST instruction is executed to reset the current value of C0 to 0 and the output contact to OFF.
- 2. When X1 changes from OFF to ON, the current value of the counter increments by 1. If X1 remains ON, the current value continues to increment by 1.
- 3. When the current value of the counter C0 reaches the setting value K5, the C0 contact is ON. When the current value of C0 is equal to the setting value K5, the current value of C0 remains at K5 and is not triggered by the X1 signal until the current value of C0 is reset to 0 when X0 becomes ON.

Counter C0 - timing diagram of contact actions

1.8 Registers (D, V, Z)

Data registers are for storing 16-bit numeric data in the range of -32,768 to +32,767. The highest bit is the positive or negative sign. Users can combine two 16-bit registers into one 32-bit register. If you only assign one D for a 32-bit data, the system automatically assigns the register of the number D+1 as the upper 16-bit and the register of the number D as the lower 16-bit (refer to the following example). The highest bit is the positive or negative sign. These registers can store the numeric data in the range of -2,147,483,648 to +2,147,483,647.

For example, if you assign D0 for a 32-bit data, the system automatically assigns D1 for the same 32-bit data, with D0 as the lower 16-bit and D1 as the upper 16-bit.

1.8.1 Data register (D)

Data registers are divided into the three types as follows.

- 1. General purpose register: when MLC status is switched from "RUN (in execution)" to "MLC Stop", the data is retained, but the data is reset to 0 when power is off.
- Retentive register: when the MLC power is off, data in these registers is not cleared. And the data before power off is retained. To clear the contents in the retentive registers, use the RST or ZRST instruction.
- 3. Special purpose register: every special purpose register has their own definition and usage, mainly used for storing system statuses, error messages, and monitored statuses.

	Data register (D)		
Definition	Address range	Points	Retentive
General purpose	D0 ~ D9999	10,000	-
Reserved	D10000 ~ D19999	10,000	-
MLC \rightarrow System (NC)	D20000 ~ D28999	9,000	-
MLC special D	D29000 ~ D29999	1,000	-
System (NC) \rightarrow MLC	D30000 ~ D38999	9,000	-
System reserved special D	D39000 ~ D39999	1,000	-
Reserved	D40000 ~ D48999	9,000	-
$MLC \to System\ (HMI)$	D49000 ~ D49999	1,000	-
Reserved	D50000 ~ D58999	10,000	-
System (HMI) \rightarrow MLC	D59000 ~ D59999	1,000	-
Retentive D	D60000 ~ D61999	2,000	1
Reserved	D62000 ~ D65535	3,536	-

1.8.2 Index registers (V, Z)

Index registers are defined as below table.

Index registers (V, Z)					
Definition	Unit	Address range	Points	Retentive	
V register	16-bit	V0 – V7	8	-	
Z register	16-bit	Z0 - Z7	8	-	

Same as general data registers, V and Z registers are 16-bit data registers which can be read and written. As for 32-bit data, users have to assign the V registers; because of Z registers will be included in the V registers in this case. Thus, Z registers can no longer be used, otherwise the contents in V registers (32-bit data) would be incorrect. Refer to the following figure and table for detailed information.

Index registers V & Z for 32-bit data			
V0	Z0		
V1	Z1		
V2	Z2		
V3	Z3		
V4	Z4		
V5	Z5		
V6	Z6		
V7	Z7		

Same as the general operands, the index registers can be used for data movement or comparison, but some instructions do not support index registers. Therefore, V and Z can be used for modifying operands.

Example:

When X0 is ON, set V0 to 8 and Z0 to 14, and then D5V0 = D(5+8) = D13 and D5Z0 = D(5+14) = D19. Thus, the content in D13 is moved to D19.

1.9 Indicators (P)

MLC has indicator P, which customer can use to have the MLC run the specified programs when programming, reducing the error caused by the scan time of MLC.

Indicator registers (P)				
Definition	API	Address range	Points	Retentive
P register	For CJ and CALL	P0 – P255	256	-

The indicator P used with the application instructions API-00 CJ and API-01 CALL. For detailed information, refer to the descriptions of CJ and CALL instructions in Chapter 4.

Example 1

When X0 is ON, the program automatically jumps from address 0 to address N (the specified label P1) and continues to execute, skipping the addresses in the middle.

When X0 is OFF, the program starts from address 0 and continues executing the programs in sequence without executing the CJ instruction.

Example 2

When X0 is ON, the system executes the CALL instruction and jumps to the subroutine specified by P2. As soon as the SRET instruction is executed, the system jumps back to address 24 and continues executing the programs.

When X0 is OFF, the program will not execute the CALL and jump to line P2. As regular program process, it will continue with address 24.

Basic MLC Instructions

This chapter provides detailed descriptions and usages for the basic MLC instructions.

2.1	List of basic instructions ·····	2-3
2.2	Description of basic instructions	2-5
	2.2.1 General instructions	2-5
	LD: Load contact A ·····	2-5
	LDI: Load contact B ·····	2-5
	AND: Serial connect contact A ·····	2-6
	ANI: Serial connect contact B ·····	2-6
	OR: Parallel connect contact A	2-7
	ORI: Parallel connect contact B·····	2-7
	ANB: Serial connect circuit block ·····	2-8
	ORB: Parallel connect circuit block ·····	2-8
	MPS: Store in stack ·····	2-9
	MRD: Read stack (stack pointer remains)·····	2-9
	MPP: Retrieve from stack ·····	2-9
	2.2.2 Output instructions	······ 2 - 10
	OUT: Drive coil ·····	2-10
	SET: Action remains (ON)	2-10
	RSI: Clear contact or register	
	2.2.3 Timer and counter	
	IMR: 16-bit timer	
	CNI: 16-bit counter	
	DCN1: 32-bit counter	
	LDP: Start rising edge detection	
	2.2.4 Contact rising / falling edge detection instructions	
	LDF: Start falling edge detection	
	ANDP: Serial connection of rising edge detection	
	ANDF: Serial connection of falling edge detection	
	ORP: Parallel connection of rising edge detection ······	2-16
	ORF: Parallel connection of falling edge detection	2-16
	2.2.5 Upper and lower differential output instructions	2-17
	PLS: Upper differential output ·····	2-17

2

Pl	LF: Lower differential output ······ 2-18
2.2.6	End instruction 2-18
El	ND: Program ends ·····2-18
2.2.7	Other instructions ······2-19
N	OP: No operation ······ 2-19
IN	IV: Invert the operation result ······ 2-19
P:	Indicator

2

2.1 List of basic instructions

NC series MLC includes many different basic instructions. This section lists all of the basic instructions and their functions, operands, execution speed, and STEP(S).

Instruction code	Function	Operand	Execution speed (µs)	STEP	
LD	Load contact A	X, Y, M, A, T, C -			
LDI	Load contact B	X, Y, M, A, T, C	-	1 - 2	
AND	Serials connect contact A X, Y, M, A, T, C -		-	1 - 2	
ANI	Serials connect contact B	X, Y, M, A, T, C	-	1 - 2	
OR	Parallel connect contact A	X, Y, M, A, T, C	-	1 - 2	
ORI	Parallel connect contact B	X, Y, M, A, T, C	-	1 - 2	
ANB	Serials connect circuit block	-	-	1	
ORB	Parallel connect circuit block	-	-	1	
MPS	Store in stack	-	-	1	
MRD	Read stack (stack pointer remains)	-	-	1	
MPP	Read stack	-	-	1	

General instructions

Output instructions

Instruction code	Function	Operand	Execution speed (µs)	STEP
OUT	Driving coil	Y, M, A	-	1 - 2
SET	Action remains (ON)	Y, M, A	-	1 - 2
RST	Clear contact or register	Y, M, A, T, C, D, V, Z	-	1 - 2

Timer and counter

Instruction code	Function Operand		Execution speed (µs)	STEP
TMR	16-bit timer	T-K or T-D	9.6	3
CNT	16-bit counter	C-K or C-D (16-bit)	12.8	3
DCNT	32-bit counter	C-K or C-D (32-bit)	14.3	3

Contact rising / falling edge detection instructions

Instruction code	Function	Operand	Execution speed (µs)	STEP
LDP	Start rising edge detection	X, Y, M, A, T, C	-	2
LDF	Start falling edge detection	X, Y, M, A, T, C	-	2
ANDP	Serial connection of rising edge detection	edge X, Y, M, A, T, C -		2
ANDF	Serial connection of falling edge detection	X, Y, M, A, T, C	-	2
ORP	Parallel connection of rising edge detection	X, Y, M, A, T, C	-	2
ORF	Parallel connection of falling edge detection	X, Y, M, A, T, C	-	2

Upper and lower differential output instructions

Instruction code	Function	Operand	Execution speed (µs)	STEP
PLS	Upper differential output	X, Y, M, A, T, C	-	3
PLF	Lower differential output	X, Y, M, A, T, C	-	3

End instruction

Instruction code	Function	Operand	Execution speed (µs)	STEP
END	Program ends	-	-	1

Other instructions

Instruction code	Function	Operand	Execution speed (µs)	STEP
NOP	No operation	-	-	1
INV	Invert the operation result		-	1
Р	Indicator	P0 - P255	-	1

2.2 Description of basic instructions

This section provides detailed information about the function, operand, description, usage, and example of each instruction.

2.2.1 General instructions

LD: Load contact A

Instruction	Function	Applicable model
LD	Load contact A	NC series

Operand							
Х	Y	М	A	Т	С	D	V, Z
•	•	•	•	•	•	-	-

Description:

The LD instruction applies to contact A at the beginning of the left rail or contact A at the beginning of a contact loop block. Use the LD instruction to save the current content and store the acquired contact status in the accumulator register.

Example:

LD (X0) ladder diagram

LDI: Load contact B

Instruction	Function	Applicable model
LDI	Load contact B	NC series

Operand									
Х	Y	М	А	Т	С	D	V, Z		
•	•	•	•	•	•	-	-		

Description:

The LDI instruction applies to contact B at the beginning of the left rail or contact B at the beginning of a contact loop block. Use the LDI instruction to save the current content and store the acquired contact status in the accumulator register.

LDI (X0) ladder diagram

AND: Serial connect contact A

Instruction	Instruction Function						Applicable model		
AND Serials connect contact A						NC series			
	·								
	Operand								
Х	Y	М	Α	Т	С	D	V, Z		
•	•	•	•	•	•	-	-		

Description:

The AND instruction connects contact A in series. It reads the current status of the specified contacts and performs the AND operation using the acquired data with the results of the logic operation prior to the contact. It stores the result in the accumulator register.

Example:

AND (X0) ladder diagram

ANI: Serial connect contact B

Instruction	Function	Applicable model
ANI	Serials connect contact B	NC series

Operand										
Х	Y	М	А	Т	С	D	V, Z			
•	•	•	•	•	•	-	-			

Description:

The ANI instruction connects contact B in series. It reads the current status of the specified contacts and performs the AND operation using the acquired data with the results of the logic operation prior to the contact. It stores the result in the accumulator register.

ANI (X0) ladder diagram

OR: Parallel connect contact A

Instruction	Function	Applicable model
OR	Parallel connect contact A	NC series

Operand										
X	Y	М	А	Т	С	D	V, Z			
•	•	•	•	•	•	-	-			

Description:

The OR instruction parallel connects contact A. It reads the current status of the specified contacts and performs the OR operation using the acquired data with the results of the logic operation prior to the contact. It stores the result in the accumulator register.

Example:

OR (X1) ladder diagram

ORI: Parallel connect contact B

Instruction	Function	Applicable model
ORI	Parallel connect contact B	NC series

Operand								
X	Y	М	А	Т	С	D	V, Z	
•	•	•	•	•	•	-	-	

Description:

The ORI instruction parallel connects contact B. It reads the current status of the specified contacts and performs the OR operation using the acquired data with the results of the logic operation prior to the contact. It stores the result in the accumulator register.

ORI (X1) ladder diagram

ANB: Serial connect circuit block

Instruction	Function						Applicable model	
ANB	Serials connect circuit block					NC series		
Operand								
X	Y	М	Α	Т	С	D	V, Z	

Description:

The ANB instruction performs the AND operation using the results of the previously saved logic operation and the current value in the accumulator register.

Example:

Block A Block B

ANB (X0+X2), (X1+X3) ladder diagram

ORB: Parallel connect circuit block

Instruction	Function	Applicable model
ORB	Parallel connect circuit block	NC series

Operand									
Х	Y	М	А	Т	С	D	V, Z		
-	-	-	-	-	-	-	-		

Description:

The ORB instruction performs the OR operation using the results of the previously saved logic operation and the current value in the accumulator register.

ORB (X0+X1), (X2+X3) ladder diagram

MPS: Store in stack

Instruction	Function	Applicable model
MPS	Store in stack	NC series

Operand								
Х	Y	М	А	Т	С	D	V, Z	
-	-	-	-	-	-	-	-	

Description:

The MPS instruction stores the current value in the accumulator register to the stack register. (Stack pointer increases by 1.)

MRD: Read stack (stack pointer remains)

Instruction Function					Applicable model		
MRD	Read stack (stack index remains)				NC seri	es	
Operand							
X	Y	М	A	Т	С	D	V, Z
-	-	-	-	-	-	-	-

Description:

The MRD instruction reads the content in the stack and stores it in the accumulator register.

(Stack pointer remains unchanged.)

MPP: Retrieve from stack

Instruction	Function	Applicable model
MPP	Retrieve from stack	NC series

Operand								
Х	Y	М	А	Т	С	D	V, Z	
-	-	-	-	-	-	-	-	

Description:

The MPP instruction retrieves the results of the previously saved logic operation in the stack

and stores it in the accumulator register. (Stack pointer decreases by 1.) Example:

MPS, MRD, MPP ladder diagram
2.2.2 Output instructions

OUT: Drive coil

2

Instruction	Function					Applicable	model
OUT		Drive coil					ies
	·						
Operand							
X	Y	М	Α	Т	С	D	V, Z
-	•	•	•	_	_	-	-

Description:

The OUT instruction outputs the results of the logic operation prior to the OUT coil to the specified bit.

Example:

OUT (Y1) ladder diagram

SET: Action remains (ON)

Instruction	Function	Applicable model
SET	Action remains (ON)	NC series

Operand							
Х	Y	М	А	Т	С	D	V, Z
-	•	•	•	-	-	-	-

Description:

When the SET instruction is triggered, the specified bit is set to On and remains On. You can use the RST instruction to set this bit to Off no matter the SET instruction is triggered or not. Example:

SET (Y1) ladder diagram

RST: Clear contact or register

Instruction	Function	Applicable model
RST	Clear contact or register	NC series

Operand							
Х	Y	М	А	Т	С	D	V, Z
-	•	•	•	•	•	•	•

Description:

When the RST instruction executes, the actions of the specified devices are as follows.

Device	Action
Y, M, A	Coils and contacts are set to Off.
T, C	The current timing or count value resets to 0 and the coils and contacts are set to Off.
D, V, Z	The content value resets to 0.

RST (Y5) ladder diagram

2.2.3 Timer and counter

TMR: 16-bit timer

Instruction	Function	Applicable model				
TMR	16-bit timer	NC series				
	Operand					
T-K	Т0 - Т255, К0 - К65,535					
T-D	T0 - T255, D0 - D65,535					

Description:

When the TMR instruction executes, the specified timer coil is energized, and the timer starts counting. When reaching the set timing, the specified timer is set to On. When the TMR instruction stops executing, the timer value is reset to zero.

Example:

TMR (T5) ladder diagram

CNT: 16-bit counter

Instruction	Function	Applicable model
CNT	16-bit counter	NC series

	Operand
C-K	C0 - C63, K0 - K65,535
C-D	C0 - C63, D0 - D65,535

Description:

When the CNT instruction changes from Off to On, the specified counter's coil switches from deenergized to energized state and increases the count value by 1. When reaching the set count, the specified counter is set to On. When the counter reaches the set count, the counter's contacts, and count value remain the same even when receiving more counting pulse inputs. You can use the RST instruction to restart counting or clear the value.

Example:

CNT (C20) ladder diagram

2-12

2

DCNT: 32-bit counter

Instruction	Function	Applicable model
DCNT	32-bit counter	NC series

	Operand
C-K	C64 - C79, K-2,147,483,648 to K+2,147,483,647
C-D	C64 - C79, D0 – D65,535

Description:

The DCNT instruction enables the 32-bit counters C64 - C77. When C64 - C77 is used and the DCNT instruction changes from Off to On, the counter's current value increases or decreases by 1, and the increase or decrease of the value is determined by the status of special M (M2944 - M2957).

LDP: Start rising edge detection

Instruction	uction Function						model
LDP		Start rising edge detection					
	·						
	Operand						
X	Y	М	Α	Т	С	D	V, Z
•	•	•	•	•	•	-	-

Description:

The usage of the LDP instruction is the same as that of LD, but the action is different. Use the LDP instruction to save the current content and store the acquired contact status of the rising edge in the accumulator register.

Example:

LDP (X0) ladder diagram

2.2.4 Contact rising / falling edge detection instructions

LDF: Start falling edge detection

Instruction Function					Applicable model		
LDF Start falling edge detection					NC series		
Operand							
Х	Y	М	А	Т	С	D	V, Z
•	•	•	•	•	•	-	-

Description:

The usage of the LDF instruction is the same as that of LD, but the action is different. Use the LDF instruction to save the current content and store the acquired contact status of the falling edge in the accumulator register.

LDF (X0) ladder diagram

ANDP: Serial connection of rising edge detection

Instruction	Function	Applicable model
ANDP	Serial connection of rising edge detection	NC series

Operand							
Х	Y	М	А	Т	С	D	V, Z
•	•	•	•	•	•	-	-

Description:

The ANDP instruction serial connects the rising edge detection of the contact.

Example:

ANDP (X1) ladder diagram

ANDF: Serial connection of falling edge detection

Instruction	Function	Applicable model
ANDF	Serial connection of falling edge detection	NC series

Operand							
Х	Y	М	А	Т	С	D	V, Z
•	•	•	•	•	•	-	-

Description:

The ANDF instruction serial connects the falling edge detection of the contact.

ANDF (X1) ladder diagram

ORP: Parallel connection of rising edge detection

Instruction Function					Applicable model			
ORP Parallel connection of rising edge detection					NC se	ries		
	Operand							
X	Y	М	А	Т	С	D	V, Z	
•	•	•	•	•	•	-	-	

Description:

The ORP instruction parallel connects the rising edge detection of the contact.

Example:

ORP (X0, X1) ladder diagram

ORF: Parallel connection of falling edge detection

Instruction	Function	Applicable model
ORF	Parallel connection of falling edge detection	NC series

Operand							
X	Y	М	А	Т	С	D	V, Z
•	•	•	•	•	•	-	-

Description:

The ORF instruction parallel connects the falling edge detection of the contact.

Example:

ORF (X0, X1) ladder diagram

2-16

2.2.5 Upper and lower differential output instructions

PLS: Upper differential output

Instruction	truction Function					Applicable model	
PLS Upper differential output					NC series		
Operand							
Х	Y	М	А	Т	С	D	V, Z
•	•	•	•	•	•		

Description:

The PLS instruction is for the upper differential output. When X0 switches from Off to ON (rising edge triggered), the PLS instruction executes and M0 sends one pulse with the length of one scanning time cycle.

Example:

PLS (M0) ladder diagram

Timing diagram:

X0	¬
M0	One cycle time
Y0	
	PLS (M0) timing diagram

PLF: Lower differential output

Instruction	Instruction Function					Application model	
PLF Lower differential output					NC series		
Operand							
Х	Y	М	А	Т	С	D	V, Z
•	•	•	•	•	•	-	-

Description:

The PLF instruction is for the lower differential output. When X0 switches from On to Off (falling edge triggered), the PLF instruction executes and M0 sends one pulse with the length of one scanning time cycle.

Example:

PLF (M0) ladder diagram

Timing diagram:

PLF (M0) timing diagram

2.2.6 End instruction

END: Program ends

Instruction	Function	Applicable model
END	Program ends	NC series

			Operand				
X	Y	М	А	Т	С	D	V, Z
-	-	-	-	-	-	-	-

Description:

The END instruction is the ladder or program's last instruction. PLC scans the program from address 0 to the END instruction, and then returns to address 0 to restart the scan.

2.2.7 Other instructions

NOP: No operation

Instruction		Applicable model							
NOP		No operation NC series							
	·								
			Operand						
X	Y	М	Α	Т	С	D	V, Z		
-	-	-	-	-	-	-	-		

Description:

The NOP instruction performs no operation in the program so the results of the logic operation remain the same after execution. Use this instruction when you want to delete an instruction without changing the program length.

Example:

NOP ladder diagram

INV: Invert the operation result

Instruction	Function	Applicable model
INV	Invert the operation result	NC series

Operand								
Х	Y	М	А	Т	С	D	V, Z	
-	-	-	-	-	-	-	-	

Description:

Inverts the results of the logic operation prior to the INV instruction and stores the results in the accumulator register.

INV ladder diagram

2

P: Indicator

Instruction	Function	Applicable model				
Р	Indicator	NC series				
Operand						
P0 - P255						

Description:

Indicator P is used for the jump instruction CJ and subroutine calling instruction CALL.

Indicator P does not need to start with number 0, but the numbers cannot be used repeatedly, or unexpected errors will occur.

Example:

P ladder diagram

MLC Application Instructions Overview

3

This chapter introduces the logic and format of the MLC application instructions.

3.1	List of application instructions ····································							
3.2	Desc	criptions of the application instructions ······ 3-4						
3	5.2.1	Table format of application instructions						
3	.2.2	Input of application instructions						
3	.2.3	Operand length (16-bit or 32-bit instruction)						
3	.2.4	Instruction execution type						
3	.2.5	Specified object of the operand ····································						
3	.2.6	Devices of the operand						
3	.2.7	2.7 Data processing of the word devices formed by bit devices						
3.3	Processing numeric values with application instructions							
3.4	Modify operands with index registers V and Z····································							
3.5	Application instruction index ······ 3-11							

3.1 List of application instructions

The NC series MLC includes many different application instructions, which are listed in the following table. Refer to Chapter 4 for more details about these instructions.

Tuno		Instruction code		Number of	Function	STE	P (S)
туре	AFI	16-bit	32-bit	operands	Function	16-bit	32-bit
	00	CJ	-	1	Conditional jump	2	-
	01	CALL	-	1	Call subroutine	2	-
Loop control	02	SRET	-	-	End of subroutine	1	-
Loop control	06	FEND	-	-	End of main program	1	-
	07	FOR	-	1	Start of nested loop	3	-
	08	NEXT	-	-	End of nested loop	1	-
	09	MOV	DMOV	2	Move data	4	6
	67	-	FMOV 2 Move data		-	6	
Transmission	10	CML	DCML	2	Inverting and transfer	4	5
and comparison	11	BCD	DBCD	2	Convert BIN data to BCD data	4	4
	12	BIN	DBIN	2	Convert BCD data to BIN data	4	4
	13	ADD	DADD	3	BIN addition	6	8
	14	SUB	DSUB	3	BIN subtraction	6	8
Four logical operations	15	MUL	DMUL	3	BIN multiplication	6	8
	16	DIV	DDIV	3	BIN division	6	8
	17	INC	DINC	1	Plus one (BIN)	3	3
	18	DEC	DDEC	1	Minus one (BIN)	3	3
	19	WAND	DWAND	3	AND operation	6	8
	20	WOR	DWOR	3	OR operation	6	8
	21	WXOR	DWXOR	3	XOR operation	6	8
	22	NEG	DNEG	1	Take the negative number (2's complement)	3	3
Detetion	23	ROR	DROR	2	Rotate right	4	4
Rotation	24	ROL	DROL	2	Rotate left	4	4
	25	ZRST	-	2	Zone reset	4	-
Data	26	DECO	-	3	Decoder	6	-
processing	27	ENCO	-	3	Encoder	6	-
	28	BON	DBON	3	Bit state monitoring	6	7
	31	REF	-	2	I/O refresh	3	-
High-speed	32	-	DHSCS	3	Comparison setting (high- speed counter)	-	5
proceeding	33	-	DHSCR	3 Comparison reset (high- speed counter)		-	5
Convenient instructions	34	ALT	-	1	On / Off alternation	3	-
	35	PLS	-	1	Upper differential output	3	-
Basic	36	TMR	-	2	Timer	3	-
instructions	37	CNT	DCNT	2	Counter	3	3
	38	PLF	-	1	Lower differential output	3	-

Tune		Instruction code		Number of	Function	ST	EP
туре	API	16-bit	32-bit	operands	Function	16-bit	32-bit
	39	LD=	DLD=	2	$S_1 = S_2$	4	6
	40	LD>	DLD>	2	$S_1 > S_2$	4	6
	41	LD<	DLD<	2	$S_1 < S_2$	4	6
	42	LD<>	DLD<>	2	$S_1 \neq S_2$	4	6
	43	LD<=	DLD<=	2	$S_1 \leqq S_2$	4	6
	44	LD>=	DLD>=	2	$S_1 \ge S_2$	4	6
	45	AND=	DAND=	2	$S_1 = S_2$	4	6
	46	AND>	DAND>	2	$S_1 > S_2$	4	6
C	47	AND<	DAND<	2	$S_1 < S_2$	4	6
contact type	48	AND<>	DAND<>	2	$S_1 \neq S_2$	4	6
	49	AND<=	DAND<=	2	$S_1 \leq S_2$	4	6
	50	AND>=	DAND>=	2	$S_1 \geqq S_2$	4	6
	51	OR=	DOR=	2	$S_1 = S_2$	4	6
	52	OR>	DOR>	2	2 S ₁ > S ₂		6
	53	OR<	DOR<	2	$S_1 < S_2$	4	6
	54	OR<>	DOR<>	2	$S_1 \neq S_2$	4	6
	55	OR<=	DOR<=	2	$S_1 \leq S_2$	4	6
	56	OR>=	DOR>=	2	$S_1 \geqq S_2$	4	6
	57	VRT	DVRT	3	Logical switch table	70	134
	58	-	FADD	3	Binary floating-point number addition	-	7
	59	-	FSUB	3	Binary floating-point number subtraction	-	7
	60	-	FMUL	3	Binary floating-point number multiplication	-	7
Floating	61	-	FDIV	3	Binary floating-point division	-	7
point operation	62	-	FCMP	3	Compare binary floating- point numbers	-	7
	63	-	FINT	2	Convert binary floating-point number to BIN integer	-	5
	64	-	FDOT	2	Convert BIN integer to binary floating point	-	5
	65	-	FRAD	2	Convert degrees to radians	-	5
	66	-	FDEG	2	Convert radians to degrees	-	5

Note: the instructions listed in the above table are applicable to NC series models.

3.2 Descriptions of the application instructions

Setting the application instructions are required for the various control methods of MLC.

This section introduces the format and composition of application instructions and explains the related terms.

3.2.1 Table format of application instructions

(1)		(2)	\prod	(3)		(4)		(5)				(6)			
AI	וי		17									7	_		
0	9	D	M	VC			S, D		Move	data	NC series				
6	7	F													
		Bit d	evice						Wo	ord devic	е				
	Х	Υ	М	Α	К	K F KnX KnY			KnM	KnA	Т	С	D	V	Z
S					*	* * * *			*	*	*	*	*	*	*
D								*	*	*	*	*	*	*	*
16 32 32 Fla Fo Re	16-bit instruction: MOV continuous execution type (4 STEPS) 32-bit instruction: DMOV continuous execution type (6 STEPS) 32-bit instruction: FMOV continuous execution type (6 STEPS) Flag: N/A Note on the use of operands: For S and D operands running on Z devices, only 16-bit instructions can be used. Refer to Chapter 1 for the range of each device.														

- (1) Application instruction API code.
- (2) The upper box indicates this application instruction is a 16-bit instruction. If there is a hyphen (-) in the box, it indicates there is no 16-bit instruction for this application instruction.

The lower box indicates this application instruction is a 32-bit instruction. For a 32-bit instruction, the box is left blank or indicated by D / F, for example, API 09 DMOV and API 59 FSUB. If there is a hyphen (-) in the box, it indicates there is no 32-bit instruction for this application instruction.

- (3) Name of application instruction.
- (4) Operand format of application instruction.
- (5) Function description of application instruction.
- (6) Applicable models for this application instruction.
- (7) Devices marked with an asterisk (*) can be used by the operand.
- (8) Devices marked with an asterisk (*) in a gray box can be modified with the index registers V and Z.
- (9) Notes when applying operand.

An application instruction is composed of two parts: instruction name and operand.

The instruction name indicates the function, and the operand indicates the devices for the operation of this instruction.

The instruction name typically occupies 1 step and each one of its operands occupies 2 (16-bit instruction) or 4 (32-bit instruction) steps.

3.2.2 Input of application instructions

Most application instructions contain more than one operand, but there are some application instructions that have no operand, such as EI and DI.

The application instructions of the NC series MLC are specified by API 00 - API 69. Each application instruction is represented by a unique instruction code. For example, the instruction code for API 09 is MOV (Move data). Different application instructions have different operands. Take MOV as an example. If you use the MLC Editor to input application instructions, simply input the instruction code "MOV" for API 09.

This instruction moves the value of the operand specified by S to the destination operand specified by D. In this instruction:

Source operand S: if there is more than one source operand, use S_1 , S_2 , and so on to represent the source operands.

Destination operand D: if there is more than one destination operand, use D₁, D₂, and so on to represent the destination operands.

If the operand can only specify constant K / F or a register, use m, m1, m2, n, n1, and n2 to represent the operand.

3.2.3 Operand length (16-bit or 32-bit instruction)

Depending on the content in the operand, the length of an operand can be 16 bits or 32 bits. 16bit and 32-bit instructions are for processing data of different lengths. The letter "D" is prefixed to a 16-bit instruction to form a 32-bit instruction.

16-bit MOV instruction

When X0 = On, operand K10 is sent to operand D10.

32-bit DMOV instruction

When X1 = On, operand (D11, D10) is sent to operand (D21, D20).

3.2.4 Instruction execution type

MLC instructions are executed continuously.

Example:

When X1 = On, the MOV instruction is executed once in each scan cycle. Thus, it is called a continuous execution instruction.

3.2.5 Specified object of the operand

The specified object of the operand has the following features.

- 1. Bit devices X, Y, M, and A can be combined into word devices. In the application instruction, the data is stored in the form of KnX, KnY, KnM, and KnA for operations.
- 2. Data register D, timer T, counter C, and index registers V and Z are specified by general operands.
- A data register is typically 16 bits in length which is also the length of a D register. Specify two consecutive D registers to form a 32-bit register.
- If the operand of a 32-bit instruction specifies D0, the 32-bit data register formed by (D1, D0) is occupied. D1 is the upper 16 bits and D0 is the lower 16 bits. The same rule applies to the timer T and 16-bit counter.
- 5. When the 32-bit counters C64 C77 are used as data registers, they can only be specified by the operand of a 32-bit instruction.

3.2.6 Devices of the operand

The definitions of the devices assigned by the operands are as follows.

- 1. Devices X, Y, M, and A can only be set as single points of ON / OFF, which are defined as bit devices.
- 2. 16-bit or 32-bit devices T, C, and D and registers V and Z are defined as word devices.
- For word device operations, add Kn in front of the bit devices X, Y, M, and A to define them as word devices. n = 1 indicates 4 bits, so for a 16-bit instruction, n can be 1 - 4 and for a 32-bit instruction, n can be 1 - 8. For example, K2M0 indicates the length of the device is 8 bits, including M0 - M7.

When X0 = ON, the values in M0 - M7 are moved to bits 0 - 7 of D10 and bits 8 - 15 are set to 0.

-2,147,483,648 to +2,147,483,647

3.2.7 Data processing of the word devices formed by bit devices

16-bit instructions 32-bit instructions The range of value specified by 16-bit The range of value specified by 32-bit instruction: Kinstruction: K-32,768 to K+32,767 2,147,483,648 to K+2,147,483,647 Values contained in bit groups K1 - K4: Values contained in bit groups K1 - K8: K1 (4 bits) 0 - 15 K1 (4 bits) 0 - 15 K2 (8 bits) 0 - 255 K2 (8 bits) 0 - 255 K3 (12 bits) 0 - 4,095 K3 (12 bits) 0 - 4,095 K4 (16 bits) -32,768 to +32,767 K4 (16 bits) 0 - 65,535 K5 (20 bits) 0 - 1,048,575 K6 (24 bits) 0 - 167,772,165 K7 (28 bits) 0 - 268,435,455

K8 (32 bits)

The corresponding values of 16-bit and 32-bit instructions are as follows.

3.3 Processing numeric values with application instructions

This section describes how devices with numeric values are processed by the MLC application instructions.

Devices X, Y, M, and A with only ON / OFF functions are called bit devices. Devices T, C, D, V, and Z for storing numeric values are called word devices. With a specific declaration, bit devices can also be used in an operand of the application instruction in the form of a numeric value. The declaration is to add the number of bits, expressed with Kn, in front of the bit device. A 16-bit number is expressed by K1 - K4 and a 32-bit number is expressed by K1 - K8. For example, K2M0 is an 8-bit number composed of M0 - M7. Send K1M0, K2M0, and K3M0 to a 16-bit register and fill the vacant upper bits with 0. Send K1M0, K2M0, K3M0, K4M0, K5M0, K6M0, and K7M0 to a 32-bit register and fill the vacant upper bits with 0. In a 16-bit or 32-bit operation, if the contents of the operand specify bit devices of K1 - K3 or K4 - K7, all vacant upper bits will be filled with 0, so this operation is generally regarded as a positive number operation.

Specifying continuous numbers: take data register D as an example. The continuous numbers of D are D0, D1, D2, D3, D4, and so on. For bit devices with assigned numbers, the continuous numbers are as follows.

Specifying continuous numbers									
K1X0	K1X4	K1X8	K1X12						
K2Y0	K2Y8	K2Y16	K2Y24						
K3M0	K3M12	K3M24	K3M36						
K4A0	K4A16	K4A32	K4A48						

As shown in the above table, the continuous numbers of X devices for K1 are multiples of 4 and the continuous numbers of X devices for K2 are multiples of 8. Do not skip numbers to avoid confusion. For example, K1X0 and K1X5 are not multiples of 4.

Note: if K4Y0 is used in a 32-bit operation, the upper 16 bits are regarded as 0. For 32-bit data, use K8Y0.

The internal numeric operation of the NC series MLC is conducted in the format of BIN integers.

If you use decimal point (floating point) operation instructions, the decimal values (floating point numbers) can be calculated.

Decimal point (floating point) relevant application instructions							
API 58 (FADD) API 61 (FDIV) API 64 (FDOT)							
API 59 (FSUB)	API 62 (FCMP)	API 65 (FRAD)					
API 60 (FMUL) API 63 (FINT) API 66 (FDEG)							

Binary floating point number representation

The NC series MLC represents floating point numbers with 32 bits by adopting the IEEE 754 standard. The format is as follows.

Valid range of values: $(-1)^{S} \times 2^{E-B} \times 1.M$ (B = 127)

Range of values expressed by 32-bit floating point: $\pm 2^{-126}$ to $\pm 2^{+128}$ or $\pm 1.1755 \times 10^{-38}$ to $\pm 3.4028 \times 10^{+38}$.

Example 1: express 23 as a 32-bit floating point number.

Steps:

- 1. Convert 23 into a binary number: 23.0 = 10111.
- 2. Normalize the binary number: 10111 = 1.0111 × 24. 0111 is the mantissa and 4 is the exponent.
- 3. Obtain the stored value of the exponent: \therefore E-B = 4 \rightarrow E-127 = 4 \therefore E = 131 = 10000011₂.
- 4. Combine the sign bit, exponent, and mantissa into a floating-point number.

0 100**0001**1 011**1000**0000**0000**00000**000**₂ = 41B80000₁₆

Example 2: express -23.0 as a 32-bit floating point number.

The conversion steps for the floating-point format of -23.0 and 23.0 are the same but the sign bit is changed to 1.

MLC uses two consecutive registers to form a 32-bit floating point number. The following example uses the registers (D1, D0) to store a binary floating-point number.

3.4 Modify operands with index registers V and Z

The index register V and Z are same as regular register D, which are 16-bit type register. They have total 16 points of V and Z in the NC series models. Refer to the following for more details.

As shown in the above figure, contents in the operands vary according to the contents in V and Z. That is, the operands are modified by V and Z, which is called indexing. For example, when V0 = 8, the D20V0 will represent register D28 (20 + 8). After the condition is met and the MOV instruction execute, data in the register D28 will sent to register D24.

Devices in the NC series that can apply V and Z registers are P, KnX, KnY, KnM, KnA, T, C, and D. Users who would like to set value to V and Z need to pay attention on the instruction's type whether is 16-bit or 32-bit. According to the V and Z are continues memory, therefore Z register is not allowed to use on the 32-bit instruction and not recognized to set Z register separately. Otherwise, the V register's value will be modified.

V, Z relation when app	V, Z relation when applying 32-bit instruction						
V0	Z0						
V1	Z1						
V2	Z2						
V3	Z3						
V4	Z4						
V5	Z5						
V6	Z6						
V7	Z7						

3.5 Application instruction index

The following table lists the application instruction indexes in alphabetical order:

Turne		Instruc	tion code	Function
туре	API	16-bit	32-bit	Function
	13	ADD	DADD	BIN addition
	34	ALT	-	On / Off alternation
	45	AND=	DAND=	S1 = S2
	46	AND>	DAND>	S1 > S2
A	47	AND<	DAND<	S1 < S2
	48	AND<>	DAND<>	S1 ≠ S2
	49	AND<=	DAND<=	S1 ≤ S2
	50	AND>=	DAND>=	$S1 \ge S2$
	11	BCD	DBCD	Convert BIN data to BCD data
В	12	BIN	DBIN	Covert BCD data to BIN data
	28	BON	DBON	Bit state monitoring
	00	CJ	-	Conditional jump
C	01	CALL	-	Call subroutine
C	10	CML	DCML	Invert and transfer
	37	CNT	DCNT	Counter
	16	DIV	DDIV	BIN division
D	18	DEC	DDEC	Minus one (BIN)
	26	DECO	-	Decoder
E	27	ENCO	-	Encoder
	06	FEND	-	End of main program
	07	FOR	-	Start of nested loop
	58	-	FADD	Binary floating-point number addition
	59	-	FSUB	Binary floating-point number subtraction
	60	-	FMUL	Binary floating-point number multiplication
	61	-	FDIV	Binary floating-point number division
F	62	-	FCMP	Compare binary floating-point numbers
	63	-	FINT	Convert binary floating-point number to BIN integer (remove decimal)
	64	-	FDOT	Convert BIN integer to binary floating-point number
	65	-	FRAD	Convert degrees to radians
	66	-	FDEG	Convert radians to degrees
	67	-	FMOV	Move data
I	17	INC	DINC	Plus one (BIN)

3

Turne		Instruc	on code	Function
туре	API	16-bit	32-bit	Function
	39	LD=	DLD=	S1 = S2
	40	LD>	DLD>	S1 > S2
	41	LD<	DLD<	S1 < S2
L	42	LD<>	DLD<>	S1 ≠ S2
	43	LD<=	DLD<=	S1 ≦ S2
	44	LD>=	DLD>=	S1 ≧ S2
N 4	09	MOV	DMOV	Move data
IVI	15	MUL	DMUL	BIN multiplication
N	08	NEXT	-	End of nested loop
IN	22	NEG	DNEG	Take the negative number (Two's complement)
	51	OR=	DOR=	S1 = S2
	52	OR>	DOR>	S1 > S2
0	53	OR<	DOR<	S1 < S2
Ŭ	54	OR<>	DOR<>	S1 ≠ S2
	55	OR<=	DOR<=	S1 ≦ S2
	56	OR>=	DOR>=	S1 ≧ S2
P	35	PLS	-	Upper differential output
P	38	PLF	-	Lower differential output
Б	23	ROR	DROR	Rotate right
ĸ	24	ROL	DROL	Rotate left
6	02	SRET	-	End of subroutine
3	14	SUB	DSUB	BIN subtraction
Т	36	TMR	-	Timer
V	57	VRT	DVRT	Logical switch table
	19	WAND	DWAND	AND operation
W	20	WOR	DWOR	OR operation
	21	WXOR	DWXOR	XOR operation
Z	25	ZRST	-	Zone reset

(This page is intentionally left blank.)

3

MLC Application Instructions Description

4

This chapter provides the detailed function and definition of each API for the MLC.

4.1	Loop control instructions4-3
	API-00 CJ: Conditional jump
	API-01 CALL: Call subroutine
	API-02 SRET: End of subroutine 4-6
	API-06 FEND: End of main program ······4-9
	API-07 FOR: Start of nested loop 4-10
	API-08 NEXT: End of nested loop ····· 4-11
4.2	Transmission and comparison instructions ······
	API-09 MOV: Move data ······ 4-14
	API-10 CML: Invert and transfer ····· 4-15
	API-11 BCD: Convert BIN data to BCD data ······ 4-16
	API-12 BIN: Convert BCD data to BIN data ······ 4-17
4.3	Arithmetic and logic operation instructions ······ 4-18
	API-13 ADD: BIN addition 4-18
	API-14 SUB: BIN subtraction 4-20
	API-15 MUL: BIN multiplication ······ 4-21
	API-16 DIV: BIN division 4-22
	API-17 INC: Plus one (BIN)
	API-18 DEC: Minus one (BIN) 4-24
	API-19 WAND: AND operation ······ 4-25
	API-20 WOR: OR operation 4-26
	API-21 WXOR: XOR operation 4-27
	API-22 NEG: Take the negative number (Two's complement) 4-28
4.4	Rotate and shift instructions 4-30
	API-23 ROR: Rotate right 4-30
	API-24 ROL: Rotate left ······ 4-31
4.5	Data processing instructions 4-32
	API-25 ZRST: Zone reset 4-32
	API-26 DECO: Decoder ······ 4-34
	API-27 ENCO: Encoder 4-36
	API-28 BON: Bit state monitoring
4.6	Shortcut instructions
	API-34 ALT: ON / OFF alternation ······ 4-39
4.7	Contact type comparison instructions

4

	API-39 to 44 LD %: Compare the contact type ······ 4-40
	API-45 to 50 AND %: Compare the contact type ······ 4-41
	API-51 to 56 OR *: Compare the contact type 4-42
	API-57 VRT: Logical switch table 4-43
4.8	Floating-point number operation instructions
	API-58 FADD: Binary floating-point number addition ······ 4-44
	API-59 FSUB: Binary floating-point number subtraction ······ 4-45
	API-60 FMUL: Binary floating-point number multiplication
	API-61 FDIV: Binary floating-point number division ······ 4-47
	API-62 FCMP: Compare binary floating-point numbers 4-48
	API-63 FINT: Convert binary floating-point number to BIN integer
	API-64 FDOT: Convert BIN integer to binary floating-point number 4-50
	API-65 FRAD: convert degrees to radians ······ 4-51
	API-66 FDEG: convert radians to degrees ······ 4-52

4.1 Loop control instructions

API-00 CJ: Conditional jump

API				· 1			9			ondition	al iumn		NC series				
00		-		J			5			onution	arjump						
		Bit d	evice	1		Word device											
	Х	Υ	М	А	Κ	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z		
S																	
16-bi	t inst	ructio	on: C	J cor	ntinuc	ous e	xecution	type (2	steps).								
32-bi	t inst	ructio	on: no	one.													

Flag: none.

Notes on the use of operands: operand S can assign indicator P.

V and Z registers can specify the number of P.

The S operand of the NC series can specify P0 - P255.

Instruction description:

S: the target to jump of the conditional jump instruction.

Use the CJ instruction when only part of the program needs to be executed or for two-way output to save the scanning time. Different CJ instructions can assign the same indicator P; however, CJ and CALL instructions cannot simultaneously assign the same indicator P or an error occurs.

The device actions when the jump instruction is executed:

- 1. All the instructions you send are executed.
- 2. Devices Y, M, and A remain their states before and after the jump instruction is executed.
- 3. The currently running 10 ms and 100 ms timer continue to time.
- 4. The currently running C78 and C79 high-speed counters continue to count and the output point operates as usual.
- 5. The general type instructions are not executed.
- 6. The instructions in execution, API-53 DHSCS and API-54 DHSCR, are continued.

Program example 1:

When X0 is ON, the program automatically jumps from address 0 to N (the assigned label P1) to continue to run. The program between address 0 and address N is not executed.

When X0 is OFF, the program continues to run from address 0 and what follows, and the CJ instruction is not executed.

Program example 2:

You can use a CJ instruction between MC and MCR instructions in the following 5 conditions.

- 1. Out of MC MCR instructions.
- 2. From outside of the MC to within the MC instruction, as shown in P1 of the following figure.
- 3. From the N level of the MC to another MC of the same level.
- 4. From within the MC to outside of the MCR.
- 5. Jumping from one set of MC MCR to another set of MC MCR.

Execution procedure:

When used between MC and MCR instructions, the CJ instruction can only be applied to outside of the MC - MCR loop or within the same N layer of the MC - MCR loop. Jumping from one MC - MCR to another MC - MCR leads to program errors. In other words, only Items 1 and 3 described above are allowed, whereas others can cause errors.

Example 3:

Y1 is a two-way output point. When M0 is OFF, Y1 is controlled by M1; when M0 is ON, Y1 is controlled by M12.

Stage change of each device in the following ladder diagram:

Device	Contact state before CJ is executed	Contact state during execution of CJ	Output coil state during execution of CJ
	M1, M2, and M3 are OFF	M1, M2, and M3 go from OFF to ON	Y1*1, M20, and S1 are OFF
f, M, A	M1, M2, and M3 are ON	M1, M2, and M3 go from ON to OFF	Y1*1, M20, and S1 are ON
10 ma and 100	M4 is OFF	M4 goes form OFF to ON	The timer T0 does not count.
ms timers	M4 is ON	M4 goes from ON to OFF	The timer T0 continues to time and remains. M0 goes from ON to OFF and the timer times until T0 goes to ON.

Device	Contact state before CJ is executed	Contact state during execution of CJ	Output coil state during execution of CJ			
	M7 and M10 are OFF	M10 ON / OFF triggered	The counter C0 does not count.			
C0 - C77	M7 is OFF; M10 ON / OFF triggered	M10 ON / OFF triggered	Counter C0 stops counting and holds. When M0 goes off, C0 resumes counting.			
C78 and C79	When the high-sp executed, they	beed counters (C78 a / continue to count, a	and C79) are activated and a CJ instruction is and the output points continues to operate.			
Application	M11 is OFF	M11 goes from OFF to ON	Application instructions are not executed			
instruction	M11 is ON	M11 goes from ON to OFF	The skipped application instructions are not executed, but API-53 DHSCS and API-54 DHSCR continue to be executed.			

Note:

*1: Y1 is a two-way output. When M0 is OFF, Y1 is controlled by M1; when M0 is ON, Y1 is controlled by M12.

API-01 CALL: Call subroutine

API CALL S Call subroutine NC series 01 _ Bit device Word device Х Μ А Κ F KnM KnA D V Υ KnX KnY С Ζ Т S 16-bit instruction: CALL continuous execution type (2 steps) 32-bit instruction: none. Flag: none. Notes on the use of operands: Operand S can assign indicator P. V and Z registers can specify the number of P. The S operand of the NC series can specify P0 - P255.

Instruction description:

S: the indicator for calling the subroutine.

Place the subroutine specified by S after the FEND instruction. When the number of P is being executed by the CALL instruction, avoid specifying the same number for the CJ instruction. If you use the CALL instruction solely, you can call the subroutine of the same indicator number for unlimited times. If you use the CALL instruction in the subroutine to call another subroutine, the maximum is 5 layers including the the instruction itself (the subroutine in the 6th layer is not executed).

■ API-02 SRET: End of subroutine

API			SP	ET					End	of the s	ubroutin		NC series				
02	-	-		· L I			-			or the s	ubioutii						
		Bit d	evice							Word de	evice						
	Х	Υ	М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z		
16-bi	t insti	ructio	n: SF	RET c	ontin	uous	executio	on type	(1 step)								
32-bi	t insti	ructio	n: no	ne.													
Flag:	none	.															
Notes	s on t	he us	se of	opera	ands:	no op	erand.										

Contact for activating the instruction is not required.

Instruction description:

The SRET instruction indicates the end of the subroutine. After the subroutine is completely executed, the program returns to the main program from SRET and starts from the next instruction following the CALL instruction.

Program example 1:

When X0 is ON, execute the CALL instruction and jump to P2 to execute the specified subroutine. When SRET is executed, return to address 24 and then continues to execute what follows.

Program example 2:

- 1. When X10 is rising edge triggered from OFF to ON to execute the CALL P10 instruction, the program jumps to subroutine assigned by P10.
- 2. When X11 is ON, CALL P11 is executed, and the program jumps to the subroutine assigned by P11.
- 3. When X12 is ON, CALL P12 is executed, and program jumps to the subroutine assigned by P12.
- 4. When X13 is ON, CALL P13 is executed, and program jumps to the subroutine assigned by P13.
- When X14 is ON, CALL P14 is executed and program jumps to the subroutine assigned by P14. When SRET is executed, return to the previous subroutine P* and continue the execution.
- 6. After SRET is executed in subroutine P10, return to the main program.

API			FF				_		End	of main	progra	m	NC series				
06		-			End of main program												
	Bit device Word device																
	Х	Y	М	А	K	F KnX KnY KnM KnA T C D V Z											
16-bi	t instr	ructio	n: FE	ND c	ontin	Jous	executio	on type	(1 step)								
32-bi	t instr	ructio	n: no	ne.													
Flag:	g: none.																
Note	s on t	he us	se of o	opera	ands:	no op	erand.										
Cont	act fo	r acti	vatino	the	instru	ction	is not re	eauired.									

API-06 FEND: End of main program

Instruction description:

This instruction indicates the end of the main program. When the MLC executes this instruction, FEND functions the same as the END instruction. Note that the CALL instruction must be put following the FEND instruction, and then the SRET instruction must be put at the end of the subroutine. To interrupt a program, put the interrupt instruction after FEND and then put IRET at the service program being executed. When using multiple FEND instructions, place the subroutine and the interruption service program between the last FEND and END instructions.

A program error occurs in the following conditions:

- 1. After the CALL instruction is executed, FEND is executed before SRET.
- 2. After the FOR instruction is executed, FEND is executed before NEXT.

Execution procedure of CJ instruction:

Execution procedure of CALL instruction:

API-07 FOR: Start of nested loop

API			FC	١B			S		Sta	rt of neg	ted loor	- I	NC series				
07	-						0										
		Bit d	evice			Word device											
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z		
S																	

16-bit instruction: FOR continuous execution type (3 steps).

32-bit instruction: none.

Flag: none.

Notes on the use of operands: contact for activating the instruction is not required. Refer to the specification of each model for the valid range of each device.

Instruction description:

S: the number of times the loop is executed.

API			NE	NEXT -						d of nes	ted loor		NC series				
08	-	-								1 01 1103			NO SCIICS				
		Bit device Word device															
	Х	Y	М	А	К	F KnX KnY KnM KnA T C D V Z									Z		
16-bi	t insti	ructio	n: NE	XT c	ontinu	Jous	executio	on type	(1 step).								
32-bi	t insti	ructio	n: no	ne.													
Flag:	lag: none.																
Note	s on t	he us	se of o	opera	ands:	no op	erand.										
Cont	act fo	r acti	vating	g the	instru	ction	is not re	equired.									

API-08 NEXT: End of nested loop

Instruction description:

- 1. The FOR...NEXT loop is executed for the number of times (N) assigned by FOR and the loop is exited. Next, the execution continues following the NEXT instruction.
- 2. The range of the repeating times: N = K1 K32,767. N is regarded as K1 when N \leq 1.
- 3. To skip the FOR...NEXT loop, use the CJ instruction to exit the loop.
- 4. A program error occurs in the following conditions:
 - a. The NEXT instruction is placed before FOR.
 - b. A FOR instruction has no corresponding NEXT instruction.
 - c. A NEXT instruction is placed after FEND or END instructions.
 - d. The number of FOR instructions is different from the number of NEXT instructions.
- 5. The FOR...NEXT loops can nest for up to 5 layers. Be aware that the more the layers, the more time required for MLC scanning.

Program example 1:

The program A repeats three times, and the execution goes to the program after the NEXT instruction. Each time the program A is executed, the program B is executed four 4 times. Therefore, the program B is executed 12 times $(3 \times 4 = 12)$ in total.

Program example 2:

When X7 is OFF, the MLC executes the program between FOR and NEXT instructions. When X7 is ON, the CJ instruction is executed and the execution jumps to P6, skipping the program between FOR and NEXT.

Program example 3:

To skip the FOR...NEXT loop, use a CJ instruction. When X1 is ON, you can use the CJ instruction to skip the most inner FOR...NEXT layer and have the execution jumped to P0.

4.2 Transmission and comparison instructions

API-09 MOV: Move data

API								Move data							
09	C)	M	ΟV			S, D		Move data				NC	c series	
67	F	-								Word device					
	Bit device Word device														
	Х	Y	М	А	Κ	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S					*	*	*	*	*	*	*	*	*	*	*
D								*	*	*	*	*	*	*	*

16-bit instruction: MOV continuous execution type (4 steps)

32-bit instruction: DMOV continuous execution type (6 steps)

32-bit instruction: FMOV continuous execution type (6 steps)

Flag: none.

Notes on the use of operands: if operands S and D are used in register Z, only 16-bit instruction is applicable.

Refer to Chapter 1 for the range of each device.

Instruction description:

S: data source; D: destination for the data to be moved.

When the MOV instruction is executed, the data contained in S is directly moved to D. If MOV is not executed, the content in D remains unchanged.

To move the 32-bit operation result (such as the application instruction FMUL) and 32-bit current value of high-speed counter, DMOV is required. To move the floating-point number device, use the FMOV instruction.

Program example:

To move the 16-bit data, use the MOV instruction.

- a. When X0 is OFF, the data in D10 remains unchanged. If X0 is ON, the value of K10 is moved to register D0.
- b. When X1 is OFF, the data in D10 remains unchanged. If X1 is ON, the current value of T0 is moved to register D10.

To move the 32-bit data, use a DMOV instruction.

When X2 is OFF, the data in (D31, D30) and (D41, D40) remain unchanged. If X2 is ON, the current values in (D21, D20) are moved to (D31, D30) registers. Meanwhile, the current value of C64 is moved to data registers (D41, D40).

API			C	CML			SD		Inv	ert and	transfor		NC	sorios	
10	C)	U.	VIL			0, D			on and	lansici		NC	00000	
	Bit device									Word d	evice				
	Х	Y	М	А	K	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S					*								*		
D													*		

■ API-10 CML: Invert and transfer

16-bit instruction: CML continuous execution type (4 steps).

32-bit instruction: DCML continuous execution type (5 steps).

Flag: none.

Notes on the use of operands: if operands S and D are used in register Z, only 16-bit instruction is applicable.

Refer to Chapter 1 for the range of each device.

Instruction description:

S: data source. D: destination device for the data to transfer to.

Invert the phase of all contents in S $(0 \rightarrow 1, 1 \rightarrow 0)$ and send the result to device D. If the content is a K constant, this K constant is automatically converted to a BIN value.

Program example 1:

You can use this instruction when inverted phase output is required.

When X10 is ON, contents of b0 - b3 are inverted and sent to D12.

API			BC	BCD			sр		Cor	nvert BI	V data to	b	NC	series	
11	C)					0, 0			BCD d	lata		INC.	001100	
		Bit d	evice							Word de	evice				
	Х	Y	М	А	К	F	KnX	KnX KnY KnM KnA T C		С	D	V	Z		
S													*		
D													*		

API-11 BCD: Convert BIN data to BCD data

16-bit instruction: BCD continuous execution type (4 steps).

32-bit instruction: DBCD continuous execution type (4 steps).

Flag: M2828 (computing error).

Notes on the use of operands: if operands S and D are used in register Z, only 16-bit instruction is applicable.

Refer to Chapter 1 for the range of each device.

Instruction description:

Converts the content of data source S (BIN value) to BCD, and saves the result in D. When the result of BCD conversion exceeds K0 - K9,999, and M2828 is ON. When the result of DBCD conversion exceeds K0 - K99,999,999, M2828 is ON. MLC arithmetic operations and the execution of INC and DEC instructions are performed in BIN format. Thus, use the BCD instruction to convert BIN data to BCD data if displaying data in decimal format is required.

Program example:

When X0 is ON, BIN data in D10 is converted to BCD data, and the units digit of the result is saved in D12.

API			BI	BIN			SD		Cov	/ert BCI	D data te	c	NC	series	
12	C)		IN			0, D			BIN d	ata		INC.	0 301103	
		Bit device								Word d	evice				
	Х	Y	М	Α	K	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S													*		
D													*		

API-12 BIN: Convert BCD data to BIN data

16-bit instruction: BIN continuous execution type (4 steps).

32-bit instruction: DBIN continuous execution type (4 steps).

Flag: none.

Notes on the use of operands: if operands S and D are used in register Z, only 16-bit instruction is applicable.

Refer to Chapter 1 for the range of each device.

Instruction description:

S: data source; D: conversion result.

Converts the contents of data source S (BCD: 0 - 9,999) to BIN data and saves the result in D.

Valid value range of contents in S:

BCD: 0 - 9,999; DBCD: 0 - 99,999,999.

This instruction is not required for constant K and H as they are automatically converted into BIN format.

Program example:

When X0 is ON, the BCD data in D12 is converted to BIN data, and the result is saved in D10.

\vdash	BIN	D12	D10

4.3 Arithmetic and logic operation instructions

API-13 ADD: BIN addition

API			ΔΓ	חו		G				BIN add	lition		NC	` corioc	
13	C)				0	1, U 2, D			Dintaut			NC	, series	
		Bit de	evice							Word d	evice				
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S ₁					*						*	*	*		
S ₂					*						*	*	*		
D											*	*	*		

16-bit instruction: ADD continuous execution type (6 steps).

32-bit instruction: DADD continuous execution type (8 steps).

Flag: M2824 (zero flag), M2825 (borrow flag), and M2826 (carry flag). (Please refer to the supplementary notes.)

Notes on the use of operands: if operands S_1 , S_2 and D are used in register Z, only 16-bit instruction is applicable.

Refer to Chapter 1 for the range of each device.

Instruction description:

S1: summand; S2: addend; D: sum.

Adds data sources S_1 and S_2 in BIN format and saves the result in D. The highest bit of each data is the sign bit, which can be used for algebraic addition operations. 0 represents a positive sign and 1 represents a negative sign. For example: 3 + (-9) = -6.

Flag changes in BIN addition:

16-bit BIN addition:

- 1. If the addition result is 0, the zero flag M2824 is ON.
- 2. If the addition result is less than -32,768, the borrow flag M2825 is ON.
- 3. If the addition result is greater than than 32,767, the carry flag M2826 is ON.

32-bit BIN addition:

- 1. If the addition result is 0, the zero flag M2824 is ON.
- 2. If the addition result is less than -2,147,483,648, the borrow flag M2825 is ON.
- 3. If the addition result is greater than than 2,147,483,647, the carry flag M2826 is ON.

Program example 1:

16-bit BIN addition:

When X0 is ON, add the summand D0 and addend D10 and save the result in D20.

Program example 2:

32-bit BIN addition:

When X1 is ON, add the content in (D31, D30) (summand) and the content in (D41, D40) (addend), and save the sum in (D51, D50). (D30, D40 and D50 are the lower 16-bit data, whereas D31, D41 and D51 are the higher 16-bit data.)

X1				
\vdash	DADD	D30	D40	D50

Supplementary note:

API-14 SUB: BIN subtraction

API			9	SUB		c			P	IN cubt	raction		NC	, corioc	
14	C)	30	50		0	1, 3 2, D			in subu	action		INC	Selles	
	Bit device									Word d	evice				
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S1					*						*	*	*		
S2					*						*	*	*		
D											*	*	*		

16-bit instruction: SUB continuous execution type (6 steps).

32-bit instruction: DSUB continuous execution type (8 steps).

Flag: M2824 (zero flag), M2825 (borrow flag), and M2826 (carry flag). Refer to API-13 ADD supplementary notes.

Notes on the use of operands: if operands S_1 , S_2 and D are used in register Z, only 16-bit instruction is applicable.

Refer to Chapter 1 for the range of each device.

Instruction description:

S1: minuend S2: subtrahend D: difference

Subtracts the data sources S_1 and S_2 in BIN format and saves the result in D. The highest bit of each data is the sign bit, which can be used for algebraic addition operations. 0 represents a positive sign and 1 represents a negative sign.

Flag changes in BIN subtraction:

16-bit BIN subtraction:

- 1. If the subtraction result = 0, the zero flag M2824 is ON.
- 2. If the subtraction result < -32,768, the borrow flag M2825 is ON.
- 3. If the subtraction result > 32,767, the carry flag M2826 is ON.

32-bit BIN subtraction:

- 1. If the subtraction result = 0, the zero flag M2824 is ON.
- 2. If the subtraction result < -2,147,483,648, the borrow flag M2825 is ON.
- 3. If the subtraction result > 2,147,483,647, the carry flag M2826 is ON.

Refer to API-13 ADD supplementary notes for the flags and the positive/negative sign of the values.

Program example 1:

16-bit BIN subtraction: when X0 is ON, subtract the content of D10 from D0, and save the difference in D20.

Program example 2:

32-bit BIN addition: when X1 is ON, subtract the content of (D41, D40) from (D31, D30), and save the difference in (D51, D50). (D30, D40 and D50 are the lower 16-bit data, whereas D31, D41 and D51 are the higher 16-bit data.)

API-15 MUL: BIN multiplication

API			М	MUL	S			BI	N multir	lication		NC	, sorios		
15	C)		0L		0	1, U 2, D			ուսուր	hication		NC	, series	
		Bit d	evice							Word d	evice				
	Х	Y	М	А	К	F KnX KnY			KnM	KnA	Т	С	D	V	Z
S1					*						*	*	*		
S2					*						*	*	*		
D											*	*	*		

16-bit instruction: MUL continuous execution type (6 steps).

32-bit instruction: DMUL continuous execution type (8 steps).

Flag: none.

Notes on the use of operands: if operands S₁, S₂ and D are used in register Z, only 16-bit instruction is applicable.

In 16-bit instruction, operand D takes consecutive 2 devices.

In 32-bit instruction, operand D takes consecutive 4 devices.

Refer to Chapter 1 for the range of each device.

Instruction description:

S1: multiplicand; S2: multiplier; D: product

Multiplies values in data source S_1 and S_2 in signed binary format and saves the product in D.

For 16-bit and 32-bit operations, pay attention to the positive/negative signs of S_1 , S_2 and D.

16-bit BIN multiplication:

If D serves as a bit device, you can assign K1 - K4 as 16-bit, occupying consecutive 2 sets of 16-bit devices.

b15 = 0 S1 is a positive value b15 = 0 S2 is a positive value b15 = 1 S1 is negative value

b15 = 1 S2 is negative value

32-bit BIN multiplication:

If D serves as a bit device, you can assign K1 - K8 as 32-bit, and D stores the lower 32-bit data only.

Program example:

When X0 is ON, the 16-bit D0 is multiplied by the 16-bit D10 to obtain a 32-bit product. The higher 16 bits are saved in D21, and the lower 16 bits are saved in D20. ON / OFF state of the most left bit indicates the positive / negative sign of the value.

xo 	MUL	D0	D10	D20
	MUL	D0	D10	K8M0

API-16 DIV: BIN division

API			П	DIV		S	4 So D			BIN div	ision		NC	' corioc	
16	C)		IV		0	1, O2, D			Directiv	131011		NC	0 301103	
	Bit device									Word d	evice				
	Х	Y	М	А	К	F KnX KnY			KnM	KnA	Т	С	D	V	Z
S1					*						*	*	*		
S2					*						*	*	*		
D											*	*	*		

16-bit instruction: DIV continuous execution type (6 steps).

32-bit instruction: DDIV continuous execution type (8 steps).

Flag: M2828 computing error.

Notes on the use of operands: if operands S_1 , S_2 and D are used in register Z, only 16-bit instruction is applicable.

In 16-bit instruction, operand D takes consecutive 2 devices.

In 32-bit instruction, operand D takes consecutive 4 devices.

Refer to Chapter 1 for the range of each device.

Instruction description:

S₁: dividend; S₂: divisor; D: quotient and remainder.

Divides data source S1 by S2 in signed binary format and saves the quotient and remainder in

D. For 16-bit and 32-bit operations, pay attention to the positive / negative signs of S1, S2 and D.

If the divisor is 0, this instruction is not executed. When M2828 is ON, D1467 records the error code 0002 (Hex).

16-bit BIN division:

If D serves as a bit device, you can assign K1 - K4 as 16-bit, occupying consecutive 2 sets of 16-bit data and bringing forth the quotient and remainder.

32-bit BIN division:

If D serves as a bit device, you can assign K1 - K8 as 32-bit, bringing forth the quotient with no remainder.

Program example:

When X0 is ON, D0 is divided by D10, and the quotient is saved in D20, and the remainder is saved in D21. ON/OFF of the most left bit indicates the positive/negative sign of the result.

X0				
	 DIV	D0	D10	D20
	 DIV	D0	D10	K4Y0

API-17 INC: Plus one (BIN)

API			IN				D				(RIN)		NC	, corios	
17	C)		vice			D		•	ius one			INC	, series	
		Bit d	evice							Word d	evice				
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
D											*	*	*		

16-bit instruction: INC continuous execution type (3 steps).

32-bit instruction: DINC continuous execution type (3 steps).

Flag: none.

Notes on the use of operands: if operand D is used in register V, only the 16-bit instruction is applicable.

Instruction description:

D: destination device

When the INC instruction is executed, the value in the specified device D increases by 1 in each scanning cycle of the program. In 16-bit operation, 32,767 plus 1 is -32,768. In 32-bit operation, 2,147,483,647 plus 1 is -2,147,483,648. The operation result of this instruction does not affect flags M2824 - M2826.

Program example:

When X0 goes from OFF to ON, the value of D0 automatically adds 1.

API-18 DEC: Minus one (BIN)

API			ח	-0			П		M	inus on	a (RINI)		NC	' sorios	
18	[)					U						NC	0 301103	
		Bit d	evice							Word de	evice				
	X Y M A			А	K	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
D											*	*	*		

16-bit instruction: DEC continuous execution type (3 steps).

32-bit instruction: DDEC continuous execution type (3 steps).

Flag: none.

Notes on the use of operands: if operand D is used in register V, only the 16-bit instruction is applicable.

Instruction description:

D: destination device

When this instruction is executed, the value in the specified device D decreases by 1 in each scanning cycle of the program.

In 16-bit operation, -32,768 minus 1 is 32,767. In 32-bit operation, -2,147,483,648 minus 1 is

2,147,483,647. The operation result of this instruction does not affect flags M2824 - M2826.

Program example:

When X0 goes from OFF to ON, the value of D0 automatically decreases by 1.

	API-19	WAND:	AND operation	
3			64 62 D	

U			۱۸/Δ	ND		S	1 S2 D			eration		NC	series		
19	0)					1, 02, D			Cration		NC	/ Series		
		Bit d	evice						Wo	rd device	e				
	Х	Υ	М	А	Κ	F	KnX	KnY	KnM	KnA	Т	С	D	V	Ζ
S1					*								*		
S2					*								*		
D													*		

16-bit instruction: WAND continuous execution type (6 steps).

32-bit instruction: DWAND continuous execution type (8 steps).

Flag: none.

Notes on the use of operands: if operands S1, S2 and D are used in register Z, only the16-bit instruction is applicable.

Instruction description:

S1: source data device 1; S2: source data device 2; D: operation result

Performs the AND operation for data source S_1 and S_2 , and saves the result in D. In the logic of the AND operation, the operation result is 0 if S_1 or S_2 is 0.

Program example 1:

When X0 is ON, perform the WAND operation for the 16-bit registers D0 and D2, and save the result in D4.

Program example 2:

When X1 is ON, perform the DWAND operation for the 32-bit registers (D11, D10) and (D21, D20), and save the result in (D41, D40).

API-20 WOR: OR operation

API				AD		G					ration		NC	, sorios	
20	C)		JI		0	1, O2, D			ON Ope	auon		INC	561165	
		Bit d	evice							Word de	evice				
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S1					*								*		
S2					*								*		
D													*		

16-bit instruction: WOR continuous execution type (6 steps).

32-bit instruction: DWOR continuous execution type (8 steps).

Flag: none.

Notes on the use of operands: if operands S_1 , S_2 and D are used in register Z, only 16-bit instruction is applicable.

Instruction description:

S1: source data device 1; S2: source data device 2; D: operation result

Performs the OR operation on data source S_1 and S_2 , and saves the result in D. In the logic of the OR operation, the operation result is 1 if S_1 or S_2 is 1.

Program example 1:

When X0 is ON, perform the WOR operation for the 16-bit registers D0 and D2, and save the result in D4.

Program example 2:

When X1 is ON, perform the DWOR operation for the 32-bit registers (D11, D10) and (D21, D20), and save in (D41, D40).

API			\//X	OR .		S			×		aration		NC	' sorios	
21	٦)				0	1, U 2, D			con ope	auon		NC	50105	
		Bit de	evice							Word de	evice				
	Х	Y	М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S ₁					*								*		
S ₂					*								*		
D													*		

API-21 WXOR: XOR operation

16-bit instruction: WXOR continuous execution type (6 steps).

32-bit instruction: DWXOR continuous execution type (8 steps).

Flag: none.

Notes on the use of operands: if operands S_1 , S_2 and D are used in register Z, only 16-bit instruction is applicable.

Instruction description:

S1: source data device 1; S2: source data device 2; D: operation result

Performs the XOR operation for data source S_1 and S_2 , and saves the result in D. In the logic of XOR operation logic, if $S_1 = S_2$, the result in D is 0. If $S_1 \neq S_2$, the result in D is 1.

Program example 1:

When X0 is ON, perform the WXOR operation for the 16-bit registers D0 and D2, and save the result in D4.

Program example 2:

When X1 is ON, perform the DWXOR operation for the 32-bit registers (D11, D10) and (D21, D20), and save the result in (D41, D40).

API-22 NEG: Take the negative number (Two's complement)

API			NIE	-0					Та	ke the n	egative		NC	Coorioo	
22	0	2	NEG				D		1	compler	nent)		INC	Selles	
		Bit d	evice							Word de	evice				
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
D													*		

16-bit instruction: NEG continuous execution type (3 steps).

32-bit instruction: DNEG continuous execution type (3 steps).

Flag: none.

Notes on the use of operands: if operand D is used in register Z, only 16-bit instruction is applicable.

Instruction description:

D: the device requiring two's complement

Converts a negative BIN value to an absolute value.

Program example 1:

When X0 goes from OFF to ON, all bits in D10 are inverted $(0 \rightarrow 1, 1 \rightarrow 0)$, its value adds 1, and this result is saved in the original register D10.

Program example 2:

Get the negative absolute value: when the 15th bit of D0 is 1, M0 is ON, meaning D0 is a negative value. When M0 is ON, use the NEG instruction to get two's compliment of D0 and then get its absolute value.

Example 3:

Get the absolute value of the difference from subtraction operation:

- 1. When X0 is ON and D0 > D2, then M0 is ON.
- 2. When X0 is ON and D0 = D2, then M1 is ON.
- 3. When X0 is ON and D0 < D2, then M2 is ON.
- 4. In this case, the value in D4 remains positive.

Supplementary notes on the negative value and its absolute value:

The highest (most left) bit in the register is a sign bit, 0 represents a positive value while 1 represents a negative value.

You can use the NEG instruction (API22) to convert a negative value to its absolute value.

(D0) = 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(D0) = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
(D0) = 0
$(D0) = -1 \qquad (\overline{D0}) + 1 = 1 \\ \hline 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$

	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
(D0) = -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0>	(D0) + 1 = 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
(D0) = -3 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 =>	(D0) + 1 = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
(D0) = -4 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 ==>	$(\overline{D0}) + 1 = 4$ $0 0 0 0 0 0 0 0 0 0 $
(D0) = -5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1	$(\overline{D0}) + 1 = 5$ $0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1$
	• • •
(D0) = -32,765 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1	(D0) + 1 = 32,765 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
(D0) = -32,766 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	(D0) + 1 = 32,766 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
(D0) = -32,767 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	(D0) + 1 = 32,767 0 1 1 1 1 1 1 1 1 1
(D0) = -32,768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(D0) + 1 = -32,768 $1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$

Max. absolute value is 32,767

4.4 Rotate and shift instructions

API-23 ROR: Rotate right

API			R	٦B			Dn			Rotate	right		NC	` corioc	
23	0)		511			D, II			Notate	ngin		INC.	0 301103	
	Bit d		evice							Word d	evice				
	Х	Y	М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
D													*		
n					*										

16-bit instruction: ROR continuous execution type (4 steps).

32-bit instruction: DROR continuous execution type (4 steps).
Flag: M2826 (carry flag)
Notes on the use of operands: if operand D is used in register Z, only the 16-bit instruction is applicable.
If operand D is assigned to KnY, KnM, and KnS, only K4 (16-bit) and K8 (32-bit) are valid.
Range of n: K1 - K16 (16-bit), K1 - K32 (32-bit).

Instruction description:

D: the device to be rotated; n: the number of bits to be rotated for 1 rotation

Rotates the device content assigned by D to the right for n bits.

Program example:

When X0 goes from OFF to ON, the 16 bits in D10 rotates to the right in the unit of 4 bits. As shown in the following figure, the bit marked with * is sent to the carry flag M2826.

API			P	ור			Dn			Potate	loft		NC	` corioc	
24	0)		JL			D, II			Notate	ien		INC	o series	
		Bit de	evice							Word de	evice				
	Х	X Y M A			К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
D													*		
n					*	*									

API-24 ROL: Rotate left

16-bit instruction: ROL continuous execution type (4 steps).

32-bit instruction: DROL continuous execution type (4 steps).

Flag: M2826 (carry flag)

Notes on the use of operands: if operand D is used in register Z, only 16-bit instruction is applicable. If D is assigned to KnY, KnM, and KnS, only K4 (16-bit) and K8 (32-bit) are valid. Range of n: K1 - K16 (16-bit), K1 - K32 (32-bit).

Instruction description:

D: the device to be rotated; n: the number of bits to be rotated for 1 rotation

Rotates the device content assigned by D to the left for n bits.

Program example:

When X0 goes from OFF to ON, the 16 bits in D10 rotates to the left in the unit of 4 bits. As shown in the following figure, the bit marked with * is sent to the carry flag M2826.

4.5 Data processing instructions

API-25 ZRST: Zone reset

API			78	ст						Zone r	eset		NC	` corioc	
25	-	-		.01		l	D1, D2			Zonen	6361		INC	o series	
		Bit d	evice							Word d	evice				
	Х	Υ	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
D ₁		*	*	*							*	*	*		
D ₂		*	*	*							*	*	*		

16-bit instruction: ZRST continuous execution type (4 steps).

32-bit instruction: none.

Flag: none.

Notes on the use of operands:

No. of D1 must be \leq No. of D2,

Assign the same type of device for operands D_1 and D_2 .

Instruction description:

 D_1 : the device for starting the zone reset; D_2 : the device for ending the zone reset

In NC series models, the 16-bit and 32-bit counters cannot use the ZRST instruction at the same time. When the number of D_1 is larger than the number of D_2 , only the device assigned by D_2 is reset.

- 1. When X0 is ON, the auxiliary relays M300 M399 are reset to OFF.
- 2. When X1 is ON, the 16-bit counters C0 C63 are all reset (Write the value 0; contacts and coils are reset to OFF).
- 3. When X10 is ON, the timers T0 T127 are all reset. (Write the value 0; contacts and coils are reset to OFF).
- 4. When X2 is ON, the alarm flags A0 A127 are all reset to OFF.
- 5. When X3 is ON, the data registers D0 D100 are all reset to 0.
- 6. When X4 is ON, the 32-bit counters C64 C77 are all reset. (Write the value 0; contacts and coils are reset to OFF).

Supplementary note:

You can use the RST instruction independently on the devices. Such as bit devices Y, M, and A, as well as the word devices T, C, and D. Likewise, you can use the instruction DMOV (API-09) to send K0 to word devices T, C, and D or bit registers KnY, KnM, and KnA for the reset, as shown in the following figure.

API-26 DECO: Decoder

API			DE	DECO		c	SDn			Deco	dor		NC	' sorios	
26		-				,	э, <u>о</u> , п			Deco	Jei		INC	o series	
		Bit d	evice							Word de	evice				
	Х	Y	М	Α	к	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S	*	*	*	*	*								*		
D		*	*	*									*		
n					*										

16-bit instruction: DECO continuous execution type (6 steps).

32-bit instruction: none.

Flag: none.

Notes on the use of operands: when D is a bit device, the range of operand n is 1 - 8. When D is a word device, the range of operand n is 1 - 4.

Instruction description:

S: source device for decoding; D: device for saving the decoded result; n: length of the decoded bits

Decodes the lower n bits of S and saves the results which length is 2ⁿ bits in D.

- 1. When D is a bit device, n = 1 to 8. If n = 0 or n > 8, an error occurs.
- 2. When n = 8, this instruction can decode up to 2⁸ points (= 256 points). (Be aware of the devices' storage range after decoding. Do not use the device that has been occupied.)

- When X10 goes from OFF to ON, the DECO instruction decodes values in X0 X2 to M100 - M107.
- b. If the data source is 1 + 2 = 3, M103 is set to 1, which is the third bit starting from M100.
- c. After the DECO instruction is complete and X10 goes to OFF, the content that has been decoded remains its state.

- 1. When D is a word device, n = 1 to 4. If n = 0 or n > 4, an error occurs.
- 2. When n = 4, this instruction can decode up to 2^4 points (= 16 points).

- a. When X10 goes from OFF to ON, the DECO instruction decodes values in (b2 b0) of D10 and save the result to (b7 b0) of D20. The bits (b15 b8) in D20 that have not been used are all set to 0.
- b. The lower 3 bits of D10 are decoded and saved in the lower 8 bits of D20. The higher 8 bits are all set to 0.
- c. When the DECO instruction is complete and X10 goes to OFF, the bit that has been decoded operates as usual.

API-27 ENCO: Encoder

API				ENCO		c	S D n			Enco	dor		NC	` sorios	
27		-		00			э, <u>о</u> , п			LICO			INC	5 Series	
		Bit d	evice							Word de	evice				
	Х	Y	М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S	*	*	*	*									*		
D													*		
n					*										

16-bit instruction: ENCO continuous execution type (6 steps).

32-bit instruction: none.

Flag: none.

Notes on the use of operands: when D is a bit device, the range of operand n is 1 - 8. When D is a word device, the range of operand n is 1 - 4.

Instruction description:

S: source device for encoding.

D: device for saving the encoded value.

n: length of the encoded bits

Encodes the lower 2ⁿ bits of S and saves the result is in D. If multiple bits in device S are 1, the lower bits are not processed.

Program example 1:

- 1. When S is a bit device, n = 1 to 8. If n = 0 or n > 8, an error occurs.
- 2. When n = 8, this instruction can encode up to 2^8 points (= 256 points).

All set to 0

- a. When X0 goes from OFF to ON, the ENCO instruction encodes 2³ bits data in (M0 M7) and saves the result in the lower 3 bits (b2 b0) of D0. The unused bits (b15 b3) in D0 are all set to 0.
- b. When the ENCO instruction is complete and X0 goes to OFF, the data in D remains unchanged.

- 1. When S is a word device, n = 1 to 4. If n = 0 or n > 4, an error occurs.
- 2. When n = 4, this instruction can encode up to 2^4 points (= 16 points).

All set to 0

- a. When X0 goes from OFF to ON, the ENCO instruction encodes 2³ bits data in (b0 b7) and saves the result in the lower 3 bits (b2 b0) of D20. The unused bits (b15 b3) in D20 are all set to 0. (b8 b15 in D10 are invalid data.)
- b. When the ENCO instruction is complete and X0 goes to OFF, the data in D stays the same.

API-28 BON: Bit state monitoring

API			BC	אר		c	SDn		Bit	state m	onitoring		NC	` sorios	
28	0)					, D, П		Dit	State m	Jintoning		INC	5 361163	
		Bit d	evice							Word de	evice				
	Х	Υ	М	А	к	K F KnX KnY			KnM	KnA	Т	С	D	V	Z
S					*						*	*	*		
D		*	*	*											
n					*										

16-bit instruction: BON continuous execution type (6 steps).

32-bit instruction: DBON continuous execution type (7 steps).

Flag: none.

Notes on the use of operands: if operand S is used in register Z, only the 16-bit instruction is applicable. n = 0 to 15 (16-bit instruction)

n = 0 to 31 (32-bit instruction)

Instruction description:

S: source device; D: device for saving the result; n: monitoring bit (starting from 0)

Program example:

1. When X0 is ON, if the 15th bit of D0 is 1, M0 is ON. If it is 0, M0 goes OFF.

2. When X0 goes OFF, M0 remains its previous state.

4.6 Shortcut instructions

API-34 ALT: ON / OFF alternation

API			ΔΙ	т			П		ON	/ OFE al	Iternatio	n	NC	' sorios	
34	-	-		- '			U				licinatio		NC	0 301103	
		Bit d	evice							Word de	evice				
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
D		*	*	*											

16-bit instruction: ALT continuous execution type (3 steps).

32-bit instruction: none.

Flag: none.

Notes on the use of operands: refer to Chapter 1 for the range of each device.

Instruction description:

D: destination device

This instruction is usually used as an execution type instruction (ALT).

Program example 1:

When X0 changes from OFF to ON for the first time, Y0 goes to ON. When X0 goes ON for the second time, Y0 turns OFF.

Program example 2:

Use a single switch to enable and disable the control. At the beginning, M0 is OFF thus Y0 is ON and Y1 is OFF. When X10 switches between ON and OFF, M0 goes ON, thus Y1 is ON and Y0 is OFF. For the second time that X10 switches between ON and OFF, M0 goes OFF, thus Y0 is ON and Y1 is OFF.

Example 3:

The ALT instruction can be used to enable Y0 flashing. When X10 is ON, T0 generates one pulse every 2 seconds and Y0 switches between ON and OFF every time in accordance with pulses from T0.

4.7 Contact type comparison instructions

API-39 to 44 LD%: Compare the contact type

API				LD%			S. S.		Com	pare th	e contac	ot	NC	sorios	
39 - 44	D)	LD			,	J ₁ , J ₂			type	9		NO	301103	
		Bit d	evice							Word de	evice				
	Х	Y	М	А	K	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S ₁					*						*	*	*		
S ₂					*						*	*	*		

16-bit instruction: LD% continuous execution type (4 steps).

16-bit instruction: DLD% continuous execution type (6 steps).

Flag: none.

Notes on the use of operands: refer to Chapter 1 for the range of each device.

 $\divideontimes:=,>,<,<>,\leq,\geq$

Instruction description:

S1: data source device 1; S2: data source device 2

 Take API 39 (LD=) instruction as an example: if S₁ equals S₂, the continuity of the instruction is enabled; if S₁ does not equal S₂, the continuity of the instruction is disabled.

The LD% instruction may connect to a bus bar directly, as shown in the following table.

API No.	16-bit instruction	32-bit instruction	Continuity condition	No-continuitycondition
39	LD =	DLD =	S1 = S2	S1 ≠ S2
40	LD >	DLD >	S1 > S2	S1 ≦ S2
41	LD <	DLD <	S1 < S2	S1 ≧ S2
42	LD < >	DLD < >	S1 ≠ S2	S1 = S2
43	LD < =	DLD < =	S1 ≦ S2	S1 > S2
44	LD > =	DLD > =	S1≧ S2	S1 < S2

Use the 32-bit instruction (DLD*) to compare the 32-bit counters (C64 - C77).
 If you use the 16-bit instruction (AND*) for comparison, the MLC treats it as a program

error and the ERROR indicator on the panel flashes.

- 1. When the content in C10 equals K200, Y10 goes ON.
- 2. When the content in D0 is greater than K-30 and X1 is ON, Y11 goes ON and remains its state.
- 3. When the content in C64 is less than K678,493 or M3 is ON, then M50 goes to ON.

API			ΔΝΓ	AND%		(S4 S2		Com	pare the	e conta	ot	NC	sorios	
45 - 50	D)	AINL			Ì	0 1, 0 2			type	;		NO	301103	
		Bit d	evice							Word de	evice				
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S ₁					*						*	*	*		
S ₂					*						*	*	*		

API-45 to 50 AND :: Compare the contact type

16-bit instruction: AND% continuous execution type (4 steps).

32-bit instruction: DAND% continuous execution type (6 steps).

Flag: none.

Notes on the use of operands: refer to Chapter 1 for the range of each device.

※: =, >, <, <>, ≦, ≧

Instruction description:

S1: data source device 1; S2: data source device 2

- Compares the contents in S₁ and S₂. Take the API-45 (AND=) instruction as an example: when S₁ equals S₂, the continuity of the instruction is enabled; when S₁ does not equal S₂, the continuity of the instruction is disabled.
- 2. AND% is a comparison instruction that connects to contacts in parallel, as shown in the following table.

API No.	16-bit instruction	32-bit instruction	Continuity condition	No-continuity condition
45	AND =	DAND =	$S_1 = S_2$	$S_1 \neq S_2$
46	AND >	DAND >	$S_1 > S_2$	$S_1 \leq S_2$
47	AND <	DAND <	$S_1 < S_2$	$S_1 \ge S_2$
48	AND < >	DAND < >	$S_1 \neq S_2$	$S_1 = S_2$
49	AND < =	DAND < =	$S_1 \leqq S_2$	$S_1 > S_2$
50	AND > =	DAND > =	$S_1 \ge S_2$	S ₁ < S ₂

 Use the 32-bit instruction (DAND[®]) to compare 32-bit counters (C64 - C77). If you use the 16-bit instruction (AND[®]), the MLC treats it as a program error and the ERROR indicator on the panel flashes.

- 1. When X0 is ON and the value of C10 equals K200, Y10 goes to ON.
- 2. When X1 is OFF and the content of D0 does not equal K-10, Y11 goes to ON and remains its state.
- When X2 is ON and the content of register D10 (D11) is less than K678,493 or M3 is ON, M50 goes to ON.

API				ORX			S4 S2		Com	pare th	e conta	ot	NC	sorios	
51 - 56	C)					0 1, 0 2			type	9		NO	301103	
		Bit d	evice							Word de	evice				
	XY		М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S ₁					*						*	*	*		
S ₂					*						*	*	*		

API-51 to 56 OR : Compare the contact type

16-bit instruction: OR% continuous execution type (4 steps).

32-bit instruction: DORX continuous execution type (6 steps).

Flag: none.

Notes on the use of operands: refer to Chapter 1 for the range of each device.

※: =, >, <, <>, ≦, ≧

Instruction description:

S1: data source device 1; S2: data source device 2

- Compares contents in S₁ and S₂. Take the API-51(OR=) instruction as an example. When the S₁ equals S₂, the continuity of the instruction is enabled; when S₁ does not equal S₂, the instruction is disabled.
- 2. ORX is a comparison instruction that connects to contacts in parallel, as shown in the following table.

API No.	16-Bit instruction	32-bit instruction	Continuity condition	No-continuity condition
51	OR =	DOR =	$S_1 = S_2$	$S_1 \neq S_2$
52	OR >	DOR >	S ₁ > S ₂	$S_1 \leqq S_2$
53	OR <	DOR <	S ₁ < S ₂	$S_1 \geqq S_2$
54	OR < >	DOR < >	$S_1 \neq S_2$	$S_1 = S_2$
55	OR < =	DOR < =	$S_1 \leqq S_2$	$S_1 > S_2$
56	OR > =	DOR > =	$S_1 \geqq \ S_2$	S ₁ < S ₂

 Use the 32-bit instruction (DOR^{*}) to compare 32-bit counters (C64 - C77). If you use the 16-bit instruction (OR^{*}) is used, the MLC treats it as a program error and the ERROR indicator on the panel flashes.

- 1. When X1 is ON and the value in C10 equals K200, Y0 goes to ON.
- 2. When both X2 and M30 are ON, or the content in the 32-bit register D100 (D101) is greater or equal to K100, 000, then M60 goes ON.

API			V	RT		ç	SnD			iical swi	tch table	`	NC	series	
57		D	ľ				, n, D		Log					, series	
		Bit de	evice							Word de	evice				
	Х	Υ	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S	*	*	*								*	*			
n					*										
D													*		

16-bit instruction: VRT continuous execution type (70 steps).

API-57 VRT: Logical switch table

32-bit instruction: DVRT continuous execution type (134 steps).

Flag: none.

Notes on the use of operands: none.

Instruction description:

S: source device to be switched; n: number of source devices; D: switch result

- 1. Uses the initial source device assigned by S and the number of devices assigned by n for the switch. When the source device performs switching, the corresponding values in the logic (variable) table is moved to the specified register D.
- 2. Note that registers D, X, Y, M, T or C can be assigned as the source device. When the contact switches on the source device, you can switch the source to the default value.

Program example 1:

BINCD	+0	+1	+2	+3	+4
0	0	20	32	50	79
5	126	200	320	500	790
10	1260	2000	3200	5000	7900
15	12600				
63					

When M30 is ON, M31 is ON, M32 is OFF, and M33 is OFF, M30 - M33 is 3 in binary format, and its corresponding value in the variable table is 50. Thus, 50 is saved in D1062.

4.8 Floating-point number operation instructions

API-58 FADD: Binary floating-point number addition

API		-	FΔ	חח		9			Bina	ary float	ing-poir	ıt	NC series			
58						0	1, O2, D		number addition							
		Bit d	evice			Word device										
	Х	Y	М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z	
S ₁						*							*			
S ₂						*							*			
D													*			

16-bit instruction: none.

32-bit instruction: FADD continuous execution type (7 steps).

Flag: M2824 (zero flag)

Notes on the use of operands: refer to Chapter 1 for the range of each device.

Only 32-bit instruction FADD is valid.

Instruction description:

S1: summand; S2: addend; D: sum

- 1. Adds the contents of S₁ and S₂, and saves the result in the register assigned by D. The addition is executed in binary floating-point number format.
- 2. If the operand of S₁ or S₂ is assigned with constant K or F, this instruction converts the constant to binary floating-point number for addition.
- S₁ and S₂ can assign the register with the same number. In such case, if a continuous execution type instruction is executed and while the condition contact stays ON, the addition operation is performed on the register each scan cycle.
- 4. If the operation result is 0, the zero flag M2824 goes to ON.

Program example 1:

When X0 is ON, add the binary floating-point number of (D1, D0) and the binary floating-point number of (D3, D2), and save the sum in (D11, D10).

Program example 2:

When X2 is ON, add the binary floating-point number of (D11, D10) and F1.234 (automatically converted to binary floating-point number), and save the sum in (D21, D20).

API-59 FSUB: Binary floating-point number subtraction

API 59		-	- FS	UB	S1, S2, D			Binary floating-point number subtraction				NC series				
		Bit de	evice			Word device										
	Х	Y	М	Α	K	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z	
S ₁						*							*			
S ₂						*							*			
D													*			

16-bit instruction: none.

32-bit instruction: FSUB continuous execution type (7 steps). Flag: M2824 (zero flag). Notes on the use of operands: refer to Chapter 1 for the range of each device. Only the 32-bit instruction FSUB is valid.

Instruction description:

S1: minuend; S2: subtrahend; D: difference

- 1. Subtracts S₂ from S₁, and saves the result in the register assigned by D. The subtraction is executed in binary floating-point number format.
- 2. If S₁ or S₂ is assigned with constant K or F, this instruction converts the constant to binary floating-point number for subtraction.
- S₁ and S₂ can assign the register with the same ID number. In such case, if an instruction of continuous execution type is executed and while the condition contact stays ON, the subtraction operation is performed on the register each scan cycle.
- 4. If the operation result is 0, then the zero flag M2824 goes ON.

Program example 1:

When X0 is ON, the subtract the binary floating-point number of (D3 \cdot D2) from the floating-

point number of (D1, D0) and save the difference in (D11, D10).

Program example 2:

When X2 is ON, subtract the binary floating-point number of (D1, D0) from F1.234

(automatically converted to binary floating-point number), and save the remainder in (D11, D10).

API-60 FMUL: Binary floating-point number multiplication

API		-	EN	EMUI		S1 (S2 D		Binary floating-point				NC series			
60				IUL		01, 0	J2, D		number multiplication							
		Bit d	evice			Word device										
	Х	Y	М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z	
S ₁						*							*			
S ₂						*							*			
D													*			

16-bit instruction: none.

32-bit instruction: FMUL continuous execution type (7 steps). Flag: M2824 (zero flag). Notes on the use of operands: refer to Chapter 1 for the range of each device.

Only the 32-bit instruction FMUL is valid.

Instruction description:

S1: multiplicand; S2: multiplier; D: product

- 1. Multiplies S₁ and S₂, and saves the result in the register assigned by D. The multiplication is executed in binary floating-point number format.
- 2. If S₁ or S₂ is assigned with constant K or F, this instruction converts the constant to binary floating-point number for multiplication.
- S₁ and S₂ can assign the register with the same ID number. In such case, if an instruction of continuous execution type is executed and while the condition contact stays ON, the multiplication operation is performed on the register each scan cycle.
- 4. If the operation result is 0, the zero flag M2824 goes to ON.

Program example 1:

When X0 is ON, multiply the binary floating-point number of (D1, D0) and the binary floatingpoint number of (D11, D10), and save the result in the register specified by (D21, D20).

Program example 2:

When X2 is ON, multiply F1.234 (automatically converted to binary floating- point number) and the binary floating-point number of (D1, D0), and save the result in (D11, D10).

X2	2				
H		FMUL	F1.234	D0	D10

API 61	-	-	FD	NV			S1, S2, [)	Bi	nary floa number	ting-poiı division	nt	NC series			
	I	Bit d	evice	;						Word device						
	Х	Y	М	Α	к	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z	
S ₁						*							*			
S ₂						*							*			
D													*			

API-61 FDIV: Binary floating-point number division

16-bit instruction: none.

32-bit instruction: FDIV continuous execution type (7 steps).Flag: M2824 (zero flag).Notes on the use of operands: refer to Chapter 1 for the range of each device.Only the 32-bit instruction FDIV is valid.

Instruction description:

S1: dividend; S2: divisor; D: quotient and remainder

- 1. Divides S₁ by S₂, and saves the result in register assigned by D. The division is executed in binary floating-point number format.
- 2. If S₁ or S₂ is assigned with constant K or F, this instruction converts the constant to binary floating-point number for division.
- If the content of S₂ is 0, this division is regarded as "computing error" and the instruction is not executed. M1067 and M1068 go ON along with the error code H'0E19 recorded in D1067.
- 4. If the operation result is 0, then the zero flag M2824 goes ON.

Program example 1:

When X0 is ON, divide the binary floating-point number of (D1, D0) by (D11, D10), and save the remainder in the register specified by (D21, D20).

Program example 2:

When X2 is ON, divide the binary floating-point number of (D1, D0) by F1.234 (automatically converted to binary floating-point number), and save the result in (D11, D10).

X2	2				
H		FDIV	D0	F1.234	D10

API-62 FCMP: Compare binary floating-point numbers

API		-	FC	.WD		9			С	ompare	binary		NC series			
62				,1111	01, 02, D				floati	floating-point numbers			NO SCHOS			
	Bit device Word device															
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z	
S ₁						*							*			
S ₂						*							*			
D		*	*	*												

16-bit instruction: none.

32-bit instruction: FCMP continuous execution type (7 steps).

Flag: none.

Notes on the use of operands: refer to Chapter 1 for the range of each device.

Only the 32-bit instruction FCMP is valid.

Operand D occupies consecutive 3 points.

Instruction description:

 S_1 : binary floating-point number to be compared (1); S_2 : binary floating-point number to be

compared (2); D: comparison result, occupying consecutive 3 points.

- 1. Compares S_1 and S_2 , and saves the comparison result (>, =, <) in the register assigned by D.
- 2. If S₁ or S₂ is assigned with constant K or F, the instruction converts the constant to binary floating-point number for comparison.

- 1. If the assigned device is M10, then M10 M12 are automatically used.
- When X0 is ON, the FCMP instruction is executed and one of M10 M12 goes to ON.
 When X0 is OFF, the FCMP instruction is not executed and M10 M12 remain the state before X0 went OFF.
- 3. To get the result from \geq , \leq , and \neq statements, arrange M10 M12 in series or parallel.
- 4. To clear the result, use the RST and ZRST instructions.

■ /	API-63 FINT: Convert binary	r floating-point number to	BIN integer
-----	-----------------------------	----------------------------	-------------

API		-	FI	NT			SD		Convert binary floating-point				N	NC series		
63			''				0, 0		number to BIN integer							
		Bit de	evice			Word device										
	Х	Y	М	А	K	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z	
S						*							*			
D													*			

16-bit instruction: none.

32-bit instruction: FINT continuous execution type (5 steps).

Flag: M2824 (zero flag).

Notes on the use of operands: refer to Chapter 1 for the range of each device.

Only the 32-bit instruction FINT is valid.

Operand D takes consecutive 2 devices.

Instruction description:

S: source device to be converted; D: conversion result

Converts the register content assigned by S from the format of binary floating-point number to BIN integer, and saves the result in the register assigned by D. The floating-point number of the BIN integer is discarded. The FINT instruction is the opposite operation of API-64 FDOT instruction. If the conversion results in 0, the zero flag M2824 goes ON.

Program example:

When X1 is ON, convert the binary floating-point numbers of (D21, D20) to BIN integers, and save the result in (D31, D30) with the floating-point numbers discarded.

API-64 FDOT: Convert BIN integer to binary floating-point number

API 64		-	FD	от		S, D Convert BIN integer to binary floating-point number							NC series		
		Bit d	evice			Word device									
	Х	Y	М	А	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z
S						*							*		
D													*		

16-bit instruction: none.

32-bit instruction: FDOT continuous execution type (5 steps).

Flag: M2824 zero flag.

Notes on the use of operands: refer to Chapter 1 for the range of each device.

Only the 32-bit instruction FDOT is valid. Operand D occupies consecutive 2 points.

Instruction description:

S: source device for conversion; D: device for storing the conversion result

- When M1081 is OFF, convert the BIN integer to binary floating-point number. Meanwhile, the S (source device) of the 16-bit instruction FDOT occupies 1 register, and the device D stored with the conversion result occupies 2 registers.
 - a. If the conversion result is 0, the zero flag M2824 is ON.
- 2. When M1081 is ON, convert the binary floating-point number to BIN integer (decimal places are discarded). Meanwhile, the source device S for the 16-bit instruction FLT instruction occupies 2 registers, and the device D stored with the conversation result occupies 1 register. The operations are the same with the INT instruction.
 - a. If S is 0, the M1020 zero flag is ON.
 - b. After the conversion, D saves the data of 16 bits.

Program example 1:

- 1. When M1081 is OFF, convert the BIN integer to binary floating-point number.
- 2. When X11 is ON, convert D1 & D0 (with BIN integers) to D21 & D20 (with binary floatingpoint numbers).
- If the 32-bit register D0(D1) = K100,000, then X11 goes ONand the 32-bit value of the converted floating-point number is H4735000. This result is saved in the 32-bit register D20(D21).

Program example 2:

- 1. When M1081 is ON, convert the binary floating-point number to BIN integer (decimal places are discarded).
- When X11 is ON, convert D1 & D0 (binary floating-point number) to D21 & D20 (with BIN integers).

If D0 (D1) = H47C35000, the value of the converted floating-point number is 100,000. This result is saved in 32-bit register D20 (D21).

API-65 FRAD: convert degrees to radians

API		-	FR			S. D				Convert degrees to				NC series			
65							0, 0		radians								
		Bit de	evice			Word device											
	Х	Y	М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z		
S						*							*				
D													*				

16-bit instruction: none.

32-bit instruction: FRAD continuous execution type (5 steps).

Flag: M2824 (zero flag).

Notes on the use of operands: refer to Chapter 1 for the range of each device.

Only 32-bit FRAD instruction is valid.

Instruction description:

S: data source (degree); D: conversion result (radian).

1. Use the formula "radian = degree x (π /180)" to convert degrees to radians.

2. If the conversion result is 0, the zero flag M2824 is ON.

Program example:

When X0 is ON. convert the degrees in binary floating-point number of (D1, D0) to radians, and save the result in (D11, D10) in the data type of binary floating-point number.

API		-	F)FG		S.D. Cor					dians to	,	NC	series		
66				20	С, В				degrees				110 30103			
		Bit d	evice			Word device										
	Х	Y	М	Α	К	F	KnX	KnY	KnM	KnA	Т	С	D	V	Z	
S						*							*			
D													*			

API-66 FDEG: convert radians to degrees

16-bit instruction: none.

32-bit instruction: FDEG continuous execution type (5 steps).

Flag: M2824 (zero flag).

Notes on the use of operands: refer to Chapter 1 for the range of each device.

Only 32-bit FDEG instruction is valid.

Instruction description:

S: data source (radian); D: conversion result (degree).

- 1. Use the formula "degree = radian x $(180/\pi)$ " to convert radians to degrees.
- 2. If the conversion result is 0, the zero flag M2824 is ON.

Program example:

When X0 is ON. convert the radians of (D1, D0) in the binary floating-point number format to degrees, and save the result in (D11, D10) in the data type of binary floating-point number.

MLC Special M Relay and 5 Special D Register

This chapter describes the definitions and functions of all the special M relays and special D registers in the NC system.

5.1 Definition of MLC special M relay and special D register ·················5-2
5.2 List of special M and special D······5-4
5.2.1 List of special M (MLC to system) ······5-4
5.2.1.1 M21000 to M29999 5
5.2.1.2 M49000 to M49899 5-23
5.2.2 List of special M (System status) ····· 5-24
5.2.2.1 M30000 to M38999 5-24
5.2.3 List of special D (MLC to system) ····· 5-52
5.2.3.1 D20000 to D28999 5-52
5.2.3.2 D49000 to D49899 ····· 5-76
5.2.4 List of special D (System status) ····· 5-77
5.2.4.1 D30000 to D38999 5-77
5.3 Special M and special D functions ······5-104
5.3.1 Mode switching ······5-104
5.3.2 NC processing ······5-105
5.3.3 Axis status
5.3.4 Homing origin ······5-109
5.3.5 JOG control
5.3.6 MPG control
5.3.7 Skip control (G31)
5.3.8 One-button macro call 5-111
5.3.9 MLC axis control ·······5-112
5.3.10 M, S, T codes
5.3.11 Axes synchronous control 5-115
5.3.12 Axes command transfer control ······5-115
5.3.13 Spindle
5.3.14 Tool magazine ······5-120
5.3.15 NC system ······5-121
5.3.16 NC read bit status from special M ······5-125
5.3.17 NC write bit control to special M ······5-127
5.3.18 NC read data status from special D ······5-129
5.3.19 NC write data to special M······5-131
5.3.20 EtherCAT communication information ······5-133
5.3.21 Robot arm control······5-134

5.1 Definition of MLC special M relay and special D register

The motion logic control (MLC) and the NC are two independent systems. The MLC system performs button triggering control, MLC axis movements, and other logic controls, while the NC system manages functions related to the system and servo axis. The MLC's special M relays and D registers serve as the I/O interface between these two systems for data exchange and signal transmission. The output mentioned in this chapter refers to the signals sent to the NC system from the MLC special M relays and D registers. The input refers to the signals sent to the MLC special M relays and D registers.

The M letter prefixed codes are in bit format, being 0 (OFF) and 1 (ON). The D prefixed codes are in word format, referring to numerical values such as 1000. The MLC special M and D codes are all expressed in the form of M- and D- prefixes followed by five digits.

Data exchanges between the two systems are categorized into four groups.

- 1: MLC bit output from MLC to NC (special M, bit output)
- 2: MLC bit input from NC to MLC (special M, bit input)
- 3: MLC word output from MLC to NC (special D, word output)
- 4: MLC word input from NC to MLC (special D, word input)

There are each 65,535 address numbers for the M and D registers in the NC5 series controller. The range between M20000 to M24999, M30000 to M34999, D20000 to D24999 and D30000 to D34999 are the special M and D registers in the system. Therefore, all of these special M and D register will separated in different groups according to the NC5 series controller support multichannel control, as shown in the table below.

Channel Index	System Spe MLC to Sy	cial M and D stem (NC)	System Spec System (N	cial M and D C) to MLC
General	M20000 ~ M20999	D20000 ~ D20999	M30000 ~ M30999	D30000 ~ D30999
Channel 1	M21000 ~ M21999	D21000 ~ D21999	M31000 ~ M31999	D31000 ~ D31999
Channel 2	M22000 ~ M22999	D22000 ~ D22999	M32000 ~ M32999	D32000 ~ D32999
Channel 3	M23000 ~ M23999	D23000 ~ D23999	M33000 ~ M33999	D33000 ~ D33999
Channel 4	M24000 ~ M24999	D24000 ~ D24999	M34000 ~ M34999	D34000 ~ D34999

Channel Index	For HMI Spe MLC to Sys	cial M and D stem (HMI)	For HMI Spe System (H	cial M and D MI) to MLC
General	M49000 ~ M49099	D49000 ~ D49099	M59000 ~ M59099	D59000 ~ D59099
Channel 1	M49100 ~ M49199	D49100 ~ D49199	M59100 ~ M59199	D59100 ~ D59199
Channel 2	M49200 ~ M49299	D49200 ~ D49299	M59200 ~ M59299	D59200 ~ D59299
Channel 3	M49300 ~ M49399	D49300 ~ D49399	M59300 ~ M59399	D59300 ~ D59399
Channel 4	M49400 ~ M49499	D49400 ~ D49499	M59400 ~ M59499	D59400 ~ D59499

For the special M and D register, when the tens of thousands digit is 2, it means the MLC is sending a value to the NC system. If the digit is 3, it means the NC system is updating its status for the MLC to read and check. If the digit is 4, it means the MLC is sending a value to the HMI system. If the digit is 5, it means the HMI system is updating its status for the MLC to read and check. When the tens of thousands digit is 2 or 3 and the thousands digit is 0, it means this register is for system general purpose use. If the digit is 1 to 4, it represents the specific NC channel respectively. The remaining three digits from 000 to 999 are for the functional index. The chapters below will give detailed function descriptions for each available special M and D.

5.2 List of special M and special D

5.2.1 List of special M (MLC to system)

5.2.1.1 M21000 to M29999

Function Name	Special M			Description	on	Device		
Spindle1 DO Control	M20018	When this fu digital signal	nction is on the P	ON, the s in 9 of Sp	ystem will output the indle 1 connector.	R/W		
Spindle2 DO Control	M20019	When this fu digital signal	nction is on the P	ON, the s in 9 of Sp	ystem will output the indle 2 connector.	R/W		
Enable 3 MPG Control	M20024	Enable 3 set can process control the th When this sp will also be e	three set three set nree axes becial M i enabled a	6 function ts of MPG respectiv s enabled tt the same	control. The controller pulse signals and rely. , the 2 nd and 3 rd MPG e time.	R/W		
Cycle Start	M2x000	Informs the Nexecute the	NC syste NC progr	m to exec am.	ute Cycle Start and	R/W		
Feed Hold	M2x001	Pause the N pausing, the "Cycle Start"	C proces system o or stop a	s in the co can resum all actions	ontroller system. After e the procedure with with "Reset".	R/W		
NC Reset	M2x004	Tells the NC all actions wi	system t ill be stop	o execute oped.	the Reset procedure;	R/W		
Enable Dry Run	M2x005	Enable dry ru programs, in at dry run sp parameter [N [N1.66 Dry r	Enable dry run mode. The system will execute NC programs, including regular feed and rapid command, at dry run speed. The dry run speed will refer to parameter [N1.013 Bit18 Dry run speed mode] and IN1.66 Dry run feed rate! for the speed reference.					
		Parar	neter	Setting	Actual Speed			
		N1.013	3 Bit18	0	N1.66 Setting			
		N1.013	3 Bit18	1	N1.66 x D2x002			
MPG Simulation	M2x006	During progr control the s	am exec peed of r	ution, use novement	rs can use the MPG to trajectories.	R/W		
Disable Hardware Limit	M2x007	The limit sigr function is er	nal of eac nabled.	ch axis is i	gnored when this	R/W		
Single Block	M2x008	In AUTO mo executed.	de, the p	rogram sto	ops after one block is	R/W		
Optional Stop	M2x009	Enable the o executes M0	ptional s 01, the co	top key. N ntroller im	/hen the program mediately stops.	R/W		
Single Block Skip ('/')	M2x010	The program when this fur	n skips th nction is o	e block co enabled.	ntaining the symbol '/'	R/W		
M, S, and T Codes Lock	M2x011	The program when this fur	n skips ar nction is e	ny block co enabled.	ontaining M, S, T code	R/W		
Servo ON/ OFF	M2x012	Servo ON or the correspo	OFF for onding cha	all of conr annel.	nected servo drives in	R/W		
Enable Emergency Stop	M2x013	When this fu emergency s	nction is stop.	ON, the N	IC will trigger an	R/W		
Enable Synchronization Adjustment	M2x014	Manually trigger synchronization adjustment.						
M, S, and T Codes Finished	M2x016	Triggering th procedures f	R/W					
M96 Program Interruption	M2x019	After the NC the NC syste to the subpro	executes em interru ogram to	s M96, if tl upts the m execute it	nis function is triggered, ain program and jumps	R/W		

Function Name	Special M		Des	cription		Device	
M, S, and T Codes Call Macro Lock	M2x021	When this fu macro progra S, and T cod	nction is ON, am including N les in the NC	the NC will nc // code proces program.	et execute ss regarding M,	R/W	
Macro Call Activation	M2x025	Activates ma (Only works	acro call. with the corre	ct macro-ID ir	AUTO mode)	R/W	
M99 Call Stop	M2x026	When this fu down to stop M99.	nction is ON, and then sto	the NC syster p all process v	n will slow when executing	R/W	
1 st Macro Call Preparation	M2x032					R/W	
2 nd Macro Call Preparation	M2x033					R/W	
3 rd Macro Call Preparation	M2x034					R/W	
4 th Macro Call Preparation	M2x035					R/W	
5 th Macro Call Preparation	M2x036					R/W	
6 th Macro Call Preparation	M2x037					R/W	
7 th Macro Call Preparation.	M2x038					R/W	
8 th Macro Call Preparation	M2x039	Initializes macro call. (A successful call will only occur when the correct macro number [D2x064~D2x079] and the corresponding macro program both exist)					
9 th Macro Call Preparation	M2x040						
10 th Macro Call Preparation	M2x041					R/W	
11 th Macro Call Preparation	M2x042	_				R/W	
12 th Macro Call Preparation	M2x043					R/W	
13 th Macro Call Preparation	M2x044					R/W	
14 th Macro Call Preparation	M2x045					R/W	
15 th Macro Call Preparation	M2x046					R/W	
16 th Macro Call Preparation	M2x047					R/W	
	M2x048	The robot co	ordinate syste	em can be set	as shown in		
	M2x049	The CNC co	0W. ntroller needs	to he in manı	al mode. The		
	M2x050	D2x016 defines the coordinate system, e.g., $1 = G54$,					
		2 = G55,,	5 = G58 and	6 = G59.	100		
Robot Coordinate			(Piece)	(Tool)	(Joint)	R/M	
System		M2x048	1	1	0	1 1/ 1	
	M2x051	M2x049	1	1	0		
		M2x050	1	0	0		
		M2x051	1	1	0		
		D2x016	1~6	1~6	1~6		

Function Name	Special M	Description	Device
Tool Magazine 1 Move Forward	M2x064	Moves tool magazine 1 forward. When this special M relay is triggered, the tool pot deviation [D3x039] is decreased by 1, and the standby tool pot number [D3x038] is increased by 1.	R/W
Tool Magazine 1 Move Backward	M2x065	Moves tool magazine 1 backward. When this special M relay is triggered, the tool pot deviation [D3x039] is increased by 1, and the standby tool pot number [D3x038] is decreased by 1.	R/W
Tool 1 Exchange	M2x066	Exchanges tool data in tool magazine 1.	R/W
Tool Magazine 1 Reset	M2x067	When this special M relay is triggered, the tool data in tool magazine 1 is reset.	R/W
Tool Magazine 2 Move Forward	M2x072	Moves tool magazine 1 forward. When this special M relay is triggered, the tool pot deviation [D3x045] is decreased by 1, and the standby tool pot number [D3x044] is increased by 1.	R/W
Tool Magazine 2 Move Backward	M2x073	Moves tool magazine 1 backward. When this special M relay is triggered, the tool pot deviation [D3x045] is increased by 1, and the standby tool pot number [D3x044] is decreased by 1.	R/W
Tool 2 Exchange	M2x074	Exchanges tool data in tool magazine 2.	R/W
Tool Magazine 2 Reset	M2x075	When this special M relay is triggered, the tool data in tool magazine 2 is reset.	R/W
Canceling Tapping Interrupt Status	M2x080	When the NC system is in the tapping interrupt status, users can trigger this M relay to cancel the interrupt status.	R/W
MLC to NC Variable 1	M2x128	The system will move the binary status of this special M to NC variable #25000 as 0 or 1.	R/W
MLC to NC Variable 2	M2x129	The system will move the binary status of this special M to NC variable #25001 as 0 or 1.	R/W
MLC to NC Variable 3	M2x130	The system will move the binary status of this special M to NC variable #25002 as 0 or 1.	R/W
MLC to NC Variable 4	M2x131	The system will move the binary status of this special M to NC variable #25003 as 0 or 1.	R/W
MLC to NC Variable 5	M2x132	The system will move the binary status of this special M to NC variable #25004 as 0 or 1.	R/W
MLC to NC Variable 6	M2x133	The system will move the binary status of this special M to NC variable #25005 as 0 or 1.	R/W
MLC to NC Variable 7	M2x134	The system will move the binary status of this special M to NC variable #25006 as 0 or 1.	R/W
MLC to NC Variable 8	M2x135	The system will move the binary status of this special M to NC variable #25007 as 0 or 1.	R/W
MLC to NC Variable 9	M2x136	The system will move the binary status of this special M to NC variable #25008 as 0 or 1.	R/W
MLC to NC Variable 10	M2x137	The system will move the binary status of this special M to NC variable #25009 as 0 or 1.	R/W
MLC to NC Variable 11	M2x138	The system will move the binary status of this special M to NC variable #25010 as 0 or 1.	R/W
MLC to NC Variable 12	M2x139	The system will move the binary status of this special M to NC variable #25011 as 0 or 1.	R/W
MLC to NC Variable 13	M2x140	The system will move the binary status of this special M to NC variable #25012 as 0 or 1.	R/W
MLC to NC Variable 14	M2x141	The system will move the binary status of this special M to NC variable #25013 as 0 or 1.	R/W
MLC to NC Variable 15	M2x142	The system will move the binary status of this special M to NC variable #25014 as 0 or 1.	R/W

Function Name	Special M	Description	Device
MLC to NC Variable 16	M2x143	The system will move the binary status of this special M to NC variable #25015 as 0 or 1.	R/W
MLC to NC Variable 17	M2x144	The system will move the binary status of this special M to NC variable #25016 as 0 or 1.	R/W
MLC to NC Variable 18	M2x145	The system will move the binary status of this special M to NC variable #25017 as 0 or 1.	R/W
MLC to NC Variable 19	M2x146	The system will move the binary status of this special M to NC variable #25018 as 0 or 1.	R/W
MLC to NC Variable 20	M2x147	The system will move the binary status of this special M to NC variable #25019 as 0 or 1.	R/W
MLC to NC Variable 21	M2x148	The system will move the binary status of this special M to NC variable #25020 as 0 or 1.	R/W
MLC to NC Variable 22	M2x149	The system will move the binary status of this special M to NC variable #25021 as 0 or 1.	R/W
MLC to NC Variable 23	M2x150	The system will move the binary status of this special M to NC variable #25022 as 0 or 1.	R/W
MLC to NC Variable 24	M2x151	The system will move the binary status of this special M to NC variable #25023 as 0 or 1.	R/W
MLC to NC Variable 25	M2x152	The system will move the binary status of this special M to NC variable #25024 as 0 or 1.	R/W
MLC to NC Variable 26	M2x153	The system will move the binary status of this special M to NC variable #25025 as 0 or 1.	R/W
MLC to NC Variable 27	M2x154	The system will move the binary status of this special M to NC variable #25026 as 0 or 1.	R/W
MLC to NC Variable 28	M2x155	The system will move the binary status of this special M to NC variable #25027 as 0 or 1.	R/W
MLC to NC Variable 29	M2x156	The system will move the binary status of this special M to NC variable #25028 as 0 or 1.	R/W
MLC to NC Variable 30	M2x157	The system will move the binary status of this special M to NC variable #25029 as 0 or 1.	R/W
MLC to NC Variable 31	M2x158	The system will move the binary status of this special M to NC variable #25030 as 0 or 1.	R/W
MLC to NC Variable 32	M2x159	The system will move the binary status of this special M to NC variable #25031 as 0 or 1.	R/W
MLC to NC Variable 33	M2x160	The system will move the binary status of this special M to NC variable #25032 as 0 or 1.	R/W
MLC to NC Variable 34	M2x161	The system will move the binary status of this special M to NC variable #25033 as 0 or 1.	R/W
MLC to NC Variable 35	M2x162	The system will move the binary status of this special M to NC variable #25034 as 0 or 1.	R/W
MLC to NC Variable 36	M2x163	The system will move the binary status of this special M to NC variable #25035 as 0 or 1.	R/W
MLC to NC Variable 37	M2x164	The system will move the binary status of this special M to NC variable #25036 as 0 or 1.	R/W
MLC to NC Variable 38	M2x165	The system will move the binary status of this special M to NC variable #25037 as 0 or 1.	R/W
MLC to NC Variable 39	M2x166	The system will move the binary status of this special M to NC variable #25038 as 0 or 1.	R/W
MLC to NC Variable 40	M2x167	The system will move the binary status of this special M to NC variable #25039 as 0 or 1.	R/W
MLC to NC Variable 41	M2x168	The system will move the binary status of this special M to NC variable #25040 as 0 or 1.	R/W
MLC to NC Variable 42	M2x169	The system will move the binary status of this special M to NC variable #25041 as 0 or 1.	R/W

Function Name	Special M	Description	Device
MLC to NC Variable 43	M2x170	The system will move the binary status of this special M to NC variable #25042 as 0 or 1.	R/W
MLC to NC Variable 44	M2x171	The system will move the binary status of this special M to NC variable #25043 as 0 or 1.	R/W
MLC to NC Variable 45	M2x172	The system will move the binary status of this special M to NC variable #25044 as 0 or 1.	R/W
MLC to NC Variable 46	M2x173	The system will move the binary status of this special M to NC variable #25045 as 0 or 1.	R/W
MLC to NC Variable 47	M2x174	The system will move the binary status of this special M to NC variable #25046 as 0 or 1.	R/W
MLC to NC Variable 48	M2x175	The system will move the binary status of this special M to NC variable #25047 as 0 or 1.	R/W
MLC to NC Variable 49	M2x176	The system will move the binary status of this special M to NC variable #25048 as 0 or 1.	R/W
MLC to NC Variable 50	M2x177	The system will move the binary status of this special M to NC variable #25049 as 0 or 1.	R/W
MLC to NC Variable 51	M2x178	The system will move the binary status of this special M to NC variable #25050 as 0 or 1.	R/W
MLC to NC Variable 52	M2x179	The system will move the binary status of this special M to NC variable #25051 as 0 or 1.	R/W
MLC to NC Variable 53	M2x180	The system will move the binary status of this special M to NC variable #25052 as 0 or 1.	R/W
MLC to NC Variable 54	M2x181	The system will move the binary status of this special M to NC variable #25053 as 0 or 1.	R/W
MLC to NC Variable 55	M2x182	The system will move the binary status of this special M to NC variable #25054 as 0 or 1.	R/W
MLC to NC Variable 56	M2x183	The system will move the binary status of this special M to NC variable #25055 as 0 or 1.	R/W
MLC to NC Variable 57	M2x184	The system will move the binary status of this special M to NC variable #25056 as 0 or 1.	R/W
MLC to NC Variable 58	M2x185	The system will move the binary status of this special M to NC variable #25057 as 0 or 1.	R/W
MLC to NC Variable 59	M2x186	The system will move the binary status of this special M to NC variable #25058 as 0 or 1.	R/W
MLC to NC Variable 60	M2x187	The system will move the binary status of this special M to NC variable #25059 as 0 or 1.	R/W
MLC to NC Variable 61	M2x188	The system will move the binary status of this special M to NC variable #25060 as 0 or 1.	R/W
MLC to NC Variable 62	M2x189	The system will move the binary status of this special M to NC variable #25061 as 0 or 1.	R/W
MLC to NC Variable 63	M2x190	The system will move the binary status of this special M to NC variable #25062 as 0 or 1.	R/W
MLC to NC Variable 64	M2x191	The system will move the binary status of this special M to NC variable #25063 as 0 or 1.	R/W
MLC to NC Variable 65	M2x192	The system will move the binary status of this special M to NC variable #25064 as 0 or 1.	R/W
MLC to NC Variable 66	M2x193	The system will move the binary status of this special M to NC variable #25065 as 0 or 1.	R/W
MLC to NC Variable 67	M2x194	The system will move the binary status of this special M to NC variable #25066 as 0 or 1.	R/W
MLC to NC Variable 68	M2x195	The system will move the binary status of this special M to NC variable #25067 as 0 or 1.	R/W
MLC to NC Variable 69	M2x196	The system will move the binary status of this special M to NC variable #25068 as 0 or 1.	R/W

Function Name	Special M	Description	Device
MLC to NC Variable 70	M2x197	The system will move the binary status of this special M to NC variable #25069 as 0 or 1.	R/W
MLC to NC Variable 71	M2x198	The system will move the binary status of this special M to NC variable #25070 as 0 or 1.	R/W
MLC to NC Variable 72	M2x199	The system will move the binary status of this special M to NC variable #25071 as 0 or 1.	R/W
MLC to NC Variable 73	M2x200	The system will move the binary status of this special M to NC variable #25072 as 0 or 1.	R/W
MLC to NC Variable 74	M2x201	The system will move the binary status of this special M to NC variable #25073 as 0 or 1.	R/W
MLC to NC Variable 75	M2x202	The system will move the binary status of this special M to NC variable #25074 as 0 or 1.	R/W
MLC to NC Variable 76	M2x203	The system will move the binary status of this special M to NC variable #25075 as 0 or 1.	R/W
MLC to NC Variable 77	M2x204	The system will move the binary status of this special M to NC variable #25076 as 0 or 1.	R/W
MLC to NC Variable 78	M2x205	The system will move the binary status of this special M to NC variable #25077 as 0 or 1.	R/W
MLC to NC Variable 79	M2x206	The system will move the binary status of this special M to NC variable #25078 as 0 or 1.	R/W
MLC to NC Variable 80	M2x207	The system will move the binary status of this special M to NC variable #25079 as 0 or 1.	R/W
MLC to NC Variable 81	M2x208	The system will move the binary status of this special M to NC variable #25080 as 0 or 1.	R/W
MLC to NC Variable 82	M2x209	The system will move the binary status of this special M to NC variable #25081 as 0 or 1.	R/W
MLC to NC Variable 83	M2x210	The system will move the binary status of this special M to NC variable #25082 as 0 or 1.	R/W
MLC to NC Variable 84	M2x211	The system will move the binary status of this special M to NC variable #25083 as 0 or 1.	R/W
MLC to NC Variable 85	M2x212	The system will move the binary status of this special M to NC variable #25084 as 0 or 1.	R/W
MLC to NC Variable 86	M2x213	The system will move the binary status of this special M to NC variable #25085 as 0 or 1.	R/W
MLC to NC Variable 87	M2x214	The system will move the binary status of this special M to NC variable #25086 as 0 or 1.	R/W
MLC to NC Variable 88	M2x215	The system will move the binary status of this special M to NC variable #25087 as 0 or 1.	R/W
MLC to NC Variable 89	M2x216	The system will move the binary status of this special M to NC variable #25088 as 0 or 1.	R/W
MLC to NC Variable 90	M2x217	The system will move the binary status of this special M to NC variable #25089 as 0 or 1.	R/W
MLC to NC Variable 91	M2x218	The system will move the binary status of this special M to NC variable #25090 as 0 or 1.	R/W
MLC to NC Variable 92	M2x219	The system will move the binary status of this special M to NC variable #25091 as 0 or 1.	R/W
MLC to NC Variable 93	M2x220	The system will move the binary status of this special M to NC variable #25092 as 0 or 1.	R/W
MLC to NC Variable 94	M2x221	The system will move the binary status of this special M to NC variable #25093 as 0 or 1.	R/W
MLC to NC Variable 95	M2x222	The system will move the binary status of this special M to NC variable #25094 as 0 or 1.	R/W
MLC to NC Variable 96	M2x223	The system will move the binary status of this special M to NC variable #25095 as 0 or 1.	R/W

Function Name	Special M	Description	Device
MLC to NC Variable 97	M2x224	The system will move the binary status of this special M to NC variable #25096 as 0 or 1.	R/W
MLC to NC Variable 98	M2x225	The system will move the binary status of this special M to NC variable #25097 as 0 or 1.	R/W
MLC to NC Variable 99	M2x226	The system will move the binary status of this special M to NC variable #25098 as 0 or 1.	R/W
MLC to NC Variable 100	M2x227	The system will move the binary status of this special M to NC variable #25099 as 0 or 1.	R/W
MLC to NC Variable 101	M2x228	The system will move the binary status of this special M to NC variable #25100 as 0 or 1.	R/W
MLC to NC Variable 102	M2x229	The system will move the binary status of this special M to NC variable #25101 as 0 or 1.	R/W
MLC to NC Variable 103	M2x230	The system will move the binary status of this special M to NC variable #25102 as 0 or 1.	R/W
MLC to NC Variable 104	M2x231	The system will move the binary status of this special M to NC variable #25103 as 0 or 1.	R/W
MLC to NC Variable 105	M2x232	The system will move the binary status of this special M to NC variable #25104 as 0 or 1.	R/W
MLC to NC Variable 106	M2x233	The system will move the binary status of this special M to NC variable #25105 as 0 or 1.	R/W
MLC to NC Variable 107	M2x234	The system will move the binary status of this special M to NC variable #25106 as 0 or 1.	R/W
MLC to NC Variable 108	M2x235	The system will move the binary status of this special M to NC variable #25107 as 0 or 1.	R/W
MLC to NC Variable 109	M2x236	The system will move the binary status of this special M to NC variable #25108 as 0 or 1.	R/W
MLC to NC Variable 110	M2x237	The system will move the binary status of this special M to NC variable #25109 as 0 or 1.	R/W
MLC to NC Variable 111	M2x238	The system will move the binary status of this special M to NC variable #25110 as 0 or 1.	R/W
MLC to NC Variable 112	M2x239	The system will move the binary status of this special M to NC variable #25111 as 0 or 1.	R/W
MLC to NC Variable 113	M2x240	The system will move the binary status of this special M to NC variable #25112 as 0 or 1.	R/W
MLC to NC Variable 114	M2x241	The system will move the binary status of this special M to NC variable #25113 as 0 or 1.	R/W
MLC to NC Variable 115	M2x242	The system will move the binary status of this special M to NC variable #25114 as 0 or 1.	R/W
MLC to NC Variable 116	M2x243	The system will move the binary status of this special M to NC variable #25115 as 0 or 1.	R/W
MLC to NC Variable 117	M2x244	The system will move the binary status of this special M to NC variable #25116 as 0 or 1.	R/W
MLC to NC Variable 118	M2x245	The system will move the binary status of this special M to NC variable #25117 as 0 or 1.	R/W
MLC to NC Variable 119	M2x246	The system will move the binary status of this special M to NC variable #25118 as 0 or 1.	R/W
MLC to NC Variable 120	M2x247	The system will move the binary status of this special M to NC variable #25119 as 0 or 1.	R/W
MLC to NC Variable 121	M2x248	The system will move the binary status of this special M to NC variable #25120 as 0 or 1.	R/W
MLC to NC Variable 122	M2x249	The system will move the binary status of this special M to NC variable #25121 as 0 or 1.	R/W
MLC to NC Variable 123	M2x250	The system will move the binary status of this special M to NC variable #25122 as 0 or 1.	R/W

Function Name	Special M	Description	Device
MLC to NC Variable 124	M2x251	The system will move the binary status of this special M to NC variable #25123 as 0 or 1.	R/W
MLC to NC Variable 125	M2x252	The system will move the binary status of this special M to NC variable #25124 as 0 or 1.	R/W
MLC to NC Variable 126	M2x253	The system will move the binary status of this special M to NC variable #25125 as 0 or 1.	R/W
MLC to NC Variable 127	M2x254	The system will move the binary status of this special M to NC variable #25126 as 0 or 1.	R/W
MLC to NC Variable 128	M2x255	The system will move the binary status of this special M to NC variable #25127 as 0 or 1.	R/W
Synchronous Control Enable	M2x256	This special M must be set to ON when using synchronous functions to allow the NC to enable synchronous control.	R/W
Command Transfer Enable	M2x257	This special M must be set to ON when using command transfer functions to allow the NC to enable command transfer.	R/W
Axes Oscillation Control Enable	M2x264	This special M must be set to ON when using axes oscillation functions. The system will execute axis oscillation commands based on the settings in [D2x018 ~ D2x023] . If the axis is already performing path interpolation, the oscillation command will be added to the original position command. Only available on modes other than HOME and EDIT.	R/W
X Axis Servo OFF	M2x272	Trigger this special M to set the X axis to Servo OFF status.	R/W
Y Axis Servo OFF	M2x273	Trigger this special M to set the Y axis to Servo OFF status.	R/W
Z Axis Servo OFF	M2x274	Trigger this special M to set the Z axis to Servo OFF status.	R/W
A Axis Servo OFF	M2x275	Trigger this special M to set the A axis to Servo OFF status.	R/W
B Axis Servo OFF	M2x276	Trigger this special M to set the B axis to Servo OFF status.	R/W
C Axis Servo OFF	M2x277	Trigger this special M to set the C axis to Servo OFF status.	R/W
U Axis Servo OFF	M2x278	Trigger this special M to set the U axis to Servo OFF status.	R/W
V Axis Servo OFF	M2x279	Trigger this special M to set the V axis to Servo OFF status.	R/W
W Axis Servo OFF	M2x280	Trigger this special M to set the W axis to Servo OFF status.	R/W
10 th Axis Servo OFF	M2x281	Trigger this special M to set the 10 th axis to Servo OFF status.	R/W
11 th Axis Servo OFF	M2x282	Trigger this special M to set the 11 th axis to Servo OFF status.	R/W
12 th Axis Servo OFF	M2x283	Trigger this special M to set the 12 th axis to Servo OFF status.	R/W
13 th Axis Servo OFF	M2x284	Trigger this special M to set the 13 th axis to Servo OFF status.	R/W
14 th Axis Servo OFF	M2x285	Trigger this special M to set the 14 th axis to Servo OFF status.	R/W
15 th Axis Servo OFF	M2x286	Trigger this special M to set the 15 th axis to Servo OFF status.	R/W
16 th Axis Servo OFF	M2x287	Trigger this special M to set the 16 th axis to Servo OFF status.	R/W

Function Name	Special M	Description	Device
X Slave Axis Follows the Master Axis	M2x288	Sets the X axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
Y Slave Axis Follows the Master Axis	M2x289	Sets the Y axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
Z Slave Axis Follows the Master Axis	M2x290	Sets the Z axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
A Slave Axis Follows the Master Axis	M2x291	Sets the A axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
B Slave Axis Follows the Master Axis	M2x292	Sets the B axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
C Slave Axis Follows the Master Axis	M2x293	Sets the C axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
U Slave Axis Follows the Master Axis	M2x294	Sets the U axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
V Slave Axis Follows the Master Axis	M2x295	Sets the V axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
W Slave Axis Follows the Master Axis	M2x296	Sets the W axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
10 th Slave Axis Follows the Master Axis	M2x297	Sets the 10 th axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
11 th Slave Axis Follows the Master Axis	M2x298	Sets the 11 th axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
12 th Slave Axis Follows the Master Axis	M2x299	Sets the 12 th axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
13 th Slave Axis Follows the Master Axis	M2x300	Sets the 13 th axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
14 th Slave Axis Follows the Master Axis	M2x301	Sets the 14 th axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
15 th Slave Axis Follows the Master Axis	M2x302	Sets the 15 th axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
16 th Slave Axis Follows the Master Axis	M2x303	Sets the 16 th axis as the slave axis for synchronous control. The master axis ID must be set with [N2.015] in advance.	R/W
X Axis Receives Command from The Master Axis	M2x304	Specifies the X axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
Y Axis Receives Command from The Master Axis	M2x305	Specifies the Y axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
Z Axis Receives Command from The Master Axis	M2x306	Specifies the Z axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W

Function Name	Special M	Description	Device
A Axis Receives Command from The Master Axis	M2x307	Specifies the A axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
B Axis Receives Command from The Master Axis	M2x308	Specifies the B axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
C Axis Receives Command from The Master Axis	M2x309	Specifies the C axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
U Axis Receives Command from The Master Axis	M2x310	Specifies the U axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
V Axis Receives Command from The Master Axis	M2x311	Specifies the V axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
W Axis Receives Command from The Master Axis	M2x312	Specifies the W axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
10 th Axis Receives Command from The Master Axis	M2x313	Specifies the 10 th axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
11 th Axis Receives Command from The Master Axis	M2x314	Specifies the 11 th axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
12 th Axis Receives Command from The Master Axis	M2x315	Specifies the 12 th axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
13 th Axis Receives Command from The Master Axis	M2x316	Specifies the 13 th axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
14 th Axis Receives Command from The Master Axis	M2x317	Specifies the 14 th axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
15 th Axis Receives Command from The Master Axis	M2x318	Specifies the 15 th axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
16 th Axis Receives Command from The Master Axis	M2x319	Specifies the 16 th axis as the slave axis to receive the transfer command from the master axis. The master axis ID must be set with [N2.015] in advance.	R/W
X Axis Homing	M2x320	Trigger this special M for X axis homing procedure.	R/W
Y Axis Homing	M2x321	Trigger this special M for Y axis homing procedure.	R/W
Z Axis Homing	M2x322	Trigger this special M for Z axis homing procedure.	R/W
A Axis Homing	M2x323	Trigger this special M for A axis homing procedure.	R/W
B Axis Homing	M2x324	Trigger this special M for B axis homing procedure.	R/W
C Axis Homing	M2x325	Trigger this special M for C axis homing procedure.	R/W
U Axis Homing	M2x326	Trigger this special M for U axis homing procedure.	R/W
V Axis Homing	M2x327	Trigger this special M for V axis homing procedure.	R/W
W Axis Homing	M2x328	Trigger this special M for W axis homing procedure.	R/W
10 th Axis Homing	M2x329	Trigger this special M for 10 th axis homing procedure.	R/W
11 th Axis Homing	M2x330	Trigger this special M for 11 th axis homing procedure.	R/W
12 th Axis Homing	M2x331	Trigger this special M for 12 th axis homing procedure.	R/W
13 th Axis Homing	M2x332	Trigger this special M for 13 th axis homing procedure.	R/W
14 th Axis Homing	M2x333	Trigger this special M for 14 th axis homing procedure.	R/W

5-13

Function Name	Special M	Description	Device
15 th Axis Homing	M2x334	Trigger this special M for 15 th axis homing procedure.	R/W
16 th Axis Homing	M2x335	Trigger this special M for 16 th axis homing procedure.	R/W
Lock X Axis Movement in Positive Direction	M2x336	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock Y Axis Movement in Positive Direction	M2x337	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock Z Axis Movement in Positive Direction	M2x338	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock A Axis Movement in Positive Direction	M2x339	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock B Axis Movement in Positive Direction	M2x340	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock C Axis Movement in Positive Direction	M2x341	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock U Axis Movement in Positive Direction	M2x342	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock V Axis Movement in Positive Direction	M2x343	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock W Axis Movement in Positive Direction	M2x344	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock 10 th Axis Movement in Positive Direction	M2x345	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock 11 th Axis Movement in Positive Direction	M2x346	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock 12 th Axis Movement in Positive Direction	M2x347	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock 13 th Axis Movement in Positive Direction	M2x348	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock 14 th Axis Movement in Positive Direction	M2x349	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock 15 th Axis Movement in Positive Direction	M2x350	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock 16 th Axis Movement in Positive Direction	M2x351	When this special M is ON, the axis will not be able to move in the positive direction.	R/W
Lock X Axis Movement in Negative Direction	M2x352	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock Y Axis Movement in Negative Direction	M2x353	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock Z Axis Movement in Negative Direction	M2x354	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock A Axis Movement in Negative Direction	M2x355	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock B Axis Movement in Negative Direction	M2x356	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock C Axis Movement in Negative Direction	M2x357	When this special M is ON, the axis will not be able to move in the negative direction.	R/W

Function Name	Special M	Description	Device
Lock U Axis Movement in Negative Direction	M2x358	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock V Axis Movement in Negative Direction	M2x359	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock W Axis Movement in Negative Direction	M2x360	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock 10 th Axis Movement in Negative Direction	M2x361	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock 11 th Axis Movement in Negative Direction	M2x362	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock 12 th Axis Movement in Negative Direction	M2x363	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock 13 th Axis Movement in Negative Direction	M2x364	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock 14 th Axis Movement in Negative Direction	M2x365	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock 15 th Axis Movement in Negative Direction	M2x366	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Lock 16 th Axis Movement in Negative Direction	M2x367	When this special M is ON, the axis will not be able to move in the negative direction.	R/W
Disable X Axis 1 st Software Limit	M2x368	Trigger this special M to disable the X axis 1 st software limit.	R/W
Disable Y Axis 1 st Software Limit	M2x369	Trigger this special M to disable the Y axis 1 st software limit.	R/W
Disable Z Axis 1 st Software Limit	M2x370	Trigger this special M to disable the Z axis 1 st software limit.	R/W
Disable A Axis 1 st Software Limit	M2x371	Trigger this special M to disable the A axis 1 st software limit.	R/W
Disable B Axis 1 st Software Limit	M2x372	Trigger this special M to disable the B axis 1 st software limit.	R/W
Disable C Axis 1 st Software Limit	M2x373	Trigger this special M to disable the C axis 1 st software limit.	R/W
Disable U Axis 1 st Software Limit	M2x374	Trigger this special M to disable the U axis 1 st software limit.	R/W
Disable V Axis 1 st Software Limit	M2x375	Trigger this special M to disable the V axis 1 st software limit.	R/W
Disable W Axis 1 st Software Limit	M2x376	Trigger this special M to disable the W axis 1 st software limit.	R/W
Disable 10 th Axis 1 st Software Limit	M2x377	Trigger this special M to disable the 10 th axis 1 st software limit.	R/W
Disable 11 th Axis 1 st Software Limit	M2x378	Trigger this special M to disable the 11 th axis 1 st software limit.	R/W
Disable 12 th Axis 1 st Software Limit	M2x379	Trigger this special M to disable the 12 th axis 1 st software limit.	R/W
Disable 13 th Axis 1 st Software Limit	M2x380	Trigger this special M to disable the 13 th axis 1 st software limit.	R/W
Disable 14 th Axis 1 st Software Limit	M2x381	Trigger this special M to disable the 14 th axis 1 st software limit.	R/W

Function Name	Special M	Description	Device
Disable 15 th Axis 1 st Software Limit	M2x382	Trigger this special M to disable the 15 th axis 1 st software limit.	R/W
Disable 16 th Axis 1 st Software Limit	M2x383	Trigger this special M to disable the 16 th axis 1 st software limit.	R/W
X Axis JOG Forward	M2x384	Trigger this special M for X axis forward JOG or INC operation.	R/W
Y Axis JOG Forward	M2x385	Trigger this special M for Y axis forward JOG or INC operation.	R/W
Z Axis JOG Forward	M2x386	Trigger this special M for Z axis forward JOG or INC operation.	R/W
A Axis JOG Forward	M2x387	Trigger this special M for A axis forward JOG or INC operation.	R/W
B Axis JOG Forward	M2x388	Trigger this special M for B axis forward JOG or INC operation.	R/W
C Axis JOG Forward	M2x389	Trigger this special M for C axis forward JOG or INC operation.	R/W
U Axis JOG Forward	M2x390	Trigger this special M for U axis forward JOG or INC operation.	R/W
V Axis JOG Forward	M2x391	Trigger this special M for V axis forward JOG or INC operation.	R/W
W Axis JOG Forward	M2x392	Trigger this special M for W axis forward JOG or INC operation.	R/W
10 th Axis JOG Forward	M2x393	Trigger this special M for 10 th axis forward JOG or INC operation.	R/W
11 th Axis JOG Forward	M2x394	Trigger this special M for 11 th axis forward JOG or INC operation.	R/W
12 th Axis JOG Forward	M2x395	Trigger this special M for 12 th axis forward JOG or INC operation.	R/W
13 th Axis JOG Forward	M2x396	Trigger this special M for 13 th axis forward JOG or INC operation.	R/W
14 th Axis JOG Forward	M2x397	Trigger this special M for 14 th axis forward JOG or INC operation.	R/W
15 th Axis JOG Forward	M2x398	Trigger this special M for 15 th axis forward JOG or INC operation.	R/W
16 th Axis JOG Forward	M2x399	Trigger this special M for 16 th axis forward JOG or INC operation.	R/W
X Axis JOG Reverse	M2x400	Trigger this special M for X axis reverse JOG or INC operation.	R/W
Y Axis JOG Reverse	M2x401	Trigger this special M for Y axis reverse JOG or INC operation.	R/W
Z Axis JOG Reverse	M2x402	Trigger this special M for Z axis reverse JOG or INC operation.	R/W
A Axis JOG Reverse	M2x403	Trigger this special M for A axis reverse JOG or INC operation.	R/W
B Axis JOG Reverse	M2x404	Trigger this special M for B axis reverse JOG or INC operation.	R/W
C Axis JOG Reverse	M2x405	Trigger this special M for C axis reverse JOG or INC operation.	R/W
U Axis JOG Reverse	M2x406	Trigger this special M for U axis reverse JOG or INC operation.	R/W
V Axis JOG Reverse	M2x407	Trigger this special M for V axis reverse JOG or INC operation.	R/W
W Axis JOG Reverse	M2x408	Trigger this special M for W axis reverse JOG or INC operation.	R/W

Function Name	Special M	Description	Device
10 th Axis JOG Reverse	M2x409	Trigger this special M for 10 th axis reverse JOG or INC operation.	R/W
11 th Axis JOG Reverse	M2x410	Trigger this special M for 11 th axis reverse JOG or INC operation.	R/W
12 th Axis JOG Reverse	M2x411	Trigger this special M for 12 th axis reverse JOG or INC operation.	R/W
13 th Axis JOG Reverse	M2x412	Trigger this special M for 13 th axis reverse JOG or INC operation.	R/W
14 th Axis JOG Reverse	M2x413	Trigger this special M for 14 th axis reverse JOG or INC operation.	R/W
15 th Axis JOG Reverse	M2x414	Trigger this special M for 15 th axis reverse JOG or INC operation.	R/W
16 th Axis JOG Reverse	M2x415	Trigger this special M for 16 th axis reverse JOG or INC operation.	R/W
MLC X Axis Control Mode	M2x416	When this special M is ON, X axis will be in speed mode. When this special M is OFF, X axis will be in position mode.	R/W
MLC Y Axis Control Mode	M2x417	When this special M is ON, Y axis will be in speed mode. When this special M is OFF, Y axis will be in position mode.	R/W
MLC Z Axis Control Mode	M2x418	When this special M is ON, Z axis will be in speed mode. When this special M is OFF, Z axis will be in position mode.	R/W
MLC A Axis Control Mode	M2x419	When this special M is ON, A axis will be in speed mode. When this special M is OFF, A axis will be in position mode.	R/W
MLC B Axis Control Mode	M2x420	When this special M is ON, B axis will be in speed mode. When this special M is OFF, B axis will be in position mode.	R/W
MLC C Axis Control Mode	M2x421	When this special M is ON, C axis will be in speed mode. When this special M is OFF, C axis will be in position mode.	R/W
MLC U Axis Control Mode	M2x422	When this special M is ON, U axis will be in speed mode. When this special M is OFF, U axis will be in position mode.	R/W
MLC V Axis Control Mode	M2x423	When this special M is ON, V axis will be in speed mode. When this special M is OFF, V axis will be in position mode.	R/W
MLC W Axis Control Mode	M2x424	When this special M is ON, W axis will be in speed mode. When this special M is OFF, W axis will be in position mode.	R/W
MLC 10 th Axis Control Mode	M2x425	When this special M is ON, 10 th axis will be in speed mode. When this special M is OFF, 10 th axis will be in position mode.	R/W
MLC 11 th Axis Control Mode	M2x426	When this special M is ON, 11 th axis will be in speed mode. When this special M is OFF, 11 th axis will be in position mode.	R/W
MLC 12 th Axis Control Mode	M2x427	When this special M is ON, 12 th axis will be in speed mode. When this special M is OFF, 12 th axis will be in position mode.	R/W
MLC 13 th Axis Control Mode	M2x428	When this special M is ON, 13 th axis will be in speed mode. When this special M is OFF, 13 th axis will be in position mode.	R/W
MLC 14 th Axis Control Mode	M2x429	When this special M is ON, 14 th axis will be in speed mode. When this special M is OFF, 14 th axis will be in position mode.	R/W

Function Name	Special M	Description	Device
MLC 15 th Axis Control Mode	M2x430	When this special M is ON, 15 th axis will be in speed mode. When this special M is OFF, 15 th axis will be in position mode.	R/W
MLC 16 th Axis Control Mode	M2x431	When this special M is ON, 16 th axis will be in speed mode. When this special M is OFF, 16 th axis will be in position mode.	R/W
NC / MLC Axis Switching (X Axis)	M2x432	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (Y Axis)	M2x433	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (Z Axis)	M2x434	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (A Axis)	M2x435	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (B Axis)	M2x436	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (C Axis)	M2x437	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (U Axis)	M2x438	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (V Axis)	M2x439	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (W Axis)	M2x440	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (10 th Axis)	M2x441	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (11 th Axis)	M2x442	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (12 th Axis)	M2x443	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (13 th Axis)	M2x444	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (14 th Axis)	M2x445	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
NC / MLC Axis Switching (15 th Axis)	M2x446	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W

Function Name	Special M	Description	Device
NC / MLC Axis Switching (16 th Axis)	M2x447	When this special M is ON, the axis will be controlled by MLC. When this special M is OFF, the axis will be controlled from NC command.	R/W
Trigger X Axis' Movement (MLC Axis)	M2x448	Trigger this special M for MLC X axis movement.	R/W
Trigger Y Axis' Movement (MLC Axis)	M2x449	Trigger this special M for MLC Y axis movement.	R/W
Trigger Z Axis' Movement (MLC Axis)	M2x450	Trigger this special M for MLC Z axis movement.	R/W
Trigger A Axis' Movement (MLC Axis)	M2x451	Trigger this special M for MLC A axis movement.	R/W
Trigger B Axis' Movement (MLC Axis)	M2x452	Trigger this special M for MLC B axis movement.	R/W
Trigger C Axis' Movement (MLC Axis)	M2x453	Trigger this special M for MLC C axis movement.	R/W
Trigger U Axis' Movement (MLC Axis)	M2x454	Trigger this special M for MLC U axis movement.	R/W
Trigger V Axis' Movement (MLC Axis)	M2x455	Trigger this special M for MLC V axis movement.	R/W
Trigger W Axis' Movement (MLC Axis)	M2x456	Trigger this special M for MLC W axis movement.	R/W
Trigger 10 th Axis' Movement (MLC Axis)	M2x457	Trigger this special M for MLC 10 th axis movement.	R/W
Trigger 11 th Axis' Movement (MLC Axis)	M2x458	Trigger this special M for MLC 11 th axis movement.	R/W
Trigger 12 th Axis' Movement (MLC Axis)	M2x459	Trigger this special M for MLC 12 th axis movement.	R/W
Trigger 13 th Axis' Movement (MLC Axis)	M2x460	Trigger this special M for MLC 13 th axis movement.	R/W
Trigger 14 th Axis' Movement (MLC Axis)	M2x461	Trigger this special M for MLC 14 th axis movement.	R/W
Trigger 15 th Axis' Movement (MLC Axis)	M2x462	Trigger this special M for MLC 15 th axis movement.	R/W
Trigger 16 th Axis' Movement (MLC Axis)	M2x463	Trigger this special M for MLC 16 th axis movement.	R/W
MLC Axis Command Type of X Axis	M2x464	When this special M is ON, the D2x256 will be incremental movement.	R/W

Function Name	Special M	Description	Device
MLC Axis Command Type of Y Axis	M2x465	When this special M is ON, the D2x258 will be incremental movement.	R/W
MLC Axis Command Type of Z Axis	M2x466	When this special M is ON, the D2x260 will be incremental movement.	R/W
MLC Axis Command Type of A Axis	M2x467	When this special M is ON, the D2x262 will be incremental movement.	R/W
MLC Axis Command Type of B Axis	M2x468	When this special M is ON, the D2x264 will be incremental movement.	R/W
MLC Axis Command Type of C Axis	M2x469	When this special M is ON, the D2x266 will be incremental movement.	R/W
MLC Axis Command Type of U Axis	M2x470	When this special M is ON, the D2x268 will be incremental movement.	R/W
MLC Axis Command Type of V Axis	M2x471	When this special M is ON, the D2x270 will be incremental movement.	R/W
MLC Axis Command Type of W Axis	M2x472	When this special M is ON, the D2x272 will be incremental movement.	R/W
MLC Axis Command Type of 10 th Axis	M2x473	When this special M is ON, the D2x274 will be incremental movement.	R/W
MLC Axis Command Type of 11 th Axis	M2x474	When this special M is ON, the D2x276 will be incremental movement.	R/W
MLC Axis Command Type of 12 th Axis	M2x475	When this special M is ON, the D2x278 will be incremental movement.	R/W
MLC Axis Command Type of 13 th Axis	M2x476	When this special M is ON, the D2x280 will be incremental movement.	R/W
MLC Axis Command Type of 14 th Axis	M2x477	When this special M is ON, the D2x282 will be incremental movement.	R/W
MLC Axis Command Type of 15 th Axis	M2x478	When this special M is ON, the D2x284 will be incremental movement.	R/W
MLC Axis Command Type of 16 th Axis	M2x479	When this special M is ON, the D2x286 will be incremental movement.	R/W
1 st Spindle Forward Rotation	M2x704	Sets the 1 st spindle to rotate in forward direction.	R/W
1 st Spindle Reverse Rotation	M2x705	Sets the 1 st spindle to rotate in reverse direction.	R/W
1 st Spindle Positioning Control	M2x706	Positioning the 1 st spindle.	R/W
1 st Spindle Retraction After Tapping	M2x707	Retracts the 1 st spindle after tapping.	R/W
Switching C / S Axis of 1 st Spindle	M2x708	Trigger to switch between C or S axes for the spindle.	R/W
1 st Spindle Command Source	M2x710	When this special M is ON, the speed command for the 1^{st} spindle will refer to D2x024 . When this special M is OFF, the speed command will be based on the S command from the NC program.	R/W
1 st Spindle Alarm	M2x711	When the MLC receive an alarm signal from digital input and then trigger this special M, the system will stop NC process and return alarm code [0x0C0A MLC activate spindle alarm] of 1 st spindle.	R/W
2 nd Spindle Forward Rotation	M2x720	Sets the 2 nd spindle to rotate in forward direction.	R/W
2 nd Spindle Reverse Rotation	M2x721	Sets the 2 nd spindle to rotate in reverse direction.	R/W
2 nd Spindle Positioning Control	M2x722	Positioning the 2 nd spindle.	R/W

Function Name	Special M	Description	Device
2 nd Spindle Retraction After Tapping	M2x723	Retracts the 2 nd spindle after tapping.	R/W
Switching C / S Axis of 2 nd Spindle	M2x724	Trigger to switch between C or S axes for the spindle.	R/W
2 nd Spindle Command Source	M2x726	When this special M is ON, the speed command for the 2^{nd} spindle will refer to D2x030 . When this special M is OFF, the speed command will be based on the S command from the NC program.	R/W
2 nd Spindle Alarm	M2x727	When the MLC receive an alarm signal from digital input and then trigger this special M, the system will stop NC process and return alarm code [0x0C0A MLC activate spindle alarm] of 2 nd spindle.	R/W
3 rd Spindle Forward Rotation	M2x736	Sets the 3 rd spindle to rotate in forward direction.	R/W
3 rd Spindle Reverse Rotation	M2x737	Sets the 3 rd spindle to rotate in reverse direction.	R/W
3 rd Spindle Positioning Control	M2x738	Positioning the 3 rd spindle.	R/W
3 rd Spindle Retraction After Tapping	M2x739	Retracts the 3 rd spindle after tapping.	R/W
Switching C / S Axis of 3 rd Spindle	M2x740	Trigger to switch between C or S axes for the spindle.	R/W
3 rd Spindle Command Source	M2x742	When this special M is ON, the speed command for the 3 rd spindle will refer to D2x320 . When this special M is OFF, the speed command will be based on the S command from the NC program.	R/W
3 rd Spindle Alarm	M2x743	When the MLC receive an alarm signal from digital input and then trigger this special M, the system will stop NC process and return alarm code [0x0C0A MLC activate spindle alarm] of 3 rd spindle.	R/W
4 th Spindle Forward Rotation	M2x752	Sets the 4 th spindle to rotate in forward direction.	R/W
4 th Spindle Reverse Rotation	M2x753	Sets the 4 th spindle to rotate in reverse direction.	R/W
4 th Spindle Positioning Control	M2x754	Positioning the 4 th spindle.	R/W
4 th Spindle Retraction After Tapping	M2x755	Retracts the 4 th spindle after tapping.	R/W
Switching C / S Axis of 4 th Spindle	M2x756	Trigger to switch between C or S axes for the spindle.	R/W
4 th Spindle Command Source	M2x758	When this special M is ON, the speed command for the 4 th spindle will refer to D2x326 . When this special M is OFF, the speed command will be based on the S command from the NC program.	R/W
4 th Spindle Alarm	M2x759	When the MLC receive an alarm signal from digital input and then trigger this special M, the system will stop NC process and return alarm code [0x0C0A MLC activate spindle alarm] of 4 th spindle.	R/W
5 th Spindle Forward Rotation	M2x768	Sets the 5 th spindle to rotate in forward direction.	R/W
5 th Spindle Reverse Rotation	M2x769	Sets the 5 th spindle to rotate in reverse direction.	R/W
5 th Spindle Positioning Control	M2x770	Positioning the 5 th spindle.	R/W
5 th Spindle Retraction After Tapping	M2x771	Retracts the 5 th spindle after tapping.	R/W

Function Name	Special M	Description	Device
Switching C / S Axis of 5 th Spindle	M2x772	Trigger to switch between C or S axes for the spindle.	R/W
5 th Spindle Command Source	M2x774	When this special M is ON, the speed command for the 5 th spindle will refer to D2x332 . When this special M is OFF, the speed command will be based on the S command from the NC program.	R/W
5 th Spindle Alarm	M2x775	When the MLC receive an alarm signal from digital input and then trigger this special M, the system will stop NC process and return alarm code [0x0C0A MLC activate spindle alarm] of 5 th spindle.	R/W
6 th Spindle Forward Rotation	M2x784	Sets the 6 th spindle to rotate in forward direction.	R/W
6 th Spindle Reverse Rotation	M2x785	Sets the 6 th spindle to rotate in reverse direction.	R/W
6 th Spindle Positioning Control	M2x786	Positioning the 6 th spindle.	R/W
6 th Spindle Retraction After Tapping	M2x787	Retracts the 6 th spindle after tapping.	R/W
Switching C / S Axis of 6 th Spindle	M2x788	Trigger to switch between C or S axes for the spindle.	R/W
6 th Spindle Command Source	M2x790	When this special M is ON, the speed command for the 6 th spindle will refer to D2x338 . When this special M is OFF, the speed command will be based on the S command from the NC program.	R/W
6 th Spindle Alarm	M2x791	When the MLC receive an alarm signal from digital input and then trigger this special M, the system will stop NC process and return alarm code [0x0C0A MLC activate spindle alarm] of 6 th spindle.	R/W
7 th Spindle Forward Rotation	M2x800	Sets the 7 th spindle to rotate in forward direction.	R/W
7 th Spindle Reverse Rotation	M2x801	Sets the 7 th spindle to rotate in reverse direction.	R/W
7 th Spindle Positioning Control	M2x802	Positioning the 7 th spindle.	R/W
7 th Spindle Retraction After Tapping	M2x803	Retracts the 7 th spindle after tapping.	R/W
Switching C / S Axis of 7 th Spindle	M2x804	Trigger to switch between C or S axes for the spindle.	R/W
7 th Spindle Command Source	M2x806	When this special M is ON, the speed command for the 7 th spindle will refer to D2x344 . When this special M is OFF, the speed command will be based on the S command from the NC program.	R/W
7 th Spindle Alarm	M2x807	When the MLC receive an alarm signal from digital input and then trigger this special M, the system will stop NC process and return alarm code [0x0C0A MLC activate spindle alarm] of 7 th spindle.	R/W
8 th Spindle Forward Rotation	M2x816	Sets the 8 th spindle to rotate in forward direction.	R/W
8 th Spindle Reverse Rotation	M2x817	Sets the 8 th spindle to rotate in reverse direction.	R/W
8 th Spindle Positioning Control	M2x818	Positioning the 8 th spindle.	R/W
8 th Spindle Retraction After Tapping	M2x819	Retracts the 8 th spindle after tapping.	R/W
Switching C / S Axis of 8 th Spindle	M2x820	Trigger to switch between C or S axes for the spindle.	R/W

Function Name	Special M	Description	Device
8 th Spindle Command Source	M2x822	When this special M is ON, the speed command for the 8 th spindle will refer to D2x350 . When this special M is OFF, the speed command will be based on the S command from the NC program.	R/W
8 th Spindle Alarm	M2x807	When the MLC receive an alarm signal from digital input and then trigger this special M, the system will stop NC process and return alarm code [0x0C0A MLC activate spindle alarm] of 8 th spindle.	R/W
Time Pulse (500 ms)	M29032	This special M will continuously switch between ON and OFF for 500 ms each.	R
Time Pulse (50 ms)	M29033	This special M will continuously switch between ON and OFF for 50 ms each.	R
Remaining OFF	M29034	After the controller system is ready, this special M will always remain OFF.	R
Remaining ON	M29035	After the controller system is ready, this special M will always remain ON.	R

5.2.1.2 M49000 to M49899

Function Name	Special M	Description	Device
Program Lock	M49000	When this special M is ON, the system will lock the current main program and not allow changes or edits.	R/W

5.2.2 List of special M (System status)

5.2.2.1 M30000 to M38999

Function Name	Special M	Description	Device
EtherCAT Communication Status	M30000	After EtherCAT communication is initialized and without errors, this special M will be ON. Note: this special M status only corresponds to the EtherCAT communication status, it does not indicate Servo ON.	R
HSI 1 Status	M30016	When the system executes the skip command G31P1, this special M will be also set to ON by the NC.	R
HSI 2 Status	M30017	When the system executes the skip command G31P2, this special M will be also set to ON by the NC.	R
HSI 3 Status	M30018	When the system executes the skip command G31P3, this special M will be also set to ON by the NC.	R
HSI 4 Status	M30019	When the system executes the skip command G31P4, this special M will be also set to ON by the NC.	R
HSI 5 Status	M30020	When the system executes the skip command G31P5, this special M will be also set to ON by the NC.	R
HSI 6 Status	M30021	When the system executes the skip command G31P6, this special M will be also set to ON by the NC.	R
HSI 7 Status	M30022	When the system executes the skip command G31P7, this special M will be also set to ON by the NC.	R
HSI 8 Status	M30023	When the system executes the skip command G31P8, this special M will be also set to ON by the NC.	R
EIO 1 Connection Status	M30032	This special M is ON when the EtherCAT remote module node ID 501 is connected.	R
EIO 2 Connection Status	M30033	This special M is ON when the EtherCAT remote module node ID 502 is connected.	R
EIO 3 Connection Status	M30034	This special M is ON when the EtherCAT remote module node ID 503 is connected.	R
EIO 4 Connection Status	M30035	This special M is ON when the EtherCAT remote module node ID 504 is connected.	R
EIO 5 Connection Status	M30036	This special M is ON when the EtherCAT remote module node ID 505 is connected.	R
EIO 6 Connection Status	M30037	This special M is ON when the EtherCAT remote module node ID 506 is connected.	R
EIO 7 Connection Status	M30038	This special M is ON when the EtherCAT remote module node ID 507 is connected.	R
EIO 8 Connection Status	M30039	This special M is ON when the EtherCAT remote module node ID 508 is connected.	R
EIO 9 Connection Status	M30040	This special M is ON when the EtherCAT remote module node ID 509 is connected.	R
EIO 10 Connection Status	M30041	This special M is ON when the EtherCAT remote module node ID 510 is connected.	R
EIO 11 Connection Status	M30042	This special M is ON when the EtherCAT remote module node ID 511 is connected.	R
EIO 12 Connection Status	M30043	This special M is ON when the EtherCAT remote module node ID 512 is connected.	R
EIO 13 Connection Status	M30044	This special M is ON when the EtherCAT remote module node ID 513 is connected.	R
EIO 14 Connection Status	M30045	This special M is ON when the EtherCAT remote module node ID 514 is connected.	R
EIO 15 Connection Status	M30046	This special M is ON when the EtherCAT remote module node ID 515 is connected.	R

Function Name	Special M	Description	Device
EIO 16 Connection Status	M30047	This special M is ON when the EtherCAT remote module node ID 516 is connected.	R
EIO 17 Connection Status	M30048	This special M is ON when the EtherCAT remote module node ID 517 is connected.	R
EIO 18 Connection Status	M30049	This special M is ON when the EtherCAT remote module node ID 518 is connected.	R
EIO 19 Connection Status	M30050	This special M is ON when the EtherCAT remote module node ID 519 is connected.	R
EIO 20 Connection Status	M30051	This special M is ON when the EtherCAT remote module node ID 520 is connected.	R
NC Channel 1 Enable Status	M30080	This special M is ON when the 1 st NC channel is enabled.	R
NC Channel 2 Enable Status	M30081	This special M is ON when the 2 nd NC channel is enabled.	R
NC Channel 3 Enable Status	M30082	This special M is ON when the 3 rd NC channel is enabled.	R
NC Channel 4 Enable Status	M30083	This special M is ON when the 4 th NC channel is enabled.	R
Spindle 1 DI Status	M30096	This special M is normal close type relay, means it will always stay ON until Pin 8 on the Spindle 1 connector has turn ON, and this special M will be OFF instead.	R
Spindle 2 DI Status	M30097	This special M is normal close type relay, means it will always stay ON until Pin 8 on the Spindle 2 connector has turn ON, and this special M will be OFF instead.	R
G900 Command Control M_1	M30200		R
G900 Command Control M_2	M30201		R
G900 Command Control M_3	M30202		R
G900 Command Control M_4	M30203		R
G900 Command Control M_5	M30204		R
G900 Command Control M_6	M30205	These Special M relay can be controlled by the G900 P_ Q_ command. This G900 will not stop look-ahead	R
G900 Command Control M_7	M30206	or pause the NC process. P: command value indicates the M address directly.	R
G900 Command Control M_8	M30207	From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will	R
G900 Command Control M_9	M30208	not return an error, but not the other special M will be triggered as well.	R
G900 Command Control M_10	M30209	Q: control the M relay status by 0 as OFF and any not 0 value will set as ON.	R
G900 Command Control M_11	M30210		R
G900 Command Control M_12	M30211		R
G900 Command Control M_13	M30212	-	R
G900 Command Control M_14	M30213		R
G900 Command Control M_15	M30214		R

Function Name	Special M	Description	Device
G900 Command Control M_16	M30215		R
G900 Command Control M_17	M30216		R
G900 Command Control M_18	M30217		R
G900 Command Control M_19	M30218		R
G900 Command Control M_20	M30219		R
G900 Command Control M_21	M30220		R
G900 Command Control M_22	M30221		R
G900 Command Control M_23	M30222		R
G900 Command Control M_24	M30223		R
G900 Command Control M_25	M30224		R
G900 Command Control M_26	M30225		R
G900 Command Control M_27	M30226	These Special M relay can be controlled by the G900 P Q command. This G900 will not stop look-ahead	R
G900 Command Control M_28	M30227	or pause the NC process. P: command value indicates the M address directly. From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will	R
G900 Command Control M_29	M30228		R
G900 Command Control M_30	M30229	not return an error, but not the other special M will be triggered as well.	R
G900 Command Control M_31	M30230	Q: control the M relay status by 0 as OFF and any not 0 value will set as ON.	R
G900 Command Control M_32	M30231		R
G900 Command Control M_33	M30232		R
G900 Command Control M_34	M30233		R
G900 Command Control M_35	M30234		R
G900 Command Control M 36	M30235		R
G900 Command Control M_37	M30236		R
G900 Command Control M_38	M30237		R
G900 Command Control M_39	M30238		R
G900 Command Control M 40	M30239		R
G900 Command Control M 41	M30240		R
G900 Command Control M 42	M30241		R

Function Name	Special M	Description	Device
G900 Command Control M_43	M30242		R
G900 Command Control M_44	M30243		R
G900 Command Control M_45	M30244		R
G900 Command Control M_46	M30245		R
G900 Command Control M_47	M30246		R
G900 Command Control M_48	M30247		R
G900 Command Control M_49	M30248		R
G900 Command Control M_50	M30249		R
G900 Command Control M_51	M30250		R
G900 Command Control M_52	M30251		R
G900 Command Control M_53	M30252		R
G900 Command Control M_54	M30253	These Special M relay can be controlled by the G900 P_Q_ command. This G900 will not stop look-ahead or pause the NC process. P: command value indicates the M address directly. From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will not return an error, but not the other special M will be triggered as well	R
G900 Command Control M_55	M30254		R
G900 Command Control M_56	M30255		R
G900 Command Control M_57	M30256		R
G900 Command Control M_58	M30257	Q: control the M relay status by 0 as OFF and any not 0 value will set as ON.	R
G900 Command Control M_59	M30258		R
G900 Command Control M_60	M30259		R
G900 Command Control M_61	M30260		R
G900 Command Control M_62	M30261		R
G900 Command Control M_63	M30262		R
G900 Command Control M_64	M30263		R
G900 Command Control M_65	M30264		R
G900 Command Control M_66	M30265		R
G900 Command Control M_67	M30266		R
G900 Command Control M_68	M30267		R
G900 Command Control M 69	M30268		R

Function Name	Special M	Description	Device
G900 Command Control M 70	M30269	Description	R
G900 Command Control M_71	M30270		R
G900 Command Control M_72	M30271		R
G900 Command Control M_73	M30272		R
G900 Command Control M_74	M30273		R
G900 Command Control M_75	M30274		R
G900 Command Control M_76	M30275		R
G900 Command Control M_77	M30276		R
G900 Command Control M_78	M30277		R
G900 Command Control M_79	M30278		R
G900 Command Control M_80	M30279		R
G900 Command Control M_81	M30280	These Special M relay can be controlled by the G900 P_ Q_ command. This G900 will not stop look-ahead	R
G900 Command Control M_82	M30281	or pause the NC process. P: command value indicates the M address directly	R
G900 Command Control M_83	M30282	From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will	R
G900 Command Control M_84	M30283	not return an error, but not the other special M will be triggered as well.	R
G900 Command Control M_85	M30284	Q: control the M relay status by 0 as OFF and any not 0 value will set as ON.	R
G900 Command Control M_86	M30285		R
G900 Command Control M_87	M30286		R
G900 Command Control M_88	M30287		R
G900 Command Control M_89	M30288		R
G900 Command Control M_90	M30289		R
G900 Command Control M_91	M30290		R
G900 Command Control M_92	M30291		R
G900 Command Control M_93	M30292		R
G900 Command Control M_94	M30293		R
G900 Command Control M_95	M30294		R
G900 Command Control M_96	M30295		R

Function Name	Special M	Description	Device
G900 Command Control M_97	M30296		R
G900 Command Control M_98	M30297		R
G900 Command Control M_99	M30298		R
G900 Command Control M_100	M30299		R
G900 Command Control M_101	M30300		R
G900 Command Control M_102	M30301		R
G900 Command Control M_103	M30302		R
G900 Command Control M_104	M30303		R
G900 Command Control M_105	M30304		R
G900 Command Control M_106	M30305		R
G900 Command Control M_107	M30306		R
G900 Command Control M_108	M30307	 These Special M relay can be controlled by the G900 P_Q_ command. This G900 will not stop look-ahead or pause the NC process. P: command value indicates the M address directly. From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will not return an error, but not the other special M will be triggered as well. Q: control the M relay status by 0 as OFF and any not 0 value will set as ON. 	R
G900 Command Control M_109	M30308		R
G900 Command Control M_110	M30309		R
G900 Command Control M_111	M30310		R
G900 Command Control M_112	M30311		R
G900 Command Control M_113	M30312		R
G900 Command Control M_114	M30313		R
G900 Command Control M_115	M30314		R
G900 Command Control M_116	M30315		R
G900 Command Control M_117	M30316		R
G900 Command Control M_118	M30317		R
G900 Command Control M_119	M30318		R
G900 Command Control M_120	M30319		R
G900 Command Control M_121	M30320		R
G900 Command Control M_122	M30321		R
G900 Command Control M_123	M30322		R

Function Name	Special M	Description	Device
G900 Command Control M_124	M30323		R
G900 Command Control M_125	M30324	-	R
G900 Command Control M_126	M30325		R
G900 Command Control M_127	M30326		R
G900 Command Control M_128	M30327		R
G900 Command Control M_129	M30328		R
G900 Command Control M_130	M30329		R
G900 Command Control M_131	M30330		R
G900 Command Control M_132	M30331		R
G900 Command Control M_133	M30332		R
G900 Command Control M_134	M30333		R
G900 Command Control M_135	M30334	These Special M relay can be controlled by the G900 P Q command. This G900 will not stop look-ahead	R
G900 Command Control M_136	M30335	 or pause the NC process. P: command value indicates the M address directly. From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will 	R
G900 Command Control M_137	M30336		R
G900 Command Control M_138	M30337	not return an error, but not the other special M will be triggered as well.	R
G900 Command Control M_139	M30338	Q: control the M relay status by 0 as OFF and any not 0 value will set as ON.	R
G900 Command Control M_140	M30339		R
G900 Command Control M_141	M30340		R
G900 Command Control M_142	M30341		R
G900 Command Control M_143	M30342		R
G900 Command Control M_144	M30343		R
G900 Command Control M_145	M30344		R
G900 Command Control M_146	M30345		R
G900 Command Control M_147	M30346		R
G900 Command Control M 148	M30347		R
G900 Command Control M 149	M30348		R
G900 Command Control M 150	M30349		R

Function Name	Special M	Description	Device
G900 Command Control M_151	M30350		R
G900 Command Control M_152	M30351		R
G900 Command Control M_153	M30352		R
G900 Command Control M_154	M30353		R
G900 Command Control M_155	M30354		R
G900 Command Control M_156	M30355		R
G900 Command Control M_157	M30356		R
G900 Command Control M_158	M30357	These Special M relay can be controlled by the G900 P_ Q_ command. This G900 will not stop look-ahead or pause the NC process.	R
G900 Command Control M_159	M30358		R
G900 Command Control M_160	M30359		R
G900 Command Control M_161	M30360		R
G900 Command Control M_162	M30361		R
G900 Command Control M_163	M30362	or pause the NC process. P: command value indicates the M address directly.	R
G900 Command Control M_164	M30363	From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will	R
G900 Command Control M_165	M30364	not return an error, but not the other special M will be triggered as well.	R
G900 Command Control M_166	M30365	These Special M relay can be controlled by the G900 P_Q_ command. This G900 will not stop look-ahead or pause the NC process. P: command value indicates the M address directly. From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will not return an error, but not the other special M will be triggered as well. Q: control the M relay status by 0 as OFF and any not 0 value will set as ON.	R
G900 Command Control M_167	M30366		R
G900 Command Control M_168	M30367		R
G900 Command Control M_169	M30368		R
G900 Command Control M_170	M30369		R
G900 Command Control M_171	M30370		R
G900 Command Control M_172	M30371		R
G900 Command Control M_173	M30372		R
G900 Command Control M_174	M30373		R
G900 Command Control M_175	M30374		R
G900 Command Control M_176	M30375		R
G900 Command Control M 177	M30376		R

Function Name	Special M	Description	Device
G900 Command Control M_178	M30377	These Special M relay can be controlled by the G900 P_Q_ command. This G900 will not stop look-ahead or pause the NC process. P: command value indicates the M address directly. From 30200 as M30200 to 30399 as M30399. When the value exceeds this range, the system will not return an error, but not the other special M will be triggered as well. Q: control the M relay status by 0 as OFF and any not 0 value will set as ON.	R
G900 Command Control M_179	M30378		R
G900 Command Control M_180	M30379		R
G900 Command Control M_181	M30380		R
G900 Command Control M_182	M30381		R
G900 Command Control M_183	M30382		R
G900 Command Control M_184	M30383		R
G900 Command Control M_185	M30384		R
G900 Command Control M_186	M30385		R
G900 Command Control M_187	M30386		R
G900 Command Control M_188	M30387		R
G900 Command Control M_189	M30388		R
G900 Command Control M_190	M30389		R
G900 Command Control M_191	M30390		R
G900 Command Control M_192	M30391		R
G900 Command Control M_193	M30392		R
G900 Command Control M_194	M30393		R
G900 Command Control M_195	M30394		R
G900 Command Control M_196	M30395		R
G900 Command Control M_197	M30396		R
G900 Command Control M_198	M30397		R
G900 Command Control M_199	M30398		R
G900 Command Control M_200	M30399		R
AUTO	M3x000	This special M is ON when the NC system is in AUTO mode.	R
EDIT	M3x001	This special M is ON when the NC system is in EDIT mode.	R
MDI	M3x002	This special M is ON when the NC system is in MDI mode.	R
MPG	M3x003	This special M is ON when the NC system is in MPG mode.	R
Function Name	Special M	Description	Device
---	-----------	--	--------
JOG	M3x004	This special M is ON when the NC system is in JOG mode.	R
RAPID	M3x005	This special M is ON when the NC system is in RAPID mode.	R
INC	M3x006	This special M is ON when the NC system is in INC mode.	R
HOME	M3x007	This special M is ON when the NC system is in HOME mode.	R
Cycle Start Status	M3x016	This special M is ON when the NC system is running NC program.	R
Feed Hold Status	M3x017	This special M is ON when the NC system pause NC process.	R
Emergency Stop Status	M3x018	This special M is ON when the EMG button or signal is triggered.	R
Reset Finished	M3x019	This special M is ON when the NC system finishes reset procedures.	R
Break Point Searching	M3x020	This special M is ON when the NC system is searching for the break point.	R
Program End Finished	M3x021	This special M is ON when the NC system finishes the last block, M02 or M30.	R
M02 Executed	M3x022	This special M is ON when the NC system finishes executing the M02 command and cycle stop.	R
M30 Cycle Stop and Index Reset	M3x023	This special M is ON when the NC system finishes executing the M30 command, cycle stop and program line index back to first line.	R
Single Block Hold	M3x024	This special M is ON when the NC system is holding on a single block.	R
NC Error	M3x025	This special M is ON when the NC system encounters an error.	R
Macro Call Status	M3x027	This special M is ON when the macro call is in execution.	R
Macro Call Ready	M3x028	After users trigger the macro call preparation and then system finishes the preparation, this special M will be ON. When this special M is ON, users will need to switch the NC system to AUTO mode and finish the remaining actions to start the macro.	R
Macro Call Error	M3x029	Indicates a macro call error.	R
M96 (Program Interruption) in Execution	M3x031	This special M is ON when M96 (program interruption) is in execution.	R
System Mode Switching	M3x032	When the system is switching between operation modes such as AUTO or JOG, this special M will be triggered.	R
Main Program Lock	M3x033	When the system locks the current NC main program and it is not allowed to change, this special M will be triggered.	R
Servo Drive Error	M3x034	When any of the connected servo drives encounter an error, this special M will be triggered.	R
Axes Auto Servo ON Status	M3x035	When the system parameter [N1.10 Axes Manual Servo ON] is set to 0, the system will set all axes and this special M to servo ON after initialization is finished.	R
System Ready and Servo ON	M3x036	When the system is successful initialized and servo drives are set to servo ON, this special M will be triggered.	R

Function Name	Special M	Description	Device
M00 System Hold	M3x037	After the system executes M00 and pauses the procedure, this special M will be triggered.	R
M01 Optional Stop	M3x038	After the system executes M01 and stops the procedure, this special M will be triggered.	R
Block Finished on Single Block Mode	M3x039	When the system is in single block mode and then finishes the current block, this special M will be triggered.	R
User Define Alarm Status	M3x040	This special M is ON when a user defined alarm occurs.	R
NC Program Scanning	M3x044	This special M is ON when the system is scanning the NC program.	R
NC Program Scan finished	M3x045	This special M is ON when the system finishes the NC program scanning.	R
M99 Call Stop Status	M3x047	When the M2x026 is ON and execute the M99, the NC system will trigger this special M after slowing down the motion and stop the process. This special M will be reset to OFF when the cycle start triggered again, M30 executed, or system reset.	R/W
1 st Macro Call Initial Finished	M3x048	This special M is ON when macro call finishes.	R
2 nd Macro Call Initial Finished	M3x049	This special M is ON when macro call finishes.	R
3 rd Macro Call Initial Finished	M3x050	This special M is ON when macro call finishes.	R
4 th Macro Call Initial Finished	M3x051	This special M is ON when macro call finishes.	R
5 th Macro Call Initial Finished	M3x052	This special M is ON when macro call finishes.	R
6 th Macro Call Initial Finished	M3x053	This special M is ON when macro call finishes.	R
7 th Macro Call Initial Finished	M3x054	This special M is ON when macro call finishes.	R
8 th Macro Call Initial Finished	M3x055	This special M is ON when macro call finishes.	R
9 th Macro Call Initial Finished	M3x056	This special M is ON when macro call finishes.	R
10 th Macro Call Initial Finished	M3x057	This special M is ON when macro call finishes.	R
11 th Macro Call Initial Finished	M3x058	This special M is ON when macro call finishes.	R
12 th Macro Call Initial Finished	M3x059	This special M is ON when macro call finishes.	R
13 th Macro Call Initial Finished	M3x060	This special M is ON when macro call finishes.	R
14 th Macro Call Initial Finished	M3x061	This special M is ON when macro call finishes.	R
15 th Macro Call Initial Finished	M3x062	This special M is ON when macro call finishes.	R
16 th Macro Call Initial Finished	M3x063	This special M is ON when macro call finishes.	R

Function Name	Special M	Description	Device
M Code Execution	M3x064	When the M code is executed in the program (not including M00, M01, M02, M30, M98, M99), this special M will be triggered. When the M, S, and T codes complete their execution and then the MLC triggers the M2x016 , this special M will be set to OFF. This action does not include an M code that is used for macro calls.	R
S Code Execution	M3x065	When the S code is executed in the program, this special M will be triggered. When the M, S, and T codes complete their execution and then the MLC triggers the M2x016 , this special M will be set to OFF. The NC does not trigger this special M when an S code is used for macro call.	R
T Code Execution	M3x066	When the T code (Standby tool number) is executed in the program, this special M will be triggered. When the M, S, and T codes complete their execution and then the MLC triggers the M2x016 , this special M will be set to OFF. The NC does not trigger this special M when a T code is used for macro call. This special M is related to the tool pot setting of the tool magazine, and the special M will be triggered only when the T code value is set within the specified range of tool number for the tool magazine parameter.	R
Connection Status of 1 st Spindle	M3x096	This special M is ON when the 1 st spindle is connected.	R
Connection Status of 2 nd Spindle	M3x097	This special M is ON when the 2 nd spindle is connected.	R
Connection Status of 3 rd Spindle	M3x098	This special M is ON when the 3 rd spindle is connected.	R
Connection Status of 4 th Spindle	M3x099	This special M is ON when the 4 th spindle is connected.	R
Connection Status of 5 th Spindle	M3x100	This special M is ON when the 5 th spindle is connected.	R
Connection Status of 6 th Spindle	M3x101	This special M is ON when the 6 th spindle is connected.	R
Connection Status of 7 th Spindle	M3x102	This special M is ON when the 7 th spindle is connected.	R
Connection Status of 8 th Spindle	M3x103	This special M is ON when the 8 th spindle is connected.	R
NC Variable to MLC 1	M3x128	The NC system will update the status of variable #25256 into this special M as ON or OFF.	R
NC Variable to MLC 2	M3x129	The NC system will update the status of variable #25257 into this special M as ON or OFF.	R
NC Variable to MLC 3	M3x130	The NC system will update the status of variable #25258 into this special M as ON or OFF.	R
NC Variable to MLC 4	M3x131	The NC system will update the status of variable #25259 into this special M as ON or OFF.	R
NC Variable to MLC 5	M3x132	The NC system will update the status of variable #25260 into this special M as ON or OFF.	R
NC Variable to MLC 6	M3x133	The NC system will update the status of variable #25261 into this special M as ON or OFF.	R
NC Variable to MLC 7	M3x134	The NC system will update the status of variable #25262 into this special M as ON or OFF.	R
NC Variable to MLC 8	M3x135	The NC system will update the status of variable #25263 into this special M as ON or OFF.	R
NC Variable to MLC 9	M3x136	The NC system will update the status of variable #25264 into this special M as ON or OFF.	R

Function Name	Special M	Description	Device
NC Variable to MLC 10	M3x137	The NC system will update the status of variable #25265 into this special M as ON or OFF.	R
NC Variable to MLC 11	M3x138	The NC system will update the status of variable #25266 into this special M as ON or OFF.	R
NC Variable to MLC 12	M3x139	The NC system will update the status of variable #25267 into this special M as ON or OFF.	R
NC Variable to MLC 13	M3x140	The NC system will update the status of variable #25268 into this special M as ON or OFF.	R
NC Variable to MLC 14	M3x141	The NC system will update the status of variable #25269 into this special M as ON or OFF.	R
NC Variable to MLC 15	M3x142	The NC system will update the status of variable #25270 into this special M as ON or OFF.	R
NC Variable to MLC 16	M3x143	The NC system will update the status of variable #25271 into this special M as ON or OFF.	R
NC Variable to MLC 17	M3x144	The NC system will update the status of variable #25272 into this special M as ON or OFF.	R
NC Variable to MLC 18	M3x145	The NC system will update the status of variable #25273 into this special M as ON or OFF.	R
NC Variable to MLC 19	M3x146	The NC system will update the status of variable #25274 into this special M as ON or OFF.	R
NC Variable to MLC 20	M3x147	The NC system will update the status of variable #25275 into this special M as ON or OFF.	R
NC Variable to MLC 21	M3x148	The NC system will update the status of variable #25276 into this special M as ON or OFF.	R
NC Variable to MLC 22	M3x149	The NC system will update the status of variable #25277 into this special M as ON or OFF.	R
NC Variable to MLC 23	M3x150	The NC system will update the status of variable #25278 into this special M as ON or OFF.	R
NC Variable to MLC 24	M3x151	The NC system will update the status of variable #25279 into this special M as ON or OFF.	R
NC Variable to MLC 25	M3x152	The NC system will update the status of variable #25280 into this special M as ON or OFF.	R
NC Variable to MLC 26	M3x153	The NC system will update the status of variable #25281 into this special M as ON or OFF.	R
NC Variable to MLC 27	M3x154	The NC system will update the status of variable #25282 into this special M as ON or OFF.	R
NC Variable to MLC 28	M3x155	The NC system will update the status of variable #25283 into this special M as ON or OFF.	R
NC Variable to MLC 29	M3x156	The NC system will update the status of variable #25284 into this special M as ON or OFF.	R
NC Variable to MLC 30	M3x157	The NC system will update the status of variable #25285 into this special M as ON or OFF.	R
NC Variable to MLC 31	M3x158	The NC system will update the status of variable #25286 into this special M as ON or OFF.	R
NC Variable to MLC 32	M3x159	The NC system will update the status of variable #25287 into this special M as ON or OFF.	R
NC Variable to MLC 33	M3x160	The NC system will update the status of variable #25288 into this special M as ON or OFF.	R
NC Variable to MLC 34	M3x161	The NC system will update the status of variable #25289 into this special M as ON or OFF.	R
NC Variable to MLC 35	M3x162	The NC system will update the status of variable #25290 into this special M as ON or OFF.	R
NC Variable to MLC 36	M3x163	The NC system will update the status of variable #25291 into this special M as ON or OFF.	R

Function Name	Special M	Description	Device
NC Variable to MLC 37	M3x164	The NC system will update the status of variable #25292 into this special M as ON or OFF.	R
NC Variable to MLC 38	M3x165	The NC system will update the status of variable #25293 into this special M as ON or OFF.	R
NC Variable to MLC 39	M3x166	The NC system will update the status of variable #25294 into this special M as ON or OFF.	R
NC Variable to MLC 40	M3x167	The NC system will update the status of variable #25295 into this special M as ON or OFF.	R
NC Variable to MLC 41	M3x168	The NC system will update the status of variable #25296 into this special M as ON or OFF.	R
NC Variable to MLC 42	M3x169	The NC system will update the status of variable #25297 into this special M as ON or OFF.	R
NC Variable to MLC 43	M3x170	The NC system will update the status of variable #25298 into this special M as ON or OFF.	R
NC Variable to MLC 44	M3x171	The NC system will update the status of variable #25299 into this special M as ON or OFF.	R
NC Variable to MLC 45	M3x172	The NC system will update the status of variable #25300 into this special M as ON or OFF.	R
NC Variable to MLC 46	M3x173	The NC system will update the status of variable #25301 into this special M as ON or OFF.	R
NC Variable to MLC 47	M3x174	The NC system will update the status of variable #25302 into this special M as ON or OFF.	R
NC Variable to MLC 48	M3x175	The NC system will update the status of variable #25303 into this special M as ON or OFF.	R
NC Variable to MLC 49	M3x176	The NC system will update the status of variable #25304 into this special M as ON or OFF.	R
NC Variable to MLC 50	M3x177	The NC system will update the status of variable #25305 into this special M as ON or OFF.	R
NC Variable to MLC 51	M3x178	The NC system will update the status of variable #25306 into this special M as ON or OFF.	R
NC Variable to MLC 52	M3x179	The NC system will update the status of variable #25307 into this special M as ON or OFF.	R
NC Variable to MLC 53	M3x180	The NC system will update the status of variable #25308 into this special M as ON or OFF.	R
NC Variable to MLC 54	M3x181	The NC system will update the status of variable #25309 into this special M as ON or OFF.	R
NC Variable to MLC 55	M3x182	The NC system will update the status of variable #25310 into this special M as ON or OFF.	R
NC Variable to MLC 56	M3x183	The NC system will update the status of variable #25311 into this special M as ON or OFF.	R
NC Variable to MLC 57	M3x184	The NC system will update the status of variable #25312 into this special M as ON or OFF.	R
NC Variable to MLC 58	M3x185	The NC system will update the status of variable #25313 into this special M as ON or OFF.	R
NC Variable to MLC 59	M3x186	The NC system will update the status of variable #25314 into this special M as ON or OFF.	R
NC Variable to MLC 60	M3x187	The NC system will update the status of variable #25315 into this special M as ON or OFF.	R
NC Variable to MLC 61	M3x188	The NC system will update the status of variable #25316 into this special M as ON or OFF.	R
NC Variable to MLC 62	M3x189	The NC system will update the status of variable #25317 into this special M as ON or OFF.	R
NC Variable to MLC 63	M3x190	The NC system will update the status of variable #25318 into this special M as ON or OFF.	R

Function Name	Special M	Description	Device
NC Variable to MLC 64	M3x191	The NC system will update the status of variable #25319 into this special M as ON or OFF.	R
NC Variable to MLC 65	M3x192	The NC system will update the status of variable #25320 into this special M as ON or OFF.	R
NC Variable to MLC 66	M3x193	The NC system will update the status of variable #25321 into this special M as ON or OFF.	R
NC Variable to MLC 67	M3x194	The NC system will update the status of variable #25322 into this special M as ON or OFF.	R
NC Variable to MLC 68	M3x195	The NC system will update the status of variable #25323 into this special M as ON or OFF.	R
NC Variable to MLC 69	M3x196	The NC system will update the status of variable #25324 into this special M as ON or OFF.	R
NC Variable to MLC 70	M3x197	The NC system will update the status of variable #25325 into this special M as ON or OFF.	R
NC Variable to MLC 71	M3x198	The NC system will update the status of variable #25326 into this special M as ON or OFF.	R
NC Variable to MLC 72	M3x199	The NC system will update the status of variable #25327 into this special M as ON or OFF.	R
NC Variable to MLC 73	M3x200	The NC system will update the status of variable #25328 into this special M as ON or OFF.	R
NC Variable to MLC 74	M3x201	The NC system will update the status of variable #25329 into this special M as ON or OFF.	R
NC Variable to MLC 75	M3x202	The NC system will update the status of variable #25330 into this special M as ON or OFF.	R
NC Variable to MLC 76	M3x203	The NC system will update the status of variable #25331 into this special M as ON or OFF.	R
NC Variable to MLC 77	M3x204	The NC system will update the status of variable #25332 into this special M as ON or OFF.	R
NC Variable to MLC 78	M3x205	The NC system will update the status of variable #25333 into this special M as ON or OFF.	R
NC Variable to MLC 79	M3x206	The NC system will update the status of variable #25334 into this special M as ON or OFF.	R
NC Variable to MLC 80	M3x207	The NC system will update the status of variable #25335 into this special M as ON or OFF.	R
NC Variable to MLC 81	M3x208	The NC system will update the status of variable #25336 into this special M as ON or OFF.	R
NC Variable to MLC 82	M3x209	The NC system will update the status of variable #25337 into this special M as ON or OFF.	R
NC Variable to MLC 83	M3x210	The NC system will update the status of variable #25338 into this special M as ON or OFF.	R
NC Variable to MLC 84	M3x211	The NC system will update the status of variable #25339 into this special M as ON or OFF.	R
NC Variable to MLC 85	M3x212	The NC system will update the status of variable #25340 into this special M as ON or OFF.	R
NC Variable to MLC 86	M3x213	The NC system will update the status of variable #25341 into this special M as ON or OFF.	R
NC Variable to MLC 87	M3x214	The NC system will update the status of variable #25342 into this special M as ON or OFF.	R
NC Variable to MLC 88	M3x215	The NC system will update the status of variable #25343 into this special M as ON or OFF.	R
NC Variable to MLC 89	M3x216	The NC system will update the status of variable #25344 into this special M as ON or OFF.	R
NC Variable to MLC 90	M3x217	The NC system will update the status of variable #25345 into this special M as ON or OFF.	R

Function Name	Special M	Description	Device
NC Variable to MLC 91	M3x218	The NC system will update the status of variable #25346 into this special M as ON or OFF.	R
NC Variable to MLC 92	M3x219	The NC system will update the status of variable #25347 into this special M as ON or OFF.	R
NC Variable to MLC 93	M3x220	The NC system will update the status of variable #25348 into this special M as ON or OFF.	R
NC Variable to MLC 94	M3x221	The NC system will update the status of variable #25349 into this special M as ON or OFF.	R
NC Variable to MLC 95	M3x222	The NC system will update the status of variable #25350 into this special M as ON or OFF.	R
NC Variable to MLC 96	M3x223	The NC system will update the status of variable #25351 into this special M as ON or OFF.	R
NC Variable to MLC 97	M3x224	The NC system will update the status of variable #25352 into this special M as ON or OFF.	R
NC Variable to MLC 98	M3x225	The NC system will update the status of variable #25353 into this special M as ON or OFF.	R
NC Variable to MLC 99	M3x226	The NC system will update the status of variable #25354 into this special M as ON or OFF.	R
NC Variable to MLC 100	M3x227	The NC system will update the status of variable #25355 into this special M as ON or OFF.	R
NC Variable to MLC 101	M3x228	The NC system will update the status of variable #25356 into this special M as ON or OFF.	R
NC Variable to MLC 102	M3x229	The NC system will update the status of variable #25357 into this special M as ON or OFF.	R
NC Variable to MLC 103	M3x230	The NC system will update the status of variable #25358 into this special M as ON or OFF.	R
NC Variable to MLC 104	M3x231	The NC system will update the status of variable #25359 into this special M as ON or OFF.	R
NC Variable to MLC 105	M3x232	The NC system will update the status of variable #25360 into this special M as ON or OFF.	R
NC Variable to MLC 106	M3x233	The NC system will update the status of variable #25361 into this special M as ON or OFF.	R
NC Variable to MLC 107	M3x234	The NC system will update the status of variable #25362 into this special M as ON or OFF.	R
NC Variable to MLC 108	M3x235	The NC system will update the status of variable #25363 into this special M as ON or OFF.	R
NC Variable to MLC 109	M3x236	The NC system will update the status of variable #25364 into this special M as ON or OFF.	R
NC Variable to MLC 110	M3x237	The NC system will update the status of variable #25365 into this special M as ON or OFF.	R
NC Variable to MLC 111	M3x238	The NC system will update the status of variable #25366 into this special M as ON or OFF.	R
NC Variable to MLC 112	M3x239	The NC system will update the status of variable #25367 into this special M as ON or OFF.	R
NC Variable to MLC 113	M3x240	The NC system will update the status of variable #25368 into this special M as ON or OFF.	R
NC Variable to MLC 114	M3x241	The NC system will update the status of variable #25369 into this special M as ON or OFF.	R
NC Variable to MLC 115	M3x242	The NC system will update the status of variable #25370 into this special M as ON or OFF.	R
NC Variable to MLC 116	M3x243	The NC system will update the status of variable #25371 into this special M as ON or OFF.	R
NC Variable to MLC 117	M3x244	The NC system will update the status of variable #25372 into this special M as ON or OFF.	R

Function Name	Special M	Description	Device
NC Variable to MLC 118	M3x245	The NC system will update the status of variable #25373 into this special M as ON or OFF.	R
NC Variable to MLC 119	M3x246	The NC system will update the status of variable #25374 into this special M as ON or OFF.	R
NC Variable to MLC 120	M3x247	The NC system will update the status of variable #25375 into this special M as ON or OFF.	R
NC Variable to MLC 121	M3x248	The NC system will update the status of variable #25376 into this special M as ON or OFF.	R
NC Variable to MLC 122	M3x249	The NC system will update the status of variable #25377 into this special M as ON or OFF.	R
NC Variable to MLC 123	M3x250	The NC system will update the status of variable #25378 into this special M as ON or OFF.	R
NC Variable to MLC 124	M3x251	The NC system will update the status of variable #25379 into this special M as ON or OFF.	R
NC Variable to MLC 125	M3x252	The NC system will update the status of variable #25380 into this special M as ON or OFF.	R
NC Variable to MLC 126	M3x253	The NC system will update the status of variable #25381 into this special M as ON or OFF.	R
NC Variable to MLC 127	M3x254	The NC system will update the status of variable #25382 into this special M as ON or OFF.	R
NC Variable to MLC 128	M3x255	The NC system will update the status of variable #25383 into this special M as ON or OFF.	R
Servo Connection Status of X Axis	M3x256	This special M is ON when the servo drive of the X axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of Y Axis	M3x257	This special M is ON when the servo drive of the Y axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of Z Axis	M3x258	This special M is ON when the servo drive of the Z axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of A Axis	M3x259	This special M is ON when the servo drive of the A axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of B Axis	M3x260	This special M is ON when the servo drive of the B axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of C Axis	M3x261	This special M is ON when the servo drive of the C axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of U Axis	M3x262	This special M is ON when the servo drive of the U axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of V Axis	M3x263	This special M is ON when the servo drive of the V axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R

Function Name	Special M	Description	Device
Servo Connection Status of W Axis	M3x264	This special M is ON when the servo drive of the W axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of 10 th Axis	M3x265	This special M is ON when the servo drive of the 10 th axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of 11 th Axis	M3x266	This special M is ON when the servo drive of the 11 th axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of 12 th Axis	M3x267	This special M is ON when the servo drive of the 12 th axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of 13 th Axis	M3x268	This special M is ON when the servo drive of the 13 th axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of 14 th Axis	M3x269	This special M is ON when the servo drive of the 14 th axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of 15 th Axis	M3x270	This special M is ON when the servo drive of the 15 th axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Connection Status of 16 th Axis	M3x271	This special M is ON when the servo drive of the 16 th axis is connected. This connection status can be monitored from the [Connect] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of X Axis	M3x272	This special M is ON when the servo drive of the X axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of Y Axis	M3x273	This special M is ON when the servo drive of the Y axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of Z Axis	M3x274	This special M is ON when the servo drive of the Z axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of A Axis	M3x275	This special M is ON when the servo drive of the A axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of B Axis	M3x276	This special M is ON when the servo drive of the B axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of C Axis	M3x277	This special M is ON when the servo drive of the C axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of U Axis	M3x278	This special M is ON when the servo drive of the U axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R

Function Name	Special M	Description	Device
Servo Enable Status of V Axis	M3x279	This special M is ON when the servo drive of the V axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of W Axis	M3x280	This special M is ON when the servo drive of the W axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of 10 th Axis	M3x281	This special M is ON when the servo drive of the 10 th axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of 11 th Axis	M3x282	This special M is ON when the servo drive of the 11 th axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of 12 th Axis	M3x283	This special M is ON when the servo drive of the 12 th axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of 13 th Axis	M3x284	This special M is ON when the servo drive of the 13 th axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of 14 th Axis	M3x285	This special M is ON when the servo drive of the 14 th axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of 15 th Axis	M3x286	This special M is ON when the servo drive of the 15 th axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Servo Enable Status of 16 th Axis	M3x287	This special M is ON when the servo drive of the 16 th axis is servo ON. This connection status can be monitored from the [Ready] status light of the [Servo Monitor Table] page.	R
Oscillation Control Status of 1 st Axis	M3x304	This special M is ON when the 1 st axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 2 nd Axis	M3x305	This special M is ON when the 2 nd axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 3 rd Axis	M3x306	This special M is ON when the 3 rd axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 4 th Axis	M3x307	This special M is ON when the 4 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 5 th Axis	M3x308	This special M is ON when the 5 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 6 th Axis	M3x309	This special M is ON when the 6 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 7 th Axis	M3x310	This special M is ON when the 7 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 8 th Axis	M3x311	This special M is ON when the 8 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 9 th Axis	M3x312	This special M is ON when the 9 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 10 th Axis	M3x313	This special M is ON when the 10 th axis has enabled the oscillation function and set movement command.	R

Function Name	Special M	Description	Device
Oscillation Control Status of 11 th Axis	M3x314	This special M is ON when the 11 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 12 th Axis	M3x315	This special M is ON when the 12 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 13 th Axis	M3x316	This special M is ON when the 13 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 14 th Axis	M3x317	This special M is ON when the 14 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 15 th Axis	M3x318	This special M is ON when the 15 th axis has enabled the oscillation function and set movement command.	R
Oscillation Control Status of 16 th Axis	M3x319	This special M is ON when the 16 th axis has enabled the oscillation function and set movement command.	R
Axis Homed Status of X Axis	M3x320	This special M is ON when the X axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of Y Axis	M3x321	This special M is ON when the Y axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of Z Axis	M3x322	This special M is ON when the Z axis is home, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of A Axis	M3x323	This special M is ON when the A axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of B Axis	M3x324	This special M is ON when the B axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of C Axis	M3x325	This special M is ON when the C axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of U Axis	M3x326	This special M is ON when the U axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of V Axis	M3x327	This special M is ON when the V axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of W Axis	M3x328	This special M is ON when the W axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of 10 th Axis	M3x329	This special M is ON when the 10 th axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of 11 th Axis	M3x330	This special M is ON when the 11 th axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of 12 th Axis	M3x331	This special M is ON when the 12 th axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of 13 th Axis	M3x332	This special M is ON when the 13 th axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of 14 th Axis	M3x333	This special M is ON when the 14 th axis is homed, and the controller's POS page shows the origin complete symbol.	R
Axis Homed Status of 15 th Axis	M3x334	This special M is ON when the 15 th axis is homed, and the controller's POS page shows the origin complete symbol.	R

Function Name	Special M	Description	Device
Axis Homed Status of 16 th Axis	M3x335	This special M is ON when the 16 th axis is homed, and the controller's POS page shows the origin complete symbol.	R
Homing Finished Status of X Axis	M3x336	This special M is ON when the X axis has finished its homing procedure.	R
Homing Finished Status of Y Axis	M3x337	This special M is ON when the Y axis has finished its homing procedure.	R
Homing Finished Status of Z Axis	M3x338	This special M is ON when the Z axis has finished its homing procedure.	R
Homing Finished Status of A Axis	M3x339	This special M is ON when the A axis has finished its homing procedure.	R
Homing Finished Status of B Axis	M3x340	This special M is ON when the B axis has finished its homing procedure.	R
Homing Finished Status of C Axis	M3x341	This special M is ON when the C axis has finished its homing procedure.	R
Homing Finished Status of U Axis	M3x342	This special M is ON when the U axis has finished its homing procedure.	R
Homing Finished Status of V Axis	M3x343	This special M is ON when the V axis has finished its homing procedure.	R
Homing Finished Status of W Axis	M3x344	This special M is ON when the W axis has finished its homing procedure.	R
Homing Finished Status of 10 th Axis	M3x345	This special M is ON when the 10 th axis has finished its homing procedure.	R
Homing Finished Status of 11 th Axis	M3x346	This special M is ON when the 11 th axis has finished its homing procedure.	R
Homing Finished Status of 12 th Axis	M3x347	This special M is ON when the 12 th axis has finished its homing procedure.	R
Homing Finished Status of 13 th Axis	M3x348	This special M is ON when the 13 th axis has finished its homing procedure.	R
Homing Finished Status of 14 th Axis	M3x349	This special M is ON when the 14 th axis has finished its homing procedure.	R
Homing Finished Status of 15 th Axis	M3x350	This special M is ON when the 15 th axis has finished its homing procedure.	R
Homing Finished Status of 16 th Axis	M3x351	This special M is ON when the 16 th axis has finished its homing procedure.	R
X Axis at Origin Position	M3x352	This special M is ON when the X axis's machine position is 0.	R
Y Axis at Origin Position	M3x353	This special M is ON when the Y axis's machine position is 0.	R
Z Axis at Origin Position	M3x354	This special M is ON when the Z axis's machine position is 0.	R
A Axis at Origin Position	M3x355	This special M is ON when the A axis's machine position is 0.	R
B Axis at Origin Position	M3x356	This special M is ON when the B axis's machine position is 0.	R
C Axis at Origin Position	M3x357	This special M is ON when the C axis's machine position is 0.	R
U Axis at Origin Position	M3x358	This special M is ON when the U axis's machine position is 0.	R
V Axis at Origin Position	M3x359	This special M is ON when the V axis's machine position is 0.	R
W Axis at Origin Position	M3x360	This special M is ON when the W axis's machine position is 0.	R

Function Name	Special M	A Description	
10 th Axis at Origin Position	M3x361	This special M is ON when the 10 th axis's machine position is 0.	R
11 th Axis at Origin Position	M3x362	This special M is ON when the 11 th axis's machine position is 0.	R
12 th Axis at Origin Position	M3x363	This special M is ON when the 12 th axis's machine position is 0.	R
13 th Axis at Origin Position	M3x364	This special M is ON when the 13 th axis's machine position is 0.	R
14 th Axis at Origin Position	M3x365	This special M is ON when the 14 th axis's machine position is 0.	R
15 th Axis at Origin Position	M3x366	This special M is ON when the 15 th axis's machine position is 0.	R
16 th Axis at Origin Position	M3x367	This special M is ON when the 16 th axis's machine position is 0.	R
X Axis Switch to MLC Axis Finished	M3x432	This special M is ON when M2x432 is triggered, and the X axis has switched to MLC control mode.	R
Y Axis Switch to MLC Axis Finished	M3x433	This special M is ON when M2x433 is triggered, and the Y axis has switched to MLC control mode.	R
Z Axis Switch to MLC Axis Finished	M3x434	This special M is ON when M2x434 is triggered, and the Z axis has switched to MLC control mode.	R
A Axis Switch to MLC Axis Finished	M3x435	This special M is ON when M2x435 is triggered, and the A axis has switched to MLC control mode.	R
B Axis Switch to MLC Axis Finished	M3x436	This special M is ON when M2x436 is triggered, and the B axis has switched to MLC control mode.	R
C Axis Switch to MLC Axis Finished	M3x437	This special M is ON when M2x437 is triggered, and the C axis has switched to MLC control mode.	R
U Axis Switch to MLC Axis Finished	M3x438	This special M is ON when M2x438 is triggered, and the U axis has switched to MLC control mode.	R
V Axis Switch to MLC Axis Finished	M3x439	This special M is ON when M2x439 is triggered, and the V axis has switched to MLC control mode.	R
W Axis Switch to MLC Axis Finished	M3x440	This special M is ON when M2x440 is triggered, and the W axis has switched to MLC control mode.	R
10 th Axis Switch to MLC Axis Finished	M3x441	This special M is ON when M2x441 is triggered, and the 10 th axis has switched to MLC control mode.	R
11 th Axis Switch to MLC Axis Finished	M3x442	This special M is ON when M2x442 is triggered, and the 11 th axis has switched to MLC control mode.	R
12 th Axis Switch to MLC Axis Finished	M3x443	This special M is ON when M2x443 is triggered, and the 12 th axis has switched to MLC control mode.	R
13 th Axis Switch to MLC Axis Finished	M3x444	This special M is ON when M2x444 is triggered, and the 13 th axis has switched to MLC control mode.	R
14 th Axis Switch to MLC Axis Finished	M3x445	This special M is ON when M2x445 is triggered, and the 14 th axis has switched to MLC control mode.	R
15 th Axis Switch to MLC Axis Finished	M3x446	This special M is ON when M2x446 is triggered, and the 15 th axis has switched to MLC control mode.	R
16 th Axis Switch to MLC Axis Finished	M3x447	This special M is ON when M2x447 is triggered, and the 16 th axis has switched to MLC control mode.	R
X Axis Target Reached (MLC Axis)	M3x448	This special M is ON when the X axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x448 will be written to the special M.	R
Y Axis Target Reached (MLC Axis)	M3x449	This special M is ON when the Y axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x449 will be written to the special M.	R

Function Name	Special M	I M Description	
Z Axis Target Reached (MLC Axis)	M3x450	This special M is ON when the Z axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x450 will be written to the special M.	R
A Axis Target Reached (MLC Axis)	M3x451	This special M is ON when the A axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x451 will be written to the special M.	R
B Axis Target Reached (MLC Axis)	M3x452	This special M is ON when the B axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x452 will be written to the special M.	R
C Axis Target Reached (MLC Axis)	M3x453	This special M is ON when the C axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x453 will be written to the special M.	R
U Axis Target Reached (MLC Axis)	M3x454	This special M is ON when the U axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x454 will be written to the special M.	R
V Axis Target Reached (MLC Axis)	M3x455	This special M is ON when the V axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x455 will be written to the special M.	R
W Axis Target Reached (MLC Axis)	M3x456	This special M is ON when the W axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x456 will be written to the special M.	R
10 th Axis Target Reached (MLC Axis)	M3x457	This special M is ON when the 10 th axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x457 will be written to the special M.	R
11 th Axis Target Reached (MLC Axis)	M3x458	This special M is ON when the 11 th axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x458 will be written to the special M.	R
12 th Axis Target Reached (MLC Axis)	M3x459	This special M is ON when the 12 th axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x459 will be written to the special M.	R
13 th Axis Target Reached (MLC Axis)	M3x460	This special M is ON when the 13 th axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x460 will be written to the special M.	R
14 th Axis Target Reached (MLC Axis)	M3x461	This special M is ON when the 14 th axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x461 will be written to the special M.	R
15 th Axis Target Reached (MLC Axis)	M3x462	This special M is ON when the 15 th axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x462 will be written to the special M.	R
16 th Axis Target Reached (MLC Axis)	M3x463	This special M is ON when the 16 th axis reaches the target position. If the MLC is in speed mode, then the speed represented by M3x463 will be written to the special M.	R
X Axis Is Moving	M3x464	This special M is ON when the X axis is in motion, regardless of the type of mode.	R

Function Name	Special M	M Description	
Y Axis Is Moving	M3x465	This special M is ON when the Y axis is in motion, regardless of the type of mode.	R
Z Axis Is Moving	M3x466	This special M is ON when the Z axis is in motion, regardless of the type of mode.	R
A Axis Is Moving	M3x467	This special M is ON when the A axis is in motion, regardless of the type of mode.	R
B Axis Is Moving	M3x468	This special M is ON when the B axis is in motion, regardless of the type of mode.	R
C Axis Is Moving	M3x469	This special M is ON when the C axis is in motion, regardless of the type of mode.	R
U Axis Is Moving	M3x470	This special M is ON when the U axis is in motion, regardless of the type of mode.	R
V Axis Is Moving	M3x471	This special M is ON when the V axis is in motion, regardless of the type of mode.	R
W Axis Is Moving	M3x472	This special M is ON when the W axis is in motion, regardless of the type of mode.	R
10 th Axis Is Moving	M3x473	This special M is ON when the 10 th axis is in motion, regardless of the type of mode.	R
11 th Axis Is Moving	M3x474	This special M is ON when the 11 th axis is in motion, regardless of the type of mode.	R
12 th Axis Is Moving	M3x475	This special M is ON when the 12 th axis is in motion, regardless of the type of mode.	R
13 th Axis Is Moving	M3x476	This special M is ON when the 13 th axis is in motion, regardless of the type of mode.	R
14 th Axis Is Moving	M3x477	This special M is ON when the 14 th axis is in motion, regardless of the type of mode.	R
15 th Axis Is Moving	M3x478	This special M is ON when the 15 th axis is in motion, regardless of the type of mode.	R
16 th Axis Is Moving	M3x479	This special M is ON when the 16 th axis is in motion, regardless of the type of mode.	R
X Axis Moving Forward	M3x480	This special M is ON when the X axis is moving in the positive direction.	R
Y Axis Moving Forward	M3x481	This special M is ON when the Y axis is moving in the positive direction.	R
Z Axis Moving Forward	M3x482	This special M is ON when the Z axis is moving in the positive direction.	R
A Axis Moving Forward	M3x483	This special M is ON when the A axis is moving in the positive direction.	R
B Axis Moving Forward	M3x484	This special M is ON when the B axis is moving in the positive direction.	R
C Axis Moving Forward	M3x485	This special M is ON when the C axis is moving in the positive direction.	R
U Axis Moving Forward	M3x486	This special M is ON when the U axis is moving in the positive direction.	R
V Axis Moving Forward	M3x487	This special M is ON when the V axis is moving in the positive direction.	R
W Axis Moving Forward	M3x488	This special M is ON when the W axis is moving in the positive direction.	R
10 th Axis Moving Forward	M3x489	This special M is ON when the 10 th axis is moving in the positive direction.	R
11 th Axis Moving Forward	M3x490	This special M is ON when the 11 th axis is moving in the positive direction.	R
12 th Axis Moving Forward	M3x491	This special M is ON when the 12 th axis is moving in the positive direction.	R

Function Name	Special M	M Description		
13 th Axis Moving Forward	M3x492	This special M is ON when the 13 th axis is moving in the positive direction.	R	
14 th Axis Moving Forward	M3x493	This special M is ON when the 14 th axis is moving in the positive direction.	R	
15 th Axis Moving Forward	M3x494	This special M is ON when the 15 th axis is moving in the positive direction.	R	
16 th Axis Moving Forward	M3x495	This special M is ON when the 16 th axis is moving in the positive direction.	R	
X Axis Moving Backward	M3x496	This special M is ON when the X axis is moving in the negative direction.	R	
Y Axis Moving Backward	M3x497	This special M is ON when the Y axis is moving in the negative direction.	R	
Z Axis Moving Backward	M3x498	This special M is ON when the Z axis is moving in the negative direction.	R	
A Axis Moving Backward	M3x499	This special M is ON when the A axis is moving in the negative direction.	R	
B Axis Moving Backward	M3x500	This special M is ON when the B axis is moving in the negative direction.	R	
C Axis Moving Backward	M3x501	This special M is ON when the C axis is moving in the negative direction.	R	
U Axis Moving Backward	M3x502	This special M is ON when the U axis is moving in the negative direction.	R	
V Axis Moving Backward	M3x503	This special M is ON when the V axis is moving in the negative direction.	R	
W Axis Moving Backward	M3x504	This special M is ON when the W axis is moving in the negative direction.	R	
10 th Axis Moving Backward	M3x505	This special M is ON when the 10 th axis is moving in the negative direction.	R	
11 th Axis Moving Backward	M3x506	This special M is ON when the 11 th axis is moving in the negative direction.	R	
12 th Axis Moving Backward	M3x507	This special M is ON when the 12 th axis is moving in the negative direction.	R	
13 th Axis Moving Backward	M3x508	This special M is ON when the 13 th axis is moving in the negative direction.	R	
14 th Axis Moving Backward	M3x509	This special M is ON when the 14 th axis is moving in the negative direction.	R	
15 th Axis Moving Backward	M3x510	This special M is ON when the 15 th axis is moving in the negative direction.	R	
16 th Axis Moving Backward	M3x511	This special M is ON when the 16 th axis is moving in the negative direction.	R	
Diameter or Radius Mode of X Axis	M3x512	In the lathe system, this special M is ON when the X axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of Y Axis	M3x513	In the lathe system, this special M is ON when the Y axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of Z Axis	M3x514	In the lathe system, this special M is ON when the Z axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of A Axis	M3x515	In the lathe system, this special M is ON when the A axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of B Axis	M3x516	In the lathe system, this special M is ON when the B axis is in the diameter mode or OFF when it is in the radius mode.	R	

Function Name	Special M	Description	Device	
Diameter or Radius Mode of C Axis	M3x517	In the lathe system, this special M is ON when the C axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of U Axis	M3x518	In the lathe system, this special M is ON when the U axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of V Axis	M3x519	In the lathe system, this special M is ON when the V axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of W Axis	M3x520	In the lathe system, this special M is ON when the W axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of 10 th Axis	M3x521	In the lathe system, this special M is ON when the 10 th axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of 11 th Axis	M3x522	In the lathe system, this special M is ON when the 11 th axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of 12 th Axis	M3x523	In the lathe system, this special M is ON when the 12 th axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of 13 th Axis	M3x524	In the lathe system, this special M is ON when the 13 th axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of 14 th Axis	M3x525	In the lathe system, this special M is ON when the 14 th axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of 15 th Axis	M3x526	In the lathe system, this special M is ON when the 15 th axis is in the diameter mode or OFF when it is in the radius mode.	R	
Diameter or Radius Mode of 16 th Axis	M3x527	In the lathe system, this special M is ON when the 16 th axis is in the diameter mode or OFF when it is in the radius mode.	R	
1 st Spindle Speed Reach	M3x704	This special M is ON when the 1 st spindle's speed reaches the target value.	R	
1 st Spindle Zero Speed	M3x705	This special M is ON when the 1 st spindle's speed reaches zero.	R	
1 st Spindle Target Reach	M3x706	This special M is ON when the 1 st spindle reaches the target position.	R	
1 st Spindle Is in The Rigid Tapping	M3x707	This special M is ON when the 1 st spindle is executing the rigid tapping.	R	
1 st Spindle Is in Position Axis Mode	M3x709	This special M is ON when the 1 st spindle is switching from S axis to C axis.	R	
1 st Spindle Ready	M3x710	This special M is ON when the 1 st spindle is ready to use.	R	
2 nd Spindle Speed Reach	M3x720	This special M is ON when the 2 nd spindle's speed reaches the target value.	R	
2 nd Spindle Zero Speed	M3x721	This special M is ON when the 2 nd spindle's speed reaches zero.	R	
2 nd Spindle Target Reach	M3x722	This special M is ON when the 2 nd spindle reaches the target position.	R	
2 nd Spindle Is in The Rigid Tapping	M3x723	This special M is ON when the 2 nd spindle is executing the rigid tapping.	R	
2 nd Spindle Is in Position Axis Mode	M3x725	This special M is ON when the 2^{nd} spindle is switching from S axis to C axis.	R	

Function Name	Special M	M Description		
2 nd Spindle Ready	M3x726	This special M is ON when the 2 nd spindle is ready to use.	R	
3 rd Spindle Speed Reach	M3x736	This special M is ON when the 3 rd spindle's speed reaches the target value.	R	
3 rd Spindle Zero Speed	M3x737	This special M is ON when the 3 rd spindle's speed reaches zero.	R	
3 rd Spindle Target Reach	M3x738	This special M is ON when the 3 rd spindle reaches the target position.	R	
3 rd Spindle Is in The Rigid Tapping	M3x739	This special M is ON when the 3 rd spindle is executing the rigid tapping.	R	
3 rd Spindle Is in Position Axis Mode	M3x741	This special M is ON when the 3 rd spindle is switching from S axis to C axis.	R	
3 rd Spindle Ready	M3x742	This special M is ON when the 3 rd spindle is ready to use.	R	
4 th Spindle Speed Reach	M3x752	This special M is ON when the 4 th spindle's speed reaches the target value.	R	
4 th Spindle Zero Speed	M3x753	This special M is ON when the 4 th spindle's speed reaches zero.	R	
4 th Spindle Target Reach	M3x754	This special M is ON when the 4 th spindle reaches the target position.	R	
4 th Spindle Is in The Rigid Tapping	M3x755	This special M is ON when the 4 th spindle is executing the rigid tapping.	R	
4 th Spindle Is in Position Axis Mode	M3x757	This special M is ON when the 4 th spindle is switching from S axis to C axis.	R	
4 th Spindle Ready	M3x758	This special M is ON when the 4 th spindle is ready to use.	R	
5 th Spindle Speed Reach	M3x768	This special M is ON when the 5 th spindle's speed reaches the target value.	R	
5 th Spindle Zero Speed	M3x769	This special M is ON when the 5 th spindle's speed reaches zero.	R	
5 th Spindle Positioning Control	M3x770	This special M is ON when the 5 th spindle reaches the target position.	R	
5 th Spindle Is in The Rigid Tapping	M3x771	This special M is ON when the 5 th spindle is executing the rigid tapping.	R	
Switching C / S Axis of 5 th Lathe Spindle	M3x773	This special M is ON when the 5^{th} spindle is switching from S axis to C axis.	R	
5 th Spindle Ready	M3x774	This special M is ON when the 5 th spindle is ready to use.	R	
6 th Spindle Speed Reach	M3x784	This special M is ON when the 6 th spindle's speed reaches the target value.	R	
6 th Spindle Zero Speed	M3x785	This special M is ON when the 6 th spindle's speed reaches zero.	R	
6 th Spindle Target Reach	M3x786	This special M is ON when the 6 th spindle reaches the target position.	R	
6 th Spindle Is in The Rigid Tapping	M3x787	This special M is ON when the 6 th spindle is executing the rigid tapping.	R	
6 th Spindle Is In Position Axis Mode	M3x789	This special M is ON when the 6^{th} spindle is switching from S axis to C axis.	R	
6 th Spindle Ready	M3x790	This special M is ON when the 6 th spindle is ready to use.	R	
7 th Spindle Speed Reach	M3x800	This special M is ON when the 7 th spindle's speed reaches the target value.	R	
7 th Spindle Zero Speed	M3x801	This special M is ON when the 7 th spindle's speed reaches zero.	R	

Function Name	Special M	Description	Device
7 th Spindle Target Reach	M3x802	This special M is ON when the 7 th spindle reaches the target position.	R
7 th Spindle Is in The Rigid Tapping	M3x803	This special M is ON when the 7 th spindle is executing the rigid tapping.	R
7 th Spindle Is in Position Axis Mode	M3x805	This special M is ON when the 7 th spindle is switching from S axis to C axis.	R
7 th Spindle Ready	M3x806	This special M is ON when the 7 th spindle is ready to use.	R
8 th Spindle Speed Reach	M3x816	This special M is ON when the 8 th spindle's speed reaches the target value.	R
8 th Spindle Zero Speed	M3x817	This special M is ON when the 8 th spindle's speed reaches zero.	R
8 th Spindle Target Reach	M3x818	This special M is ON when the 8 th spindle reaches the target position.	R
8 th Spindle Is in The Rigid Tapping	M3x819	This special M is ON when the 8 th spindle is executing the rigid tapping.	R
8 th Spindle Is in Position Axis Mode	M3x821	This special M is ON when the 8 th spindle is switching from S axis to C axis.	R
8 th Spindle Ready	M3x822	This special M is ON when the 8 th spindle is ready to use.	R

5.2.3 List of special D (MLC to system)

5.2.3.1 D20000 to D28999

	Function Name	Special D	Description	Device	Туре	Range
	NC Channel Selection	D20000	Setting the current NC channel for the controller and screen interface. When the value is 1, it means the system is using and showing NC channel 1; when the value is 2, it means the system is using and showing NC channel 2, and so forth.	R/W	Decimal	0 ~ 65,535
	Spindle Analog Voltage Output Port 1	D20160	When the spindle is in EtherCAT mode, users can use this special D	R/W	Decimal	-1,000 ~ +1,000
-	Spindle Analog Voltage Output Port 2	D20161	voltage. Unit: 0.01V.	R/W	Decimal	-1,000 ~ +1,000
	1 st Remote Module Output	D20200 D20201 D20202 D20203	For connected modules that do not include digital input/output (DI/O), the system will set the arrangement order according to the EtherCAT module and will set the special D module with the special D based on the connection order (such as analog modules). After the remote modules get these data, it will output the results as transferred data. Taking the first module as an example, D20200 corresponds to the first set of values on the module, D20201 corresponds to the second set of values on the module, and so forth.	R/W	Decimal	0 ~ 65,535
-	2 nd Remote Module Output	D20204 D20205 D20206 D20207		R/W	Decimal	0 ~ 65,535
-	3 rd Remote Module Output	D20208 D20209 D20210 D20211		R/W	Decimal	0 ~ 65,535
	4 th Remote Module Output	D20212 D20213 D20214 D20215		R/W	Decimal	0 ~ 65,535
	5 th Remote Module Output	D20216 D20217 D20218 D20219		R/W	Decimal	0 ~ 65,535
-	6 th Remote Module Output	D20220 D20221 D20222 D20223		R/W	Decimal	0 ~ 65,535
-	7 th Remote Module Output	D20224 D20225 D20226 D20227		R/W	Decimal	0 ~ 65,535
-	8 th Remote Module Output	D20228 D20229 D20230 D20231		R/W	Decimal	0 ~ 65,535

Function Name	Special D		Description		Device	Туре	Range
NC Mode Switching	D2x000	This special D is for NC channels to switch to different operation modes. 0: AUTO 1: EDIT 2: MDI 3: MPG 4: JOG 5: RAPID 6: INC 7: HOME			R/W	Decimal	0~7
Feed Rate Percentage	D2x002	Setting for feed rate percentage of NC program speed. Unit: % Ex: When the NC program speed is 1000 mm/min and this D2x002 is 50, this means the NC system will execute the axes interpolation speed as 1000 x 50% = 500 mm/min.			R/W	Decimal	0 ~ 150
Rapid Speed Percentage	D2x004	Setting NC r for G00 com Unit: % Ex: When th [N1.030] is 6 D2x004 is 5 system will 6 speed as 60 mm/min.	apid speed imand. 6000 mm/min 0, this mean execute the a 00 x 50% =	percentage speed n and this s the NC axes rapid 3000	R/W	Decimal	0 ~ 65,535
Speed Override for JOG and INC	D2x006	Setting JOG and INC speed.When the system is in JOG or INCmode, it will take two differentmode types to determine themoving speed. If the JOG speedmode [N1.011 Bit26] is set as 0,the system will take the JOGmaximum speed [N2.030] andthe multiply this the value in thisspecial D (unit: %) as the JOGmoving speed.If the JOG speed mode [N1.011Bit26] is set as 1, the system willtake the value of this special D asthe JOG moving speed directly.The unit of this special D will referto parameter axes control type[N2.001UnitBit 2~4Bit 11 = 0Bit 2~4Bit 11 = 1RPM			R/W	Decimal	Percentage Mode 0 ~ 100 Constant Mode 0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
1 st MPG Axes Selection	D2x008	This special D is for the NC system to switch the 1 st MPG axis in MPG mode. 0: X axis 1: Y axis 2: Z axis 3: A axis 15: 16 th axis	R/W	Decimal	0 ~ 15
1 st MPG Ratio Selection	D2x009	This special D is for the NC system to switch the 1 st MPG axis moving ratio, which can be 1, 10 or 100. The system will take the unit setting [N9.013] as the smallest movement and then multiply it by this ratio to derive the final movement on each scale of the MPG hand wheel. Ex: When D2x009 is 1 and the unit setting [N9.013] is 0.001, with 3 decimal places, the minimum movement of the MPG hand wheel will be 0.001 × 1 = 0.001 mm.	R/W	Decimal	0 ~ 65,535
2 nd MPG Axes Selection	D2x010	This special D is for the NC system to switch the 2 nd MPG axis in MPG mode. 0: X axis 1: Y axis 2: Z axis 3: A axis 15: 16 th axis *Set M20024 [Enable 3 MPG Control] to ON to enable this function.	R/W	Decimal	0 ~ 15
2 nd MPG Ratio Selection	D2x011	This special D is for the NC system to switch the 2^{nd} MPG axis moving ratio, which can be 1, 10 or 100. The system will take the unit setting [N9.013] as the smallest movement and then multiply it by this ratio to derive the final movement on each scale of the MPG hand wheel. Ex: When D2x009 is 1 and the unit setting [N9.013] is 0.001, with 3 decimal places, the minimum movement of the MPG hand wheel will be 0.001 × 1 = 0.001 mm. *Set M20024 [Enable 3 MPG Control] to ON to enable this function.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
3 rd MPG Axes Selection	D2x012	This special D is for the NC system to switch the MPG axis in the 3 rd MPG mode. 0: X axis 1: Y axis 2: Z axis 3: A axis 15: 16 th axis *Set M20024 [Enable 3 MPG Control] to ON to enable this function.	R/W	Decimal	0 ~ 15
3 rd MPG Ratio Selection	D2x013	This special D is for the NC system to switch the 3 rd MPG axis moving ratio, which can be 1, 10 or 100. The system will take the unit setting [N9.013] as the smallest movement and then multiply it by this ratio to derive the final movement on each scale of the MPG hand wheel. Ex: When D2x009 is 1 and the unit setting [N9.013] is 0.001, with 3 decimal places, the minimum movement of the MPG hand wheel will be 0.001 × 1 = 0.001 mm. *Set M20024 [Enable 3 MPG Control] to ON to enable this function.	R/W	Decimal	0 ~ 65,535
Axes Movement in INC Mode	D2x014	When the NC system is in INC mode and the JOG motion trigger special M (M2x384 ~ M2x415) is enabled, the system will take this special D and then multiply the unit setting [N9.013] to derive the target movement. Ex: When D2x014 is 1234 and unit setting [N9.013] is 0.001, with 3 decimal places, the axes will move 1.234 mm every time the special M of JOG motion trigger enabled.	R/W	Decimal	0 ~ 4,294,967,295
Robot's Coordinate System Switch in Manual Mode	D2x016	Setting the Robot's coordinate system when the system is in manual mode. 0: Not using coordinate manual mode 1 ~ 6: corresponding to G54 ~ G59.	R/W	Decimal	0~6
Robot's Tool System Switch in Manual Mode	D2x017	Setting the Robot's tool offset system when the system is in manual mode. 0: Not using tool offset 1 ~ N: corresponds to tool number	R/W	Decimal	0 ~ N N will be based on N0.408 ~ N0.411
Axes Oscillation Amplitude	D2x018 D2x019	When the axes oscillation control [M2x264] is enabled, the activated axes will oscillate based on the amplitude here. Unit: mm	R/W	Float	-2,147,483,648 ~ +2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Axes Oscillation Cycle Time	D2x020 D2x021	When the axes oscillation control [M2x264] is enabled, the system will take this special D as the cycle time for each oscillation command. Unit: ms	R/W	Float	2,147,483,648 ~ +2,147,483,647
Oscillation Axes Enable	D2x022	The oscillation axes use this 16-bit special D as the mask to determine whether to enable the function on each specific axis. For example, if this set to 5, it means the X and Z axes will both have their oscillation function activated.	R/W	Decimal	0 ~ 65,535
Axes Oscillation Wave Type	D2x023	Setting for axes oscillation wave type. 0: Start position as middle position of the SIN wave. 1: Start position as base position (max or min) of the SIN wave.	R/W	Decimal	0~1
1 st Spindle Speed	D2x024 D2x025	Write the 1 st spindle's speed through the special D (in accordance with M2x710).	R/W	Decimal	0 ~ 4,294,967,295
1 st Spindle Speed Rate	D2x026	Setting the spindle's speed ratio. Ex: When the program speed is S1000 and this special D is 30, then the NC system will execute the spindle speed as 1000 x 30% = 300 RPM.	R/W	Decimal	0 ~ 65,535
1 st Spindle Gear Ratio Selection	D2x027	Select in accordance with N0.1034 \sim N0.1041. Ex: When this special D is set to 1, the system will set the 1 st spindle to 1 st gear, when it is set to 2, it will be in 2 nd gear, and so forth.	R/W	Decimal	0 ~ 65,535
2 nd Spindle Speed	D2x030 D2x031	Write the 2 nd spindle's speed through the special D (in accordance with M2x726).	R/W	Decimal	0 ~ 4,294,967,295
2 nd Spindle Speed Rate	D2x032	Setting the spindle's speed ratio. Ex: When the program speed is S1000 and this special D is 30, then the NC system will execute the spindle speed as $1000 \times 30\% =$ 300 RPM.	R/W	Decimal	0 ~ 65,535
2 nd Spindle Gear Ratio Selection	D2x033	Select in accordance with N0.1084 ~ N0.1091 . Ex: When this special D is set to 1, the system will set the 2^{nd} spindle to 1^{st} gear, when it is set to 2, it will be in 2^{nd} gear, and so forth.	R/W	Decimal	0 ~ 65,535
Tool Number Tool Magazine 1	D2x036	Write the tool number through the special D (in accordance with N1.010).	R/W	Decimal	0 ~ 65,535
Standby Tool Number Tool Magazine 1	D2x037	Write the standby tool number through the special D (in accordance with N1.010).	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
Command Tool Number Tool Magazine 1	D2x038	Write the command tool number through the special D (in accordance with N1.010).	R/W	Decimal	0 ~ 65,535
Tool Number Tool Magazine 2	D2x042	Write the tool number through the special D (in accordance with N1.010).	R/W	Decimal	0 ~ 65,535
Standby Tool Number Tool Magazine 2	D2x043	Write the standby tool number through the special D (in accordance with N1.010).	R/W	Decimal	0 ~ 65,535
Command Tool Number Tool Magazine 2	D2x044	Write the command tool number through the special D (in accordance with N1.010).	R/W	Decimal	0 ~ 65,535
1 st Macro Call Macro Number	D2x064	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 1 st macro call is triggered with special M2x032 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
2 nd Macro Call Macro Number	D2x065	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 2 nd macro call is triggered with special M2x033 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
3 rd Macro Call Macro Number	D2x066	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 3 rd macro call is triggered with special M2x034 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
4 th Macro Call Macro Number	D2x067	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 4 th macro call is triggered with special M2x035 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
5 th Macro Call Macro Number	D2x068	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 5 th macro call is triggered with special M2x036 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
6 th Macro Call Macro Number	D2x069	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 6 th macro call is triggered with special M2x037 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
7 th Macro Call Macro Number	D2x070	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 7 th macro call is triggered with special M2x038 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
8 th Macro Call Macro Number	D2x071	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 8 th macro call is triggered with special M2x039 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
9 th Macro Call Macro Number	D2x072	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 9 th macro call is triggered with special M2x040 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
10 th Macro Call Macro Number	D2x073	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 10 th macro call is triggered with special M2x041 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
11 th Macro Call Macro Number	D2x074	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 11 th macro call is triggered with special M2x042 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
12 th Macro Call Macro Number	D2x075	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 12 th macro call is triggered with special M2x043 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
13 th Macro Call Macro Number	D2x076	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 13 th macro call is triggered with special M2x044 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
14 th Macro Call Macro Number	D2x077	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 14 th macro call is triggered with special M2x045 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
15 th Macro Call Macro Number	D2x078	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 15 th macro call is triggered with special M2x046 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
16 th Macro Call Macro Number	D2x079	Specify the macro call function's O macro file number, such as O9xxx. Ex: When this special D is written to K9100 and the 16 th macro call is triggered with special M2x047 , the NC system will execute the O9100 program.	R/W	Decimal	1 ~ 65,535
MLC to NC Variable 1	D2x128	The system will move data from this special D to NC variable #25128.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 2	D2x129	The system will move data from this special D to NC variable #25129. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 3	D2x130	The system will move data from this special D to NC variable #25130.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 4	D2x131	The system will move data from this special D to NC variable #25131. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 5	D2x132	The system will move data from this special D to NC variable #25132.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 6	D2x133	The system will move data from this special D to NC variable #25133. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 7	D2x134	The system will move data from this special D to NC variable #25134.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 8	D2x135	The system will move data from this special D to NC variable #25135. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535

5-59

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 9	D2x136	The system will move data from this special D to NC variable #25136.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 10	D2x137	The system will move data from this special D to NC variable #25137. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 11	D2x138	The system will move data from this special D to NC variable #25138.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 12	D2x139	The system will move data from this special D to NC variable #25139. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 13	D2x140	The system will move data from this special D to NC variable #25140.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 14	D2x141	The system will move data from this special D to NC variable #25141. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 15	D2x142	The system will move data from this special D to NC variable #25142.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 16	D2x143	The system will move data from this special D to NC variable #25143. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 17	D2x144	The system will move data from this special D to NC variable #25144.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 18	D2x145	The system will move data from this special D to NC variable #25145. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 19	D2x146	The system will move data from this special D to NC variable #25146.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 20	D2x147	The system will move data from this special D to NC variable #25147. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 21	D2x148	The system will move data from this special D to NC variable #25148.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 22	D2x149	The system will move data from this special D to NC variable #25149. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 23	D2x150	The system will move data from this special D to NC variable #25150.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 24	D2x151	The system will move data from this special D to NC variable #25151. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 25	D2x152	The system will move data from this special D to NC variable #25152.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 26	D2x153	The system will move data from this special D to NC variable #25153. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 27	D2x154	The system will move data from this special D to NC variable #25154.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 28	D2x155	The system will move data from this special D to NC variable #25155. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 29	D2x156	The system will move data from this special D to NC variable #25156.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 30	D2x157	The system will move data from this special D to NC variable #25157. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 31	D2x158	The system will move data from this special D to NC variable #25158.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 32	D2x159	The system will move data from this special D to NC variable #25159. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 33	D2x160	The system will move data from this special D to NC variable #25160.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 34	D2x161	The system will move data from this special D to NC variable #25161. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 35	D2x162	The system will move data from this special D to NC variable #25162.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 36	D2x163	The system will move data from this special D to NC variable #25163. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 37	D2x164	The system will move data from this special D to NC variable #25164.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 38	D2x165	The system will move data from this special D to NC variable #25165. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 39	D2x166	The system will move data from this special D to NC variable #25166.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 40	D2x167	The system will move data from this special D to NC variable #25167. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 41	D2x168	The system will move data from this special D to NC variable #25168.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 42	D2x169	The system will move data from this special D to NC variable #25169. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 43	D2x170	The system will move data from this special D to NC variable #25170.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 44	D2x171	The system will move data from this special D to NC variable #25171. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 45	D2x172	The system will move data from this special D to NC variable #25172.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 46	D2x173	The system will move data from this special D to NC variable #25173. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 47	D2x174	The system will move data from this special D to NC variable #25174.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 48	D2x175	The system will move data from this special D to NC variable #25175. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 49	D2x176	The system will move data from this special D to NC variable #25176.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 50	D2x177	The system will move data from this special D to NC variable #25177. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 51	D2x178	The system will move data from this special D to NC variable #25178.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 52	D2x179	The system will move data from this special D to NC variable #25179. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 53	D2x180	The system will move data from this special D to NC variable #25180.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 54	D2x181	The system will move data from this special D to NC variable #25181. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 55	D2x182	The system will move data from this special D to NC variable #25182.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 56	D2x183	The system will move data from this special D to NC variable #25183. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 57	D2x184	The system will move data from this special D to NC variable #25184.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 58	D2x185	The system will move data from this special D to NC variable #25185. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 59	D2x186	The system will move data from this special D to NC variable #25186.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 60	D2x187	The system will move data from this special D to NC variable #25187. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 61	D2x188	The system will move data from this special D to NC variable #25188.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 62	D2x189	The system will move data from this special D to NC variable #25189. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 63	D2x190	The system will move data from this special D to NC variable #25190.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 64	D2x191	The system will move data from this special D to NC variable #25191. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 65	D2x192	The system will move data from this special D to NC variable #25192.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 66	D2x193	The system will move data from this special D to NC variable #25193. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 67	D2x194	The system will move data from this special D to NC variable #25194.	R/W	Decimal	0~65,535
MLC to NC Variable 68	D2x195	The system will move data from this special D to NC variable #25195. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 69	D2x196	The system will move data from this special D to NC variable #25196.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 70	D2x197	The system will move data from this special D to NC variable #25197. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 71	D2x198	The system will move data from this special D to NC variable #25198.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 72	D2x199	The system will move data from this special D to NC variable #25199. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 73	D2x200	The system will move data from this special D to NC variable #25200.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 74	D2x201	The system will move data from this special D to NC variable #25201. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 75	D2x202	The system will move data from this special D to NC variable #25202.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 76	D2x203	The system will move data from this special D to NC variable #25203. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 77	D2x204	The system will move data from this special D to NC variable #25204.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 78	D2x205	The system will move data from this special D to NC variable #25205. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 79	D2x206	The system will move data from this special D to NC variable #25206.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 80	D2x207	The system will move data from this special D to NC variable #25207. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 81	D2x208	The system will move data from this special D to NC variable #25208.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 82	D2x209	The system will move data from this special D to NC variable #25209. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 83	D2x210	The system will move data from this special D to NC variable #25210.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 84	D2x211	The system will move data from this special D to NC variable #25211. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 85	D2x212	The system will move data from this special D to NC variable #25212.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 86	D2x213	The system will move data from this special D to NC variable #25213. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 87	D2x214	The system will move data from this special D to NC variable #25214.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 88	D2x215	The system will move data from this special D to NC variable #25215. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 89	D2x216	The system will move data from this special D to NC variable #25216.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 90	D2x217	The system will move data from this special D to NC variable #25217. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 91	D2x218	The system will move data from this special D to NC variable #25218.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 92	D2x219	The system will move data from this special D to NC variable #25219. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 93	D2x220	The system will move data from this special D to NC variable #25220.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 94	D2x221	The system will move data from this special D to NC variable #25221. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 95	D2x222	The system will move data from this special D to NC variable #25222.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 96	D2x223	The system will move data from this special D to NC variable #25223. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 97	D2x224	The system will move data from this special D to NC variable #25224.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 98	D2x225	The system will move data from this special D to NC variable #25225. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 99	D2x226	The system will move data from this special D to NC variable #25226.	R/W	Decimal	0 ~ 65,535
Function Name	Special D	Description	Device	Туре	Range
---------------------------	--------------	---	--------	---------	------------
MLC to NC Variable 100	D2x227	The system will move data from this special D to NC variable #25227. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 101	D2x228	The system will move data from this special D to NC variable #25228.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 102	D2x229	The system will move data from this special D to NC variable #25229. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 103	D2x230	The system will move data from this special D to NC variable #25230.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 104	D2x231	The system will move data from this special D to NC variable #25231. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 105	D2x232	The system will move data from this special D to NC variable #25232.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 106	D2x233	The system will move data from this special D to NC variable #25233. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 107	D2x234	The system will move data from this special D to NC variable #25234.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 108	D2x235	The system will move data from this special D to NC variable #25235. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 109	D2x236	The system will move data from this special D to NC variable #25236.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 110	D2x237	The system will move data from this special D to NC variable #25237. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 111	D2x238	The system will move data from this special D to NC variable #25238.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 112	D2x239	The system will move data from this special D to NC variable #25239. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 113	D2x240	The system will move data from this special D to NC variable #25240.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 114	D2x241	The system will move data from this special D to NC variable #25241. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 115	D2x242	The system will move data from this special D to NC variable #25242.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 116	D2x243	The system will move data from this special D to NC variable #25243. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 117	D2x244	The system will move data from this special D to NC variable #25244.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 118	D2x245	The system will move data from this special D to NC variable #25245. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 119	D2x246	The system will move data from this special D to NC variable #25246.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
MLC to NC Variable 120	D2x247	The system will move data from this special D to NC variable #25247. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 121	D2x248	The system will move data from this special D to NC variable #25248.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 122	D2x249	The system will move data from this special D to NC variable #25249. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 123	D2x250	The system will move data from this special D to NC variable #25250.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 124	D2x251	The system will move data from this special D to NC variable #25251. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 125	D2x252	The system will move data from this special D to NC variable #25252.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 126	D2x253	The system will move data from this special D to NC variable #25253. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 127	D2x254	The system will move data from this special D to NC variable #25254.	R/W	Decimal	0 ~ 65,535
MLC to NC Variable 128	D2x255	The system will move data from this special D to NC variable #25255. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1]. Otherwise, the system will return error 0x235.	R/W	Decimal	0 ~ 65,535
Target Position of X axis (MLC Axis)	D2x256 D2x257	Specifies the target position of the X axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Target Position of Y axis (MLC Axis)	D2x258 D2x259	Specifies the target position of the Y axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of Z axis (MLC Axis)	D2x260 D2x261	Specifies the target position of the Z axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of A axis (MLC Axis)	D2x262 D2x263	Specifies the target position of the A axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of B axis (MLC Axis)	D2x264 D2x265	Specifies the target position of the B axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of C axis (MLC Axis)	D2x266 D2x267	Specifies the target position of the C axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of U axis (MLC Axis)	D2x268 D2x269	Specifies the target position of the U axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of V axis (MLC Axis)	D2x270 D2x271	Specifies the target position of the V axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of W axis (MLC Axis)	D2x272 D2x273	Specifies the target position of the W axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of 10 th axis (MLC Axis)	D2x274 D2x275	Specifies the target position of the 10 th axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of 11 th axis (MLC Axis)	D2x276 D2x277	Specifies the target position of the 11 th axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of 12 th axis (MLC Axis)	D2x278 D2x279	Specifies the target position of the 12 th axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of 13 th axis (MLC Axis)	D2x280 D2x281	Specifies the target position of the 13 th axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of 14 th axis (MLC Axis)	D2x282 D2x283	Specifies the target position of the 14 th axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Position of 15 th axis (MLC Axis)	D2x284 D2x285	Specifies the target position of the 15 th axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Target Position of 16 th axis (MLC Axis)	D2x286 D2x287	Specifies the target position of the 16 th axis in MLC axis mode. Unit: mm or inch.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of X axis (MLC Axis)	D2x288 D2x289	Specifies the target velocity of the X axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of Y axis (MLC Axis)	D2x290 D2x291	Specifies the target velocity of the Y axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of Z axis (MLC Axis)	D2x292 D2x293	Specifies the target velocity of the Z axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of A axis (MLC Axis)	D2x294 D2x295	Specifies the target velocity of the A axis in MLC axis mode. Unit: RPM.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of B axis (MLC Axis)	D2x296 D2x297	Specifies the target velocity of the B axis in MLC axis mode. Unit: RPM.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of C axis (MLC Axis)	D2x298 D2x299	Specifies the target velocity of the C axis in MLC axis mode. Unit: RPM.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of U axis (MLC Axis)	D2x300 D2x301	Specifies the target velocity of the U axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of V axis (MLC Axis)	D2x302 D2x303	Specifies the target velocity of the V axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of W axis (MLC Axis)	D2x304 D2x305	Specifies the target velocity of the W axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of 10 th axis (MLC Axis)	D2x306 D2x307	Specifies the target velocity of the 10 th axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of 11 th axis (MLC Axis)	D2x308 D2x309	Specifies the target velocity of the 11 th axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of 12 th axis (MLC Axis)	D2x310 D2x311	Specifies the target velocity of the 12 th axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of 13 th axis (MLC Axis)	D2x312 D2x313	Specifies the target velocity of the 13 th axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Target Velocity of 14 th axis (MLC Axis)	D2x314 D2x315	Specifies the target velocity of the 14 th axis in MLC axis mode. Unit: mm/min, inch/min.	R/W Float		-2,147,483,648 ~ +2,147,483,647
Target Velocity of 15 th axis (MLC Axis)	D2x316 D2x317	Specifies the target velocity of the 15 th axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	Float	-2,147,483,648 ~ +2,147,483,647
Target Velocity of 16 th axis (MLC Axis)	D2x318 D2x319	Specifies the target velocity of the 16 th axis in MLC axis mode. Unit: mm/min, inch/min.	R/W	R/W Float	-2,147,483,648 ~ +2,147,483,647
3 rd Spindle Speed	D2x320 D2x321	Write the 3 rd spindle's speed through the special D (in accordance with M2x742).	R/W	Decimal	0 ~ 4,294,967,295
3 rd Spindle Speed Rate	D2x322	Setting the spindle's speed ratio. Ex: When the program speed is S1000 and this special D is 30, then the NC system will execute the spindle speed as $1000 \times 30\% =$ 300 RPM.	R/W	Decimal	0 ~ 65,535
3 rd Spindle Gear Ratio Selection	D2x323	Select in accordance with N0.1134 \sim N0.1141 . Ex: When this special D is set to 1, the system will set the 3^{rd} spindle to 1^{st} gear, when it is set to 2, it will be in 2^{nd} gear, and so forth.	R/W	/W Decimal	0 ~ 65,535
4 th Spindle Speed	D2x326 D2x327	Write the 4 th spindle's speed through the special D (in accordance with M2x758).	R/W	Decimal	0 ~ 4,294,967,295
4 th Spindle Speed Rate	D2x328	Setting the spindle's speed ratio. Ex: When the program speed is S1000 and this special D is 30, then the NC system will execute the spindle speed as $1000 \times 30\% =$ 300 RPM.	R/W	Decimal	0 ~ 65,535
4 th Spindle Gear Ratio Selection	D2x329	Select in accordance with N0.1184 \sim N0.1191 . Ex: When this special D is set to 1, the system will set the 4 th spindle to 1 st gear, when it is set to 2, it will be in 2 nd gear, and so forth.	R/W	Decimal	0 ~ 65,535
5 th Spindle Speed	D2x332 D2x333	Write the 5 th spindle's speed through the special D (in accordance with M2x774).	R/W	Decimal	0 ~ 4,294,967,295
5 th Spindle Speed Rate	D2x334	Setting the spindle's speed ratio. Ex: When the program speed is S1000 and this special D is 30, then the NC system will execute the spindle speed as $1000 \times 30\% =$ 300 RPM.	R/W	Decimal	0 ~ 65,535
5 th Spindle Gear Ratio Selection	D2x335	Select in accordance with N0.1234 \sim N0.1241 . Ex: When this special D is set to 1, the system will set the 5 th t spindle to 1 st gear, when it is set to 2, it will be in 2 nd gear, and so forth.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
6 th Spindle Speed	D2x338 D2x339	Write the 6 th spindle's speed through the special D (in accordance with M2x790).	R/W	Decimal	0 ~ 4,294,967,295
6 th Spindle Speed Rate	D2x340	Setting the spindle's speed ratio. Ex: When the program speed is S1000 and this special D is 30, then the NC system will execute the spindle speed as $1000 \times 30\% =$ 300 RPM.	R/W	Decimal	0 ~ 65,535
6 th Spindle Gear Ratio Selection	D2x341	Select in accordance with N0.1284 N0.1291 . Ex: When this special D is set to 1, the system will set the 6^{th} spindle to 1^{st} gear, when it is set to 2, it will be in 2^{nd} gear, and so forth.	R/W	Decimal	0 ~ 65,535
7 th Spindle Speed	D2x344Write the 7 th spindle's speed through the special D (in accordance with M2x806).R/W	Decimal	0 ~ 4,294,967,295		
7 th Spindle Speed Rate	D2x346	Setting the spindle's speed ratio. Ex: When the program speed is S1000 and this special D is 30, then the NC system will execute the spindle speed as $1000 \times 30\% =$ 300 RPM.	R/W	Decimal	0 ~ 65,535
7 th Spindle Gear Ratio Selection	D2x347	Select in accordance with N0.1334 \sim N0.1341. Ex: When this special D is set to 1, the system will set the 7 th spindle to 1 st gear, when it is set to 2, it will be in 2 nd gear, and so forth.	rdance with N0.1334 :: When this special he system will set the 1 st gear, when it is set in 2 nd gear, and so	Decimal	0 ~ 65,535
8 th Spindle Speed	D2x350 D2x351	Write the 8 th spindle's speed through the special D (in accordance with M2x822).	R/W	Decimal	0 ~ 4,294,967,295
8 th Spindle Speed Rate	D2x352	Setting the spindle's speed ratio. Ex: When the program speed is S1000 and this special D is 30, then the NC system will execute the spindle speed as $1000 \times 30\% =$ 300 RPM.	R/W	Decimal	0 ~ 65,535
8 th Spindle Gear Ratio Selection	D2x353	Select in accordance with N0.1384 \sim N0.1391 . Ex: When this special D is set to 1, the system will set the 8 th spindle to 1 st gear, when it is set to 2, it will be in 2 nd gear, and so forth.	R/W	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
Complete Process Amount	D49x00 D49x01	Available to set this special D from system interface or MLC.	R/W	Decimal	0 ~ 4,294,967,295
Process Target Amount	D49x02 D49x03	Available to set this special D from system interface or MLC.	R/W	Decimal	0 ~ 4,294,967,295
Total Process Time	D49x04 D49x05	When the system parameter [N6.032 Process Time Record] is 1, the system will automatically record the total process time, in units of seconds.	R/W	Decimal	0 ~ 4,294,967,295
Single Process Time	D49x06When the system parameter [N6.032 Process Time Record] is 1, the system will automatically record the single process time, in units of seconds.R/W		R/W	Decimal	0 ~ 4,294,967,295

5.2.3.2 D49000 to D49899

5.2.4 List of special D (System status)

5.2.4.1 D30000 to D38999

Function Name	Special D	Description	Device	Туре	Range
Pulse Feedback of Spindle 1	D30000	Pulse feedback of spindle 1 connector.	R	Decimal	0 ~ 65,535
Pulse Feedback of Spindle 2	D30001	Pulse feedback of spindle 2 connector.	R	Decimal	0 ~ 65,535
Z Phase Pulse Feedback of Spindle 1	D30002	Z phase pulse feedback of spindle 1 connector.	R	Decimal	0 ~ 65,535
Z Phase Pulse Feedback of Spindle 2	D30003	Z phase pulse feedback of spindle 2 connector.	R	Decimal	0 ~ 65,535
MPG Pulse Feedback	D30004	Pulse feedback of MPG connector.	R	Decimal	0 ~ 65,535
Pulse Output of Spindle 1	D30008	Pulse output of spindle 1 connector.	R	Decimal	0 ~ 65,535
Pulse Output of Spindle 2	D30009	Pulse output of spindle 2 connector.	R	Decimal	0 ~ 65,535
Spindle 1 Pulse Feedback Coordinate	D30174 D30175	Display the pulse feedback coordinate from the Spindle 1 connector. The NC system will calculate the pulse feedback from the Spindle 1 connector as the 1 st spindle's feedback coordinate, which based on parameter setting of [N0.030 ~ N0.032] . When the [N0.030] set as rotary axis, this special D register will display the position between 0 ~ 359.999.	R	Float	-2,147,483,648 ~ +2,147,483,647
Spindle 2 Pulse Feedback Coordinate	D30176 D30177	Display the pulse feedback coordinate from the Spindle 2 connector. The NC system will calculate the pulse feedback from the Spindle 2 connector as the 2 nd spindle's feedback coordinate, which based on parameter setting of [N0.035 ~ N0.037] . When the [N0.035] set as rotary axis, this special D register will display the position between 0 ~ 359.999.	R	Float	-2,147,483,648 ~ +2,147,483,647
1 st Remote Module Input	D30200 D30201 D30202 D30203	For connected modules that do not include digital input/output (DI/O), the system will set the arrangement order according to the EtherCAT module	R	Decimal	0 ~ 65,535
2 nd Remote Module Input	D30204 D30205 D30206 D30207	the special D based on the connection order (such as analog modules). Taking the first module as an	R	Decimal	0 ~ 65,535
3 rd Remote Module Input	D30208 D30209 D30210 D30211	first set of values on the module, D30201 corresponds to the second set of values on the module, and so forth.	R	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
4 th Remote Module Input	D30212 D30213 D30214 D30215		R	Decimal	0 ~ 65,535
5 th Remote Module Input	D30216 D30217 D30218 D30219	For connected modules that do not include digital input/output (DI/O), the system will set the arrangement order according to the EtherCAT module and will set the special D module with	R	Decimal	0 ~ 65,535
6 th Remote Module Input	D30220 D30221 D30222 D30223	the special D based on the connection order (such as analog modules). Taking the first module as an	R	Decimal	0 ~ 65,535
7 th Remote Module Input	D30224 D30225 D30226 D30227	first set of values on the module, D30201 corresponds to the second set of values on the module, and so forth.	R	Decimal	0 ~ 65,535
8 th Remote Module Input	D30228 D30229 D30230 D30231		R	Decimal	0 ~ 65,535
Torque Feedback of 1 st Axis	D30240	_	R	Decimal	-32,768 ~ +32,767
Torque Feedback of 2 nd Axis	D30241		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 3 rd Axis	D30242		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 4 th Axis	D30243		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 5 th Axis	D30244		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 6 th Axis	D30245		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 7 th Axis	D30246		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 8 th Axis	D30247	Torque feedback for the axis. The axis index is set according to the NC channel axis sequence setting	R	Decimal	-32,768 ~ +32,767
Torque Feedback of 9 th Axis	D30248	PDO address 0x6077H	R	Decimal	-32,768 ~ +32,767
Torque Feedback of 10 th Axis	D30249		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 11 th Axis	D30250		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 12 th Axis	D30251		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 13 th Axis	D30252	_	R	Decimal	-32,768 ~ +32,767
Torque Feedback of 14 th Axis	D30253		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 15 th Axis	D30254		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 16 th Axis	D30255	-	R	Decimal	-32,768 ~ +32,767

Function Name	Special D	Description	Device	Туре	Range
Torque Feedback of 17 th Axis	D30256		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 18 th Axis	D30257		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 19 th Axis	D30258		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 20 th Axis	D30259		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 21 st Axis	D30260		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 22 nd Axis	D30261		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 23 rd axis	D30262		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 24 th Axis	D30263	index is set according to the NC channel axis sequence setting.	R	Decimal	-32,768 ~ +32,767
Torque Feedback of 25 th Axis	D30264	PDO address 0x6077H Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
Torque Feedback of 26 th Axis	D30265		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 27 th Axis	D30266		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 28 th Axis	D30267		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 29 th Axis	D30268		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 30 th Axis	D30269		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 31 st Axis	D30270		R	Decimal	-32,768 ~ +32,767
Torque Feedback of 32 nd Axis	D30271		R	Decimal	-32,768 ~ +32,767
Velocity Feedback of 1 st Axis (mm/min)	D30272 D30273		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 2 nd Axis (mm/min)	D30274 D30275		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 3 rd Axis (mm/min)	D30276 D30277	Axis speed feedback for the axis. The	R	Float	-2,147,483,648 -2,147,483,647
Velocity Feedback of 4 th Axis (mm/min)	D30278 D30279	axis index is set according to the NC channel axis sequence setting. PDO address 0x606CH	R	Float	-2,147,483,648
Velocity Feedback of 5 th Axis (mm/min)	D30280 D30281	Unit: mm/min	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 6 th Axis (mm/min)	D30282 D30283		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 7 th Axis (mm/min)	D30284 D30285		R	Float	-2,147,483,648 ~ +2,147,483,647

	Function Name	Special D	Description	Device	Туре	Range
·	Velocity Feedback of 8 th Axis	D30286 D30287		R	Float	-2,147,483,648
	(mm/min)			-		
	of 9 th Axis	D30288		R	Float	-2,147,465,046
	(mm/min)	000200				+2,147,483,647
	of 10 th Axis	D30290		R	Float	-2,147,483,648
	(mm/min)	D30291				+2,147,483,647
	Velocity Feedback of 11 th Axis	D30292		R	Float	-2,147,483,648 ~
	(mm/min)	D30293			+2,147,483,647	
	Velocity Feedback of 12 th Axis	D30294		R	Float	-2,147,483,648 ~
	(mm/min)	D30295				+2,147,483,647
	Velocity Feedback of 13 th Axis	D30296		R	Float	-2,147,483,648 ~
	(mm/min)	D30297				+2,147,483,647
	Velocity Feedback	D30298		R	Float	-2,147,483,648 ~
	(mm/min)	D30299			Tioat	+2,147,483,647
	Velocity Feedback	D30300		P	Float	-2,147,483,648 ~
	(mm/min)	D30301	D30301 D30302 D30302 D30303 Axis speed feedback for the axis. The axis index is set according to the NC channel axis sequence setting. D30304 PDO address 0x606CH	IX .		+2,147,483,647
	Velocity Feedback	D30302		Б	Float	-2,147,483,648
	(mm/min)	D30303		ĸ	Float	~ +2,147,483,647
	Velocity Feedback	D30304		_		-2,147,483,648
	(mm/min)	D30305	Unit: mm/min	ĸ	Float	~ +2,147,483,647
	Velocity Feedback	D30306		_		-2,147,483,648
	of 18" Axis (mm/min)	D30307		R	Float	~ +2,147,483,647
	Velocity Feedback	D30308				-2,147,483,648
	of 19 Axis (mm/min)	D30309		R	Float	~ +2,147,483,647
	Velocity Feedback	D30310				-2,147,483,648
	of 20 th Axis (mm/min)	D30311		R	Float	~ +2,147,483,647
	Velocity Feedback	D30312				-2,147,483,648
	of 21 st Axis (mm/min)	D30312		R	Float	~ +2,147,483,647
	Velocity Feedback	D30314				-2,147,483,648
	of 22 nd Axis (mm/min)	D30315		R	Float	~ +2,147,483,647
	Velocity Feedback	D30316		-		-2,147,483,648
	of 23 rd Axis (mm/min)	D30317		R	Float	~ +2,147,483,647
	Velocity Feedback	D30318		_	R Float	-2,147,483,648
	of 24 ^m Axis (mm/min)	² 24 th Axis D30319 mm/min)	th Axis D30319 I/min)	R		~ +2,147,483,647
	Velocity Feedback	D30320				-2,147,483,648
	of 25 th Axis (mm/min)	D30321		R	Float	~ +2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Velocity Feedback of 26 th Axis (mm/min)	D30322 D30323		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 27 th Axis (mm/min)	D30324 D30325		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 28 th Axis (mm/min)	D30326 D30327	Axis speed feedback for the axis. The	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 29 th Axis (mm/min)	D30328 D30329	axis index is set according to the NC channel axis sequence setting. PDO address 0x606CH	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 30 th Axis (mm/min)	D30330 D30331	Unit: mm/min	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 31 st Axis (mm/min)	D30332 D30333		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 32 nd Axis (mm/min)	D30334 D30335		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 1 st Axis (RPM)	D30336 D30337		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 2 nd Axis (RPM)	D30338 D30339		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 3 rd Axis (RPM)	D30340 D30341		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 4 th Axis (RPM)	D30342 D30343		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 5 th Axis (RPM)	D30344 D30345	Axis speed feedback for the axis. The	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 6 th Axis (RPM)	D30346 D30347	axis index is set according to the NC channel axis sequence setting. PDO address 0x606CH	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 7 th Axis (RPM)	D30348 D30349	Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 8 th Axis (RPM)	D30350 D30351		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 9 th Axis (RPM)	D30352 D30353		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 10 th Axis (RPM)	D30354 D30355		R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 11 th Axis (RPM)	D30356 D30357		R	Float	-2,147,483,648 ~ +2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Velocity Feedback of 12 th Axis (RPM)	D30358 D30359		R	Float	-2,147,483,648
Volocity Foodback	D30360	_			-2,147,483,648
of 13 th Axis (RPM)	D30361		R	Float	~ +2,147,483,647
Velocity Feedback	D30362			_ , ,	-2,147,483,648
of 14 th Axis (RPM)	D30363		R	Float	~ +2,147,483,647
Velocity Feedback	D30364		Б	Float	-2,147,483,648
of 15 th Axis (RPM)	D30365			Float	~ +2,147,483,647
Velocity Feedback	D30366		R	Float	-2,147,483,648 ~
of 16 th Axis (RPM)	D30367			Tioat	+2,147,483,647
Velocity Feedback	D30368		R	Float	-2,147,483,648 ~
of 17 th Axis (RPM)	D30369			Tioat	+2,147,483,647
Velocity Feedback	D30360	360	P	Float	-2,147,483,648 ~
of 18 th Axis (RPM)	D30371			Tiout	+2,147,483,647
Velocity Feedback	D30372		R	Float	-2,147,483,648 ~
of 19 th Axis (RPM)	D30373				+2,147,483,647
Velocity Feedback	D30374	Axis speed feedback for the axis. The	R	Float	-2,147,483,648 ~
of 20 ^m Axis (RPM)	D30375	axis index is set according to the NC channel axis sequence setting.			+2,147,483,647
Velocity Feedback	D30376	PDO address 0x606CH	R	Float	-2,147,483,648 ~
of 21 st Axis (RPM)	D30377	Unit: RPM			+2,147,483,647
Velocity Feedback	D30378		R	R Float	-2,147,483,648 ~
of 22 nd Axis (RPM)	D30379				+2,147,483,647
Velocity Feedback	D30380		R	Float	-2,147,483,648 ~
of 23 rd AXIS (RPM)	D30381				+2,147,483,647
Velocity Feedback	D30382		R	Float	-2,147,483,648 ~
	D30383				+2,147,483,647
Velocity Feedback	D30384		R	Float	-2,147,483,648 ~
	D30365				+2,147,483,647
Velocity Feedback	D30386		R	Float	-2,147,483,648 ~
	D30307	_			+2,147,483,647
Velocity Feedback	D30388		R	Float	-2,147,483,648 ~
	D30309				+2,147,483,647
Velocity Feedback	D30390		R	R Float	-2,147,483,648 ~
	D30391				+2,147,483,647
Velocity Feedback	D30392		R	Float	-2,147,483,648 ~
	D30393				+2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Velocity Feedback of 30 th Axis (RPM)	D30394 D30395	Axis speed feedback for the axis. The	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 31 st Axis (RPM)	D30396 D30397	axis index is set according to the NC channel axis sequence setting. PDO address 0x606CH	R	Float	-2,147,483,648 ~ +2,147,483,647
Velocity Feedback of 32 nd Axis (RPM)	D30398 D30399	Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
Torque Peak of 1 st Axis	D30400	The system will monitor and record the maximum axis torque shown in D30240 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 2 nd Axis	D30401	The system will monitor and record the maximum axis torque shown in D30241 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0~ 4,294,967,295
Torque Peak of 3 rd Axis	D30402	The system will monitor and record the maximum axis torque shown in D30242 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0~ 4,294,967,295
Torque Peak of 4 th Axis	D30403	The system will monitor and record the maximum axis torque shown in D30243 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 5 th Axis	D30404	The system will monitor and record the maximum axis torque shown in D30244 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0~ 4,294,967,295
Torque Peak of 6 th Axis	D30405	The system will monitor and record the maximum axis torque shown in D30245 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0~ 4,294,967,295
Torque Peak of 7 th Axis	D30406	The system will monitor and record the maximum axis torque shown in D30246 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%	R	Decimal	0~ 4,294,967,295
Torque Peak of 8 th Axis	D30407	The system will monitor and record the maximum axis torque shown in D30247 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 9 th Axis	D30408	The system will monitor and record the maximum axis torque shown in D30248 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 10 th Axis	D30409	The system will monitor and record the maximum axis torque shown in D30249 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295

F	Function Name D		Description	Device	Туре	Range
Т	orque Peak of 11 th Axis	D30410	The system will monitor and record the maximum axis torque shown in D30250 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Т	orque Peak of 12 th Axis	D30411	The system will monitor and record the maximum axis torque shown in D30251 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Т.	orque Peak of 13 th Axis	D30412	The system will monitor and record the maximum axis torque shown in D30252 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Т.	orque Peak of 14 th Axis	D30413	The system will monitor and record the maximum axis torque shown in D30253 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Т	orque Peak of 15 th Axis	D30414	The system will monitor and record the maximum axis torque shown in D30254 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
т.	orque Peak of 16 th Axis	D30415	The system will monitor and record the maximum axis torque shown in D30255 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Т	orque Peak of 17 th Axis	D30416	The system will monitor and record the maximum axis torque shown in D30256 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Т	orque Peak of 18 th Axis	D30417	The system will monitor and record the maximum axis torque shown in D30257 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Т.	orque Peak of 19 th Axis	D30418	The system will monitor and record the maximum axis torque shown in D30258 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0~ 4,294,967,295
Т.	orque Peak of 20 th Axis	D30419	The system will monitor and record the maximum axis torque shown in D30259 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0~ 4,294,967,295
Т.	orque Peak of 21 st Axis	D30420	The system will monitor and record the maximum axis torque shown in D30260 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit:	R	Decimal	0 ~ 4,294,967,295
Т	orque Peak of 22 nd Axis	D30421	The system will monitor and record the maximum axis torque shown in D30261 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295

Function Name	Special D	Description	Device	Туре	Range
Torque Peak of 23 rd Axis	D30422	The system will monitor and record the maximum axis torque shown in D30262 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 24 th Axis	D30423	The system will monitor and record the maximum axis torque shown in D30263 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 25 th Axis	D30424	The system will monitor and record the maximum axis torque shown in D30264 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 26 th Axis	D30425	The system will monitor and record the maximum axis torque shown in D30265 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 27 th Axis	D30426	The system will monitor and record the maximum axis torque shown in D30266 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 28 th Axis	D30427	The system will monitor and record the maximum axis torque shown in D30267 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 29 th Axis	D30428	The system will monitor and record the maximum axis torque shown in D30268 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 30 th Axis	D30429	The system will monitor and record the maximum axis torque shown in D30269 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 31 st Axis	D30430	The system will monitor and record the maximum axis torque shown in D30270 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
Torque Peak of 32 nd Axis	D30431	The system will monitor and record the maximum axis torque shown in D30271 during Servo ON. Once the axis enters Servo OFF, these special D will be cleared as well. Unit: 0.1%.	R	Decimal	0 ~ 4,294,967,295
1 st Spindle Torque Feedback	D30432		R	Decimal	-32,768 ~ +32,767
2 nd Spindle Torque Feedback	D30433	Display the spindle current torque feedback according to the spindle ID	R	Decimal	-32,768 ~ +32,767
3 rd Spindle Torque Feedback	D30434	setting in the channel. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
4 th Spindle Torque Feedback	D30435		R	Decimal	-32,768 ~ +32,767

Function Name	Special D	Description	Device	Туре	Range
5 th Spindle Torque Feedback	D30436		R	Decimal	-32,768 ~ +32,767
6 th Spindle Torque Feedback	D30437	Display the spindle current torque feedback according to the spindle ID	R	Decimal	-32,768 ~ +32,767
7 th Spindle Torque Feedback	D30438	setting in the channel. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
8 th Spindle Torque Feedback	D30439		R	Decimal	-32,768 ~ +32,767
1 st Spindle Torque Feedback Peak	D30440	The NC system will record the maximum torque feedback which showing in the D30432 when the spindle is enabled. Value cleared when the spindle is disabled. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
2 nd Spindle Torque Feedback Peak	D30441	The NC system will record the maximum torque feedback which showing in the D30433 when the spindle is enabled. Value cleared when the spindle is disabled. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
3 rd Spindle Torque Feedback Peak	D30442	The NC system will record the maximum torque feedback which showing in the D30434 when the spindle is enabled. Value cleared when the spindle is disabled. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
4 th Spindle Torque Feedback Peak	D30443	The NC system will record the maximum torque feedback which showing in the D30435 when the spindle is enabled. Value cleared when the spindle is disabled. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
5 th Spindle Torque Feedback Peak	D30444	The NC system will record the maximum torque feedback which showing in the D30436 when the spindle is enabled. Value cleared when the spindle is disabled. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
6 th Spindle Torque Feedback Peak	D30445	The NC system will record the maximum torque feedback which showing in the D30437 when the spindle is enabled. Value cleared when the spindle is disabled. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
7 th Spindle Torque Feedback Peak	D30446	The NC system will record the maximum torque feedback which showing in the D30438 when the spindle is enabled. Value cleared when the spindle is disabled. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767
8 th Spindle Torque Feedback Peak	D30447	The NC system will record the maximum torque feedback which showing in the D30439 when the spindle is enabled. Value cleared when the spindle is disabled. Unit: 0.1%	R	Decimal	-32,768 ~ +32,767

Function Name	Special D	Description	Device	Туре	Range
Current Multi Head Status of Z axis	D3x014	This special D will show the Z axes index currently in use when the Multi head function is enabled. When the value is 12, it means Z1 and Z2 are working. When the value is 123, it means Z1, Z2, and Z3 are working.	R	Decimal	0 ~ 4,294,967,295
Current Coordinate System	D3x016	 Shows the coordinate system the system is currently using. This coordinate system can be different according to the channel machine type setting such as standard type and Robot. 1. When the channel set as standard machine type such as milling or lathe, the system will show as below working coordinate system. 1~6: corresponding to G54 P1~G54 P256. 2. When the channel set as Robot machine type, the system will show as below working coordinate system. 1~6: corresponding to G54-G59. 7~262: corresponding to G54 P1~G54 P256. 2. When the channel set as Robot machine type, the system will show as below working coordinate system. 1~6: corresponding to G54~G59. 	R	Decimal	Standard 1 ~ 262 Robot 1~6
Current Robot Tool Coordinate D3x0 System		 Shows the robot tool coordinate system. 0: Not using tool offset 1 ~ n: corresponds to tool number 	R	Decimal	0 ~ 65,535
Speed Command of 1 st Spindle	D3x024	When the 1 st spindle S code is executed in a program, the command value will be sent in this special D. Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
1 st Spindle Speed Feedback	D3x026	Shows the 1 st spindle's speed. The data source is from the spindle's command speed.	R	Float	-2,147,483,648 ~ +2,147,483,647
1 st Spindle Actual Degree	D3x028	Shows the 1 st spindle's actual degree. The data source is from the spindle's actual degree.	R	Float	-2,147,483,648 ~ +2,147,483,647
Speed Command of 2 nd Spindle	D3x030	When the 2 nd spindle S code is executed in a program, the command value will be sent in this special D. Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
2 nd Spindle Speed Feedback	D3x032	Shows the 2 nd spindle's speed. The data source is from the spindle's command speed.	R	Float	-2,147,483,648 ~ +2,147,483,647
2 nd Spindle Actual Degree	D3x034	Shows the 2 nd spindle's actual degree. The data source is from the spindle's actual degree.	R	Float	-2,147,483,648 ~ +2,147,483,647
Current Tool Number Tool Magazine 1	D3x036	Current tool number in the tool magazine 1.	R	Decimal	0 ~ 65,535
Standby Tool Number Tool Magazine 1	D3x037	Current standby tool number in the tool magazine 1. (The latest T code)	R	Decimal	0 ~ 65,535
Standby Tool Pot Tool Magazine 1	D3x038	Current standby tool pot number in the tool magazine 1.	R	Decimal	0 ~ 65,535

	Function Name	Special D	Description	Device	Туре	Range
5	Tool Pot Deviation Tool Magazine 1	D3x039	The deviation between the positions specified for the current tool and command tool in tool magazine 1. Users can determine the rotation direction by whether this value is positive or negative. When the tool magazine rotates forward (M2x064) or backward (M2x065) during tool exchange, the tool magazine needs to rotate according to the value to compensate for the offset.	R	Decimal	0 ~ 65,535
	Current Tool Number Tool Magazine 2	D3x042	Current tool number in the tool magazine 2.	R	Decimal	0 ~ 65,535
	Standby Tool Number Tool Magazine 2	D3x043	Current standby tool number in the tool magazine 2. (The latest T code)	R	Decimal	0 ~ 65,535
	Standby Tool Pot Tool Magazine 2	D3x044	Current standby tool pot number in the tool magazine 2.	R	Decimal	0 ~ 65,535
	Tool Pot Deviation Tool Magazine 2	D3x045	The deviation between the positions specified for the current tool and command tool in tool magazine 2. Users can determine the rotation direction by whether this value is positive or negative. When the tool magazine rotates forward (M2x072) or backward (M2x073) during tool exchange, the tool magazine needs to rotate according to the value to compensate for the offset.	R	Decimal	0 ~ 65,535
	1 st M Code Data	D3x048	When the 1 st M code is executed in the program (Not including M00, M01, M02, M30, M98, M99), the M code value will be mapped to this register. When the M code is used to call the macro, this special D will keep the previous value.	R	Decimal	0 ~ 4,294,967,295
	1 st S Code Data	D3x050	When the 1 st spindle's 1 st S code is executed in the program, the 1 st spindle's S code will be mapped to this register. Unit: RPM.	R	Decimal	0 ~ 4,294,967,295
	1 st T Code Data	D3x052	When the 1 st T code is executed in the program, the T code will be mapped to this register. When the 1 st T code is used to call the macro, this special D will keep the previous value. This data is related to the tool pot setting of the tool magazine, and the T code will be shown only when the T code value is set within the specified range of tool number for the tool magazine parameter.	R	Decimal	0 ~ 4,294,967,295
	Information Monitoring 1 Sort 1	D3x096 D3x097	This special D is for users to monitor the information of system devices according to the variable settings. In order to use this special D, users need to set up [N1.321] for information type and [N1.322] for data sort 1 in advance. *Please check section 6.17 for more details.	R	Decimal	0 ~ 65,535

Function Name	Special D	Description	Device	Туре	Range
Information Monitoring 1 Sort 2	D3x098 D3x099	This special D is for users to monitor the information of system devices according to the variable settings. In order to use this special D, users need to set up [N1.321] for information type and [N1.323] for data sort 2 in advance. *Please check section 6.17 for more details.	R	Decimal	0 ~ 65,535
Information Monitoring 1 Sort 3	D3x100 D3x101	This special D is for users to monitor the information of system devices according to the variable settings. In order to use this special D, users need to set up [N1.321] for information type and [N1.324] for data sort 3 in advance. *Please check section 6.17 for more details.	R	Decimal	0 ~ 65,535
Information Monitoring 1 Sort 4	D3x102 D3x103	This special D is for users to monitor the information of system devices according to the variable settings. In order to use this special D, users need to set up [N1.321] for information type and [N1.325] for data sort 4 in advance. *Please check section 6.17 for more details.	R	Decimal	0 ~ 65,535
Information Monitoring 2 Sort 1	D3x104 D3x105	This special D is for users to monitor the information of system devices according to the variable settings. In order to use this special D, users need to set up [N1.326] for information type and [N1.327] for data sort 1 in advance. *Please check section 6.17 for more details.	R	Decimal	0 ~ 65,535
Information Monitoring 2 Sort 2	D3x106 D3x107	This special D is for users to monitor the information of system devices according to the variable settings. In order to use this special D, users need to set up [N1.326] for information type and [N1.328] for data sort 2 in advance. *Please check section 6.17 for more details.	R	Decimal	0 ~ 65,535
Information Monitoring 2 Sort 3	D3x108 D3x109	This special D is for users to monitor the information of system devices according to the variable settings. In order to use this special D, users need to set up [N1.326] for information type and [N1.329] for data sort 3 in advance. *Please check section 6.17 for more details.	R	Decimal	0 ~ 65,535
Information Monitoring 2 Sort 4	D3x110 D3x111	This special D is for users to monitor the information of system devices according to the variable settings. In order to use this special D, users need to set up [N1.326] for information type and [N1.330] for data sort 4 in advance. *Please check section 6.17 for more details.	R	Decimal	0 ~ 65,535

	Function Name	Special D	Description	Device	Туре	Range
-	NC Variable to MLC 1	D3x128	The system will move data from NC variable #25384 to this special D.	R		
	NC Variable to MLC 2	D3x129	The system will move data from NC variable #25385 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 3	D3x130	The system will move data from NC variable #25386 to this special D.	R		
	NC Variable to MLC 4	D3x131	The system will move data from NC variable #25387 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
_	NC Variable to MLC 5	D3x132	The system will move data from NC variable #25388 to this special D.	R		
	NC Variable to MLC 6	D3x133	The system will move data from NC variable #25389 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		(Default) -32,768 ~ +32,767 / (N1.010 Bit7=1)
_	NC Variable to MLC 7	D3x134	The system will move data from NC variable #25390 to this special D.	R	Decimal /	
	NC Variable to MLC 8	D3x135	The system will move data from NC variable #25391 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	Tioat	-2,147,483,648 ~ +2,147,483,647
_	NC Variable to MLC 9	D3x136	The system will move data from NC variable #25392 to this special D.	R		
	NC Variable to MLC 10	D3x137	The system will move data from NC variable #25393 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
_	NC Variable to MLC 11	D3x138	The system will move data from NC variable #25394 to this special D.	R		
_	NC Variable to MLC 12 NC Variable to	D3x139	The system will move data from NC variable #25395 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235. The system will move data from NC.	R		
	MLC 13	D3x140	variable #25396 to this special D.	R		

Function Name	Special D	Description	Device	Туре	Range								
NC Variable to MLC 14	D3x141	The system will move data from NC variable #25397 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R				5						
NC Variable to MLC 15	D3x142	The system will move data from NC variable #25398 to this special D.	R										
NC Variable to MLC 16	D3x143	The system will move data from NC variable #25399 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235	R										
NC Variable to MLC 17	D3x144	The system will move data from NC variable #25400 to this special D.	R										
NC Variable to MLC 18	D3x145	The system will move data from NC variable #25401 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	(Default) -32,768 ~	(Default) -32,768 ~		(Default) -32,768 ~	(Default) -32,768 ~	(Default) -32,768 ~	(Default) -32,768 ∼	(Default) -32,768 ~	(Default) -32,768 ~ +32,767	
NC Variable to MLC 19	D3x146	The system will move data from NC variable #25402 to this special D.	R	Decimal	+32,767 /								
NC Variable to MLC 20	D3x147	The system will move data from NC variable #25403 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	Float	(N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647								
NC Variable to MLC 21	D3x148	The system will move data from NC variable #25404 to this special D.	R	-									
NC Variable to MLC 22	D3x149	The system will move data from NC variable #25405 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R										
NC Variable to MLC 23	D3x150	The system will move data from NC variable #25406 to this special D.	R	-									
NC Variable to MLC 24	D3x151	The system will move data from NC variable #25407 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R										
NC Variable to MLC 25	D3x152	The system will move data from NC variable #25408 to this special D.	R										

	Function Name	Special D	Description	Device	Туре	Range
5	NC Variable to MLC 26	D3x153	The system will move data from NC variable #25409 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 27	D3x154	The system will move data from NC variable #25410 to this special D.	R		(Default) -32,768 ~ +32,767 / (N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647
	NC Variable to MLC 28	ariable to LC 28 D3x155 M Ot 0x	The system will move data from NC variable #25411 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 29	D3x156	The system will move data from NC variable #25412 to this special D.	R	Decimal	
	NC Variable to MLC 30	D3x157	The system will move data from NC variable #25413 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 31	D3x158	The system will move data from NC variable #25414 to this special D.	R		
	NC Variable to MLC 32	D3x159	The system will move data from NC variable #25415 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	/ Float	
	NC Variable to MLC 33	D3x160	The system will move data from NC variable #25416 to this special D.	R		
	NC Variable to MLC 34	D3x161	The system will move data from NC variable #25417 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	_	
	NC Variable to MLC 35	D3x162	The system will move data from NC variable #25418 to this special D.	R		
	NC Variable to MLC 36	D3x163	The system will move data from NC variable #25419 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	-	
	MLC 37	D3x164	variable #25420 to this special D.	R		

Function Name	Special D	Description	Device	Туре	Range	
NC Variable to MLC 38	D3x165	The system will move data from NC variable #25421 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			5
NC Variable to MLC 39	D3x166	The system will move data from NC variable #25422 to this special D.	R			
NC Variable to MLC 40	D3x167	The system will move data from NC variable #25423 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error	R			
NC Variable to	D3x168	0x235. The system will move data from NC	R			
MLC 41	DUX TOO	variable #25424 to this special D. The system will move data from NC				
NC Variable to MLC 42	D3x169	variable #25425 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		(Default) -32,768 ~	
NC Variable to MLC 43	D3x170	The system will move data from NC variable #25426 to this special D.	R	Decimal	+32,767 /	
NC Variable to MLC 44	D3x171	The system will move data from NC variable #25427 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	Float	(N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647	
NC Variable to MLC 45	D3x172	The system will move data from NC variable #25428 to this special D.	R	-		
NC Variable to MLC 46	D3x173	The system will move data from NC variable #25429 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
NC Variable to MLC 47	D3x174	The system will move data from NC variable #25430 to this special D.	R	-		
NC Variable to MLC 48	D3x175	The system will move data from NC variable #25431 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
NC Variable to MLC 49	D3x176	The system will move data from NC variable #25432 to this special D.	R			

	Function Name	Special D	Description	Device	Туре	Range
5	NC Variable to MLC 50	D3x177	The system will move data from NC variable #25433 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 51	D3x178	The system will move data from NC variable #25434 to this special D.	R		
	NC Variable to MLC 52	D3x179	The system will move data from NC variable #25435 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 53	D3x180	The system will move data from NC variable #25436 to this special D.	R		
	NC Variable to MLC 54	D3x181	The system will move data from NC variable #25437 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		(Default) -32,768 ~
	NC Variable to MLC 55	D3x182	The system will move data from NC variable #25438 to this special D.	R	Decimal	+32,767 /
	NC Variable to MLC 56	D3x183	The system will move data from NC variable #25439 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	/ Float	(N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647
	NC Variable to MLC 57	D3x184	The system will move data from NC variable #25440 to this special D.	R		
	NC Variable to MLC 58	D3x185	The system will move data from NC variable #25441 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	_	
	NC Variable to MLC 59	D3x186	The system will move data from NC variable #25442 to this special D.	R		
	NC Variable to MLC 60	D3x187	The system will move data from NC variable #25443 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 61	D3x188	rne system will move data from NC variable #25444 to this special D.	R		

Function Name	Special D	Description	Device	Туре	Range	
NC Variable to MLC 62	D3x189	The system will move data from NC variable #25445 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			5
NC Variable to MLC 63	D3x190	The system will move data from NC variable #25446 to this special D.	R			
NC Variable to MLC 64	D3x191	The system will move data from NC variable #25447 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] .	R			
		Otherwise, the system will return error 0x235.				
NC Variable to MLC 65	D3x192	The system will move data from NC variable #25448 to this special D.	R			
NC Variable to MLC 66	D3x193	The system will move data from NC variable #25449 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		(Default) -32,768 ~	
NC Variable to MLC 67	D3x194	The system will move data from NC variable #25450 to this special D.	R	Decimal	+32,767 /	
NC Variable to MLC 68	D3x195	The system will move data from NC variable #25451 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	Float	(N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647	
NC Variable to MLC 69	D3x196	The system will move data from NC variable #25452 to this special D.	R			
NC Variable to MLC 70	D3x197	The system will move data from NC variable #25453 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
NC Variable to MLC 71	D3x198	The system will move data from NC variable #25454 to this special D.	R	-		
NC Variable to MLC 72	D3x199	The system will move data from NC variable #25455 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
NC Variable to MLC 73	D3x200	The system will move data from NC variable #25456 to this special D.	R			

	Function Name	Special D	Description	Device	Туре	Range
5	NC Variable to MLC 74	D3x201	The system will move data from NC variable #25457 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 75	D3x202	The system will move data from NC variable #25458 to this special D.	R		
	NC Variable to MLC 76	D3x203	The system will move data from NC variable #25459 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 77	D3x204	The system will move data from NC variable #25460 to this special D.	R		
	NC Variable to MLC 78	D3x205	The system will move data from NC variable #25461 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		(Default) -32,768 ~
	NC Variable to MLC 79	D3x206	The system will move data from NC variable #25462 to this special D.	R	Decimal	+32,767
	NC Variable to MLC 80	D3x207	The system will move data from NC variable #25463 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	/ Float	(N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647
	NC Variable to MLC 81	D3x208	The system will move data from NC variable #25464 to this special D.	R		
	NC Variable to MLC 82	D3x209	The system will move data from NC variable #25465 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	-	
	NC Variable to MLC 83	D3x210	The system will move data from NC variable #25466 to this special D.	R		
	NC Variable to MLC 84	D3x211	The system will move data from NC variable #25467 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 85	D3x212	The system will move data from NC variable #25468 to this special D.	R		

Function Name	Special D	Description	Device	Туре	Range	
NC Variable to MLC 86	D3x213	The system will move data from NC variable #25469 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			5
NC Variable to MLC 87	D3x214	The system will move data from NC variable #25470 to this special D.	R	-		
NC Variable to MLC 88	D3x215	The system will move data from NC variable #25471 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
NC Variable to MLC 89	D3x216	The system will move data from NC variable #25472 to this special D.	R			
NC Variable to MLC 90	D3x217	The system will move data from NC variable #25473 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		(Default) -32,768 ∼	
NC Variable to MLC 91	D3x218	The system will move data from NC variable #25474 to this special D.	R	Decimal	+32,767 /	
NC Variable to MLC 92	D3x219	The system will move data from NC variable #25475 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	Float	(N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647	
NC Variable to MLC 93	D3x220	The system will move data from NC variable #25476 to this special D.	R			
NC Variable to MLC 94	D3x221	The system will move data from NC variable #25477 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
NC Variable to MLC 95	D3x222	The system will move data from NC variable #25478 to this special D.	R			
NC Variable to MLC 96	D3x223	The system will move data from NC variable #25479 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
NC Variable to MLC 97	D3x224	The system will move data from NC variable #25480 to this special D.	R			

	Function Name	Special D	Description	Device	Туре	Range
5	NC Variable to MLC 98	D3x225	The system will move data from NC variable #25481 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 99	D3x226	The system will move data from NC variable #25482 to this special D.	R		
	NC Variable to MLC 100	D3x227	The system will move data from NC variable #25483 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 101	D3x228	The system will move data from NC variable #25484 to this special D.	R		
	NC Variable to MLC 102	D3x229	The system will move data from NC variable #25485 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		(Default) -32,768 ~
	NC Variable to MLC 103	D3x230	The system will move data from NC variable #25486 to this special D.	R	Decimal	+32,767
	NC Variable to MLC 104	D3x231	The system will move data from NC variable #25487 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	Float	(N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647
	NC Variable to MLC 105	D3x232	The system will move data from NC variable #25488 to this special D.	R		
	NC Variable to MLC 106	D3x233	The system will move data from NC variable #25489 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	NC Variable to MLC 107	D3x234	The system will move data from NC variable #25490 to this special D.	R		
	NC Variable to MLC 108	D3x235	The system will move data from NC variable #25491 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		
	MLC 109	D3x236	variable #25492 to this special D.	R		

Function Na	ame	Special D	Description	Device	Туре	Range	
NC Variable MLC 110	e to 0	D3x237	The system will move data from NC variable #25493 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			5
NC Variable MLC 11	e to 1	D3x238	The system will move data from NC variable #25494 to this special D.	R			
NC Variable MLC 112	e to 2	D3x239	The system will move data from NC variable #25495 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error	R			
	o to		0x235.				
MLC 113	3	D3x240	variable #25496 to this special D.	R			
NC Variable MLC 114	e to 4	D3x241	The system will move data from NC variable #25497 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R		(Default) -32,768 ∼	
NC Variable MLC 115	e to 5	D3x242	The system will move data from NC variable #25498 to this special D.	R	Decimal	+32,767 /	
NC Variabl MLC 116	e to 6	D3x243	The system will move data from NC variable #25499 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R	/ Float	(N1.010 Bit7=1) -2,147,483,648 ~ +2,147,483,647	
NC Variable MLC 117	e to 7	D3x244	The system will move data from NC variable #25500 to this special D.	R			
NC Variable MLC 118	e to 8	D3x245	The system will move data from NC variable #25501 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
NC Variable MLC 119	e to 9	D3x246	The system will move data from NC variable #25502 to this special D.	R			
NC Variable MLC 120	e to 0 e to	D3x247	The system will move data from NC variable #25503 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235. The system will move data from NC	R			
MLC 12'	1	D3x248	variable #25504 to this special D.	R			

	Function Name	Special D	Description	Device	Туре	Range	
5	NC Variable to MLC 122	D3x249	The system will move data from NC variable #25505 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
	NC Variable to MLC 123	D3x250	The system will move data from NC variable #25506 to this special D.	R			
	NC Variable to MLC 124	D3x251	The system will move data from NC variable #25507 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R Decimal	(Default) -32,768 ~ +32,767		
	NC Variable to MLC 125	D3x252	The system will move data from NC variable #25508 to this special D.	R	/	/ (N1.010 Bit7=1)	
	NC Variable to MLC 126	D3x253	The system will move data from NC variable #25509 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			-2,147,483,648 ~ +2,147,483,647
	NC Variable to MLC 127	D3x254	The system will move data from NC variable #25510 to this special D.	R			
	NC Variable to MLC 128	D3x255	The system will move data from NC variable #25511 to this special D. *Both this special D and the variable # are NOT available to use when using MLC floating mode [N1.010 Bit7=1] . Otherwise, the system will return error 0x235.	R			
	Look Ahead Remaining Command	D3x320 D3x321	When the system is executing an NC program, it will preview the current program and planning path, and the remaining number of previewed and executable blocks will be written to this special D.	R	Decimal	0 ~ 4,294,967,295	
	Rigid Tapping Max Error of 1 st Spindle	D3x350 D3x351	The system will record the maximum absolute difference distance between the feed axis feedback and spindle feedback when the 1 st spindle executes the tapping function. This special D will be reset prior to every time the tapping function is triggered. Unit: mm	R	Float	-2,147,483,648 ~ +2,147,483,647	
	Rigid Tapping Max Error of 2 nd Spindle	D3x352 D3x353	The system will record the maximum absolute difference distance between the feed axis feedback and spindle feedback when the 2 nd spindle executes the tapping function. This special D will be reset prior to every time the tapping function is triggered. Unit: mm	R	Float	-2,147,483,648 ~ +2,147,483,647	

Function Name	Special D	Description	Device	Туре	Range
Target Feed of 1 st Spindle	D3x354 D3x355	Target feed movement of the 1 st spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Target Feed of 2 nd Spindle	D3x356 D3x357	Target feed movement of the 2 nd spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Actual Feed of 1 st Spindle	D3x358 D3x359	Actual feed movement of the 1 st spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Actual Feed of 2 nd Spindle	D3x360 D3x361	Actual feed movement of the 2 nd spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Speed Command of 3 rd Spindle	D3x362 D3x363	When the 3 rd spindle S code is executed in a program, the command value will be sent in this special D. Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
3 rd Spindle Speed Feedback	D3x364 D3x365	Shows the 3 rd spindle's speed. The data source is from the spindle's command speed.	R	Float	-2,147,483,648 ~ +2,147,483,647
3 rd Spindle Actual Degree	D3x366 D3x367	Shows the 3 rd spindle's actual degree. The data source is from the spindle's actual degree.	R	Float	-2,147,483,648 ~ +2,147,483,647
Rigid Tapping Max Error of 3 rd Spindle	D3x368 D3x369	The system will record the maximum absolute difference distance between the feed axis feedback and spindle feedback when the 3 rd spindle executes the tapping function. This special D will be reset prior to every time the tapping function is triggered. Unit: mm	R	Float	-2,147,483,648 ~ +2,147,483,647
Target Feed of 3 rd Spindle	D3x370 D3x371	Target feed movement of the 3 rd spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Actual Feed of 3 rd Spindle	D3x372 D3x373	Actual feed movement of the 3 rd spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Speed Command of 4 th Spindle	D3x374 D3x375	When the 4 th spindle S code is executed in a program, the command value will be sent in this special D. Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
4 th Spindle Speed Feedback	D3x376 D3x377	Shows the 4 th spindle's speed. The data source is from the spindle's command speed.	R	Float	-2,147,483,648 ~ +2,147,483,647
4 th Spindle Actual Degree	D3x378 D3x379	Shows the 4 th spindle's actual degree. The data source is from the spindle's actual degree.	R	Float	-2,147,483,648 ~ +2,147,483,647
Rigid Tapping Max Error of 4 th Spindle	D3x380 D3x381	The system will record the maximum absolute difference distance between the feed axis feedback and spindle feedback when the 4 th spindle executes the tapping function. This special D will be reset prior to every time the tapping function is triggered. Unit: mm	R	Float	-2,147,483,648 ~ +2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Target Feed of 4 th Spindle	D3x382 D3x383	Target feed movement of the 4 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Actual Feed of 4 th Spindle	D3x384 D3x385	Actual feed movement of the 4 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Speed Command of 5 th Spindle	D3x386 D3x387	When the 5 th spindle S code is executed in a program, the command value will be sent in this special D. Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
5 th Spindle Speed Feedback	D3x388 D3x389	Shows the 5 th spindle's speed. The data source is from the spindle's command speed.	R	Float	-2,147,483,648 ~ +2,147,483,647
5 th Spindle Actual Degree	D3x390 D3x391	Shows the 5 th spindle's actual degree. The data source is from the spindle's actual degree.	R	Float	-2,147,483,648 ~ +2,147,483,647
Rigid Tapping Max Error of 5 th Spindle	D3x392 D3x393	The system will record the maximum absolute difference distance between the feed axis feedback and spindle feedback when the 5 th spindle executes the tapping function. This special D will be reset prior to every time the tapping function is triggered. Unit: mm	R	Float	-2,147,483,648 ~ +2,147,483,647
Target Feed of 5 th Spindle	D3x394 D3x395	Target feed movement of the 5 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Actual Feed of 5 th Spindle	D3x396 D3x397	Actual feed movement of the 5 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Speed Command of 6 th Spindle	D3x398 D3x399	When the 6 th spindle S code is executed in a program, the command value will be sent in this special D. Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
6 th Spindle Speed Feedback	D3x400 D3x401	Shows the 6 th spindle's speed. The data source is from the spindle's command speed.	R	Float	-2,147,483,648 ~ +2,147,483,647
6 th Spindle Actual Degree	D3x402 D3x403	Shows the 6 th spindle's actual degree. The data source is from the spindle's actual degree.	R	Float	-2,147,483,648 ~ +2,147,483,647
Rigid Tapping Max Error of 6 th Spindle	D3x404 D3x405	The system will record the maximum absolute difference distance between the feed axis feedback and spindle feedback when the 6 th spindle executes the tapping function. This special D will be reset prior to every time the tapping function is triggered. Unit: mm	R	Float	-2,147,483,648 ~ +2,147,483,647
Target Feed of 6 th Spindle	D3x406 D3x407	Target feed movement of the 6 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Actual Feed of 6 th Spindle	D3x408 D3x409	Actual feed movement of the 6 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647

Function Name	Special D	Description	Device	Туре	Range
Speed Command of 7 th Spindle	D3x410 D3x411	When the 7 th spindle S code is executed in a program, the command value will be sent in this special D. Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
7 th Spindle Speed Feedback	D3x412 D3x413	Shows the 7 th spindle's speed. The data source is from the spindle's command speed.	ws the 7 th spindle's speed. The a source is from the spindle's R Float mand speed.		-2,147,483,648 ~ +2,147,483,647
7 th Spindle Actual Degree	D3x414 D3x415	Shows the 7 th spindle's actual degree. The data source is from the spindle's actual degree.	R	Float	-2,147,483,648 ~ +2,147,483,647
Rigid Tapping Max Error of 7 th Spindle	D3x416 D3x417	The system will record the maximum absolute difference distance between the feed axis feedback and spindle feedback when the 7 th spindle executes the tapping function. This special D will be reset prior to every time the tapping function is triggered. Unit: mm	R	Float	-2,147,483,648 ~ +2,147,483,647
Target Feed of 7 th Spindle	D3x418 D3x419	Target feed movement of the 7 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Actual Feed of 7 th Spindle	D3x420 D3x421	Actual feed movement of the 7 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Speed Command of 8 th Spindle	D3x422 D3x423	When the 8 th spindle S code is executed in a program, the command value will be sent in this special D. Unit: RPM	R	Float	-2,147,483,648 ~ +2,147,483,647
8 th Spindle Speed Feedback	D3x424 D3x425	Shows the 8 th spindle's speed. The data source is from the spindle's command speed.	R	Float	-2,147,483,648 ~ +2,147,483,647
8 th Spindle Actual Degree	D3x426 D3x427	Shows the 8 th spindle's actual degree. The data source is from the spindle's actual degree.	R	Float	-2,147,483,648 ~ +2,147,483,647
Rigid Tapping Max Error of 8 th Spindle	D3x428 D3x429	The system will record the maximum absolute difference distance between the feed axis feedback and spindle feedback when the 8 th spindle executes the tapping function. This special D will be reset prior to every time the tapping function is triggered. Unit: mm	R	Float	-2,147,483,648 ~ +2,147,483,647
Target Feed of 8 th Spindle	D3x430 D3x431	Target feed movement of the 8 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647
Actual Feed of 8 th Spindle	D3x432 D3x433	Actual feed movement of the 8 th spindle in each revolution. Unit: mm/rev.	R	Float	-2,147,483,648 ~ +2,147,483,647

5.3 Special M and special D functions

5.3.1 Mode switching

The NC5 controller provides 8 different types of system modes, which can be switched by setting the MLC special D2x000 for any of them. Special M can be used to monitor the mode status. The x digit in D2x000 represents different NC channels. For instance, to change the NC mode in channel 1, users need to set D21000 to switch NC mode.

Function Name	Special M	Function Name	Special M
AUTO	M3x000	JOG	M3x004
EDIT	M3x001	RAPID	M3x005
MDI	M3x002	INC	M3x006
MPG	M3x003	HOME	M3x007
5.3.2 NC processing

The NC5 controller provides various special M relays and special D registers related to the machining statuses. Users can determine the current machining status of the controller with these special M and special D, and program the ladder diagram for function protection or executing specific actions.

Function Name	Special M	Function Name	Special M
Cycle Start	M2x000	Single Block	M2x008
Feed Hold	M2x001	Optional Stop	M2x009
NC Reset	M2x004	Single Block Skip ('/')	M2x010
Enable Dry Run	M2x005	M96 Program Interruption	M2x019
MPG Simulation	M2x006	-	-

Function Name	Special M	Function Name	Special M
Cycle Start Status	M3x016	M30 Cycle Stop and Index Reset	M3x023
Feed Hold Status	M3x017	Single Block Hold	M3x024
Emergency Stop Status	M3x018	M96 (Program Interruption) in Execution	M3x031
Reset Finished	M3x019	Main Program Lock	M3x033
Break Point Searching	M3x020	M00 System Hold	M3x037
Program End Finished	M3x021	M01 Optional Hold	M3x038
M02 Executed	M3x022	Block Finished on Single Block Mode	M3x039

Function Name	Special D	Function Name	Special D
Feed Rate Percentage	D2x002	Feed Rate Override for JOG, INC and Dry Run Mode	D2x006
Rapid Speed Percentage	D2x004	-	-

5.3.3 Axis status

The NC5 controller provides the corresponding special M relays and special D registers for each axis. With these special M relays and special D registers, users can lock the axis, cancel the 1st software limit, or access the status, position, or current status of the axis.

Function Name	Special M	Function Name	Special M
Disable Hardware Limit	M2x007	Lock 15 th Axis Movement in Positive Direction	M2x350
X Axis Servo OFF	M2x272	Lock 16 th Axis Movement in Positive Direction	M2x351
Y Axis Servo OFF	M2x273	Lock X Axis Movement in Negative Direction	M2x352
Z Axis Servo OFF	M2x274	Lock Y Axis Movement in Negative Direction	M2x353
A Axis Servo OFF	M2x275	Lock Z Axis Movement in Negative Direction	M2x354
B Axis Servo OFF	M2x276	Lock A Axis Movement in Negative Direction	M2x355
C Axis Servo OFF	M2x277	Lock B Axis Movement in Negative Direction	M2x356
U Axis Servo OFF	M2x278	Lock C Axis Movement in Negative Direction	M2x357
V Axis Servo OFF	M2x279	Lock U Axis Movement in Negative Direction	M2x358
W Axis Servo OFF	M2x280	Lock V Axis Movement in Negative Direction	M2x359
10 th Axis Servo OFF	M2x281	Lock W Axis Movement in Negative Direction	M2x360
11 th Axis Servo OFF	M2x282	Lock 10 th Axis Movement in Negative Direction	M2x361
12 th Axis Servo OFF	M2x283	Lock 11 th Axis Movement in Negative Direction	M2x362
13 th Axis Servo OFF	M2x284	Lock 12 th Axis Movement in Negative Direction	M2x363
14 th Axis Servo OFF	M2x285	Lock 13 th Axis Movement in Negative Direction	M2x364
15 th Axis Servo OFF	M2x286	Lock 14 th Axis Movement in Negative Direction	M2x365
16 th Axis Servo OFF	M2x287	Lock 15 th Axis Movement in Negative Direction	M2x366
Lock X Axis Movement in Positive Direction	M2x336	Lock 16 th Axis Movement in Negative Direction	M2x367
Lock Y Axis Movement in Positive Direction	M2x337	Disable X Axis 1 st Software Limit	M2x368
Lock Z Axis Movement in Positive Direction	M2x338	Disable Y Axis 1 st Software Limit	M2x369
Lock A Axis Movement in Positive Direction	M2x339	Disable Z Axis 1 st Software Limit	M2x370
Lock B Axis Movement in Positive Direction	M2x340	Disable A Axis 1 st Software Limit	M2x371
Lock C Axis Movement in Positive Direction	M2x341	Disable B Axis 1 st Software Limit	M2x372
Lock U Axis Movement in Positive Direction	M2x342	Disable C Axis 1 st Software Limit	M2x373

Function Name	Special M	Function Name	Special M
Lock V Axis Movement in Positive Direction	M2x343	Disable U Axis 1 st Software Limit	M2x374
Lock W Axis Movement in Positive Direction	M2x344	Disable V Axis 1 st Software Limit	M2x375
Lock 10 th Axis Movement in Positive Direction	M2x345	Disable W Axis 1 st Software Limit	M2x376
Lock 11 th Axis Movement in Positive Direction	M2x346	Disable 10 th Axis 1 st Software Limit	M2x377
Lock 12 th Axis Movement in Positive Direction	M2x347	Disable 11 th Axis 1 st Software Limit	M2x378
Lock 13 th Axis Movement in Positive Direction	M2x348	Disable 12 th Axis 1 st Software Limit	M2x379
Lock 14 th Axis Movement in Positive Direction	M2x349	Disable 13 th Axis 1 st Software Limit	M2x380
Disable 14 th Axis 1 st Software Limit	M2x381	Disable 16 th Axis 1 st Software Limit	M2x383
Disable 15 th Axis 1 st Software Limit	M2x382	-	-

Function Name	Special M	Eunction Name	Special M
Servo Enable Status of X Axis	M3x272	X Axis Moving Forward	M3x480
Servo Enable Status of Y Axis	M3x273	Y Axis Moving Forward	M3x481
Servo Enable Status of 7 Avis	M3x274	7 Axis Moving Forward	M3x/82
Servo Enable Status of A Avis	M3x275	A Axis Moving Forward	M3x/83
Sorvo Enable Status of R Axis	M3x275	R Axis Moving Forward	M3×484
Serve Enable Status of C Axis	M3x270	C Axis Moving Forward	M3x485
Servo Enable Status of LLAxis	M2x279	C Axis Moving Forward	M3x465
	10132270		10132400
Servo Enable Status of V Axis	M3x279	V Axis Moving Forward	M3x487
Servo Enable Status of W Axis	M3x280	W Axis Moving Forward	M3x488
Servo Enable Status of 10 th Axis	M3x281	10 th Axis Moving Forward	M3x489
Servo Enable Status of 11 th Axis	M3x282	11 th Axis Moving Forward	M3x490
Servo Enable Status of 12th Axis	M3x283	12 th Axis Moving Forward	M3x491
Servo Enable Status of 13th Axis	M3x284	13 th Axis Moving Forward	M3x492
Servo Enable Status of 14 th Axis	M3x285	14 th Axis Moving Forward	M3x493
Servo Enable Status of 15th Axis	M3x286	15 th Axis Moving Forward	M3x494
Servo Enable Status of 16th Axis	M3x287	16 th Axis Moving Forward	M3x495
X Axis Is Moving	M3x464	X Axis Moving Backward	M3x496
Y Axis Is Moving	M3x465	Y Axis Moving Backward	M3x497
Z Axis Is Moving	M3x466	Z Axis Moving Backward	M3x498
A Axis Is Moving	M3x467	A Axis Moving Backward	M3x499
B Axis Is Moving	M3x468	B Axis Moving Backward	M3x500
C Axis Is Moving	M3x469	C Axis Moving Backward	M3x501
U Axis Is Moving	M3x470	U Axis Moving Backward	M3x502
V Axis Is Moving	M3x471	V Axis Moving Backward	M3x503
W Axis Is Moving	M3x472	W Axis Moving Backward	M3x504
10 th Axis Is Moving	M3x473	10 th Axis Moving Backward	M3x505
11 th Axis Is Moving	M3x474	11 th Axis Moving Backward	M3x506
12 th Axis Is Moving	M3x475	12 th Axis Moving Backward	M3x507
13 th Axis Is Moving	M3x476	13th Axis Moving Backward	M3x508
14 th Axis Is Moving	M3x477	14 th Axis Moving Backward	M3x509
15 th Axis Is Moving	M3x478	15 th Axis Moving Backward	M3x510
16 th Axis Is Moving	M3x479	16th Axis Moving Backward	M3x511

5.3.4 Homing origin

The NC5 controller homing process is triggered by special M relays. Users can determine the homing sequence according to the machine design.

Function Name	Special M	Function Name	Special M
X Axis Homing	M2x320	W Axis Homing	M2x328
Y Axis Homing	M2x321	10 th Axis Homing	M2x329
Z Axis Homing	M2x322	11 th Axis Homing	M2x330
A Axis Homing	M2x323	12 th Axis Homing	M2x331
B Axis Homing	M2x324	13 th Axis Homing	M2x332
C Axis Homing	M2x325	14 th Axis Homing	M2x333
U Axis Homing	M2x326	15 th Axis Homing	M2x334
V Axis Homing	M2x327	16 th Axis Homing	M2x335

Function Name	Special M	Function Name	Special M
Axis Homed Status of X Axis	M3x320	Homing Finished Status of W Axis	M3x344
Axis Homed Status of Y Axis	M3x321	Homing Finished Status of 10 th Axis	M3x345
Axis Homed Status of Z Axis	M3x322	Homing Finished Status of 11 th Axis	M3x346
Axis Homed Status of A Axis	M3x323	Homing Finished Status of 12 th Axis	M3x347
Axis Homed Status of B Axis	M3x324	Homing Finished Status of 13 th Axis	M3x348
Axis Homed Status of C Axis	M3x325	Homing Finished Status of 14th Axis	M3x349
Axis Homed Status of U Axis	M3x326	Homing Finished Status of 15 th Axis	M3x350
Axis Homed Status of V Axis	M3x327	Homing Finished Status of 16 th Axis	M3x351
Axis Homed Status of W Axis	M3x328	X Axis At Origin Position	M3x352
Axis Homed Status of 10 th Axis	M3x329	Y Axis At Origin Position	M3x353
Axis Homed Status of 11 th Axis	M3x330	Z Axis At Origin Position	M3x354
Axis Homed Status of 12 th Axis	M3x331	A Axis At Origin Position	M3x355
Axis Homed Status of 13 th Axis	M3x332	B Axis At Origin Position	M3x356
Axis Homed Status of 14 th Axis	M3x333	C Axis At Origin Position	M3x357
Axis Homed Status of 15 th Axis	M3x334	U Axis At Origin Position	M3x358
Axis Homed Status of 16 th Axis	M3x335	V Axis At Origin Position	M3x359
Homing Finished Status of X Axis	M3x336	W Axis At Origin Position	M3x360
Homing Finished Status of Y Axis	M3x337	10 th Axis At Origin Position	M3x361
Homing Finished Status of Z Axis	M3x338	11 th Axis At Origin Position	M3x362
Homing Finished Status of A Axis	M3x339	12 th Axis At Origin Position	M3x363
Homing Finished Status of B Axis	M3x340	13 th Axis At Origin Position	M3x364
Homing Finished Status of C Axis	M3x341	14 th Axis At Origin Position	M3x365
Homing Finished Status of U Axis	M3x342	15 th Axis At Origin Position	M3x366
Homing Finished Status of V Axis	M3x343	16 th Axis At Origin Position	M3x367

5.3.5 JOG control

The jog operations and jogging speed of each axis are determined by special M relays and special D registers. Users can change the speed and direction (forward or reverse) with the ladder diagram at any time.

Note: this action control is only available when the system is in JOG or INC mode.

Function Name	Special M	Function Name	Special M
X Axis JOG Forward	M2x384	X Axis JOG Reverse	M2x400
Y Axis JOG Forward	M2x385	Y Axis JOG Reverse	M2x401
Z Axis JOG Forward	M2x386	Z Axis JOG Reverse	M2x402
A Axis JOG Forward	M2x387	A Axis JOG Reverse	M2x403
B Axis JOG Forward	M2x388	B Axis JOG Reverse	M2x404
C Axis JOG Forward	M2x389	C Axis JOG Reverse	M2x405
U Axis JOG Forward	M2x390	U Axis JOG Reverse	M2x406
V Axis JOG Forward	M2x391	V Axis JOG Reverse	M2x407
W Axis JOG Forward	M2x392	W Axis JOG Reverse	M2x408
10 th Axis JOG Forward	M2x393	10 th Axis JOG Reverse	M2x409
11 th Axis JOG Forward	M2x394	11 th Axis JOG Reverse	M2x410
12 th Axis JOG Forward	M2x395	12 th Axis JOG Reverse	M2x411
13th Axis JOG Forward	M2x396	13 th Axis JOG Reverse	M2x412
14 th Axis JOG Forward	M2x397	14 th Axis JOG Reverse	M2x413
15 th Axis JOG Forward	M2x398	15 th Axis JOG Reverse	M2x414
16 th Axis JOG Forward	M2x399	16 th Axis JOG Reverse	M2x415

Function Name	Special D	Function Name	Special D
Feed Rate Override for JOG, INC and Dry Run Mode	D2x006	Axes Movement in INC Mode	D2x014

5.3.6 MPG control

MPG axis switching and pulse ratio are set with special D registers. You can also send pulse signals with special M relays.

Function Name	Special M	Function Name	Special M
MPG Simulation	M2x006	-	-

Function Name	Special D	Function Name	Special D
MPG Axes Selection	D2x008	MPG Ratio Selection	D2x009

5.3.7 Skip control (G31)

When using the G31 Skip command, the NC system will send the special M signals for users to check if the command signal is triggered.

Function Name	Special M	Function Name	Special M
HSI 1	M30016	HSI 5	M30020
HSI 2	M30017	HSI 6	M30021
HSI 3	M30018	HSI 7	M30022
HSI 4	M30019	HSI 8	M30023

5.3.8 One-button macro call

The NC5 controller provides a convenient function, which can call a specific program for machining with a one button trigger.

Note: this function is only available when the system is in AUTO mode.

Function Name	Special M	Function Name	Special M
Macro Call Activation	M2x025	9 th Macro Call Preparation	M2x040
1 st Macro Call Preparation	M2x032	10 th Macro Call Preparation	M2x041
2 nd Macro Call Preparation	M2x033	11 th Macro Call Preparation	M2x042
3 rd Macro Call Preparation	M2x034	12 th Macro Call Preparation	M2x043
4 th Macro Call Preparation	M2x035	13 th Macro Call Preparation	M2x044
5 th Macro Call Preparation	M2x036	14 th Macro Call Preparation	M2x045
6 th Macro Call Preparation	M2x037	15 th Macro Call Preparation	M2x046
7 th Macro Call Preparation.	M2x038	16 th Macro Call Preparation	M2x047
8 th Macro Call Preparation	M2x039	-	-
	I		I
Function Name	Special M	Function Name	Special M
Macro Call Status	M3x027	8 th Macro Call Initial Finished	M3x055
Macro Call Ready	M3x028	9th Macro Call Initial Finished	M3x056
Macro Call Error	M3x029	10 th Macro Call Initial Finished	M3x057
1 st Macro Call Initial Finished	M3x048	11 th Macro Call Initial Finished	M3x058
2 nd Macro Call Initial Finished	M3x049	12 th Macro Call Initial Finished	M3x059
3 rd Macro Call Initial Finished	M3x050	13 th Macro Call Initial Finished	M3x060
4th Macro Call Initial Finished	M3x051	14 th Macro Call Initial Finished	M3x061
5 th Macro Call Initial Finished	M3x052	15 th Macro Call Initial Finished	M3x062
6 th Macro Call Initial Finished	M3x053	16 th Macro Call Initial Finished	M3x063
7 th Macro Call Initial Finished	M3x054	-	-
		·	r.
Function Name	Special D	Function Name	Special D
1 st Macro Call Macro Number	D2x064	9th Macro Call Macro Number	D2x072

Function Name	Special D	Function Name	Special D
1 st Macro Call Macro Number	D2x064	9 th Macro Call Macro Number	D2x072
2 nd Macro Call Macro Number	D2x065	10th Macro Call Macro Number	D2x073
3 rd Macro Call Macro Number	D2x066	11 th Macro Call Macro Number	D2x074
4 th Macro Call Macro Number	D2x067	12th Macro Call Macro Number	D2x075
5 th Macro Call Macro Number	D2x068	13th Macro Call Macro Number	D2x076
6 th Macro Call Macro Number	D2x069	14 th Macro Call Macro Number	D2x077
7 th Macro Call Macro Number	D2x070	15 th Macro Call Macro Number	D2x078
8 th Macro Call Macro Number	D2x071	16 th Macro Call Macro Number	D2x079

5.3.9 MLC axis control

Aside from the NC program, JOG or INC axes control, or AUTO mode, the NC5 controller can also control axes through MLC. Users can move the axis to a specific position or set the axis to constantly move at a specific speed.

Function Name	Special M	Function Name	Special M
MLC X Axis Control Mode	M2x416	NC / MLC Axis Switching (C Axis)	M2x437
MLC Y Axis Control Mode	M2x417	NC / MLC Axis Switching (U Axis)	M2x438
MLC Z Axis Control Mode	M2x418	NC / MLC Axis Switching (V Axis)	M2x439
MLC A Axis Control Mode	M2x419	NC / MLC Axis Switching (W Axis)	M2x440
MLC B Axis Control Mode	M2x420	NC / MLC Axis Switching (10 th Axis)	M2x441
MLC C Axis Control Mode	M2x421	NC / MLC Axis Switching (11 th Axis)	M2x442
MLC U Axis Control Mode	M2x422	NC / MLC Axis Switching (12th Axis)	M2x443
MLC V Axis Control Mode	M2x423	NC / MLC Axis Switching (13th Axis)	M2x444
MLC W Axis Control Mode	M2x424	NC / MLC Axis Switching (14 th Axis)	M2x445
MLC 10 th Axis Control Mode	M2x425	NC / MLC Axis Switching (15th Axis)	M2x446
MLC 11 th Axis Control Mode	M2x426	NC / MLC Axis Switching (16th Axis)	M2x447
MLC 12 th Axis Control Mode	M2x427	Trigger X Axis' Movement (MLC Axis)	M2x448
MLC 13 th Axis Control Mode	M2x428	Trigger Y Axis' Movement (MLC Axis)	M2x449
MLC 14 th Axis Control Mode	M2x429	Trigger Z Axis' Movement (MLC Axis)	M2x450
MLC 15 th Axis Control Mode	M2x430	Trigger A Axis' Movement (MLC Axis)	M2x451
MLC 16 th Axis Control Mode	M2x431	Trigger B Axis' Movement (MLC Axis)	M2x452
NC / MLC Axis Switching (X Axis)	M2x432	Trigger C Axis' Movement (MLC Axis)	M2x453
NC / MLC Axis Switching (Y Axis)	M2x433	Trigger U Axis' Movement (MLC Axis)	M2x454
NC / MLC Axis Switching (Z Axis)	M2x434	Trigger V Axis' Movement (MLC Axis)	M2x455
NC / MLC Axis Switching (A Axis)	M2x435	Trigger W Axis' Movement (MLC Axis)	M2x456
NC / MLC Axis Switching (B Axis)	M2x436	Trigger 10 th Axis' Movement (MLC Axis)	M2x457
Trigger 11 th Axis' Movement (MLC Axis)	M2x458	MLC Axis Command Type of C Axis	M2x469
Trigger 12 th Axis' Movement (MLC Axis)	M2x459	MLC Axis Command Type of U Axis	M2x470
Trigger 13 th Axis' Movement (MLC Axis)	M2x460	MLC Axis Command Type of V Axis	M2x471
Trigger 14 th Axis' Movement (MLC Axis)	M2x461	MLC Axis Command Type of W Axis	M2x472
Trigger 15 th Axis' Movement (MLC Axis)	M2x462	MLC Axis Command Type of 10 th Axis	M2x473
Trigger 16 th Axis' Movement (MLC Axis)	M2x463	MLC Axis Command Type of 11 th Axis	M2x474
MLC Axis Command Type of X Axis	M2x464	MLC Axis Command Type of 12 th Axis	M2x475
MLC Axis Command Type of Y Axis	M2x465	MLC Axis Command Type of 13 th Axis	M2x476
MLC Axis Command Type of Z Axis	M2x466	MLC Axis Command Type of 14 th Axis	M2x477
MLC Axis Command Type of A Axis	M2x467	MLC Axis Command Type of 15 th Axis	M2x478
MLC Axis Command Type of B Axis	M2x468	MLC Axis Command Type of 16 th Axis	M2x479

Function Name	Special M	Function Name	Special M
X Axis Switch to MLC Axis Finished	M3x432	X Axis Target Reached (MLC Axis)	M3x448
Y Axis Switch to MLC Axis Finished	M3x433	Y Axis Target Reached (MLC Axis)	M3x449
Z Axis Switch to MLC Axis Finished	M3x434	Z Axis Target Reached (MLC Axis)	M3x450
A Axis Switch to MLC Axis Finished	M3x435	A Axis Target Reached (MLC Axis)	M3x451
B Axis Switch to MLC Axis Finished	M3x436	B Axis Target Reached (MLC Axis)	M3x452
C Axis Switch to MLC Axis Finished	M3x437	C Axis Target Reached (MLC Axis)	M3x453
U Axis Switch to MLC Axis Finished	M3x438	U Axis Target Reached (MLC Axis)	M3x454
V Axis Switch to MLC Axis Finished	M3x439	V Axis Target Reached (MLC Axis)	M3x455
W Axis Switch to MLC Axis Finished	M3x440	W Axis Target Reached (MLC Axis)	M3x456
10 th Axis Switch to MLC Axis Finished	M3x441	10 th Axis Target Reached (MLC Axis)	M3x457
11 th Axis Switch to MLC Axis Finished	M3x442	11 th Axis Target Reached (MLC Axis)	M3x458
12 th Axis Switch to MLC Axis Finished	M3x443	12 th Axis Target Reached (MLC Axis)	M3x459
13 th Axis Switch to MLC Axis Finished	M3x444	13 th Axis Target Reached (MLC Axis)	M3x460
14 th Axis Switch to MLC Axis Finished	M3x445	14 th Axis Target Reached (MLC Axis)	M3x461
15 th Axis Switch to MLC Axis Finished	M3x446	15 th Axis Target Reached (MLC Axis)	M3x462
16 th Axis Switch to MLC Axis Finished	M3x447	16 th Axis Target Reached (MLC Axis)	M3x463

Function Name	Special D	Function Name	Special D
Target Position of X axis (MLC Axis)	D2x256	Target Velocity of X axis (MLC Axis)	D2x288
Target Position of Y axis (MLC Axis)	D2x258	Target Velocity of Y axis (MLC Axis)	D2x290
Target Position of Z axis (MLC Axis)	D2x260	Target Velocity of Z axis (MLC Axis)	D2x292
Target Position of A axis (MLC Axis)	D2x262	Target Velocity of A axis (MLC Axis)	D2x294
Target Position of B axis (MLC Axis)	D2x264	Target Velocity of B axis (MLC Axis)	D2x296
Target Position of C axis (MLC Axis)	D2x266	Target Velocity of C axis (MLC Axis)	D2x298
Target Position of U axis (MLC Axis)	D2x268	Target Velocity of U axis (MLC Axis)	D2x300
Target Position of V axis (MLC Axis)	D2x270	Target Velocity of V axis (MLC Axis)	D2x302
Target Position of W axis (MLC Axis)	D2x272	Target Velocity of W axis (MLC Axis)	D2x304
Target Position of 10 th axis (MLC Axis)	D2x274	Target Velocity of 10 th axis (MLC Axis)	D2x306
Target Position of 11 th axis (MLC Axis)	D2x276	Target Velocity of 11 th axis (MLC Axis)	D2x308
Target Position of 12 th axis (MLC Axis)	D2x278	Target Velocity of 12 th axis (MLC Axis)	D2x310
Target Position of 13 th axis (MLC Axis)	D2x280	Target Velocity of 13 th axis (MLC Axis)	D2x312
Target Position of 14 th axis (MLC Axis)	D2x282	Target Velocity of 14 th axis (MLC Axis)	D2x314
Target Position of 15 th axis (MLC Axis)	D2x284	Target Velocity of 15 th axis (MLC Axis)	D2x316
Target Position of 16 th axis (MLC Axis)	D2x286	Target Velocity of 16 th axis (MLC Axis)	D2x318

5.3.10 M, S, T codes

When the M, S, and T codes are executed in the NC program, the NC system sends the corresponding special M signals to the MLC.

For example, when M03 is executed in the program and M3x064 is set to ON, and then the first M code command '3' data will written to the corresponding special D3x048 register.

Function Name	Special M	Function Name	Special M
M, S, and T Codes Lock	M2x011	M Code Execution	M3x064
M, S, and T Codes Finished	M2x016	S Code Execution	M3x065
-	-	T Code Execution	M3x066

Function Name	Special D	Function Name	Special D
1 st M Code Data	D3x048	1 st T Code Data	D3x052
1 st S Code Data	D3x050	-	-

5.3.11 Axes synchronous control

The NC5 controller provides the synchronous axis control functions, which can let master and slave axes have same tool path and also acceleration and deceleration. The parameter **[N2.015 Synchronous master axis ID]** definitions the master axis number of each axis. Then, it is turned OFF or ON through the following special M.

Function Name	Special M	Function Name	Special M
Enable Synchronization Adjustment	M2x014	V Slave Axis Follows the Master Axis	M2x295
Synchronous Control Enable	M2x256	W Slave Axis Follows the Master Axis	M2x296
X Slave Axis Follows the Master Axis	M2x288	10 th Slave Axis Follows the Master Axis	M2x297
Y Slave Axis Follows the Master Axis	M2x289	11 th Slave Axis Follows the Master Axis	M2x298
Z Slave Axis Follows the Master Axis	M2x290	12th Slave Axis Follows the Master Axis	M2x299
A Slave Axis Follows the Master Axis	M2x291	13 th Slave Axis Follows the Master Axis	M2x300
B Slave Axis Follows the Master Axis	M2x292	14 th Slave Axis Follows the Master Axis	M2x301
C Slave Axis Follows the Master Axis	M2x293	15 th Slave Axis Follows the Master Axis	M2x302
U Slave Axis Follows the Master Axis	M2x294	16 th Slave Axis Follows the Master Axis	M2x303

5.3.12 Axes command transfer control

The NC5 controller provides the transfer functions for the axis commands, which transfers the NC command originally expected to run on the master axis to the slave axis for execution. The slave axis' parameter **[N2.015 Synchronous master axis ID]** definitions of the master axis number. Then, it is turned OFF or ON through the following special M.

Function Name	Special M	Function Name	Special M
Command Transfer Enable	M2x257	W Axis Receives Command from The Master Axis	M2x312
X Axis Receives Command from The Master Axis	M2x304	10 th Axis Receives Command from The Master Axis	M2x313
Y Axis Receives Command from The Master Axis	M2x305	11 th Axis Receives Command from The Master Axis	M2x314
Z Axis Receives Command from The Master Axis	M2x306	12 th Axis Receives Command from The Master Axis	M2x315
A Axis Receives Command from The Master Axis	M2x307	13 th Axis Receives Command from The Master Axis	M2x316
B Axis Receives Command from The Master Axis	M2x308	14 th Axis Receives Command from The Master Axis	M2x317
C Axis Receives Command from The Master Axis	M2x309	15 th Axis Receives Command from The Master Axis	M2x318
U Axis Receives Command from The Master Axis	M2x310	16 th Axis Receives Command from The Master Axis	M2x319
V Axis Receives Command from The Master Axis	M2x311	-	-

5.3.13 Spindle

Users can operate the spindle with the following special M relays and adjust the speed and magnification with the following special D registers.

Function Name	Special M	Function Name	Special M
1 st Spindle Forward Rotation	M2x704	5 th Spindle Speed Reach	M2x768
1 st Spindle Reverse Rotation	M2x705	5 th Spindle Zero Speed	M2x769
1 st Spindle Positioning Control	M2x706	5 th Spindle Positioning Control	M2x770
1 st Spindle Retraction After Tapping	M2x707	5 th Spindle Is In The Rigid Tapping	M2x771
Switching C / S Axis of 1 st Lathe Spindle	M2x708	Switching C / S Axis of 5 th Lathe Spindle	M2x772
1 st Spindle Command Source	M2x710	5 th Spindle Ready	M2x774
2 nd Spindle Forward Rotation	M2x720	6 th Spindle Speed Reach	M2x784
2 nd Spindle Reverse Rotation	M2x721	6 th Spindle Reverse Rotation	M2x785
2 nd Spindle Positioning Control	M2x722	6 th Spindle Positioning Control	M2x786
2 nd Spindle Retraction After Tapping	M2x723	6 th Spindle Retraction After Tapping	M2x787
Switching C / S Axis of 2 nd Lathe Spindle	M2x724	Switching C / S Axis of 6 th Lathe Spindle	M2x788
2 nd Spindle Command Source	M2x726	6 th Spindle Command Source	M2x790
3 rd Spindle Forward Rotation	M2x736	7 th Spindle Forward Rotation	M2x800
3 rd Spindle Reverse Rotation	M2x737	7 th Spindle Reverse Rotation	M2x801
3 rd Spindle Positioning Control	M2x738	7 th Spindle Positioning Control	M2x802
3 rd Spindle Retraction After Tapping	M2x739	7 th Spindle Retraction After Tapping	M2x803
Switching C / S Axis of 3 rd Lathe Spindle	M2x740	Switching C / S Axis of 7 th Lathe Spindle	M2x804
3 rd Spindle Command Source	M2x742	7 th Spindle Command Source	M2x806
4 th Spindle Forward Rotation	M2x752	8 th Spindle Forward Rotation	M2x816
4 th Spindle Reverse Rotation	M2x753	8 th Spindle Reverse Rotation	M2x817
4 th Spindle Positioning Control	M2x754	8 th Spindle Positioning Control	M2x818
4 th Spindle Retraction After Tapping	M2x755	8 th Spindle Retraction After Tapping	M2x819
Switching C / S Axis of 4 th Lathe Spindle	M2x756	Switching C / S Axis of 8 th Lathe Spindle	M2x820
4 th Spindle Command Source	M2x758	8 th Spindle Command Source	M2x822

Function Name	Special M	Function Name	Special M
1 st Spindle Speed Reach	M3x704	5 th Spindle Speed Reach	M3x768
1 st Spindle Zero Speed	M3x705	5 th Spindle Zero Speed	M3x769
1 st Spindle Target Reach	M3x706	5 th Spindle Positioning Control	M3x770
1 st Spindle Is In The Rigid Tapping	M3x707	5 th Spindle Is In The Rigid Tapping	M3x771
1 st Spindle Is In Position Axis Mode	M3x709	Switching C / S Axis of 5th Lathe Spindle	M3x773
1 st Spindle Ready	M3x710	5 th Spindle Ready	M3x774
2 nd Spindle Speed Reach	M3x720	6 th Spindle Speed Reach	M3x784
2 nd Spindle Zero Speed	M3x721	6 th Spindle Zero Speed	M3x785
2 nd Spindle Target Reach	M3x722	6 th Spindle Target Reach	M3x786
2 nd Spindle Is In The Rigid Tapping	M3x723	6 th Spindle Is In The Rigid Tapping	M3x787
2 nd Spindle Is In Position Axis Mode	M3x725	6 th Spindle Is In Position Axis Mode	M3x789
2 nd Spindle Ready	M3x726	6 th Spindle Ready	M3x790
3 rd Spindle Speed Reach	M3x736	7 th Spindle Speed Reach	M3x800
3 rd Spindle Zero Speed	M3x737	7 th Spindle Zero Speed	M3x801
3 rd Spindle Target Reach	M3x738	7 th Spindle Target Reach	M3x802
3 rd Spindle Is In The Rigid Tapping	M3x739	7 th Spindle Is In The Rigid Tapping	M3x803
3 rd Spindle Is In Position Axis Mode	M3x741	7 th Spindle Is In Position Axis Mode	M3x805
3 rd Spindle Ready	M3x742	7 th Spindle Ready	M3x806
4 th Spindle Speed Reach	M3x752	8 th Spindle Speed Reach	M3x816
4 th Spindle Zero Speed	M3x753	8 th Spindle Zero Speed	M3x817
4 th Spindle Target Reach	M3x754	8 th Spindle Target Reach	M3x818
4 th Spindle Is In The Rigid Tapping	M3x755	8 th Spindle Is In The Rigid Tapping	M3x819
4 th Spindle Is In Position Axis Mode	M3x757	8 th Spindle Is In Position Axis Mode	M3x821
4 th Spindle Ready	M3x758	8 th Spindle Ready	M3x822

Function Name	Special D	Function Name	Special D
Spindle Analog Voltage Output Port 1	D20160	5 th Spindle Speed (written through the special D)	D2x332
Spindle Analog Voltage Output Port 2	D20161	5 th Spindle Speed Rate	D2x334
1 st Spindle Speed (written through the special D)	D2x024	5 th Spindle Gear Ratio Selection	D2x335
1 st Spindle Speed Rate	D2x026	6 th Spindle Speed (written through the special D)	D2x338
1 st Spindle Gear Ratio Selection	D2x027	6 th Spindle Speed Rate	D2x340
2 nd Spindle Speed (written through the special D)	D2x030	6 th Spindle Gear Ratio Selection	D2x341
2 nd Spindle Speed Rate	D2x032	7 th Spindle Speed (written through the special D)	D2x344
2 nd Spindle Gear Ratio Selection	D2x033	7 th Spindle Speed Rate	D2x346
3 rd Spindle Speed (written through the special D)	D2x320	7 th Spindle Gear Ratio Selection	D2x347
3 rd Spindle Speed Rate	D2x322	8 th Spindle Speed (written through the special D)	D2x350
3 rd Spindle Gear Ratio Selection	D2x323	8 th Spindle Speed Rate	D2x352
4 th Spindle Speed (written through the special D)	D2x326	8 th Spindle Gear Ratio Selection	D2x353
4 th Spindle Speed Rate	D2x328	-	-
4 th Spindle Gear Ratio Selection	D2x329	-	-

Function Name	Special D	Function Name	Special D
Speed Command of 1 st Spindle	D3x024 D3x025	Actual Feed of 2 nd Spindle	D3x360 D3x361
1 st Spindle Speed Feedback	D3x026 D3x027	Speed Command of 3 rd Spindle	D3x362 D3x363
1 st Spindle Actual Degree	D3x028 D3x029	3 rd Spindle Speed Feedback	D3x364 D3x365
Target Feed of 1 st Spindle	D3x354 D3x355	3 rd Spindle Actual Degree	D3x366 D3x367
Actual Feed of 1 st Spindle	D3x358 D3x359	Tapping Error of 3 rd Spindle	D3x368 D3x369
Speed Command of 2 nd Spindle	D3x030 D3x031	Target Feed of 3 rd Spindle	D3x370 D3x371
2 nd Spindle Speed Feedback	D3x032 D3x033	Actual Feed of 3 rd Spindle	D3x372 D3x373
2 nd Spindle Actual Degree	D3x034 D3x035	Speed Command of 4 th Spindle	D3x374 D3x375
Tapping Error of 1 st Spindle	D3x350 D3x351	4 th Spindle Speed Feedback	D3x376 D3x377
Tapping Error of 2 nd Spindle	D3x352 D3x353	4 th Spindle Actual Degree	D3x378 D3x379
Target Feed of 2 nd Spindle	D3x356 D3x357	Tapping Error of 4 th Spindle	D3x380 D3x381
Target Feed of 4 th Spindle	D3x382 D3x383	Speed Command of 5th Spindle	D3x386 D3x387
Actual Feed of 4 th Spindle	D3x384 D3x385	5 th Spindle Speed Feedback	D3x388 D3x389
5 th Spindle Actual Degree	D3x390 D3x391	7 th Spindle Speed Feedback	D3x412 D3x413
Target Feed of 5 th Spindle	D3x394 D3x395	7 th Spindle Actual Degree	D3x414 D3x415
Actual Feed of 5 th Spindle	D3x396 D3x397	Target Feed of 7 th Spindle	D3x418 D3x419
Speed Command of 6 th Spindle	D3x398 D3x399	Actual Feed of 7 th Spindle	D3x420 D3x421
6 th Spindle Speed Feedback	D3x400 D3x401	Speed Command of 8 th Spindle	D3x422 D3x423
6 th Spindle Actual Degree	D3x402 D3x403	8 th Spindle Speed Feedback	D3x424 D3x425
Target Feed of 6 th Spindle	D3x406 D3x407	8 th Spindle Actual Degree	D3x426 D3x427
Actual Feed of 6 th Spindle	D3x408 D3x409	Target Feed of 8 th Spindle	D3x430 D3x431
Speed Command of 7 th Spindle	D3x410 D3x411	Actual Feed of 8 th Spindle	D3x432 D3x433

5.3.14 Tool magazine

The NC5 controller provides tool magazine management functions. Aside from using macros for tool changes, users also need to exchange tool data with the MLC to ensure the data in the controller is correct.

Function Name	Special M	Function Name	Special M
Tool Magazine 1 Move Forward	M2x064	2x064 Tool Magazine 2 Move Forward	
Tool Magazine 1 Move Backward	Backward M2x065 Tool Magazine 2 Move Backward		M2x073
Tool 1 Exchange	M2x066	Tool 2 Exchange	M2x074
Tool Magazine 1 Reset	M2x067	Tool Magazine 2 Reset	M2x075

Function Name	Special D	Function Name	Special D
Tool Magazine 1 Tool Number	D2x036	Tool Magazine 2 Tool Number	D2x042
Tool Magazine 1 Standby Tool Number	D2x037	Tool Magazine 2 Standby Tool Number	D2x043
Tool Magazine 1 Command Tool Number	D2x038	Tool Magazine 2 Command Tool Number	D2x044

Function Name	Special D	Function Name	Special D
Tool Magazine 1 Current Tool Number	D3x036	Tool Magazine 2 Current Tool Number	D3x042
Tool Magazine 1 Standby Tool Number	D3x037	Tool Magazine 2 Standby Tool Number	D3x043
Tool Magazine 1 Standby Tool Pot	D3x038	Tool Magazine 2 Standby Tool Pot	D3x044
Tool Magazine 1 Tool Pot Deviation	D3x039	Tool Magazine 2 Tool Pot Deviation	D3x045

5.3.15 NC system

The following are the special M relays and special D registers that are commonly used to indicate NC system information and procedures.

Function Name	Special M	Function Name	Special M
NC Reset	M2x004	(004 Time Pulse (500 ms)	
Servo On / Off	M2x012	Time Pulse (50 ms)	M29033
Enable Emergency Stop	M2x013	Remaining OFF	M29034
-	-	Remaining ON	M29035

Function Name	Special M	Function Name	Special M
EIO 1 Connection Status	M30032	Emergency Stop Status	M3x018
EIO 2 Connection Status	M30033	Reset Finished	M3x019
EIO 3 Connection Status	M30034	NC Error	M3x025
EIO 4 Connection Status	M30035	System Mode Switching	M3x032
EIO 5 Connection Status	M30036	Main Program Lock	M3x033
EIO 6 Connection Status	M30037	Servo Drive Error	M3x034
EIO 7 Connection Status	M30038	System Ready and Servo ON	M3x036
EIO 8 Connection Status	M30039	User Define Alarm Status	M3x040
EIO 9 Connection Status	M30040	Servo Connection Status of X Axis	M3x256
EIO 10 Connection Status	M30041	Servo Connection Status of Y Axis	M3x257
EIO 11 Connection Status	M30042	Servo Connection Status of Z Axis	M3x258
EIO 12 Connection Status	M30043	Servo Connection Status of A Axis	M3x259
EIO 13 Connection Status	M30044	Servo Connection Status of B Axis	M3x260
EIO 14 Connection Status	M30045	Servo Connection Status of C Axis	M3x261
EIO 15 Connection Status	M30046	Servo Connection Status of U Axis	M3x262
EIO 16 Connection Status	M30047	Servo Connection Status of V Axis	M3x263
EIO 17 Connection Status	M30048	Servo Connection Status of W Axis	M3x264
EIO 18 Connection Status	M30049	Servo Connection Status of 10 th Axis	M3x265
EIO 19 Connection Status	M30050	Servo Connection Status of 11th Axis	M3x266
EIO 20 Connection Status	M30051	Servo Connection Status of 12th Axis	M3x267
NC Channel 1 Enable Status	M30080	Servo Connection Status of 13th Axis	M3x268
NC Channel 2 Enable Status	M30081	Servo Connection Status of 14 th Axis	M3x269
NC Channel 3 Enable Status	M30082	Servo Connection Status of 15 th Axis	M3x270
NC Channel 4 Enable Status	M30083	Servo Connection Status of 16 th Axis	M3x271
-	-	Program Lock	M49000

Function Name	Special D	Function Name	Special D
NC Channel Selection	D20000	Torque Feedback of 25 th Axis	D30264
Torque Feedback of 1 st Axis	D30240	Torque Feedback of 26 th Axis	D30265
Torque Feedback of 2 nd Axis	D30241	Torque Feedback of 27 th Axis	D30266
Torque Feedback of 3 rd Axis	D30242	Torque Feedback of 28 th Axis	D30267
Torque Feedback of 4 th Axis	D30243	Torque Feedback of 29 th Axis	D30268
Torque Feedback of 5 th Axis	D30244	Torque Feedback of 30 th Axis	D30269
Torque Feedback of 6 th Axis	D30245	Torque Feedback of 31 th Axis	D30270
Torque Feedback of 7 th Axis	D30246	Torque Feedback of 32 th Axis	D30271
Torque Feedback of 8 th Axis	D30247	Velocity Feedback of 1 st Axis (mm/min)	D30272 D30273
Torque Feedback of 9 th Axis	D30248	Velocity Feedback of 2 nd Axis (mm/min)	D30274 D30275
Torque Feedback of 10 th Axis	D30249	Velocity Feedback of 3 rd Axis (mm/min)	D30276 D30277
Torque Feedback of 11 th Axis	D30250	Velocity Feedback of 4 th Axis (mm/min)	D30278 D30279
Torque Feedback of 12 th Axis	D30251	Velocity Feedback of 5 th Axis (mm/min)	D30280 D30281
Torque Feedback of 13 th Axis	D30252	Velocity Feedback of 6 th Axis (mm/min)	D30282 D30283
Torque Feedback of 14 th Axis	D30253	Velocity Feedback of 7 th Axis (mm/min)	D30284 D30285
Torque Feedback of 15 th Axis	D30254	Velocity Feedback of 8 th Axis (mm/min)	D30286 D30287
Torque Feedback of 16 th Axis	D30255	Velocity Feedback of 9 th Axis (mm/min)	D30288 D30289
Torque Feedback of 17 th Axis	D30256	Velocity Feedback of 10 th Axis (mm/min)	D30290 D30291
Torque Feedback of 18 th Axis	D30257	Velocity Feedback of 11 th Axis (mm/min)	D30292 D30293
Torque Feedback of 19 th Axis	D30258	Velocity Feedback of 12 th Axis (mm/min)	D30294 D30295
Torque Feedback of 20 th Axis	D30259	Velocity Feedback of 13 th Axis (mm/min)	D30296 D30297
Torque Feedback of 21 th Axis	D30260	Velocity Feedback of 14 th Axis (mm/min)	D30298 D30299
Torque Feedback of 22 th Axis	D30261	Velocity Feedback of 15 th Axis (mm/min)	D30300 D30301
Torque Feedback of 23 th axis	D30262	Velocity Feedback of 16 th Axis (mm/min)	D30302 D30303
Torque Feedback of 24 th Axis	D30263	Velocity Feedback of 17 th Axis (mm/min)	D30304 D30305
Velocity Feedback of 18 th Axis (mm/min)	D30306 D30307	Velocity Feedback of 9 th Axis (RPM)	D30352 D30353
Velocity Feedback of 19 th Axis (mm/min)	D30308 D30309	Velocity Feedback of 10 th Axis (RPM)	D30354 D30355
Velocity Feedback of 20 th Axis (mm/min)	D30310 D30311	Velocity Feedback of 11 th Axis (RPM)	D30356 D30357
Velocity Feedback of 21 th Axis (mm/min)	D30312 D30313	Velocity Feedback of 12 th Axis (RPM)	D30358 D30359

Function Name	Special D	Function Name	Special D
Velocity Feedback of 22 th Axis (mm/min)	D30314 D30315	Velocity Feedback of 13 th Axis (RPM)	D30360 D30361
Velocity Feedback of 23 th Axis (mm/min)	D30316 D30317	Velocity Feedback of 14 th Axis (RPM)	D30362 D30363
Velocity Feedback of 24 th Axis (mm/min)	D30318 D30319	Velocity Feedback of 15 th Axis (RPM)	D30364 D30365
Velocity Feedback of 25 th Axis (mm/min)	D30320 D30321	Velocity Feedback of 16 th Axis (RPM)	D30366 D30367
Velocity Feedback of 26 th Axis (mm/min)	D30322 D30323	Velocity Feedback of 17 th Axis (RPM)	D30368 D30369
Velocity Feedback of 27 th Axis (mm/min)	D30324 D30325	Velocity Feedback of 18 th Axis (RPM)	D30360 D30371
Velocity Feedback of 28 th Axis (mm/min)	D30326 D30327	Velocity Feedback of 19 th Axis (RPM)	D30372 D30373
Velocity Feedback of 29 th Axis (mm/min)	D30328 D30329	Velocity Feedback of 20 th Axis (RPM)	D30374 D30375
Velocity Feedback of 30 th Axis (mm/min)	D30330 D30331	Velocity Feedback of 21 th Axis (RPM)	D30376 D30377
Velocity Feedback of 31 th Axis (mm/min)	D30332 D30333	Velocity Feedback of 22 th Axis (RPM)	D30378 D30379
Velocity Feedback of 32 th Axis (mm/min)	D30334 D30335	Velocity Feedback of 23 th Axis (RPM)	D30380 D30381
Velocity Feedback of 1 st Axis (RPM)	D30336 D30337	Velocity Feedback of 24 th Axis (RPM)	D30382 D30383
Velocity Feedback of 2 nd Axis (RPM)	D30338 D30339	Velocity Feedback of 25 th Axis (RPM)	D30384 D30385
Velocity Feedback of 3 rd Axis (RPM)	D30340 D30341	Velocity Feedback of 26 th Axis (RPM)	D30386 D30387
Velocity Feedback of 4 th Axis (RPM)	D30342 D30343	Velocity Feedback of 27 th Axis (RPM)	D30388 D30389
Velocity Feedback of 5 th Axis (RPM)	D30344 D30345	Velocity Feedback of 28 th Axis (RPM)	D30390 D30391
Velocity Feedback of 6 th Axis (RPM)	D30346 D30347	Velocity Feedback of 29 th Axis (RPM)	D30392 D30393
Velocity Feedback of 7 th Axis (RPM)	D30348 D30349	Velocity Feedback of 30 th Axis (RPM)	D30394 D30395
Velocity Feedback of 8 th Axis (RPM)	D30350 D30351	Velocity Feedback of 31 th Axis (RPM)	D30396 D30397
Velocity Feedback of 32 th Axis (RPM)	D30398 D30399	Torque Peak of 22 th Axis	D30421
Torque Peak of 1 st Axis	D30400	Torque Peak of 23 th Axis	D30422
Torque Peak of 2 nd Axis	D30401	Torque Peak of 24 th Axis	D30423
Torque Peak of 3 rd Axis	D30402	Torque Peak of 25 th Axis	D30424
Torque Peak of 4 th Axis	D30403	Torque Peak of 26 th Axis	D30425
Torque Peak of 5 th Axis	D30404	Torque Peak of 27 th Axis	D30426
Torque Peak of 6 th Axis	D30405	Torque Peak of 28 th Axis	D30427
Torque Peak of 7 th Axis	D30406	Torque Peak of 29 th Axis	D30428
Torque Peak of 8 th Axis	D30407	Torque Peak of 30 th Axis	D30429
Torque Peak of 9 th Axis	D30408	Torque Peak of 31 th Axis	D30430

Function Name	Special D	Function Name	Special D
Torque Peak of 10 th Axis	D30409	Torque Peak of 32 th Axis	D30431
Torque Peak of 11 th Axis	D30410	Current Status of Multi-Z axis	D3x014
Torque Peak of 12 th Axis	D30411	Current Coordinate System	D3x016
Torque Peak of 13 th Axis	D30412	Information Monitoring 1 Sort 1	D3x096 D3x097
Torque Peak of 14 th Axis	D30413	Information Monitoring 1 Sort 2	D3x098 D3x099
Torque Peak of 15 th Axis	D30414	Information Monitoring 1 Sort 3	D3x100 D3x101
Torque Peak of 16 th Axis	D30415	Information Monitoring 1 Sort 4	D3x102 D3x103
Torque Peak of 17 th Axis	D30416	Information Monitoring 2 Sort 1	D3x104 D3x105
Torque Peak of 18 th Axis	D30417	Information Monitoring 2 Sort 2	D3x106 D3x107
Torque Peak of 19 th Axis	D30418	Information Monitoring 2 Sort 3	D3x108 D3x109
Torque Peak of 20 th Axis	D30419	Information Monitoring 2 Sort 4	D3x110 D3x111
Torque Peak of 21 th Axis	D30420	Look Ahead Remaining Command	D3x320 D3x321

Function Name	Special D	Function Name	Special D
Complete Process Amount	D49x00 D49x01	Total Process Time	D49x04 D49x05
Process Target Amount	D49x02 D49x03	Single Process Time	D49x06 D49x07

5.3.16 NC read bit status from special M

Users can use dedicated NC # variables to obtain special M relays' status from the MLC system. This means these # variables below can be edited by the MLC, so users can control the NC program's conditions through the MLC program. Variables from #25000 to #25127 are paired with MLC bit type relays M2x128 to M2x255 respectively (MLC to NC). For example, #25000 in NC channel 1 is paired with M21128. If M21128 is ON, the value of the variable #25000 in the NC program of channel 1 will be 1. On the other hand, if M21128 is OFF, the value of #25000 will be 0.

Refer to the following table for the bits for the output points in the MLC system and their corresponding # variables in the NC system.

Function Name	Special M	# variable	Function Name	Special M	# variable
MLC to NC Variable 1	M2x128	#25000	MLC to NC Variable 33	M2x160	#25032
MLC to NC Variable 2	M2x129	#25001	MLC to NC Variable 34	M2x161	#25033
MLC to NC Variable 3	M2x130	#25002	MLC to NC Variable 35	M2x162	#25034
MLC to NC Variable 4	M2x131	#25003	MLC to NC Variable 36	M2x163	#25035
MLC to NC Variable 5	M2x132	#25004	MLC to NC Variable 37	M2x164	#25036
MLC to NC Variable 6	M2x133	#25005	MLC to NC Variable 38	M2x165	#25037
MLC to NC Variable 7	M2x134	#25006	MLC to NC Variable 39	M2x166	#25038
MLC to NC Variable 8	M2x135	#25007	MLC to NC Variable 40	M2x167	#25039
MLC to NC Variable 9	M2x136	#25008	MLC to NC Variable 41	M2x168	#25040
MLC to NC Variable 10	M2x137	#25009	MLC to NC Variable 42	M2x169	#25041
MLC to NC Variable 11	M2x138	#25010	MLC to NC Variable 43	M2x170	#25042
MLC to NC Variable 12	M2x139	#25011	MLC to NC Variable 44	M2x171	#25043
MLC to NC Variable 13	M2x140	#25012	MLC to NC Variable 45	M2x172	#25044
MLC to NC Variable 14	M2x141	#25013	MLC to NC Variable 46	M2x173	#25045
MLC to NC Variable 15	M2x142	#25014	MLC to NC Variable 47	M2x174	#25046
MLC to NC Variable 16	M2x143	#25015	MLC to NC Variable 48	M2x175	#25047
MLC to NC Variable 17	M2x144	#25016	MLC to NC Variable 49	M2x176	#25048
MLC to NC Variable 18	M2x145	#25017	MLC to NC Variable 50	M2x177	#25049
MLC to NC Variable 19	M2x146	#25018	MLC to NC Variable 51	M2x178	#25050
MLC to NC Variable 20	M2x147	#25019	MLC to NC Variable 52	M2x179	#25051
MLC to NC Variable 21	M2x148	#25020	MLC to NC Variable 53	M2x180	#25052
MLC to NC Variable 22	M2x149	#25021	MLC to NC Variable 54	M2x181	#25053
MLC to NC Variable 23	M2x150	#25022	MLC to NC Variable 55	M2x182	#25054
MLC to NC Variable 24	M2x151	#25023	MLC to NC Variable 56	M2x183	#25055
MLC to NC Variable 25	M2x152	#25024	MLC to NC Variable 57	M2x184	#25056
MLC to NC Variable 26	M2x153	#25025	MLC to NC Variable 58	M2x185	#25057
MLC to NC Variable 27	M2x154	#25026	MLC to NC Variable 59	M2x186	#25058
MLC to NC Variable 28	M2x155	#25027	MLC to NC Variable 60	M2x187	#25059
MLC to NC Variable 29	M2x156	#25028	MLC to NC Variable 61	M2x188	#25060
MLC to NC Variable 30	M2x157	#25029	MLC to NC Variable 62	M2x189	#25061
MLC to NC Variable 31	M2x158	#25030	MLC to NC Variable 63	M2x190	#25062
MLC to NC Variable 32	M2x159	#25031	MLC to NC Variable 64	M2x191	#25063
MLC to NC Variable 65	M2x192	#25064	MLC to NC Variable 97	M2x224	#25096
MLC to NC Variable 66	M2x193	#25065	MLC to NC Variable 98	M2x225	#25097

Function Name	Special M	# variable	Function Name	Special M	# variable
MLC to NC Variable 67	M2x194	#25066	MLC to NC Variable 99	M2x226	#25098
MLC to NC Variable 68	M2x195	#25067	MLC to NC Variable 100	M2x227	#25099
MLC to NC Variable 69	M2x196	#25068	MLC to NC Variable 101	M2x228	#25100
MLC to NC Variable 70	M2x197	#25069	MLC to NC Variable 102	M2x229	#25101
MLC to NC Variable 71	M2x198	#25070	MLC to NC Variable 103	M2x230	#25102
MLC to NC Variable 72	M2x199	#25071	MLC to NC Variable 104	M2x231	#25103
MLC to NC Variable 73	M2x200	#25072	MLC to NC Variable 105	M2x232	#25104
MLC to NC Variable 74	M2x201	#25073	MLC to NC Variable 106	M2x233	#25105
MLC to NC Variable 75	M2x202	#25074	MLC to NC Variable 107	M2x234	#25106
MLC to NC Variable 76	M2x203	#25075	MLC to NC Variable 108	M2x235	#25107
MLC to NC Variable 77	M2x204	#25076	MLC to NC Variable 109	M2x236	#25108
MLC to NC Variable 78	M2x205	#25077	MLC to NC Variable 110	M2x237	#25109
MLC to NC Variable 79	M2x206	#25078	MLC to NC Variable 111	M2x238	#25110
MLC to NC Variable 80	M2x207	#25079	MLC to NC Variable 112	M2x239	#25111
MLC to NC Variable 81	M2x208	#25080	MLC to NC Variable 113	M2x240	#25112
MLC to NC Variable 82	M2x209	#25081	MLC to NC Variable 114	M2x241	#25113
MLC to NC Variable 83	M2x210	#25082	MLC to NC Variable 115	M2x242	#25114
MLC to NC Variable 84	M2x211	#25083	MLC to NC Variable 116	M2x243	#25115
MLC to NC Variable 85	M2x212	#25084	MLC to NC Variable 117	M2x244	#25116
MLC to NC Variable 86	M2x213	#25085	MLC to NC Variable 118	M2x245	#25117
MLC to NC Variable 87	M2x214	#25086	MLC to NC Variable 119	M2x246	#25118
MLC to NC Variable 88	M2x215	#25087	MLC to NC Variable 120	M2x247	#25119
MLC to NC Variable 89	M2x216	#25088	MLC to NC Variable 121	M2x248	#25120
MLC to NC Variable 90	M2x217	#25089	MLC to NC Variable 122	M2x249	#25121
MLC to NC Variable 91	M2x218	#25090	MLC to NC Variable 123	M2x250	#25122
MLC to NC Variable 92	M2x219	#25091	MLC to NC Variable 124	M2x251	#25123
MLC to NC Variable 93	M2x220	#25092	MLC to NC Variable 125	M2x252	#25124
MLC to NC Variable 94	M2x221	#25093	MLC to NC Variable 126	M2x253	#25125
MLC to NC Variable 95	M2x222	#25094	MLC to NC Variable 127	M2x254	#25126
MLC to NC Variable 96	M2x223	#25095	MLC to NC Variable 128	M2x255	#25127

5.3.17 NC write bit control to special M

Users can use dedicated NC # variables to write the bit status to special M registers from the NC system. This means these # variables below can control the MLC directly, so users can set MLC conditions for specific purposes. Variables from #25256 to #25383 are paired with M relays M3x128 to M3x255 respectively (NC to MLC).

For example, #25256 in NC channel 1 is paired with M31128. If #25256 is set to 1 in the NC program of channel 1, the value of the M31128 relay in the MLC will be ON. The M31128 will be updated right after #25256 has changed.

Refer to the following table for the bits for the input points in the MLC system and their corresponding # variables in the NC system.

Function Name	Special M	# variable	Function Name	Special M	# variable
NC Variable to MLC 1	M3x128	#25256	NC Variable to MLC 33	M3x160	#25288
NC Variable to MLC 2	M3x129	#25257	NC Variable to MLC 34	M3x161	#25289
NC Variable to MLC 3	M3x130	#25258	NC Variable to MLC 35	M3x162	#25290
NC Variable to MLC 4	M3x131	#25259	NC Variable to MLC 36	M3x163	#25291
NC Variable to MLC 5	M3x132	#25260	NC Variable to MLC 37	M3x164	#25292
NC Variable to MLC 6	M3x133	#25261	NC Variable to MLC 38	M3x165	#25293
NC Variable to MLC 7	M3x134	#25262	NC Variable to MLC 39	M3x166	#25294
NC Variable to MLC 8	M3x135	#25263	NC Variable to MLC 40	M3x167	#25295
NC Variable to MLC 9	M3x136	#25264	NC Variable to MLC 41	M3x168	#25296
NC Variable to MLC 10	M3x137	#25265	NC Variable to MLC 42	M3x169	#25297
NC Variable to MLC 11	M3x138	#25266	NC Variable to MLC 43	M3x170	#25298
NC Variable to MLC 12	M3x139	#25267	NC Variable to MLC 44	M3x171	#25299
NC Variable to MLC 13	M3x140	#25268	NC Variable to MLC 45	M3x172	#25300
NC Variable to MLC 14	M3x141	#25269	NC Variable to MLC 46	M3x173	#25301
NC Variable to MLC 15	M3x142	#25270	NC Variable to MLC 47	M3x174	#25302
NC Variable to MLC 16	M3x143	#25271	NC Variable to MLC 48	M3x175	#25303
NC Variable to MLC 17	M3x144	#25272	NC Variable to MLC 49	M3x176	#25304
NC Variable to MLC 18	M3x145	#25273	NC Variable to MLC 50	M3x177	#25305
NC Variable to MLC 19	M3x146	#25274	NC Variable to MLC 51	M3x178	#25306
NC Variable to MLC 20	M3x147	#25275	NC Variable to MLC 52	M3x179	#25307
NC Variable to MLC 21	M3x148	#25276	NC Variable to MLC 53	M3x180	#25308
NC Variable to MLC 22	M3x149	#25277	NC Variable to MLC 54	M3x181	#25309
NC Variable to MLC 23	M3x150	#25278	NC Variable to MLC 55	M3x182	#25310
NC Variable to MLC 24	M3x151	#25279	NC Variable to MLC 56	M3x183	#25311
NC Variable to MLC 25	M3x152	#25280	NC Variable to MLC 57	M3x184	#25312
NC Variable to MLC 26	M3x153	#25281	NC Variable to MLC 58	M3x185	#25313
NC Variable to MLC 27	M3x154	#25282	NC Variable to MLC 59	M3x186	#25314
NC Variable to MLC 28	M3x155	#25283	NC Variable to MLC 60	M3x187	#25315
NC Variable to MLC 29	M3x156	#25284	NC Variable to MLC 61	M3x188	#25316
NC Variable to MLC 30	M3x157	#25285	NC Variable to MLC 62	M3x189	#25317
NC Variable to MLC 31	M3x158	#25286	NC Variable to MLC 63	M3x190	#25318
NC Variable to MLC 32	M3x159	#25287	NC Variable to MLC 64	M3x191	#25319
NC Variable to MLC 65	M3x192	#25320	NC Variable to MLC 97	M3x224	#25352

Function Name	Special M	# variable	Function Name	Special M	# variable
NC Variable to MLC 66	M3x193	#25321	NC Variable to MLC 98	M3x225	#25353
NC Variable to MLC 67	M3x194	#25322	NC Variable to MLC 99	M3x226	#25354
NC Variable to MLC 68	M3x195	#25323	NC Variable to MLC 100	M3x227	#25355
NC Variable to MLC 69	M3x196	#25324	NC Variable to MLC 101	M3x228	#25356
NC Variable to MLC 70	M3x197	#25325	NC Variable to MLC 102	M3x229	#25357
NC Variable to MLC 71	M3x198	#25326	NC Variable to MLC 103	M3x230	#25358
NC Variable to MLC 72	M3x199	#25327	NC Variable to MLC 104	M3x231	#25359
NC Variable to MLC 73	M3x200	#25328	NC Variable to MLC 105	M3x232	#25360
NC Variable to MLC 74	M3x201	#25329	NC Variable to MLC 106	M3x233	#25361
NC Variable to MLC 75	M3x202	#25330	NC Variable to MLC 107	M3x234	#25362
NC Variable to MLC 76	M3x203	#25331	NC Variable to MLC 108	M3x235	#25363
NC Variable to MLC 77	M3x204	#25332	NC Variable to MLC 109	M3x236	#25364
NC Variable to MLC 78	M3x205	#25333	NC Variable to MLC 110	M3x237	#25365
NC Variable to MLC 79	M3x206	#25334	NC Variable to MLC 111	M3x238	#25366
NC Variable to MLC 80	M3x207	#25335	NC Variable to MLC 112	M3x239	#25367
NC Variable to MLC 81	M3x208	#25336	NC Variable to MLC 113	M3x240	#25368
NC Variable to MLC 82	M3x209	#25337	NC Variable to MLC 114	M3x241	#25369
NC Variable to MLC 83	M3x210	#25338	NC Variable to MLC 115	M3x242	#25370
NC Variable to MLC 84	M3x211	#25339	NC Variable to MLC 116	M3x243	#25371
NC Variable to MLC 85	M3x212	#25340	NC Variable to MLC 117	M3x244	#25372
NC Variable to MLC 86	M3x213	#25341	NC Variable to MLC 118	M3x245	#25373
NC Variable to MLC 87	M3x214	#25342	NC Variable to MLC 119	M3x246	#25374
NC Variable to MLC 88	M3x215	#25343	NC Variable to MLC 120	M3x247	#25375
NC Variable to MLC 89	M3x216	#25344	NC Variable to MLC 121	M3x248	#25376
NC Variable to MLC 90	M3x217	#25345	NC Variable to MLC 122	M3x249	#25377
NC Variable to MLC 91	M3x218	#25346	NC Variable to MLC 123	M3x250	#25378
NC Variable to MLC 92	M3x219	#25347	NC Variable to MLC 124	M3x251	#25379
NC Variable to MLC 93	M3x220	#25348	NC Variable to MLC 125	M3x252	#25380
NC Variable to MLC 94	M3x221	#25349	NC Variable to MLC 126	M3x253	#25381
NC Variable to MLC 95	M3x222	#25350	NC Variable to MLC 127	M3x254	#25382
NC Variable to MLC 96	M3x223	#25351	NC Variable to MLC 128	M3x255	#25383

5.3.18 NC read data status from special D

Users can use dedicated NC # variables to obtain special D registers' data from the MLC system. This means these # variables below can be edited by the MLC, so users can control the NC program's variables through the MLC program. Variables from #25128 to #25255 are paired with MLC word data type register D2x128 to D2x255 respectively (MLC to NC).

For example, #25128 in NC channel 1 is paired with D21128. If D21128 set to 100, the value of the variable #25128 in the NC program of channel 1 will be 100. The variable #25128 will be updated right after D21128 has changed.

Refer to the following table for the bits for the registers in the MLC system and their corresponding # variables in the NC system.

Function Name	Special D	# variable	Function Name	Special D	# variable
MLC to NC Variable 1	D2x128	#25128	MLC to NC Variable 33	D2x160	#25160
MLC to NC Variable 2	D2x129	#25129	MLC to NC Variable 4	D2x161	#25161
MLC to NC Variable 3	D2x130	#25130	MLC to NC Variable 35	D2x162	#25162
MLC to NC Variable 4	D2x131	#25131	MLC to NC Variable 36	D2x163	#25163
MLC to NC Variable 5	D2x132	#25132	MLC to NC Variable 37	D2x164	#25164
MLC to NC Variable 6	D2x133	#25133	MLC to NC Variable 38	D2x165	#25165
MLC to NC Variable 7	D2x134	#25134	MLC to NC Variable 39	D2x166	#25166
MLC to NC Variable 8	D2x135	#25135	MLC to NC Variable 40	D2x167	#25167
MLC to NC Variable 9	D2x136	#25136	MLC to NC Variable 41	D2x168	#25168
MLC to NC Variable 10	D2x137	#25137	MLC to NC Variable 42	D2x169	#25169
MLC to NC Variable 11	D2x138	#25138	MLC to NC Variable 43	D2x170	#25170
MLC to NC Variable 12	D2x139	#25139	MLC to NC Variable 44	D2x171	#25171
MLC to NC Variable 13	D2x140	#25140	MLC to NC Variable 45	D2x172	#25172
MLC to NC Variable 14	D2x141	#25141	MLC to NC Variable 46	D2x173	#25173
MLC to NC Variable 15	D2x142	#25142	MLC to NC Variable 47	D2x174	#25174
MLC to NC Variable 16	D2x143	#25143	MLC to NC Variable 48	D2x175	#25175
MLC to NC Variable 17	D2x144	#25144	MLC to NC Variable 49	D2x176	#25176
MLC to NC Variable 18	D2x145	#25145	MLC to NC Variable 50	D2x177	#25177
MLC to NC Variable 19	D2x146	#25146	MLC to NC Variable 51	D2x178	#25178
MLC to NC Variable 20	D2x147	#25147	MLC to NC Variable 52	D2x179	#25179
MLC to NC Variable 21	D2x148	#25148	MLC to NC Variable 53	D2x180	#25180
MLC to NC Variable 22	D2x149	#25149	MLC to NC Variable 54	D2x181	#25181
MLC to NC Variable 23	D2x150	#25150	MLC to NC Variable 55	D2x182	#25182
MLC to NC Variable 24	D2x151	#25151	MLC to NC Variable 56	D2x183	#25183
MLC to NC Variable 25	D2x152	#25152	MLC to NC Variable 57	D2x184	#25184
MLC to NC Variable 26	D2x153	#25153	MLC to NC Variable 58	D2x185	#25185
MLC to NC Variable 27	D2x154	#25154	MLC to NC Variable 59	D2x186	#25186
MLC to NC Variable 28	D2x155	#25155	MLC to NC Variable 60	D2x187	#25187
MLC to NC Variable 29	D2x156	#25156	MLC to NC Variable 61	D2x188	#25188
MLC to NC Variable 30	D2x157	#25157	MLC to NC Variable 62	D2x189	#25189
MLC to NC Variable 31	D2x158	#25158	MLC to NC Variable 63	D2x190	#25190
MLC to NC Variable 32	D2x159	#25159	MLC to NC Variable 64	D2x191	#25191

Function Name	Special D	# variable	Function Name	Special D	# variable
MLC to NC Variable 65	D2x192	#25192	MLC to NC Variable 97	D2x224	#25224
MLC to NC Variable 66	D2x193	#25193	MLC to NC Variable 98	D2x225	#25225
MLC to NC Variable 67	D2x194	#25194	MLC to NC Variable 99	D2x226	#25226
MLC to NC Variable 68	D2x195	#25195	MLC to NC Variable 100	D2x227	#25227
MLC to NC Variable 69	D2x196	#25196	MLC to NC Variable 101	D2x228	#25228
MLC to NC Variable 70	D2x197	#25197	MLC to NC Variable 102	D2x229	#25229
MLC to NC Variable 71	D2x198	#25198	MLC to NC Variable 103	D2x230	#25230
MLC to NC Variable 72	D2x199	#25199	MLC to NC Variable 104	D2x231	#25231
MLC to NC Variable 73	D2x200	#25200	MLC to NC Variable 105	D2x232	#25232
MLC to NC Variable 74	D2x201	#25201	MLC to NC Variable 106	D2x233	#25233
MLC to NC Variable 75	D2x202	#25202	MLC to NC Variable 107	D2x234	#25234
MLC to NC Variable 76	D2x203	#25203	MLC to NC Variable 108	D2x235	#25235
MLC to NC Variable 77	D2x204	#25204	MLC to NC Variable 109	D2x236	#25236
MLC to NC Variable 78	D2x205	#25205	MLC to NC Variable 110	D2x237	#25237
MLC to NC Variable 79	D2x206	#25206	MLC to NC Variable 111	D2x238	#25238
MLC to NC Variable 80	D2x207	#25207	MLC to NC Variable 112	D2x239	#25239
MLC to NC Variable 81	D2x208	#25208	MLC to NC Variable 113	D2x240	#25240
MLC to NC Variable 82	D2x209	#25209	MLC to NC Variable 114	D2x241	#25241
MLC to NC Variable 83	D2x210	#25210	MLC to NC Variable 115	D2x242	#25242
MLC to NC Variable 84	D2x211	#25211	MLC to NC Variable 116	D2x243	#25243
MLC to NC Variable 85	D2x212	#25212	MLC to NC Variable 117	D2x244	#25244
MLC to NC Variable 86	D2x213	#25213	MLC to NC Variable 118	D2x245	#25245
MLC to NC Variable 87	D2x214	#25214	MLC to NC Variable 119	D2x246	#25246
MLC to NC Variable 88	D2x215	#25215	MLC to NC Variable 120	D2x247	#25247
MLC to NC Variable 89	D2x216	#25216	MLC to NC Variable 121	D2x248	#25248
MLC to NC Variable 90	D2x217	#25217	MLC to NC Variable 122	D2x249	#25249
MLC to NC Variable 91	D2x218	#25218	MLC to NC Variable 123	D2x250	#25250
MLC to NC Variable 92	D2x219	#25219	MLC to NC Variable 124	D2x251	#25251
MLC to NC Variable 93	D2x220	#25220	MLC to NC Variable 125	D2x252	#25252
MLC to NC Variable 94	D2x221	#25221	MLC to NC Variable 126	D2x253	#25253
MLC to NC Variable 95	D2x222	#25222	MLC to NC Variable 127	D2x254	#25254
MLC to NC Variable 96	D2x223	#25223	MLC to NC Variable 128	D2x255	#25255

5.3.19 NC write data to special M

Users can use dedicated NC # variables to write data to special D registers from the NC system. This means these # variables below can access the MLC directly, so users can send data to the MLC program for specific purposes. Variables from #25384 to #25511 are paired with MLC word data type register D3x128 to D3x255 respectively (NC to MLC).

For example, #25384 in NC channel 1 is paired with D31128. If the #25384 in the NC program of channel 1 set to 101, the value of the register D31128 in the MLC will be 101. The D31128 will be updated right after #25384 has changed.

When the system parameter **[N1.010 Bit7 MLC variable type]** is 1 for MLC double words floating mode, these odd D registers and paired # variables will be occupied. The system will return alarm code 0x235 if they are used in the program.

Function Name	Special D	# variable	Function Name	Special D	# variable
NC Variable to MLC 1	D3x128	#25384	NC Variable to MLC 33	D3x160	#25416
NC Variable to MLC 2	D3x129	#25385	NC Variable to MLC 34	D3x161	#25417
NC Variable to MLC 3	D3x130	#25386	NC Variable to MLC 35	D3x162	#25418
NC Variable to MLC 4	D3x131	#25387	NC Variable to MLC 36	D3x163	#25419
NC Variable to MLC 5	D3x132	#25388	NC Variable to MLC 37	D3x164	#25420
NC Variable to MLC 6	D3x133	#25389	NC Variable to MLC 38	D3x165	#25421
NC Variable to MLC 7	D3x134	#25390	NC Variable to MLC 39	D3x166	#25422
NC Variable to MLC 8	D3x135	#25391	NC Variable to MLC 40	D3x167	#25423
NC Variable to MLC 9	D3x136	#25392	NC Variable to MLC 41	D3x168	#25424
NC Variable to MLC 10	D3x137	#25393	NC Variable to MLC 42	D3x169	#25425
NC Variable to MLC 11	D3x138	#25394	NC Variable to MLC 43	D3x170	#25426
NC Variable to MLC 12	D3x139	#25395	NC Variable to MLC 44	D3x171	#25427
NC Variable to MLC 13	D3x140	#25396	NC Variable to MLC 45	D3x172	#25428
NC Variable to MLC 14	D3x141	#25397	NC Variable to MLC 46	D3x173	#25429
NC Variable to MLC 15	D3x142	#25398	NC Variable to MLC 47	D3x174	#25430
NC Variable to MLC 16	D3x143	#25399	NC Variable to MLC 48	D3x175	#25431
NC Variable to MLC 17	D3x144	#25400	NC Variable to MLC 49	D3x176	#25432
NC Variable to MLC 18	D3x145	#25401	NC Variable to MLC 50	D3x177	#25433
NC Variable to MLC 19	D3x146	#25402	NC Variable to MLC 51	D3x178	#25434
NC Variable to MLC 20	D3x147	#25403	NC Variable to MLC 52	D3x179	#25435
NC Variable to MLC 21	D3x148	#25404	NC Variable to MLC 53	D3x180	#25436
NC Variable to MLC 22	D3x149	#25405	NC Variable to MLC 54	D3x181	#25437
NC Variable to MLC 23	D3x150	#25406	NC Variable to MLC 55	D3x182	#25438
NC Variable to MLC 24	D3x151	#25407	NC Variable to MLC 56	D3x183	#25439
NC Variable to MLC 25	D3x152	#25408	NC Variable to MLC 57	D3x184	#25440
NC Variable to MLC 26	D3x153	#25409	NC Variable to MLC 58	D3x185	#25441
NC Variable to MLC 27	D3x154	#25410	NC Variable to MLC 59	D3x186	#25442
NC Variable to MLC 28	D3x155	#25411	NC Variable to MLC 60	D3x187	#25443
NC Variable to MLC 29	D3x156	#25412	NC Variable to MLC 61	D3x188	#25444
NC Variable to MLC 30	D3x157	#25413	NC Variable to MLC 62	D3x189	#25445
NC Variable to MLC 31	D3x158	#25414	NC Variable to MLC 63	D3x190	#25446
NC Variable to MLC 32	D3x159	#25415	NC Variable to MLC 64	D3x191	#25447
NC Variable to MLC 65	D3x192	#25448	NC Variable to MLC 97	D3x224	#25480
NC Variable to MLC 66	D3x193	#25449	NC Variable to MLC 98	D3x225	#25481

Function Name	Special D	# variable	Function Name	Special D	# variable
NC Variable to MLC 67	D3x194	#25450	NC Variable to MLC 99	D3x226	#25482
NC Variable to MLC 68	D3x195	#25451	NC Variable to MLC 100	D3x227	#25483
NC Variable to MLC 69	D3x196	#25452	NC Variable to MLC 101	D3x228	#25484
NC Variable to MLC 70	D3x197	#25453	NC Variable to MLC 102	D3x229	#25485
NC Variable to MLC 71	D3x198	#25454	NC Variable to MLC 103	D3x230	#25486
NC Variable to MLC 72	D3x199	#25455	NC Variable to MLC 104	D3x231	#25487
NC Variable to MLC 73	D3x200	#25456	NC Variable to MLC 105	D3x232	#25488
NC Variable to MLC 74	D3x201	#25457	NC Variable to MLC 106	D3x233	#25489
NC Variable to MLC 75	D3x202	#25458	NC Variable to MLC 107	D3x234	#25490
NC Variable to MLC 76	D3x203	#25459	NC Variable to MLC 108	D3x235	#25491
NC Variable to MLC 77	D3x204	#25460	NC Variable to MLC 109	D3x236	#25492
NC Variable to MLC 78	D3x205	#25461	NC Variable to MLC 110	D3x237	#25493
NC Variable to MLC 79	D3x206	#25462	NC Variable to MLC 111	D3x238	#25494
NC Variable to MLC 80	D3x207	#25463	NC Variable to MLC 112	D3x239	#25495
NC Variable to MLC 81	D3x208	#25464	NC Variable to MLC 113	D3x240	#25496
NC Variable to MLC 82	D3x209	#25465	NC Variable to MLC 114	D3x241	#25497
NC Variable to MLC 83	D3x210	#25466	NC Variable to MLC 115	D3x242	#25498
NC Variable to MLC 84	D3x211	#25467	NC Variable to MLC 116	D3x243	#25499
NC Variable to MLC 85	D3x212	#25468	NC Variable to MLC 117	D3x244	#25500
NC Variable to MLC 86	D3x213	#25469	NC Variable to MLC 118	D3x245	#25501
NC Variable to MLC 87	D3x214	#25470	NC Variable to MLC 119	D3x246	#25502
NC Variable to MLC 88	D3x215	#25471	NC Variable to MLC 120	D3x247	#25503
NC Variable to MLC 89	D3x216	#25472	NC Variable to MLC 121	D3x248	#25504
NC Variable to MLC 90	D3x217	#25473	NC Variable to MLC 122	D3x249	#25505
NC Variable to MLC 91	D3x218	#25474	NC Variable to MLC 123	D3x250	#25506
NC Variable to MLC 92	D3x219	#25475	NC Variable to MLC 124	D3x251	#25507
NC Variable to MLC 93	D3x220	#25476	NC Variable to MLC 125	D3x252	#25508
NC Variable to MLC 94	D3x221	#25477	NC Variable to MLC 126	D3x253	#25509
NC Variable to MLC 95	D3x222	#25502	NC Variable to MLC 127	D3x254	#25510
NC Variable to MLC 96	D3x223	#25503	NC Variable to MLC 128	D3x255	#25511

5.3.20 EtherCAT communication information

The NC5 controller allows users to monitor the status of connected slave devices. Therefore,

users can designed their alarms and actions according to these special M and D registers.

Function Name	Special M	Function Name	Special M
EtherCAT Communication Status	M30000	-	-
Function Name	Special D	Function Name	Special D
	D20200		D20216
1st Demete Medule Input	D20201	5 th Domoto Madula Input	D20217
1 st Remote Module Input	D20202	5" Remote Module Input	D20218
	D20203		D20219
	D20204		D20220
2 nd Domoto Modulo Input	D20205	6 th Romoto Modulo Input	D20221
2 ^m Remote Module Input	D20206		D20222
	D20207		D20223
	D20208		D20224
2rd Domoto Modulo Input	D20209	7 th Domoto Modulo Input	D20225
5 rd Remote Module Input	D20210		D20226
	D20211		D20227
	D20212		D20228
4 th Domoto Modulo Input	D20213	9th Domoto Modulo Input	D20229
	D20214		D20230
	D20215		D20231

5.3.21 Robot arm control

The NC5 controller can allocate any NC channel for robot arm mechanism control. Users can define different robot mechanisms, system modes and system coordinates.

Function Name	Special M	Function Name	Special M
Servo On / Off	M2x012	C Axis JOG Forward	M2x389
	M2x048		
Robet Coordinate System	M2x049	X Avia IOC Bayaraa	M2x400
Robol Coordinate System	M2x050	A Axis JOG Reveise	
	M2x051		
X Axis JOG Forward	M2x384	Y Axis JOG Reverse	M2x401
Y Axis JOG Forward	M2x385	Z Axis JOG Reverse	M2x402
Z Axis JOG Forward	M2x386	A Axis JOG Reverse	M2x403
A Axis JOG Forward	M2x387	B Axis JOG Reverse	M2x404
B Axis JOG Forward	M2x388	C Axis JOG Reverse	M2x405

Function Name	Special D	Function Name	Special D
NC Mode Switching	D2x000	Robot's Coordinate System Switch in Manual Mode	D2x016
Feed Rate Override for JOG, INC and Dry Run Mode	D2x006	Robot's Tool System Switch in Manual Mode	D2x017
MPG Axes Selection	D2x008	Current Coordinate System	D3x016
MPG Ratio Selection	D2x009	Current Robot Tool Coordinate System	D3x017

MLC Application Examples 6

This chapter provides commonly used MLC applications, including examples such as analog spindle gear switch, one-button macro call, MLC axes switching and synchronous control.

6.1	Mode Switch ····· 6-2
6.2	Machining, single block, and feed rate override
6.3	MPG 6-9
6.4	JOG move ····· 6-11
6.5	INC move 6-14
6.6	Rapid move ····· 6-17
6.7	Homing
6.8	M / S / T codes execution ······ 6-22
6.9	1 st software limit / hardware limit cancellation ······ 6-27
6.10	Spindle control ····· 6-30
6.11	Spindle gear ratio switch
6.12	One-button macro call ······ 6-41
6.13	Tool magazine control with I/O ····· 6-45
6.14	MLC axes control ····· 6-49
6.15	Synchronous control and command transfer
6.16	Synchronous gantry control
6.17	Devices information monitor ····· 6-65
6.18	Robot arm control ····· 6-69
6.19	Axes Oscillation Control

6.1 Mode Switch

The NC5 controller provides 8 different types of system modes, which can be switched by setting the MLC special D2x000, and the special M can be used to monitor the mode status.

	MLC	special	D
--	-----	---------	---

NC Mode Switch	Value	Mode	Mode Status
D2x000	0	AUTO	M3x000
	1	EDIT	M3x001
	2	MDI	M3x002
	3	MPG	M3x003
	4	JOG	M3x004
	5	RAPID	M3x005
	6	INC	M3x006
	7	HOME	M3x007

[NC Mode Switch] D2x000

The NC system uses this D2x000 to switch between different NC modes. The x in D2x000 represents different NC channels.

[Mode Status] M3x000 ~ M3x007

When the NC successfully switches to a different mode, the NC mode statuses M3x000 to M3x007 will respond within 4ms.

MLC Example

In the below MLC program example, a scenario is demonstrated where users use a real hardware button to switch the NC mode of channel 1 to general-purpose use. Two different types of methods are described, including button and knob.

Button Type:

The mode switch signal is triggered only when the user presses the button as a DI signal. Therefore, at each DI trigger, the MLC writes the corresponding decimal value to D21000 with the MOV instruction. In addition, M31000 can be used to obtain whether the system is in AUTO mode. If yes, MLC will output a DO signal.

Figure 6.1.1 Mode switch by DI button

Knob Type:

The trigger signals input to the MLC continuously. Therefore, when users use the VRT instruction to create the table (as shown in Figure 6.1.2) and input the corresponding values to the table, the VRT instruction outputs the corresponding values to the register. Next, the MOV instruction moves the values to the D21000 to switch the system mode and the system uses the **[Mode Status]** special M to output signals.

Figure 6.1.2 VRT table

Figure 6.1.3 Mode switching by knob

6.2 Machining, single block, and feed rate override

On the controller, users can use the special M relays to start and stop the machining. In addition, users can switch to single block execution mode and change the machining speed override setting.

MLC special D

Cycle Start	M2x000	Cycle Start Status	M3x016
Feed Hold	M2x001	Feed Hold Status	M3x017
NC Reset	M2x004	Program End Finished	M3x021
Enable Dry Run	M2x005	M02 Cycle Stop	M3x022
MPG Simulation	M2x006	M30 Cycle Stop and Index Reset	M3x023
Single Block	M2x008	Single Block Hold	M3x024
Optional Stop	M2x009	M00 System Hold	M3x037
Single Block Skip ('/')	M2x010	M01 Optional Stop	M3x038

Feed Rate Percentage	D2x002	Feed Rate for JOG, INC and Dry Run Mode	D2x006
Rapid Speed Percentage	D2x004	-	-

[Cycle Start, Cycle Start Status] M2x000, M3x016

When the controller is in AUTO or MDI mode, if the **[Cycle Start]** is triggered, the system will load the main program or MDI program and then start execution. The controller will execute the NC program and the **[Cycle Start Status]** will be set to ON.

- [Cycle Start] This trigger must stay as ON for at least one MLC cycle to activate the function.
- [Cycle Start Status] After this status changes to ON, the system will automatically reset to OFF in the following situations.
 - a. When the NC program is processing but **[Single Block]** is triggered. After the current block is finished this status will be OFF.
 - b. When the NC program finishes the M00, M02 or M30 command.
 - c. When the NC program is processing but **[NC Reset]** is triggered.
 - d. When the NC program finishes the last block command.
 - e. When the NC program is processing but **[NC Mode switch]** changes.

[Feed Hold, Feed Hold Status] M2x001, M3x017

When the controller is in AUTO or MDI mode, if **[Feed Hold]** is triggered, the system will pause the current process and then set **[Feed Hold Status]** to ON.

- [Feed Hold] This trigger must stay as ON for at least one MLC cycle to activate the process.
- [Feed Hold Status] After this status changes to ON, it will automatically reset to OFF in the following situations.
 - a. After [Cycle Start] is triggered again, the system will continue the previous process.
 - b. After [NC Reset] is triggered, the system will stop and reset all statuses.

[Dry Run, Feed Rate] M2x005, D2x006

When the controller is in AUTO or MDI mode, if **[Dry Run]** is triggered, the system will load the main program or MDI program and then start the execution with the **[Feed Rate]** speed.

- When [Dry Run] is triggered as ON, the system will take [Feed Rate] as the process speed.
- When the system is executing in dry run mode and the **[Dry Run]** is reset to OFF, the system will continue running but at the NC programed speed.

[MPG Simulation] M2x006

When the controller is in AUTO or MDI mode, if the **[MPG Simulation]** is triggered, the system will execute the entire block command with the MPG rotate speed.

- Besides motion type commands, all other NC programs will execute as normal when the **[MPG Simulation]** is set to ON.
- If the **[MPG Simulation]** is triggered and the system is executing the NC program, the controller system will pause the NC process immediately.
- After the **[MPG Simulation]** is triggered during the system executing the NC program and the system pauses the process, if the **[MPG Simulation]** is reset to OFF, the system will resume the process right away.

[Single Block, Single Block Hold] M2x008, M3x024

When the controller is in AUTO or MDI mode, users can switch **[Single Block]** to ON at any time as long as it is before processing or during the NC executing. The system will execute one block command each time **[Cycle Start]** is triggered.

- The [Single Block] is enabled before the [Cycle Start]. The system will execute one block command once [Cycle Start] is triggered, and then hold the process and set [Single Block Hold] to ON after each block command is finished.
- When the **[Single Block]** is enabled during NC execution, the system will finish its current block command and then hold the process and set **[Single Block Hold]** to ON.
- When the **[Single Block]** is enabled and the system holds the process, users can trigger the **[Cycle Start]** to continue to the next command block.
- The [Single Block] is disabled when the system is in hold status. The system will set [Single Block Hold] to OFF automatically after users set [Cycle Start] to ON and continue to the next process.

[Optional Stop, M01 Optional Stop] M2x009, M3x038

When the controller is in AUTO or MDI mode, if users set **[Optional Stop]** to ON, the system will pause the process or the system will set **[M01 Optional Stop]** to ON once the NC block command is M01.

- When the **[Optional Stop]** is ON and the system holds the process due to execute the M01 command, users can trigger the **[Cycle Start]** again to continue the process.
- When the system is in hold status and releases the **[Optional Stop]** to OFF, the system will continue the process after users trigger the **[Cycle Start]**.
- After the **[M01 Optional Stop]** is ON, it will automatically reset to OFF in the following situations.
 - a. After the **[Cycle Start]** has been set to ON again.
 - b. After the **[NC Reset]** has been triggered.

[Single Block Skip] M2x010

When the controller is in AUTO or MDI mode, if users set **[Single Block Skip]** to ON, the system will skip every command block that starts with the '/' symbol.

[Program End Finished, M02 Cycle Stop, M30 Cycle Stop and Index Reset, M00 System Hold] M3x021, M3x022, M3x023, M3x037

When the controller is in AUTO or MDI mode, these special M will be triggered when the last command block is M02, M30, M00 or there are no further blocks.

When the system executes the last block as M02, M30 or there are no further blocks, regardless of whether it is a sub-program or main program, the [Program End Finished] will be ON automatically.

When the last block is M99, the **[Program End Finished]** will NOT be ON due to the M99 being a continuous command.

- After [Program End Finished, M02 Cycle Stop, M30 Cycle Stop and Index Reset, M00 System Hold] are triggered, they will be reset to OFF in the following situations.
 - a. After the [Cycle Start] has been set to ON again.
 - b. After the [NC Reset] has been triggered.

[Feed Rate Percentage] D2x002

When the controller is in AUTO or MDI mode, the system will take the program speed or dry run speed as a reference to multiply this **[Feed Rate Percentage]** and derive the final process feed. For example, the program feed is 1000 mm/min and **[Feed Rate Percentage]** is 50. The system will execute the NC program as feed 1000 x 50% = F500 mm/min.

- [Feed Rate Percentage] this percentage is only available up to 150%.
- The final feed speed will be limit by the parameter N1.033 (Feed Maximum) (mm/min).
- The system's current process feed will activate right away when this percentage changes.

Relevant Parameter

Feed rate setting:

N1.033 (Feed Maximum)

 When the controller is in AUTO or MDI mode, the system will take the program speed or dry run speed as a reference to multiply this [Feed Rate Percentage] as the final process feed but this final speed will be limited by the parameter N1.033.
MLC Example

Program execution procedure (based on NC channel 1)

- 1. Use the button signal to activate the machining operation and use the normally open (A) contact to limit the mode to AUTO or MDI.
- 2. The system sets [Cycle Start Status] to ON, and then sets the cycle start DO to ON.
- 3. The system can trigger [Feed Hold] only when the program is being executed.
- 4. When the program pauses, the program feed hold DO is set to ON.

- 1. Use the rising edge of the key signal to trigger ALT and to switch the special M for enabling/disabling the **[Single Block Skip]** function.
- 2. Use the rising edge of the key signal to trigger ALT and to switch the special M for enabling/disabling the **[Single Block]** function.
- 3. Use the rising edge of the key signal to trigger ALT and to switch the special M for enabling/disabling the **[Optional Hold]** function.
- 4. Use the rising edge of the key signal to trigger ALT and to switch the special M for enabling/disabling the **[MPG Simulation]**.

- 1. Use the key signal to set the cutting feed rate override, with the maximum as 15 and the minimum as 0, and write this feed rate override ratio to the register.
- Multiply the feed rate override ratio by 10 and save the result to the [Feed Rate Percentage].

6.3 MPG

On the NC5 controller, the axis and feed rate for MPG operation is switched with special D registers.

MLC special D regist	er			C
MPG Axes Selection	D2x008	MPG Ratio Selection	D2x009	

[MPG Axes Selection] D2x008

Users can switch the MPG axis by setting this special D to the indicated axes as below. 0 = X Axis, 1 = Y Axis, 2 = Z Axis, 3 = A Axis, 4 = B Axis, and so forth to the 16^{th} Axis.

[MPG Ratio Selection] D2x009

This **[MPG Ratio Selection]** can be set to 1, 10 or 100. When users rotate one unit from the wheel, the system will obtain 1 pulse from the MPG device. The system will take the parameter **N9.013 (Unit Decimal Point)** as the command unit for each pulse. In addition, the system will multiply the **[MPG Ratio Selection]** as the ratio for the final command sent to a specific axis. For example: **[MPG Ratio Selection]** is 10 and the N9.013 (Unit Decimal Point) set to 0.001mm. The minimum movement of the MPG control will be 0.001 × 10 = 0.01 mm.

M31003 X32 X33 1/1 ╢ MOV D21009 K1 MPG Ratio CH1 MPG MPG Ratio CH1 MPG Mode Bit Bit Ratio Status Selection X33 X32 ┥┟ ╢ MOV K10 D21009 MPG Ratio MPG Ratio CH1 MPG Bit Bit Ratio Selection X32 X33 1/1 +MOV K100 D21009 MPG Ratio CH1 MPG MPG Ratio Bit Bit Ratio Selection M31003 X28 X29 X30 X31 ┥┟ +1/1 $\frac{1}{1}$ $\frac{1}{1}$ MOV К0 D21008 CH1 MPG MPG Axes MPG Axes MPG Axes MPG Axes CH1 MPG Mode Selection Bit Selection Bit Selection Bit Selection Bit Axes Status Selection X28 X29 X30 X31 $\frac{1}{1}$ + +1/1- $\frac{1}{1}$ MOV D21008 K1 MPG Axes MPG Axes MPG Axes MPG Axes CH1 MPG Selection Bit Selection Bit Selection Bit Selection Bit Axes Selection X28 X29 X30 X31 1/1 1/1 -1/-1 ł MOV K2 D21008 MPG Axes MPG Axes MPG Axes MPG Axes CH1 MPG Selection Bit Selection Bit Selection Bit Selection Bit Axes Selection X28 X29 X30 X31 1/1 1/1 1/1 MOV ┥┟ K3 D21008 MPG Axes MPG Axes MPG Axes CH1 MPG MPG Axes Selection Bit Selection Bit Selection Bit Axes Selection

Program execution procedure

- 1. In MPG mode, use the MPG signal to choose the [MPG Ratio Selection] to use.
- 2. Use the MPG signal to select the axis to move.
- 3. [MPG Axes Selection] Operate the MPG to move the axis.

MLC Example

6.4 JOG move

On the NC5 controller, the speed and movement for JOG operation is determined by the MLC. JOG applications are as follows.

Axis	JOG Forward	JOG Reverse	Lock Axis Forward Movement	Lock Axis Reverse Movement	Axis Moving	Moving in Positive Direction	Moving in Reverse Direction	Feed Rate Override
X Axis	M2x384	M2x400	M2x336	M2x352	M3x464	M3x480	M3x496	
Y Axis	M2x385	M2x401	M2x337	M2x353	M3x465	M3x481	M3x497	
Z Axis	M2x386	M2x402	M2x338	M2x354	M3x466	M3x482	M3x498	
A Axis	M2x387	M2x403	M2x339	M2x355	M3x467	M3x483	M3x499	
B Axis	M2x388	M2x404	M2x340	M2x356	M3x468	M3x484	M3x500	
C Axis	M2x389	M2x405	M2x341	M2x357	M3x469	M3x485	M3x501	
U Axis	M2x390	M2x406	M2x342	M2x358	M3x470	M3x486	M3x502	
V Axis	M2x391	M2x407	M2x343	M2x359	M3x471	M3x487	M3x503	D2v006
W Axis	M2x392	M2x408	M2x344	M2x360	M3x472	M3x488	M3x504	D2X000
10 th Axis	M2x393	M2x409	M2x345	M2x361	M3x473	M3x489	M3x505	
11 th Axis	M2x394	M2x410	M2x346	M2x362	M3x474	M3x490	M3x506	
12 th Axis	M2x395	M2x411	M2x347	M2x363	M3x475	M3x491	M3x507	
13 th Axis	M2x396	M2x412	M2x348	M2x364	M3x476	M3x492	M3x508	
14 th Axis	M2x397	M2x413	M2x349	M2x365	M3x477	M3x493	M3x509	
15 th Axis	M2x398	M2x414	M2x350	M2x366	M3x478	M3x494	M3x510	
16 th Axis	M2x399	M2x415	M2x351	M2x367	M3x479	M3x495	M3x511	

MLC special D

[JOG Forward] M2x384 ~ M2x399

When the controller is in JOG mode, users can move any of the axes forward or stop by setting the **[JOG Forward]** to ON or OFF.

[JOG Reverse] M2x400 ~ M2x415

When the controller is in JOG mode, users can move any of the axes reverse or stop by setting the **[JOG Reverse]** to ON or OFF.

[Lock Axis Forward Movement] M2x336 ~ M2x351

When the **[Lock Axis Forward Movement]** is ON, the axis will not be able to move in the forward direction. Reset it to OFF to disable the limitation.

[Lock Axis Reverse Movement] M2x352 ~ M2x367

When the **[Lock Axis Reverse Movement]** is ON, the axis will not be able to move in the reverse direction. Reset it to OFF to disable the limitation.

[Axis Moving] M3x464 ~ M3x479

When any of the axes is in motion, no matter which direction, the system will set this **[Axis Moving]** to ON. Otherwise, this **[Axis Moving]** will be OFF when the corresponding axis is still.

[Moving in Positive Direction] M3x480 ~ M3x495

When the axis is moving forward, the system will set this **[Moving in Positive Direction]** to ON. On the other hand, when the axis is still or moving backward, this **[Moving in Positive Direction]** will be OFF.

[Moving in Reverse Direction] M3x496 ~ M3x511

When the axis is moving a reverse direction, the system will set this **[Moving in Reverse Direction]** to ON. On the other hand, when the axis is still or moving forward, this **[Moving in Reverse Direction]** will be OFF.

[Feed Rate Override] D2x006

When the controller is in JOG mode, the system will take **N2.030 (JOG Maximum Speed)** and then multiply the **[Feed Rate Override]** to derive the JOG speed. The linear axes will move in the mm/min and the rotary axes will reference the parameter N2.001 (Rotary Axes' Unit) and then move in the unit RPM or degree/min.

• [Feed Rate Override] value range 0 ~ 100.

Relevant Parameter

Speed parameter setting:

This JOG speed will be effected by N2.030 (JOG Maximum Speed), N2.031 (JOG Acc and Dec Time) and N2.032 (JOG S Curve Time).

MLC Example

The [Feed Rate Override] can be edited at any time even if the axes are moving.

Program execution procedure

- 1. Use the key signal to increase or decrease the value of **[Feed Rate Override]**, with the maximum as 10 and the minimum as 0, and then write the value to the register.
- 2. Use the MOV instruction to move the override value of the register to the digit of K1M30.
- 3. Use the digit of K1M30 to input the value of the VRT table to D21006.
- 4. Perform the X-axis jog operation using the X-axis positive / negative JOG keys.

6.5 INC move

On the NC5 controller, the speed and movement for INC operations are determined by the MLC. INC applications are as follows.

MLC special D

Axis	JOG Forward	JOG Reverse	Lock Axis Forward Movement	Lock Axis Reverse Movement	Axis Moving	Moving in Positive Direction	Moving in Reverse Direction	Feed Rate Override	Axes Movement in INC Mode
X Axis	M2x384	M2x400	M2x336	M2x352	M3x464	M3x480	M3x496		
Y Axis	M2x385	M2x401	M2x337	M2x353	M3x465	M3x481	M3x497		
Z Axis	M2x386	M2x402	M2x338	M2x354	M3x466	M3x482	M3x498		
A Axis	M2x387	M2x403	M2x339	M2x355	M3x467	M3x483	M3x499		
B Axis	M2x388	M2x404	M2x340	M2x356	M3x468	M3x484	M3x500	D2x006	
C Axis	M2x389	M2x405	M2x341	M2x357	M3x469	M3x485	M3x501		
U Axis	M2x390	M2x406	M2x342	M2x358	M3x470	M3x486	M3x502		
V Axis	M2x391	M2x407	M2x343	M2x359	M3x471	M3x487	M3x503		D2v014
W Axis	M2x392	M2x408	M2x344	M2x360	M3x472	M3x488	M3x504		D2X014
10 th Axis	M2x393	M2x409	M2x345	M2x361	M3x473	M3x489	M3x505		
11 th Axis	M2x394	M2x410	M2x346	M2x362	M3x474	M3x490	M3x506		
12 th Axis	M2x395	M2x411	M2x347	M2x363	M3x475	M3x491	M3x507	-	
13 th Axis	M2x396	M2x412	M2x348	M2x364	M3x476	M3x492	M3x508		
14 th Axis	M2x397	M2x413	M2x349	M2x365	M3x477	M3x493	M3x509		
15 th Axis	M2x398	M2x414	M2x350	M2x366	M3x478	M3x494	M3x510		
16 th Axis	M2x399	M2x415	M2x351	M2x367	M3x479	M3x495	M3x511		

[JOG Forward] M2x384 ~ M2x399

When the controller is in INC mode, users can move any of the axes forward with a movement by setting the **[JOG Forward]** to ON.

[JOG Reverse] M2x400 ~ M2x415

When the controller is in INC mode, users can move any of the axes reverse with a movement by setting the **[JOG Reverse]** to ON.

[Lock Axis Forward Movement] M2x336 ~ M2x351

When the **[Lock Axis Forward Movement]** is ON, the axis will not be able to move in the forward direction. Reset it to OFF to disable the limitation.

[Lock Axis Reverse Movement] M2x352 ~ M2x367

When the **[Lock Axis Reverse Movement]** is ON, the axis will not be able to move in the reverse direction. Reset it to OFF to disable the limitation.

[Axis Moving] M3x464 ~ M3x479

When any of the axes is in motion, no matter which direction, the system will set this **[Axis Moving]** to ON. Otherwise, this **[Axis Moving]** will be OFF when the corresponding axis is still.

[Moving in Positive Direction] M3x480 ~ M3x495

When the axis is moving forward, the system will set this **[Moving in Positive Direction]** to ON. On the other hand, when the axis is still or moving backward, this **[Moving in Positive Direction]** will be OFF.

[Moving in Reverse Direction] M3x496 ~ M3x511

When the axis is moving a reverse direction, the system will set this **[Moving in Reverse Direction]** to ON. On the other hand, when the axis is still or moving forward, this **[Moving in Reverse Direction]** will be OFF.

[Feed Rate Override] D2x006

When the controller is in INC mode, the system will take **N2.030 (JOG Maximum Speed)** and then multiply the **[Feed Rate Override]** to derive the INC movement speed. The linear axes will move in the mm/min and the rotary axes will reference the parameter N2.001 (Rotary Axes' Unit) and then move in the unit RPM or degree/min.

• [Feed Rate Override] value range 0~100.

[Axes Movement in INC Mode] D2x014

When the controller is in INC mode, the system will take **[Axes Movement in INC Mode]** and then multiply the parameter **N9.013 (Unit Decimal Point)** to derive the movement distance when the **[JOG Forward]** or **[JOG Reverse]** is triggered.

- The INC movement will only take place once after the move command [JOG Forward] or [JOG Reverse] is triggered until motion finished or stopped. This INC movement does not support the position change function.
- [Axes Movement in INC Mode] is a 32-bit data type special D. Therefore, D2x015 is occupied as high-word data.

Relevant Parameter

Speed parameter setting:

This INC speed will be effected by N2.030 (JOG Maximum Speed), N2.031 (JOG Acc and Dec Time) and N2.032 (JOG S Curve Time).

The movement takes parameter **N9.013 (Unit Decimal Point)** and the system will take **[Axes Movement in INC Mode]** and then multiply the parameter N9.013 (Unit Decimal Point) to derive the movement distance.

MLC Example

[Axes Movement in INC Mode] needs to be set before the movement command. If this [Axes Movement in INC Mode] is changed during motion, it will be available at the next command trigger.

Program execution procedure

- Use VRT table to convert M500 M502 into decimal values and move the data into D21014 as [Axes Movement in INC Mode].
- 2. Perform the X-axis jog operation using the X-axis positive / negative JOG keys.

6.6 Rapid move

There are two types of rapid traverse for the controller, manual rapid traverse and rapid traverse commands such as G00 during program execution. Both types use the same speed and override ratio. Rapid traverse applications are as follows.

MLC special D register

[Rapid Speed Percentage] D2x004

When the controller is in RAPID mode or executing the G00 command in the NC program, the system will refer to parameter **N1.030 (G00 Velocity)** and N2.020 (G00 Max Velocity) as full speed in 100%. In addition, the system will multiply this **[Rapid Speed Percentage]** as a ratio to execute the process.

- [Rapid Speed Percentage] is available in the range 1~100.
- During rapid command executing, the actual speed of each axis, which is multiplied by the **[Rapid Speed Percentage]**, will be limited by parameter N2.020 (G00 max velocity).
- When the value of **[Rapid Speed Percentage]** changes, the rapid actual speed will change right away.

Relevant Parameter

Rapid speed setting in AUTO mode:

G00 rapid command speed will refer to following parameters:

N1.030 (G00 Velocity), N1.031 (G00 Acc and Dec Time), N1.032 (G00 S Curve Time), N2.020 (Axis G00 Max Velocity), N2.021 (Axis Acc and Dec Time of G00 Command) and N2.022 (Axis S Curve Time of G00 Command).

N1.030, N1.031, N1.032 are the rapid speed configuration of all interpolation axes.

N2.020, N2.021, N2.022 are the rapid speed configuration of specific axis.

The NC5 controller will, based on these parameters, interpolate the proper path control.

Rapid speed setting in MDI mode:

When the controller is in MDI mode, the rapid speed will refer to the following parameters: N2.030 (Axis JOG Max Velocity), N2.031 (Axis JOG Acc and Dec Time) and N2.032 (Axis JOG S Curve Time).

MLC Example

The following demonstrates the switching of RAPID mode and speed override.

X92	M31004			
-+		MOV	K5	D21000
Rapid	CH1 JOG Mode Status			CH1 NC Mode Switching
111		1401/	14.4	D24000
Rapid		MOV	K4	CH1 NC Mode Switching
X79	M31005			
X Axis Forward DI	CH1 RAPID Mode Status			— (M21384) CH1 X Axis JOG Forward
X81	M31005			— (Y79) X Axis Forward DI Lamp
CH1 X Axis Reverse DI	CH1 RAPID Mode Status			(M21400) CH1 X Axis JOG Reverse
				— (Y81) CH1 X Axis Reverse Lamp

Program execution procedure

- 1. Set the system to JOG mode.
- 2. Hold the RAPID mode button to switch to RAPID mode.
 - To general users, the manual rapid mode is not a frequently used mode. It is usually used when the system is in JOG mode, but you often need to move the axis with the speed higher than the maximum jog speed. Therefore, this mode takes effect under multiple conditions; when you release the RAPID mode button, the system returns to JOG mode.
- 3. When the system is in RAPID mode and users press the X axis direction key, the system moves the axis based on the setting of N2.022 (Axis S Curve Time of G00 Command).

Program execution procedure

Use the key signal to increase/decrease the override rate with the maximum as 100 and the minimum as 0. Each trigger increases/decreases the rate by 25 and writes the override rate to the **[Rapid Speed Percentage]**.

6.7 Homing

On the NC5 controller, this homing procedure needs to be triggered under HOME mode. Users will also need to use the special M to activate the specific axis execute the homing procedure.

MLC	special	Μ	relays

Axis	Axis Homing	Homing Finished	Axis Homed Status
X Axis	M2x320	M3x336	M3x320
Y Axis	M2x321	M3x337	M3x321
Z Axis	M2x322	M3x338	M3x322
A Axis	M2x323	M3x339	M3x323
B Axis	M2x324	M3x340	M3x324
C Axis	M2x325	M3x341	M3x325
U Axis	M2x326	M3x342	M3x326
V Axis	M2x327	M3x343	M3x327
W Axis	M2x328	M3x344	M3x328
10 th Axis	M2x329	M3x345	M3x329
11 th Axis	M2x330	M3x346	M3x330
12 th Axis	M2x331	M3x347	M3x331
13 th Axis	M2x332	M3x348	M3x332
14 th Axis	M2x333	M3x349	M3x333
15 th Axis	M2x334	M3x350	M3x334
16 th Axis	M2x335	M3x351	M3x335

[Axis Homing] M2x320 ~ M2x335

When the controller is in HOME mode, users can set **[Axis Homing]** to ON to activate the homing procedure.

[Homing Finished] M3x336 ~ M3x351

When the controller finishes the homing procedure, the system will set **[Homing Finished]** to ON automatically.

- After **[Homing Finished]** is set to ON, the system will reset it to OFF automatically in the following situations.
 - a. When axes are moving in JOG or MPG mode.
 - b. When the system is executing the NC program in AUTO or MDI mode.
 - c. When a non-absolute motor is used and the parameter N2.050 (Homing Mode) is not set to mode 5, and the controller is powered on again.
 - d. Once an axis loses its origin, this [Homing Finished] will reset automatically.

[Axis Homed Status] M3x320 ~ M3x335

After axes have finished the homing procedure and the origin position has been defined, the system will set **[Axis Homed Status]** permanently. However, the system will still reset it to OFF in the following situations.

- After **[Axis Homed Status]** is set to ON, the system will reset it to OFF automatically in the following situations.
 - a. When a non-absolute motor is used and the parameter N2.050 (Homing Mode) is not set to mode 5, and the controller is powered on again.
 - b. Once an axis loses its origin, this [Homing Finished] will reset automatically.

Relevant Parameter

Homing mode setting:

Homing procedure for home switch and Z phase defined as N2.050 (Homing Mode) and

N2.051 (Origin Type).

Homing speed:

Homing speed is defined as N2.053 (1st Searching Speed) and N2.054 (2nd Searching Speed).

MLC Example

The system needs to switch to HOME mode and then use special M and D to start the procedure.

M31007	X79	
\vdash \vdash	┬─┤├─┬────	(M21320)
CH1 HOME	X Axis	CH1 X Axis
Mode	Forward DI	Homing
Status		
	X81	
	CH1 X Axis	
	Reverse DI	
M31320	M31007	
		(Y79)
CH1 Axis	CH1 HOME	X Axis
Homed	Mode	Forward DI
Status of X	Status	Lamp
	M31007	
		(Y81)
	CH1 HOME	CH1 X Avis
	Mode	Reverse
	Status	Lamp

Program execution procedure:

- 1. Switch the system to HOME mode.
- 2. Use the key to set the special M relay for X axis homing to ON.
- 3. Output the homing complete signal to the button indicator.

Note: adjust the DIs and special M relays for each axis according to the applications.

6.8 M / S / T codes execution

Most of the time, each M, S and T code on the controller is relevant to the machine action; therefore, when the controller executes an M, S, or T code, it triggers the M, S or T code execution. This special M relay must be confirmed and reset to OFF by the MLC. The functions of M, S and T codes are as follows.

MLC special D

M, S, and T Codes Finished	M2x016	1 st M Code Data	D3x048
M Code Execution	M3x064	1 st S Code Data	D3x050
S Code Execution	M3x065	1 st T Code Data	D3x052
T Code Execution	M3x066	-	-

Figure 6.8.1 M, S, and T codes in execution

[M, S and T Codes Finished] M2x016

When the system is executing the program and the M, S, or T code is executed, the system pauses executing the program, which keeps the state as "Executing" (as shown in Figure 6.8.1) and sets the **[M, S and T Codes Execution]** flags to ON. After the MLC program finishes these M, S and T codes' actions, the MLC will need to set **[M, S and T Codes Finished]** to ON. Once the system receives the trigger of **[M, S and T Codes Finished]**, it will reset **[M, S and T Codes Execution]** and then continue with the rest of the NC program.

[M Codes Execution] M3x064

When the system is executing the program and the M code is executed, the system pauses executing the program, which keeps the state as "Executing" (as shown in Figure 6.8.1) and sets the **[M Codes Execution]** flags to ON. After the MLC program finishes these M codes' actions, the MLC will need to set **[M, S and T Codes Finished]** to ON. Once the system receives the trigger of **[M, S and T Codes Finished]**, it will reset **[M Codes Execution]** and then continue with the rest of the NC program.

[S Codes Execution] M3x065

When the system is executing the program and the S code is executed, the system pauses executing the program, which keeps the state as "Executing" (as shown in Figure 6.8.1) and sets the **[S Codes Execution]** flags to ON. After the MLC program finishes these M codes' actions, the MLC will need to set **[M, S and T Codes Finished]** to ON. Once the system receives the trigger of **[M, S and T Codes Finished]**, it will reset **[S Codes Execution]** and then continue with the rest of the NC program.

[T Codes Execution] M3x066

When the system is executing the program and the T code is executed, the system pauses executing the program, which keeps the state as "Executing" (as shown in Figure 6.8.1) and sets the **[T Codes Execution]** flags to ON. After the MLC program finishes these M codes' actions, the MLC will need to set **[M, S and T Codes Finished]** to ON. Once the system receives the trigger of **[M, S and T Codes Finished]**, it will reset **[T Codes Execution]** and then continue with the rest of the NC program.

[1st M Code Data] D3x048

When the system is executing the program and the M code is executed, the system pauses executing the program, which keeps the state as "Executing" (as shown in Figure 6.8.1) and sets the [1st M Code Data] to the 1st M code in the command block.

- For example: When the system is executing M13, the value of **[1**st **M Code Data]** will be 13.
- If the 1st M code in the block is defined as macro call, this [1st M Code Data] will stay as the previous value.

[1st S Code Data] D3x050

When the system is executing the program and the S code is executed, the system pauses executing the program, which keeps the state as "Executing" (as shown in Figure 6.8.1) and sets the [1st S Code Data] to the 1st S code in the command block.

• For example: When the system is executing S4000, the value of **[1**st **S Code Data]** will be 4000.

[1st T Code Data] D3x052

When the system is executing the program and the T code is executed, the system pauses executing the program, which keeps the state as "Executing" (as shown in Figure 6.8.1) and sets the [1st T Code Data] to the 1st T code in the command block.

- For example: When the system is executing T5, the value of [1st T Code Data] will be 5.
- The first T code command number must also be defined in the range of the tool magazine, and it will respond in the [1st T Code Data]. When the system executes the T code command and the "Continue Index" is not set to 1, the system will return an error and this T code will not respond in the [1st T Code Data]. If users execute the corresponding T code, which is disabled, the system will return an alarm to acknowledge.

Relevant Parameter

M code call macro setting:

N1.123 (M Code Call Macro Stater M Index):

Setting for the first code number for M command.

N1.124 (M Code Call Macro Stater Macro File Number):

Setting the first Macro file name as number corresponding to the parameter N1.123.

N1.125 (M Code Call Macro Amount):

Setting the M code call Macro amount start from N1.123.

If the M code in the block is defined as a macro call function, this M code data will not update to

the [M Code Data] and the [M Codes Execution] will not be triggered. It will be based on

parameter N1.123 to N1.125 to execute the responded macro program.

- If the N1.125 is set to 0, it means the M code call macro function is disabled.
- For example, when N1.23 is set to 10, N1.124 is set to 9100 and N1.125 is set to 15, this means the system will execute Macro O9100 when M10 is executed, execute Macro O9101 when M11 is executed, etc. until M24, the system will execute Macro O9114 and for M25 it will execute normal M code procedures.
- If the macro call function's M code is programed inside the corresponded macro, this M code will progress as a normal M code procedure.

T code call macro O9000 setting:

N1.010 (T Code Call Macro O9000)

- N1.010 Bit 22 set to 0, function disabled.
- When N1.010 Bit 22 is set to 1, the system will execute the O9000 macro directly instead of triggering the [T Codes Execution] or updating the T code to [T Code Data], and instead will execute O9000.

If the current program is O9000, the system will not execute O9000 again. It will instead execute using the regular method, which will trigger the **[T Codes Execution]** and update the T code to **[T Code Data]**.

Halt M code setting:

N1.118 (Beginning M Code of Halt Function):

The first M code of the halt function.

N1.119 (Amount of Halt M Code):

The number of halt M code function.

- When the controller is executing the program, the system automatically plans the path by looking ahead of the subsequent program, which has not been executed. When the M code is set to halt the look-ahead of the M code, once the system reads the M code, it does not look ahead of the program. After the system completes executing the M code, it continues to look ahead of the program. When N1.118 is set to 100 and N1.119 is set to 10, this means M100 to M109 has enabled the halt M code function.
- When the controller is executing the program and reads the Halt M code:
 - a. The system continues to execute the program that follows and sets the state to "Executing".
 - b. The system sets [M Code Execution] to ON and writes the executed M code value to [M Code Data].
 - c. Users can plan the MLC actions for the M code normally. The **[M, S and T Codes Finished]** has to be set to ON to execute this M code.

MLC Example

The following example illustrates the execution procedure of M, S, and T codes.

M31064					
	=	K100	D31048	(M1000)
CH1 M code	I		CH1 1st M	M code	
execution			Current	1000	
M31065					
	=	K10000	D31050	(M1001)
CH1 S code execution			CH1 1st S Code of	S Code 10000	
			Current		
M31066					
	=	K3	D31052	(M1002))
execution			CH1 1st I Code of	13	
			Current		
M31064	M1000	M1010			
CH1 M code	Micode	M Code		(M/0))
execution	1000	1000 Finish		Code Finish	
M21065	M1001	M1011		Singel	
10131005				(M71	,
CH1 S code	S Code	S10000		CH1 S Code	/
execution	10000	Finish		Finish Singel	
M31066	M1002	M1012			
				(M72)
CH1 T code	Т3	T3 Finish		CH1 T Code	
execution				Finish Singel	
M31064	M31064	M31065	M31066		
\dashv \vdash		-//		-(M2101	6)
CH1 M code	CH1 M code	execution	CH1 T code	CH1 M, S and T Coc	les
execution	execution	execution	execution	Finished	
M31065	M70	M71	M72		
\dashv \vdash	+ $+$	-++	-+		
CH1 S code execution	CH1 M Code Finish	CH1 S Code Finish Singe	CH1 T Code Finish Singel		
	Singel				
M31066					
CH1 I code					

Program execution procedure:

M-code execution procedure

- When the system is executing the program and executes M100, it sets [M Code Execution] to ON and writes 100 to [1st M Code Data].
- 2. When the conditions are met, M1000 in the MLC is set to ON, so users can use M1000 to trigger the required MLC actions.
- 3. Once MLC has finished the planned MLC actions, set M1010 of the MLC to ON.
- 4. When you set M1010 to ON, M70 is set to ON because the conditions are met.
- 5. When M70 is ON, the **[M, S, and T Codes Finished]** flag is set to ON because the conditions are met.
- 6. When the system confirms that the **[M, S, and T Codes Finished]** flag is ON, it considers the M code execution to be complete and sets **[M Code Execution]** to OFF.
- 7. M code actions complete.

S-code execution procedure

- When the system is executing the program and executes S10000, it sets [S Code Execution] to ON and writes 10000 to [1st S Code Data].
- 2. When the conditions are met, M1001 in the MLC is set to ON, so users can use M1001 to trigger the required MLC actions.
- 3. Once MLC has finished the planned MLC actions, set M1011 of the MLC to On.
- 4. When you set M1011 to ON, M71 is set to ON because the conditions are met.
- 5. When M71 is ON, the **[M, S, and T Codes Finished]** flag is set to ON because the conditions are met.
- When the system confirms that the [M, S, and T Codes Finished] flag is ON, it considers the S code execution to be complete and sets [S Code Execution] to OFF.
- 7. S code actions complete.

T-code execution procedure

- When the system is executing the program and executes T3, it sets [T code execution] to ON and writes 3 to [1st T code data].
- 2. When the conditions are met, M1002 in the MLC is set to ON, so users can use M1002 to trigger the required MLC actions.
- 3. Once MLC has finished the planned MLC actions, set M1012 of the MLC to On.
- 4. When you set M1012 to ON, M72 is set to ON because the conditions are met.
- 5. When M72 is ON, the **[M, S, and T Codes Finished]** flag is set to ON because the conditions are met.
- 6. When the system confirms that the **[M, S, and T codes execution complete]** flag is ON, it considers the T code execution to be complete and sets **[T code execution]** to OFF.
- 7. T code actions complete.

Important:

the examples in this section are only based on T code. For more details about the tool magazine and T code functions, refer to Section 6.13.

6.9 1st software limit / hardware limit cancellation

When the controller is moving the axis, there are software and hardware limit settings to protect the axis from exceeding the allowable range. Two sets of software and hardware limit settings are available. Users need to cancel the 1st software limit before using the 2nd software limit. When the axis reaches the hardware limit, the system immediately stops executing all axis motion commands. To resume the movement, users must cancel the hardware limit.

Axis	Disable 1 st Software Limit	Disable Hardware Limit
X Axis	M2x368	
Y Axis	M2x369	-
Z Axis	M2x370	-
A Axis	M2x371	-
B Axis	M2x372	
C Axis	M2x373	
U Axis	M2x374	
V Axis	M2x375	M0v007
W Axis	M2x376	IWIZXUU7
10 th Axis	M2x377	
11 th Axis	M2x378	
12 th Axis	M2x379	
13 th Axis	M2x380	
14 th Axis	M2x381	
15 th Axis	M2x382	
16 th Axis	M2x383	
Diachla 1st Caffurara Limiti M	NOCO MONOO	

MLC special M relays

[Disable 1st Software Limit] M2x368 ~ M2x383

When [Disable 1st Software Limit] set to ON, the 1st software limit of this axis will be canceled.

[Disable Hardware Limit] M2x007

When [Disable Hardware Limit] set to ON, the hardware limits of all axes are canceled.

Relevant Parameter

Software limit setting:

N2.006 (1st positive software limit), N2.007 (1st negative software limit),

N2.008 (2nd positive software limit), N2.009 (2nd negative software limit): When axes reach different limit positions, the system will return the corresponding alarm. The software limit will be active after the axes' origin position is established.

• Therefore, if axes are using incremental motors and system has just started up, it will need to finish its home procedure.

Hardware limit setting:

Users can set up the limit sensor type such as normal open or normal close and parameter N2.010 for position or negative limit. The system can correctly identify the hardware limit status of each axis.

MLC Example

The following example uses the M code to disable the 1st software limit of the Z axis and provides the descriptions for manually triggering the signal for hardware limit cancellation.

Disable the 1st software limit of Z axis				
Axis	Z Axis			
Environment settings N2.006: The 1st software positive limit is set to 70. N2.008: The 2nd software positive limit is set to 140.				
Program execution	G90G54X100. G0Z-50. M90 G0Z134.			

Program execution procedure:

Software limit

- 1. When the system is executing the main program and executes M90, the M90 is set to ON.
- 2. When M90 is ON, **[Z axis 1**st software limit cancellation] is also set to ON.
- The system does not send the alarm for reaching the 1st software limit when it continues to execute the main program and G0Z134 is executed.

Hardware limit

The hardware limit alarm occurs when the mechanism reaches the hardware limit in AUTO, MDI or any other mode of operation. Users can press the key for canceling the limit. Once the conditions are met, **[Hardware limit cancellation]** goes to ON, and the controller temporarily ignores the hardware limit signal. Users can move the mechanism to a safe position with JOG or MPG operation.

• When the hardware limit is canceled, pay attention to the axis moving direction to prevent damage to the mechanical parts.

6.10 Spindle control

On the controller, the spindle is controlled by multiple special M relays and special D registers. The descriptions for forward/reverse operation, positioning, and speed override of the spindle are as follows.

Spindle	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
Forward Rotation	M2x704	M2x720	M2x736	M2x752	M2x768	M2x784	M2x800	M2x816
Reverse Rotation	M2x705	M2x721	M2x737	M2x753	M2x769	M2x785	M2x801	M2x817
Positioning	M2x706	M2x722	M2x738	M2x754	M2x770	M2x786	M2x802	M2x818
Speed Reach	M3x704	M3x720	M3x736	M3x752	M3x768	M3x784	M3x800	M3x816
Zero Speed	M3x705	M3x721	M3x737	M3x753	M3x769	M3x785	M3x801	M3x817
Target Reach	M3x706	M3x722	M3x738	M3x754	M3x770	M3x786	M3x802	M3x818
Command Source	M2x710	M2x726	M2x742	M2x758	M2x774	M2x790	M2x806	M2x822
Speed Control	D2x024	D2x030	D2x320	D2x326	D2x332	D2x338	D2x344	D2x350
Speed Rate	D2x026	D2x032	D2x322	D2x328	D2x334	D2x340	D2x346	D2x352
Speed Command	D3x024	D3x030	D3x362	D3x374	D3x386	D3x398	D3x410	D3x422
Speed Feedback	D3x026	D3x032	D3x364	D3x376	D3x388	D3x400	D3x412	D3x424
Actual Degree	D3x028	D3x034	D3x366	D3x378	D3x390	D3x402	D3x414	D3x426

MLC special D

[Forward Rotation, Reverse Rotation] M2x704 ~ M2x705, M2x720 ~ M2x721, M2x736 ~ M2x737, M2x752 ~ M2x753, M2x768 ~ M2x769, M2x784 ~ M2x785, M2x800 ~ M2x801, M2x816 ~ M2x817

When **[Forward Rotation]** or **[Reverse Rotation]** is ON, the spindle starts rotating forward or reversely referring to the S code data.

[Spindle Positioning] M2x706, M2x722, M2x738, M2x754, M2x770, M2x786, M2x802, M2x818

When **[Spindle Positioning]** is ON, the spindle uses the Z pulse as the zero degree and positions based on the setting of N0.1013 (Spindle positioning offset). When the spindle completes positioning, it stops rotating.

[Spindle Speed Reach] M3x704, M3x720, M3x736, M3x752, M3x768, M3x784, M3x800, M3x816

When the spindle rotates forward or reversely and reaches the target speed, the system sets **[Spindle Speed Reach]** to ON.

- When the rotation speed changes, **[Spindle Speed Reach]** is set to OFF until the spindle reaches the target speed, when **[Spindle Speed Reach]** is set to ON again.
- When the speed command is 0 and the spindle stops, [Spindle Speed Reach] is set to ON.
- The duration when **[Spindle Speed Reach]** is ON is influenced by N0.1018 (Spindle Target Speed Deviation).

[Spindle Zero Speed] M3x705, M3x721, M3x737, M3x753, M3x769, M3x785, M3x801, M3x817

When the spindle speed reaches zero or the spindle stops, the system sets **[Spindle Zero Speed]** to ON.

- When the spindle starts rotating forward or reversely, [Spindle Zero Speed] is set to OFF.
- When the rotation command becomes a non-zero value, [Spindle Zero Speed] is set to OFF.

[Spindle Target Reach] M3x706, M3x722, M3x738, M3x754, M3x770, M3x786, M3x802, M3x818

When **[Spindle Positioning]** is ON and the spindle completes the positioning based on **N0.1013 (Spindle Positioning Offset)**, the system sets M2258 **[Spindle Target Reach]** to ON.

• When the spindle starts rotating, [Spindle Target Reach] is set to OFF.

[Spindle Command Source] M2x710, M2x726, M2x742, M2x758, M2x774, M2x790, M2x806, M2x822

When **[Spindle Command Source]** is ON, the spindle speed command will refer to **[Spindle Speed]**. When **[Spindle Command Source]** is set to OFF, the spindle speed command will refer to the S code as program speed.

[Spindle Speed] D2x024, D2x030, D2x320, D2x326, D2x332, D2x338, D2x344, D2x350

When **[Spindle Command Source]** is set to ON, the spindle speed command will refer to **[Spindle Speed]**.

- The applicable input rage is 0 to 2,147,483,647.
- The spindle command speed is limited by parameter N0.1008 (Spindle Maximum Speed).
- When the value of [Spindle Speed] is changed, the spindle speed changes immediately.

[Spindle Speed Rate] D2x026, D2x032, D2x322, D2x328, D2x334, D2x340, D2x346, D2x352

When the spindle starts rotating forward or reversely, users can refer to the S code as the programed speed and **[Spindle Speed Rate]** to adjust the spindle speed with the speed override.

- The applicable input rage for [Spindle Speed Rate] is 0 to 120.
- The spindle command speed is limited by parameter N0.1008 (Spindle Maximum Speed).
- When the value of **[Spindle Speed Rate]** is changed, the spindle speed changes immediately.

[Speed Command] D3x024, D3x030, D3x362, D3x374, D3x386, D3x398, D3x410, D3x422

When the controller executes the S code in the program, it writes the value of this S code to [1st S code data] as well as [Speed Command].

[Speed Feedback] D3x026, D3x032, D3x364, D3x376, D3x388, D3x400, D3x412, D3x424

When the spindle rotates forward or reversely, **[Speed Feedback]** displays the spindle's actual speed.

[Actual Degree] D3x028, D3x034, D3x366, D3x378, D3x390, D3x402, D3x414, D3x426

When the spindle rotates forward or reversely, **[Actual Degree]** displays the spindle's actual degree.

Relevant Parameter

Spindle setting:

According to system parameter setting "**Channel Setting**", users can determine whether to enable the spindle function and spindle ID.

Spindle Function:

N0.1000 (Spindle Setting):

Spindle Function	Description		
Spindle Control Type	0: Communication Mode 1: Reserved 2: Analog Mode		
Analog Close Loop Control	0: Disable 1: Enable		
Analog Spindle Command Source	0: Reference from command speed 1: Reference from encoder		
Analog Spindle Encoder Feedback Source	0: Reference from spindle encoder 1: Reference from end motor encoder		
Spindle Speed Reference	0: Reference from NC program 1: Reference from N0.1006 (Spindle Initial Speed)		
Spindle High Speed Command Check	0: Disable 1: Enable		
Multi-Spindle Encoder Feedback Function Switch	0: Disable 1: Enable		
Spindle Target Speed Error Unit	0: RPM 1: %		

Speed parameter setting:

Spindle's rotary speed will be based on the below parameter setting:

N0.1006 (Spindle Initial Speed): S code initialized value.

N0.1008 (Spindle Maximum Speed): When the spindle is set to communication mode, this will limit the spindle maximum speed. When the spindle is set to analog mode, this will be the voltage ratio of the spindle speed.

N0.1009 (Spindle Acc and Dec Time): Spindle acceleration and deceleration time.

N0.1010 (Spindle S Curve Time): Spindle S curve time when acceleration and deceleration.

N0.1017 (Spindle Zero Speed Error): When the speed difference between actual speed and

zero speed is lower than parameter N0.1017, the system will set **[Spindle Zero Speed]** to ON automatically.

When the N0.1017 is 100 and the actual speed is ≤100 RPM, the system will set [Spindle Zero Speed] to ON automatically.

N0.1018 (Spindle Target Speed Error): When the speed difference between actual speed and command speed is lower than parameter N0.1018, the system will set [Spindle Speed Reach] to ON automatically.

• When **[Speed Command]** is 1000 and N0.1018 is 100, when the actual speed is 900 to 1100 RPM, the system will set **[Spindle Speed Reach]** to ON automatically.

Spindle positioning setting:

N0.1013 (Spindle Positioning Offset): When the positioning command procedure is finished, the system will be based on the position of the Z phase and then add the offset configure from parameter N1.1013.

N0.1019 (Spindle Positioning Error): When the spindle is executing positioning procedures and the distance between actual position and N0.1013 (Spindle Positioning Offset) is lower than parameter N0.1019, the system will

set [Spindle Speed Reach] to ON automatically.

If the parameter N0.1013 is 1000 and N0.1019 is 500 (Unit: 0.01 degrees), the [Spindle Speed Reach] will be ON when the spindle feedback degree is between 5 to 15.

MLC Example

The following illustrates the usage of spindle forward/reverse operation, stop, positioning, and

Program execution procedure

Forward / reverse operation and stop.

- If users press the key to spindle forward operation, reverse operation, or stop operation, the corresponding [Forward Rotation] or [Reverse Rotation] is set to ON or OFF to have the spindle rotate forward, reversely, or stopped.
- When the program runs to M3, M4, or M5, it uses the M code procedure to set [Forward Rotation] or [Reverse Rotation] to ON or OFF to have the spindle rotate forward, reversely, or stopped.
- 3. Confirm the spindle status with **[Speed Reach]** and **[Zero Speed]** and end the M code procedure.

Spindle positioning.

- 1. When M19 is executed in the program, the M code procedure sets [Positioning] to ON.
- 2. Confirm the spindle positioning is complete with **[Spindle Target Reach]** and end the M code procedure.

Spindle speed rate.

Use the key signal to increase or decrease the spindle speed rate. The maximum is 120 and the minimum is 0. Each trigger increases or decreases the ratio by 10 and writes the ratio to **[Spindle Speed Rate]**.

6.11 Spindle gear ratio switch

In the controller, there are four sets of spindle gear ratio parameters that need to be switched with the MLC. The description of the spindle gear ratio switch is as follows.

1 st Spindle Gear Ratio Selection	D2x027	1: Take N0.1034, N0.1035 as Ratio 2: Take N0.1036, N0.1037 as Ratio 3: Take N0.1038, N0.1039 as Ratio 4: Take N0.1040, N0.1041 as Ratio
2 nd Spindle Gear Ratio Selection	D2x033	1: Take N0.1084, N0.1085 as Ratio 2: Take N0.1086, N0.1087 as Ratio 3: Take N0.1088, N0.1089 as Ratio 4: Take N0.1090, N0.1091 as Ratio
3 rd Spindle Gear Ratio Selection	D2x323	1: Take N0.1134, N0.1135 as Ratio 2: Take N0.1136, N0.1137 as Ratio 3: Take N0.1138, N0.1139 as Ratio 4: Take N0.1140, N0.1141 as Ratio
4 th Spindle Gear Ratio Selection	D2x329	1: Take N0.1184, N0.1185 as Ratio 2: Take N0.1186, N0.1187 as Ratio 3: Take N0.1188, N0.1189 as Ratio 4: Take N0.1190, N0.1191 as Ratio
5 th Spindle Gear Ratio Selection	D2x335	1: Take N0.1234, N0.1235 as Ratio 2: Take N0.1236, N0.1237 as Ratio 3: Take N0.1238, N0.1239 as Ratio 4: Take N0.1240, N0.1241 as Ratio
6 th Spindle Gear Ratio Selection	D2x341	1: Take N0.1284, N0.1285 as Ratio 2: Take N0.1286, N0.1287 as Ratio 3: Take N0.1288, N0.1289 as Ratio 4: Take N0.1290, N0.1291 as Ratio
7 th Spindle Gear Ratio Selection	D2x347	1: Take N0.1334, N0.1335 as Ratio 2: Take N0.1336, N0.1337 as Ratio 3: Take N0.1338, N0.1339 as Ratio 4: Take N0.1340, N0.1341 as Ratio
8 th Spindle Gear Ratio Selection	D2x353	1: Take N0.1384, N0.1385 as Ratio 2: Take N0.1386, N0.1387 as Ratio 3: Take N0.1388, N0.1389 as Ratio 4: Take N0.1390, N0.1391 as Ratio

MLC special D register

[Spindle Gear Ratio Selection] <u>D2x027, D2x033, D2x323, D2x329, D2x335, D2x341,</u> <u>D2x347, D2x353</u>

When users need to switch the spindle gear ratio, set **[Spindle Gear Ratio Selection]** to the group 1 to 4 as preferred. (As shown in the above table)

Relevant Parameter

Spindle gear ratio setting:

N0.1034 ~ N0.1041: When users set **[1**st **Spindle Gear Ratio Selection]** and the ratio can be defined as below parameters.

- N0.1034 (Numerator of 1st Gear Ratio) and N0.1035 (Denominator of 1st Gear Ratio)
- N0.1036 (Numerator of 2nd Gear Ratio) and N0.1037 (Denominator of 2nd Gear Ratio)
- N0.1038 (Numerator of 3rd Gear Ratio) and N0.1039 (Denominator of 3rd Gear Ratio)
- N0.1040 (Numerator of 4th Gear Ratio) and N0.1041 (Denominator of 4th Gear Ratio)

N0.1084 ~ N0.1091: When users set **[2nd Spindle Gear Ratio Selection]** and the ratio can be defined as below parameters.

- N0.1084 (Numerator of 1st Gear Ratio) and N0.1085 (Denominator of 1st Gear Ratio)
- N0.1086 (Numerator of 2nd Gear Ratio) and N0.1087 (Denominator of 2nd Gear Ratio)
- N0.1088 (Numerator of 3rd Gear Ratio) and N0.1089 (Denominator of 3rd Gear Ratio)
- N0.1090 (Numerator of 4th Gear Ratio) and N0.1091 (Denominator of 4th Gear Ratio)

N0.1134 ~ N0.1141: When users set **[3rd Spindle Gear Ratio Selection]** and the ratio can be defined as below parameters.

- N0.1134 (Numerator of 1st Gear Ratio) and N0.1135 (Denominator of 1st Gear Ratio)
- N0.1136 (Numerator of 2nd Gear Ratio) and N0.1137 (Denominator of 2nd Gear Ratio)
- N0.1138 (Numerator of 3rd Gear Ratio) and N0.1139 (Denominator of 3rd Gear Ratio)
- N0.1140 (Numerator of 4th Gear Ratio) and N0.1141 (Denominator of 4th Gear Ratio)

N0.1184 ~ N0.1191: When users set **[4th Spindle Gear Ratio Selection]** and the ratio can be defined as below parameters.

- N0.1184 (Numerator of 1st Gear Ratio) and N0.1185 (Denominator of 1st Gear Ratio)
- N0.1186 (Numerator of 2nd Gear Ratio) and N0.1187 (Denominator of 2nd Gear Ratio)
- N0.1188 (Numerator of 3rd Gear Ratio) and N0.1189 (Denominator of 3rd Gear Ratio)
- N0.1190 (Numerator of 4th Gear Ratio) and N0.1191 (Denominator of 4th Gear Ratio)

N0.1234 ~ N0.1241: When users set **[5th Spindle Gear Ratio Selection]** and the ratio can be defined as below parameters.

- N0.1234 (Numerator of 1st Gear Ratio) and N0.1235 (Denominator of 1st Gear Ratio)
- N0.1236 (Numerator of 2nd Gear Ratio) and N0.1237 (Denominator of 2nd Gear Ratio)
- N0.1238 (Numerator of 3rd Gear Ratio) and N0.1239 (Denominator of 3rd Gear Ratio)
- N0.1240 (Numerator of 4th Gear Ratio) and N0.1241 (Denominator of 4th Gear Ratio)

N0.1284 ~ N0.1291: When users set **[6th Spindle Gear Ratio Selection]** and the ratio can be defined as below parameters.

- N0.1284 (Numerator of 1st Gear Ratio) and N0.1285 (Denominator of 1st Gear Ratio)
- N0.1286 (Numerator of 2nd Gear Ratio) and N0.1287 (Denominator of 2nd Gear Ratio)
- N0.1288 (Numerator of 3rd Gear Ratio) and N0.1289 (Denominator of 3rd Gear Ratio)
- N0.1290 (Numerator of 4th Gear Ratio) and N0.1291 (Denominator of 4th Gear Ratio)

N0.1334 ~ N0.1341: When users set **[7th Spindle Gear Ratio Selection]** and the ratio can be defined as below parameters.

- N0.1334 (Numerator of 1st Gear Ratio) and N0.1335 (Denominator of 1st Gear Ratio)
- N0.1336 (Numerator of 2nd Gear Ratio) and N0.1337 (Denominator of 2nd Gear Ratio)
- N0.1338 (Numerator of 3rd Gear Ratio) and N0.1339 (Denominator of 3rd Gear Ratio)
- N0.1340 (Numerator of 4th Gear Ratio) and N0.1341 (Denominator of 4th Gear Ratio)

N0.1384 ~ N0.1391: When users set **[8th Spindle Gear Ratio Selection]** and the ratio can be defined as below parameters.

- N0.1384 (Numerator of 1st Gear Ratio) and N0.1385 (Denominator of 1st Gear Ratio)
- N0.1386 (Numerator of 2nd Gear Ratio) and N0.1387 (Denominator of 2nd Gear Ratio)
- N0.1388 (Numerator of 3rd Gear Ratio) and N0.1389 (Denominator of 3rd Gear Ratio)
- N0.1390 (Numerator of 4th Gear Ratio) and N0.1391 (Denominator of 4th Gear Ratio)

MLC Example

When switching between gear ratios during program execution, you need to use the M code to complete the switching, instead of simply setting **[Spindle Gear Ratio Selection]**. An example of using the M code to switch the gear ratio is as follows.

Program execution procedure:

- When the NC program executes M61, the MLC will set 1 to [1st Spindle Gear Ratio Selection].
- In this example the MLC uses the M61 relay to switch the ratio and check the status. After the process is finished, the MLC will acknowledge system M code finished.
- When the NC program executes M62, MLC will set 2 to [1st Spindle Gear Ratio Selection]. In this example the MLC uses the M62 relay to switch ratio and check status.
- 4. After the process is finished, the MLC will acknowledge system M code finished.
- When the NC program executes M63, MLC will set 3 to [1st Spindle Gear Ratio Selection]. In this example the MLC uses the M63 relay to switch ratio and check status.
- 6. After the process is finished, the MLC will acknowledge system M code finished.
- When the NC program executes M64, MLC will set 4 to [1st Spindle Gear Ratio Selection]. In this example the MLC uses the M64 relay to switch ratio and check status.
- 8. After the process is finished, the MLC will acknowledge system M code finished.

Important:

If you use the M code to switch the gear ratio with **[Spindle Gear Ratio Selection]**, it only switches the spindle speed command. If there is a physical mechanical part for the gear switch, you need to compose the corresponding MLC and the output DO, so the external mechanical part can correctly change the gear ratio.

6.12 One-button macro call

The one-button macro call function enables you to have the system call the specific macro with the MLC by triggering the signals. The MLC determines the conditions and then switches the macros for execution.

MLC special D

Macro Call Activation	M2x025	Macro Call Status	M3x027
1 st Macro Call Preparation	M2x032	Macro Call Ready	M3x028
2 nd Macro Call Preparation	M2x033	Macro Call Error	M3x029
3 rd Macro Call Preparation	M2x034	1 st Macro Call Initial Finished	M3x048
4 th Macro Call Preparation	M2x035	2 nd Macro Call Initial Finished	M3x049
5 th Macro Call Preparation	M2x036	3 rd Macro Call Initial Finished	M3x050
6 th Macro Call Preparation	M2x037	4 th Macro Call Initial Finished	M3x051
7 th Macro Call Preparation	M2x038	5 th Macro Call Initial Finished	M3x052
8 th Macro Call Preparation	M2x039	6 th Macro Call Initial Finished	M3x053
9 th Macro Call Preparation	M2x040	7 th Macro Call Initial Finished	M3x054
10 th Macro Call Preparation	M2x041	8 th Macro Call Initial Finished	M3x055
11th Macro Call Preparation	M2x042	9 th Macro Call Initial Finished	M3x056
12 th Macro Call Preparation	M2x043	10 th Macro Call Initial Finished	M3x057
13 th Macro Call Preparation	M2x044	11 th Macro Call Initial Finished	M3x058
14 th Macro Call Preparation	M2x045	12 th Macro Call Initial Finished	M3x059
15 th Macro Call Preparation	M2x046	13 th Macro Call Initial Finished	M3x060
16 th Macro Call Preparation	M2x047	14 th Macro Call Initial Finished	M3x061
-	-	15 th Macro Call Initial Finished	M3x062
-	-	16th Macro Call Initial Finished	M3x063

1 st Macro Call Macro Number	D2x064	9 th Macro Call Macro Number	D2x072
2 nd Macro Call Macro Number	D2x065	10 th Macro Call Macro Number	D2x073
3 rd Macro Call Macro Number	D2x066	11 th Macro Call Macro Number	D2x074
4 th Macro Call Macro Number	D2x067	12 th Macro Call Macro Number	D2x075
5 th Macro Call Macro Number	D2x068	13 th Macro Call Macro Number	D2x076
6 th Macro Call Macro Number	D2x069	14 th Macro Call Macro Number	D2x077
7 th Macro Call Macro Number	D2x070	15 th Macro Call Macro Number	D2x078
8 th Macro Call Macro Number	D2x071	16 th Macro Call Macro Number	D2x079

[Macro Call Activation] M2x025

When the controller is in AUTO mode, first set **[Macro Call Initial Finished]** to ON and then set **[Macro Call Activation]** to ON, and the system will execute the O macro corresponding to the number of **[Macro Call Macro Number]**.

[Macro Call Preparation] M2x032 ~ M2x047

When users set **[Macro Call Preparation]** to ON, the system will start to load the O macro and file name as **[Macro Call Macro Number]**.

• The corresponding O macro must be stored in the correct channel folder of folder **[O_MACRO]** or the corresponding macro of the location INTER.

[Macro Call Status] M3x027

When the user sets **[Macro Call Preparation]** to ON, the system will set **[Macro Call Status]** to ON right away.

[Macro Call Ready] M3x028

Regardless of whether the controller system is in AUTO mode, the system will set **[Macro Call Ready]** to ON after it finishes the macro initialization and then set **[Macro Call Initial Finished]** to ON. This is in order to notify users to switch the system mode to AUTO, which is able to execute the macro program.

- When the [Macro Call Activation] is ON, the [Macro Call Ready] will change to OFF.
- After the [Macro Call Ready] is ON, it will reset to OFF once the [NC Reset] has triggered.

[Macro Call Error] M3x029

The **[Macro Call Error]** will be set to ON when the **[Macro Call Preparation]** has triggered and the system is not in the AUTO mode or **[Macro Call Macro Number]** is 0.

[Macro Call Initial Finished] M3x048 ~ M3x063

When the **[Macro Call Preparation]** is ON, the system will start to prepare the macro and set **[Macro Call Initial Finished]** to ON right after the process is finished.

• After the [Macro Call Initial Finished] is ON, the [Macro Call Initial Finished] will reset to OFF once the [NC Reset] has triggered.

[Macro Call Macro Number] D2x064 ~ D2x079

When the **[Macro Call Preparation]** is ON, the system will access the O macro to refer to the value of **[Macro Call Macro Number]**.

- Available range between 1 to 65535.
- When the **[Macro Call Macro Number]** is set to 10000, the system will load O10000. Or, when it is set to 12345, the system will load O12345.
- When the value is set between 1 to 9999, the system will refer to the parameter N8.022 (Macro Call File Source) as a different location.
 - a. When N8.022 = 0, the system will load the macro that is stored in the INTER location's O_MACRO folder of the correct channel folder.
 - When N8.022 = 1, the system will load the macro that is stored in the SD card location's O_MACRO folder of the correct channel folder.
- When the value is set between 10000 to 65535, the system will refer to the parameter N8.022 (Macro Call File Source) as a different root location.
 - a. When N8.022 = 0, the system will load the macro that is stored in the root INTER location of the correct channel folder.
 - b. When N8.022 = 1, the system will load the macro that is stored in the root SD card location of the correct channel folder.
Relevant Parameter

Setting macro call file source:

N8.022 (Macro Call File Source): the O macro file source to call.

[Macro Call Macro Number] value between 1 to 9999:

When N8.022 = 0, the system will load the macro that is stored in the INTER location's O MACRO folder of the correct channel folder.

When N8.022 = 1, the system will load the macro that is stored in the SD card location's O MACRO folder of the correct channel folder.

• [Macro Call Macro Number] value between 10000 to 65535:

When N8.022 = 0, the system will load the macro that is stored in the root INTER location of the correct channel folder.

When N8.022 = 1, the system will load the macro that is stored in the root SD card location of the correct channel folder.

MLC Example

- Program execution procedure:
- 1. Call the specific macros with the X95 signals.
- 2. When X95 is on, the MLC will give a value to D21064 and then set [Macro Call

Preparation] to ON. The system will set [Macro Call Status] to ON automatically.

- 3. When the system finishes the macro preparation, it will set **[Macro Call Initial Finished]** to ON and then set **[Macro Call Status]** to ON as well. Once this signal status is finished, in this example MLC will set M91 to ON and then switch the system to AUTO mode and activate the **[Macro Call Activation]**.
- 4. After the macro is finished, the system will set **[Macro Call Status]** to OFF and then MLC will set M91 to OFF.

Important:

Executing this one-button macro call function is not recommended when the system is in AUTO or MDI mode. This is because during the macro preparation, the system will be initializing some system inner status, which could affect the macro start in unexpected ways.

6.13 Tool magazine control with I/O

The controller changes tools with an external tool exchanger and transmits data or status with the I/O. The following describes how to control the tool magazine with the I/O.

MLC special D

Tool Magazine 1		Tool Magazine 2		
Tool Magazine 1 Move Forward	M2x064	Tool Magazine 2 Move Forward	M2x072	
Tool Magazine 1 Move Backward	M2x065	Tool Magazine 2 Move Backward	M2x073	
Tool 1 Exchange	M2x066	Tool 2 Exchange	M2x074	
Tool Magazine 1 Reset	M2x067	Tool Magazine 2 Reset	M2x075	
Current Tool Number Tool Magazine 1	D3x036	Current Tool Number Tool Magazine 2	D3x042	
Standby Tool Number Tool Magazine 1	D3x037	Standby Tool Number Tool Magazine 2	D3x043	
Standby Tool Pot Tool Magazine 1	D3x038	Standby Tool Pot Tool Magazine 2	D3x044	
Tool Pot Deviation Tool Magazine 1	D3x039	Tool Pot Deviation Tool Magazine 2	D3x045	

[Tool Magazine Move Forward] M2x064, M2x072

When **[Tool Magazine Move Forward]** is set to ON, the standby tool pot number and standby tool number increase by 1. When both the standby tool pot number and standby tool number are the maximum numbers and set **[Tool Magazine Move Forward]** to ON again, the standby tool pot number and standby tool number will become 1.

• The operation is the same for both tool magazine 1 and tool magazine 2.

[Tool Magazine Move Backward] M2x065, M2x073

When **[Tool Magazine Move Backward]** is set to ON, the standby tool pot number and standby tool number decrease by 1. When both the standby tool pot number and standby tool number are 1 and set **[Tool Magazine Move Backward]** to ON again, the standby tool pot number and standby tool number will become the maximum numbers.

• The operation is the same for both tool magazine 1 and tool magazine 2.

[Tool Exchange] M2x066, M2x074

When **[Tool Exchange]** is set to ON, the system exchanges the spindle tool number with the standby tool number.

• The operation is the same for both tool magazine 1 and tool magazine 2.

[Tool Magazine Reset] M2x067, M2x075

To reset the tool magazine, in addition to using the tool setting function in the OFS screen, users can set **[Tool Magazine Reset]** to ON for the system to reset the tool numbers and arrange the tools in ascending order based on the tool pot sequence.

After the [Tool Magazine Reset] is triggered, the spindle tool number refers to the
 [Continue] setting in the [Tool Magazine Setting Component].
 When [Continue] is 0, the current spindle tool number will be 0 after reset. When
 [Continue] is 1, the current spindle tool number will refer to the settings of [StartNumber]
 and [PotAmount], which will increase maximum tool number by 1 (where tool numbers are arranged in ascending order).

For example, when the tool magazine 1 sets **[StartNumber]** to 3, **[PotAmount]** to 16 and **[Continue]** to 1, the current tool number will be 19, 1st tool pot will be 3 and 2nd tool pot will be 4.

- After reset, the system will set default standby tool pot to [StandbyPot] in the [Tool Magazine Setting Component].
- After reset, the system will set command tool number to [StartNumber] in the [Tool Magazine Setting Component] and set standby tool number to the command tool number plus 1. Then, all the other tool pots in this tool magazine will increase by 1 in the tool number setting.
- The operation is the same for both tool magazine 1 and tool magazine 2.

[Current Tool Number] D3x036, D3x042

This shows the current in use tool number according to the corresponding **[Current Tool Number]** based on the channel and tool magazine.

[Standby Tool Number] D3x037, D3x043

When the controller is in AUTO or MDI mode, once the T code block has been executed, the system will execute the tool change procedure. At the same time, the tool number will be set to the [Standby Tool Number], which is based on the setting of [Tool Pot Amount] in the [Tool Magazine Setting Component] (as shown in the relevant parameters).

• The operation is the same for both tool magazine 1 and tool magazine 2.

[Standby Tool Pot] D3x038, D3x044

This shows the current standby tool pot number according to the corresponding **[Standby Tool Pot]** based on the channel and tool magazine.

[Tool Pot Deviation] D3x039, D3x045

This shows the difference between the current tool number and command tool number. Users can rotate the tool magazine forward or backward through positive or negative values here. After the **[Tool Magazine Move Forward] or [Tool Magazine Move Backward]** is ON, the system will update the new difference to this **[Tool Pot Deviation]**.

• The operation is the same for both tool magazine 1 and tool magazine 2.

Relevant Parameter

Tool magazine setting component:

Tool magazines relate parameters are in this [Tool Magazine Setting Component] page.

Users can set the machine's requirements as described below.

Tool Pa	r		Current CH.		20230410.0	NC	N 1	System	
PhyMa	aga	Enable	ToolOffset	PotNumber	SelectPot	Channel	logicMaga	Continue	
Maga	11		1	100	1	1	1	0	
Maga	12		0	0		0		0	
Maga	13		0	0		0		0	
Maga	14		0	0		0		0	
Maga	15		0	0		0		0	
Maga	16		0	0		0		0	
Maga	17		0	0		0		0	
Maga	18		0	0		0		0	
	No.1 tool magazine utility1 : Tool magazine(0 : off ; 1 : on)								
Con.JC	G	(08:47:24 R	PD 100%	OG 100%	S 100%	mm		
<=	ок								

PhyMaga: the actual physical sequence of the tool magazine.

Enable: to determine whether to use this tool magazine.

• If users execute a T code that is disabled, the system will return an alarm to acknowledge.

SrartNumber: to determine the beginning tool number after tool magazine reset.

 After reset, the system will set the command tool number to [StartNumber] and set the standby tool number to the command tool number plus 1. The tool magazine is based on the [PotAmount] and the allocated number is increased starting from the [StartNumber].

PotAmount: Set the total tool number of the tool magazine.

StandbyPot: Set the standby tool pot number after tool magazine reset.

• After tool magazine reset, the standby tool pot number will be 2 if this setting is 2.

Channel: Set the channel of the physical tool magazine.

• When set to 1, this physical tool magazine will be allocated to channel 1.

LogicMaga: Set the sequence number of the physical tool magazine.

• When set to 2, this tool magazine will be the 2nd logic magazine in the channel.

Continue: Set the current tool number after the tool magazine has been reset.

When [Continue] is 0, the current spindle tool number will be 0 after reset. When
[Continue] is 1, the current spindle tool number will refer to the settings of [StartNumber]
and [PotAmount], which will apply the maximum tool number increases by 1 (where tool
numbers are arranged in ascending order).

MLC Example

The following example illustrates the program execution with tool magazine 1 set to hold 16 tools.

Program execution procedure:

- 1. When reading the T code in the program, the system sets [T code execution] to ON and automatically write the difference between the current standby tool pot and command tool pot to [Tool Pot Deviation]. Since the deviation is displayed in both positive and negative values, when there are only 16 tools in the tool magazine, the maximum deviation is ±8.
- The system determines in which direction and how many positions the tool magazine must move by performing logic statements. Then, it sets [Tool Magazine Move Forward] or [Tool Magazine Move Backward] to ON by referring to the corresponding signals such as tool magazine moves forward and external tool counting.
- 3. When the value of **[Tool Pot Deviation]** is 0, the tool data is exchanged. Additionally, the tools of an external mechanical part can be changed with the MLC.

6.14 MLC axes control

Users can dynamically switch a specific axis to the NC axis mode or MLC axis mode with the following special M relays. In MLC axis mode, users can perform position control, speed control, and applications requiring rotations like the spindle rotation or positioning control.

Axis	Trigger Movement	Command Type	Control Mode	Target Position	Target Velocity	Target Reached	Axis Moving
X Axis	M2x448	M2x464	M2x416	D2x256	D2x288	M3x448	M3x464
Y Axis	M2x449	M2x465	M2x417	D2x258	D2x290	M3x449	M3x465
Z Axis	M2x450	M2x466	M2x418	D2x260	D2x292	M3x450	M3x466
A Axis	M2x451	M2x467	M2x419	D2x262	D2x294	M3x451	M3x467
B Axis	M2x452	M2x468	M2x420	D2x264	D2x296	M3x452	M3x468
C Axis	M2x453	M2x469	M2x421	D2x266	D2x298	M3x453	M3x469
U Axis	M2x454	M2x470	M2x422	D2x268	D2x300	M3x454	M3x470
V Axis	M2x455	M2x471	M2x423	D2x270	D2x302	M3x455	M3x471
W Axis	M2x456	M2x472	M2x424	D2x272	D2x304	M3x456	M3x472
10 th Axis	M2x457	M2x473	M2x425	D2x274	D2x306	M3x457	M3x473
11 th Axis	M2x458	M2x474	M2x426	D2x276	D2x308	M3x458	M3x474
12 th Axis	M2x459	M2x475	M2x427	D2x278	D2x310	M3x459	M3x475
13 th Axis	M2x460	M2x476	M2x428	D2x280	D2x312	M3x460	M3x476
14 th Axis	M2x461	M2x477	M2x429	D2x282	D2x314	M3x461	M3x477
15 th Axis	M2x462	M2x478	M2x430	D2x284	D2x316	M3x462	M3x478
16 th Axis	M2x463	M2x479	M2x431	D2x286	D2x318	M3x463	M3x479

MLC special D

Axis	NC / MLC Axis Switching	Switch to MLC Axis Finished
X Axis	M2x432	M3x432
Y Axis	M2x433	M3x433
Z Axis	M2x434	M3x434
A Axis	M2x435	M3x435
B Axis	M2x436	M3x436
C Axis	M2x437	M3x437
U Axis	M2x438	M3x438
V Axis	M2x439	M3x439
W Axis	M2x440	M3x440
10 th Axis	M2x441	M3x441
11 th Axis	M2x442	M3x442
12 th Axis	M2x443	M3x443
13 th Axis	M2x444	M3x444
14 th Axis	M2x445	M3x445
15 th Axis	M2x446	M3x446
16 th Axis	M2x447	M3x447

[Trigger Movement] M2x448 ~ M2x463

When the axis is in the MLC control mode and users trigger the **[Trigger Movement]** to ON, the specific axis will move based on the position command setting. Once the **[Trigger Movement]** is set to OFF the axis will stop actions.

- Before triggering the [Trigger Movement], users must set [Target Position] and [Target Velocity] at least one MLC scan cycle earlier.
- If the **[Target Position]** is changed during the MLC axis movement, the new target position will be available until the next **[Trigger Movement]** command is triggered.
- If the **[Target Position]** changed one MLC scan cycle before the **[Trigger Movement]** command is triggered, this new target position will be activated and available.

[MLC Command Type] M2x464 ~ M2x479

When the axis is in the MLC position control mode, this **[MLC Command Type]** can switch the **[Target Position]** as an absolute or relative command. Once the **[MLC Command Type]** is OFF, axes will move based on the absolute command and work on the machine coordinate system.

On the other hand, when the **[MLC Command Type]** is ON, axes will move based on the relative command.

[MLC Control Mode] M2x416 ~ M2x431

The controller will be using position control mode when **[MLC Control Mode]** is OFF and then using **[Target Position]** and **[Target Velocity]** for the target position and speed command. On the other hand, when the **[MLC Control Mode]** is ON, the system will take **[Target Velocity]** as the target speed and then control the axis with a continuous rotary speed.

[MLC Target Position] D2x256 ~ D2x286

When the axis is in the MLC position control mode, the MLC axes can be commanded in absolute or relative mode.

In absolute command mode, the **[Target Position]** will be the position command based on machine coordinate system. In relative command mode, the **[Target Position]** will be the position command, which is the actual movement after motion is triggered.

- Attention: this special D uses float format; thus, it will take two sequence special D addresses.
- The [Target Position] will not be available when the axis is in the velocity mode.

[MLC Target Velocity] D2x288 ~ D2x318

When any of the X, Y or Z axis is in the MLC velocity control mode, the axis will be defined as a linear axis and the velocity command unit will only accept mm/min. When other axes such as A, B, C, U, V, W to 16th axis are in the MLC velocity control mode, the axis can define as linear axis or rotary axis from parameter N2.001 Bit2 to 4 (Axis Command Mode). If the axis is defined as a rotary axis, the velocity command unit can be switched in the parameter N2.001 Bit11 as RPM or deg/min.

- When the MLC axis is in the position mode, the system will be using **[Target Position]** and **[Target Velocity]** for the motion command.
- When the MLC axis is in the velocity mode, the system will be using **[Target Velocity]** for the motion command.
- Attention: this special D uses float format; thus, it will take two sequence special D addresses.
- The value of **[Target Velocity]** is available to change and is active during motion once the MLC scans the new value command.

[Target Reached] M3x448 ~ M3x463

- When the axis is in the MLC position control mode, the **[Target Reached]** status reflects whether the axis has finished the command and reached the command position.
- When the axis is in the MLC velocity control mode, the **[Target Reached]** status reflects whether the axis has finished the command and reached the command speed.
- When programing these special M, users need to note the time response of these flags. After [Trigger Movement] is set to ON, the system will need 10ms to update the [Target Reached] status to ON. Therefore, users need to delay at least 10ms and then check whether the axes have reached their target command.

[Axis Moving] M3x464 ~ M3x479

When any of the axes is in motion, this [Axis Moving] status will be ON.

[NC / MLC Axis Switching] M2x432 ~ M2x447

The NC5 controller allows users to switch axes from NC axis to MLC axis or vice versa. Setting **[NC / MLC Axis Switching]** to ON will change the axis to MLC axis mode. Alternatively, set it to OFF to change the axis to NC axis mode.

- Users need to configure the axis to NC axis by setting [Type] as 1 in the [Channel Setting] page. (As shown in the below Relevant Parameter section)
- This function is only available when the system is in AUTO or MDI mode and is switched through the Halt M Code.
- The axis must be motionless before the switch.

[NC / MLC Axis Switching Finished] M3x432 ~ M3x447

After setting the **[NC / MLC Axis Switching]** to ON to change the axis to MLC axis mode, the **[NC / MLC Axis Switching Finished]** will change to ON automatically once the switching is finished. Similarly, the **[NC / MLC Axis Switching Finished]** will change to OFF automatically if users set the **[NC / MLC Axis Switching]** to OFF.

Relevant Parameter

Channel setting:

When the setting in the **[Type]** is set to 1, the specific axis will be one of the NC axes and it will be allowed to switch between MLC or NC axis. When the setting in the **[Type]** is set to 2, the specific axis will be MLC axis and will not be able to switch to NC axis mode.

Speed parameter setting:

The MLC axis moving speed will refer to N2.023 (G01 Max Velocity), N2.024 (G01 Acc and Dec Time), N2.025 (G01 S Curve Time).

Operate parameter setting:

This function is only available when the system is in AUTO or MDI mode and uses the Halt M Code to switch. The Halt M Code is defined by N1.118 (Beginning M Code of Halt Function) and N1.119 (Amount of Halt M Code).

Paran	neter	Current CH.		20230410.	NC		N 1		System
Group	NUM	Par	am Name			PRS	P	aram Valu	e
N1	90	Initial macro program				Р		9990	
N1	96	Block transition length block in	position to	lerance		R		2000	
N1	97	G0/G0 transition speed blendi	ng ratio			R		0	
N1	98	G0/G1 transition speed blendi	ng ratio			R		0	
N1	99	G1/G0 transition speed blendi	ng ratio		_	R	_	0	<u> </u>
N1	118	Pause Interpreter Start M code	2			R		201	
<u>N1</u>	<u>11</u> 9	Pause Interpreter M code cou	nt		_	R		1	
N1	120	G-code macro call - starting G	number			R	100		
N1	121	G-code macro call - starting O-	macro num	ber		R	8000		
N1	122	G-code macro call amount				R		0	
N1	123	M-code macro call - starting M	number			R		100	
N1	124	M-code macro call - starting O-	macro num	ber		R		8500	
N1	125	M-code macro call amount				R		0	
N1	126	Path Waiting M-code(Min)				Р		0	
N1	127	Path Waiting M-code(Max)				Ρ		0	
		Range : 0~9999							9/1
Con	.JOG	08:49:56 RPI	D 100%	JOG 100%	S 100%		mm	Rea	dy
c	Compe	n. System MLC	Graphic	Servo	Channel		EIO	Par. G	roup >

MLC Example

Program execution procedure:

Position mode:

- 1. M171 switches the X axis from an NC axis to MLC axis. (This action is not available when the axis is set to an MLC axis in the **channel setting** page)
- 2. M125 Sets the axis to absolute or incremental mode.
- 3. Set M126 to OFF and the axis is in position mode.
- 4. Set D0 for the position command value.
- 5. Set D2 for the speed command value.
- 6. Trigger M55 to update the position and speed values and activate the axis.

Speed mode:

- 1. M171 switches the X axis from an NC axis to MLC axis. (This action is not available when the axis is set to an MLC axis in the **channel setting** page)
- 2. Set M126 to ON and the axis is in speed mode.
- 3. Set D2 for the speed command value.
- 4. Trigger M55 to update the speed value and activate the axis.

Important:

- The homing speed for the rotation axis refers to the settings of N2.053 (1st Searching Speed) and N2.054 (2nd Searching Speed) (unit: RPM).
- Pay attention to the execution timing of the program. The [M, S and T Codes Finished] must be executed after the [NC / MLC Axis Switching] to ensure correct operation.
- 3. When a switching program is executed but the system does not perform any actions, check that the special M relays **[NC / MLC Axis Switching Finished]** are ON.
- 4. When a motion program is executed but the system does not perform any actions, check that the values **[Target Position]** and **[Target Velocity]** are floating-point values.
- 5. The corresponding halt M code parameter is required in AUTO mode when the axis is switched from MLC to NC axis mode.
- Users need to re-trigger [Trigger Movement] to have the updated value take effect, except for the speed command [Target Velocity] which takes immediate effect after being modified.
- 7. The axes must stay in still when changing NC axis into MLC axis.

6.15 Synchronous control and command transfer

The system provides the functions of synchronous axis control and transferring command to another axis, which are enabled or disabled with the MLC. The command transfer function is only available when the system is in AUTO mode. The following describes the two functions.

Axis	Synchronous Control Enable	Enable as Slave Axis of the Synchronous Control	Command Transfer Enable	Enable as Slave Axis of the Command Transfer Control
X Axis		M2x288		M2x304
Y Axis		M2x289		M2x305
Z Axis		M2x290		M2x306
A Axis		M2x291		M2x307
B Axis		M2x292		M2x308
C Axis		M2x293		M2x309
U Axis		M2x294	M2x257	M2x310
V Axis	Mayaee	M2x295		M2x311
W Axis	IVIZXZ30	M2x296		M2x312
10 th Axis		M2x297		M2x313
11 th Axis		M2x298		M2x314
12 th Axis		M2x299		M2x315
13 th Axis		M2x300		M2x316
14 th Axis	-	M2x301		M2x317
15 th Axis		M2x302		M2x318
16 th Axis		M2x303		M2x319

MLC special M relays

[Synchronous Control Enable] M2x256

Set the **[Synchronous Control Enable]** to ON to enable the function of axes synchronous control. Users still need to switch ON the **[Slave Axis of the Synchronous Control]** for each slave axis.

[Slave Axis of the Synchronous Control] M2x288 ~ M2x303

To enable the axes synchronous control, users will need to set the **[Synchronous Control Enable]** to ON and the **[Slave Axis of the Synchronous Control]** to ON for each slave axis.

[Command Transfer Enable] M2x257

Set the **[Command Transfer Enable]** to ON to enable the function of axes command transfer control. Users still need to switch ON the **[Slave Axis of the Command Transfer Control]** for each slave axis.

[Slave Axis of the Command Transfer Control] M2x304 ~ M2x319

To enable the axes command transfer control, users will need to set the **[Command Transfer Enable]** to ON and the **[Slave Axis of the Command Transfer Control]** to ON for each slave axis.

Relevant Parameter

N1.128 (M Code to Enable Halt Function for Synchronous and Command Transfer) N1.129 (M Code to Disable Halt Function for Synchronous and Command Transfer)

- When the controller is in AUTO or MDI mode, the synchronous and command transfer function needs to utilize the M code of halt to enable or disable the function. Controllers provide a specific halt M code for users to configure based on their preferences.
- Available range 0 to 65,535.
- When the N1.128 is set to 10, the M10 will be the halt function and specific for enable or disable synchronous or command transfer function.

N2.015 (Master Axis of Synchronous and Command Transfer):

Set for the master axis for synchronous and command transfer function.

• Value set to 1 means X axis; value set to 2 means Y axis ..., etc. For example, when this parameter is set to 3, the system will use the Z axis as master axis.

N2.016 (Slave Direction of Synchronous and Command Transfer):

Set for the slave direction when the synchronous and command transfer is enabled.

When set to 0, the slave axes will follow the same direction as the master axis.
 When set to 1, the slave axes will follow the opposite direction of the master axis.

N2.051 (Homing Action of Synchronous and Command Transfer):

- Set for slave axis home action mode when the synchronous and command transfer is enabled.
- When set to 0, the slave axes will follow up the master axis during the home procedure.
 When set to 1, the slave axes and master axis are separated and proceed with the home procedure independently.

N8.009 (Slave Coordinate Setting of Synchronous and Command Transfer):

Set for whether to show slave axes' coordinates (Bit 0) and work coordinates (Bit 2).

• When set to 0, not display the coordinates. When set to 1, display the coordinates.

MLC Example

The Z, U, and V axes are used in the following example. M1200 enables Z axis, M1201 enables U axis and M1202 enables V axis. Set the corresponding special M relay to ON to activate the axis. In addition, the following illustrates how to enable and disable the synchronous control and command transfer functions with the MLC.

Program execution procedure:

- JOG or MPG mode
 - When X99 is ON in JOG or MPG mode, the system determines whether to execute the synchronous control or command transfer function depending on whether the Z axis is enabled.
 - 2. When the synchronous control function is enabled, the command transfer function must be disabled to avoid errors, and vice versa.
 - The synchronous control or command transfer function can be disabled through RESET.
- AUTO or MDI mode
 - 1. When the program reads M171 in AUTO or MDI mode, the system determines whether to execute the synchronous control or command transfer function depending on whether the Z axis is enabled.
 - 2. When the synchronous control function is enabled, the command transfer function must be disabled to avoid errors, and vice versa.
 - 3. After the function is enabled, the M code procedure is complete.
 - 4. When the program reads M172, the synchronous control or command transfer function is disabled.

Important:

- 1. All of the M code must be defined as halt M code function in order to enable or disable the synchronous control or command transfer function in AUTO and MDI modes.
- 2. The system checks whether to enable the synchronous control or command transfer function at different time points in different modes, which are described as follows.
 - a. AUTO, MDI: when the M code procedure is complete.
 - b. JOG, MPG: at all times.
 - c. HOME

Synchronous control: After **[Slave Axis of the Synchronous Control]** and **[Slave Axis of the Synchronous Control]** are set to ON or OFF, the system will check the corresponding axis and activate the related function once the **[Axis Homing]** is triggered.

- d. EDIT: the system does not check for the enabling of the function and operates according to the mode users switch to.
- 3. One axis cannot be the master axis and slave axis at the same time.
- 4. Multiple slave axes can follow the same master axis for synchronous control or command transfer at the same time.
- 5. When the synchronous control or command transfer function is enabled, if the program reads the movement command for the slave axis, the slave axis will not move, and the movement command is skipped.
- 6. The command transfer function supports the cutting cycle command for Z axis.
- 7. When N2.050 (Origin Search Mode) is 0 5 and the synchronous control function is enabled, if N2.051 (Origin Search Mode for Sync. Motion) is 0, the slave axes and the

master axis will perform the homing procedure synchronously.

- 8. The settings of the machine parameters and homing modes for the synchronous axes should be consistent.
- 9. When the A, B, C, U, V, and W axes are the slave axes and X, Y, and Z axes are the master axes, the setting of N2.001 (Rotation Axis Feed Mode) for A, B, C, U, V, and W axes must be 5. When the A, B, C, U, V, and W axes are the master axes, the setting of N2.001 for these axes must be consistent.

6.16 Synchronous gantry control

Users can use the synchronous gantry control function with M code in AUTO or MDI modes, directly enable or disable the function in JOG and MPG modes or execute the function at startup. The following describes the synchronous gantry control function.

MLC special M relays

Axis	Synchronous Control Enable	Enable as Slave Axis of the Synchronous Control
X Axis		M2x288
Y Axis		M2x289
Z Axis		M2x290
A Axis		M2x291
B Axis		M2x292
C Axis		M2x293
U Axis		M2x294
V Axis	Mayase	M2x295
W Axis	WZX250	M2x296
10 th Axis		M2x297
11 th Axis		M2x298
12 th Axis		M2x299
13 th Axis		M2x300
14 th Axis		M2x301
15 th Axis		M2x302
16 th Axis		M2x303

[Synchronous Control Enable] M2x256

Set the **[Synchronous Control Enable]** to ON to enable the function of axes synchronous control. Users still need to switch ON the **[Slave Axis of the Synchronous Control]** for each slave axis.

[Slave Axis of the Synchronous Control] M2x288 ~ M2x303

To enable the axes synchronous control, users will need to set the **[Synchronous Control Enable]** to ON and the **[Slave Axis of the Synchronous Control]** to ON for each slave axis.

Relevant Parameter

N1.128 (M Code to Enable Halt Function for Synchronous and Command Transfer) N1.129 (M Code to Disable Halt Function for Synchronous and Command Transfer)

- When the controller is in AUTO or MDI mode, the synchronous and command transfer function needs to utilize the M code of halt to enable or disable the function. Controllers provide a specific halt M code for users to configure based on their preferences.
- The parameter names "enable" and "disable" do not turning functions ON or OFF, but are only for the user to distinguish whether the two M codes are ON or OFF.
- Available range 0 to 65,535.
- When the N1.128 is set to 10, the M10 will be the halt function and specific for enable or disable synchronous or command transfer function.

N2.015 (Master Axis of Synchronous and Command Transfer):

Set for the master axis for synchronous and command transfer function.

- Value set to 1 means X axis; value set to 2 means Y axis ..., etc. For example, when this parameter is set to 3, the system will use the Z axis as master axis.
- •

N2.016 (Slave Direction of Synchronous and Command Transfer):

Set for the slave direction when the synchronous and command transfer is enabled.

• When set to 0, the slave axes will follow the same direction as the master axis. When set to 1, the slave axes will follow the opposite direction of the master axis.

N2.051 (Homing Action of Synchronous and Command Transfer):

Set for slave axis home action mode when the synchronous and command transfer is enabled.

When set to 0, the slave axes will follow up the master axis during the home procedure.
 When set to 1, the slave axes and master axis are separated and proceed with the home procedure independently.

N8.009 (Slave Coordinate Setting of Synchronous and Command Transfer):

Set for whether to show slave axes' coordinates (Bit 0) and work coordinates (Bit 2).

• When set to 0, not display the coordinates. When set to 1, display the coordinates.

MLC Example

Program execution procedure:

As soon as the system is powered on, if the switch for synchronous gantry control is 0, M1 is constantly ON, and the system sets [Synchronous Control Enable] and [Slave Axis of the Synchronous Control] to ON.

Important:

- To use the synchronous gantry control function, avoid enabling or disabling the synchronous control function in AUTO or MDI mode, which might damage the machine.
- 2. According to the enabling rules, set the system to JOG or MPG mode when it is powered on, so the synchronous control function can be correctly enabled.
- 3. Multiple slave axes can follow the same master axis for synchronous control at the same time.
- 4. When the synchronous control function is enabled, if the program reads the movement command for the slave axis, the slave axis will not move, and the movement command is skipped.
- 5. When N2.050 (Origin Search Mode) is 0 5 and the synchronous control function is enabled, if N2.051 (Origin Search Mode for Sync. Motion) is 0, the slave axes and the master axis will perform the homing procedure synchronously.
- 6. The settings of the machine parameters and homing modes for the synchronous axes should be consistent.
- 7. When the A, B, C, U, V, and W axes are the slave axes and X, Y, and Z axes are the master axes, the setting of N2.001 (Rotation Axis Feed Mode) for A, B, C, U, V, and W axes must be 5. When the A, B, C, U, V, and W axes are the master axes, the setting of N2.001 for these axes must be consistent.

6.17 Devices information monitor

The system provides special D for users to monitor or compare the specific status of the controller through MLC. This specific status will be maintained and increased as a field request in the future.

■ MLC special D register

Information Monitoring 1 Sort 1	D3x096 D3x097	Information Monitoring 2 Sort 1	D3x104 D3x105
Information Monitoring 1 Sort 2	D3x098 D3x099	Information Monitoring 2 Sort 2	D3x106 D3x107
Information Monitoring 1 Sort 3	D3x100 D3x101	Information Monitoring 2 Sort 3	D3x108 D3x109
Information Monitoring 1 Sort 4	D3x102 D3x103	Information Monitoring 2 Sort 4	D3x110 D3x111

[Information Monitoring 1 Sort 1] D3x096, D3x097

The system will be showing the slave devices' information based on the configured parameter N1.321 (Information Monitoring Category 1) and N1.322 (Information Monitoring Sort 1).

• This is a 32-bit special D data, which will occupy two sequence D addresses.

[Information Monitoring 1 Sort 2] D3x098, D3x099

The system will be showing the slave devices' information based on the configured parameter N1.321 (Information Monitoring Category 1) and N1.323 (Information Monitoring Sort 1).

• This is a 32-bit special D data, which will occupy two sequence D addresses.

[Information Monitoring 1 Sort 3] D3x100, D3x101

The system will be showing the slave devices' information based on the configured parameter N1.321 (Information Monitoring Category 1) and N1.324 (Information Monitoring Sort 1).

• This is a 32-bit special D data, which will occupy two sequence D addresses.

[Information Monitoring 1 Sort 4] D3x102, D3x103

The system will be showing the slave devices' information based on the configured parameter

- N1.321 (Information Monitoring Category 1) and N1.325 (Information Monitoring Sort 1).
- This is a 32-bit special D data, which will occupy two sequence D addresses.

[Information Monitoring 2 Sort 1] D3x104, D3x105

The system will be showing the slave devices' information based on the configured parameter N1.326 (Information Monitoring Category 2) and N1.327 (Information Monitoring Sort 1).

• This is a 32-bit special D data, which will occupy two sequence D addresses.

[Information Monitoring 2 Sort 2] D3x106, D3x107

The system will be showing the slave devices' information based on the configured parameter N1.326 (Information Monitoring Category 2) and N1.328 (Information Monitoring Sort 1).

• This is a 32-bit special D data, which will occupy two sequence D addresses.

[Information Monitoring 2 Sort 3] D3x108, D3x109

The system will be showing the slave devices' information based on the configured parameter N1.326 (Information Monitoring Category 2) and N1.329 (Information Monitoring Sort 1).

• This is a 32-bit special D data, which will occupy two sequence D addresses.

[Information Monitoring 2 Sort 4] D3x110, D3x111

The system will be showing the slave devices' information based on the configured parameter N1.326 (Information Monitoring Category 2) and N1.330 (Information Monitoring Sort 1).

• This is a 32-bit special D data, which will occupy two sequence D addresses.

Relevant Parameter

N1.321 (Information Monitoring Category 1):

Users can set this to determine the data type of 1st category to read.

- The input range is 0 65535.
- When set to 1, the system will allocate the 1st category as the axes' machine coordinates.

N1.322 (Information Monitoring Sort 1 of Category 1):

The special D can show specific monitored information in accordance with the setting of N1.321 (Information Monitoring Category 1).

- The input range is 0 65535.
- When N1.321 is set to 1 and this parameter is set to 1, the system will update the X axis's machine coordinate to the corresponding special D. If this parameter is set to 2, the system will update the Y axis's information to the corresponding special D.

N1.323 (Information Monitoring Sort 2 of Category 1):

The special D can show specific monitored information in accordance with the setting of N1.321 (Information Monitoring Category 1).

- The input range is 0 65535.
- When N1.321 is set to 1 and this parameter is set to 1, the system will update the X axis's machine coordinates to the corresponding special D. If this parameter is set to 2, the system will update the Y axis's information to the corresponding special D.

N1.324 (Information Monitoring Sort 3 of Category 1):

The special D can show specific monitored information in accordance with the setting of N1.321 (Information Monitoring Category 1).

- The input range is 0 65535.
- When N1.321 is set to 1 and this parameter is set to 1, the system will update the X axis's machine coordinates to the corresponding special D. If this parameter is set to 2, the system will update the Y axis's information to the corresponding special D.

N1.325 (Information Monitoring Sort 4 of Category 1):

The special D can show specific monitored information in accordance with the setting of N1.321 (Information Monitoring Category 1).

- The input range is 0 65535.
- When N1.321 is set to 1 and this parameter is set to 1, the system will update the X axis's machine coordinates to the corresponding special D. If this parameter is set to 2, the system will update the Y axis's information to the corresponding special D.

N1.326 (Information Monitoring Category 2):

Users can set this to determine the data type of 2nd category to read.

- The input range is 0 65535.
- When set to 1, the system will allocate the 2nd category as the axes' machine coordinate.

N1.327 (Information Monitoring Sort 1 of Category 2):

The special D can show specific monitored information in accordance with the setting of N1.321 (Information Monitoring Category 2).

- The input range is 0 65535.
- When N1.326 is set to 1 and this parameter is set to 1, the system will update the X axis's machine coordinates to the corresponding special D. If this parameter is set to 2, the system will update the Y axis's information to the corresponding special D.

N1.328 (Information Monitoring Sort 2 of Category 2):

The special D can show specific monitored information in accordance with the setting of N1.321 (Information Monitoring Category 2).

- The input range is 0 65535.
- When N1.326 is set to 1 and this parameter is set to 1, the system will update the X axis's machine coordinates to the corresponding special D. If this parameter is set to 2, the system will update the Y axis's information to the corresponding special D.

N1.329 (Information Monitoring Sort 3 of Category 2):

The special D can show specific monitored information in accordance with the setting of N1.321 (Information Monitoring Category 2).

- The input range is 0 65535.
- When N1.326 is set to 1 and this parameter is set to 1, the system will update the X axis's machine coordinates to the corresponding special D. If this parameter is set to 2, the system will update the Y axis's information to the corresponding special D.

N1.330 (Information Monitoring Sort 4 of Category 2):

The special D can show specific monitored information in accordance with the setting of N1.321 (Information Monitoring Category 2).

- The input range is 0 65535.
- When N1.326 is set to 1 and this parameter is set to 1, the system will update the X axis's machine coordinates to the corresponding special D. If this parameter is set to 2, the system will update the Y axis's information to the corresponding special D.

MLC Example

When the parameter N1.321 (Information Monitoring Category) is set to 1 and N1.322 to N1.324 (Information Monitoring Sort 1 to 3) are set to 1, 2 and 3 respectively, users can read the machine coordinates of X, Y and Z through the special D in the MLC.

Paran	neter		Current C	н.		20230410.	NC		N 1		Syste	em
Group	NUM			Para	am Name			PRS	Param Value		alue	
N1	313	Robot Arm L	.13					Р		0.000		
N1	314	Robot Arm L	_14					Р		0.000	1	
N1	315	Robot Arm L	_15					Р		0.000		
N1	316	Robot Arm L	_16					Р		0.000		
N1	317	Robot Arm L	_17					Р		0.000		
N1	318	Robot Arm L	.18					Р		0.000	1	
N1	319	Robot Arm L	.19					Р		0.000		
N1	320	Robot Arm L	_20					Р		0.000		
N1	321	Monitor dat	Monitor data 1 ID					R	1			
N1	322	Monitor dat	a 1 sub 1 ID					R	2			
N1	323	Monitor dat	a 1 sub 2 ID					R		11		
N1	324	Monitor dat	a 1 sub 3 ID					R		3		
N1	325	Monitor dat	a 1 sub 4 ID					R		0		
N1	326	Monitor dat	a 2 ID					R	0			
N1	327	Monitor dat	Monitor data 2 sub 1 ID R							0		
			Range : -1000	00~1000	000						1	8/19
Con	.JOG		08:51:00	RPE	D 100%	JOG 100%	S 100%	, D	mm			
<< (Compe	n. Syste	m MLC	:	Graphic	Servo	Channel		EIO	Par.	Group	>>

Program execution procedure:

In this MLC example, FCMP instructions are used to compare the Z axis's machine position. In addition, the M700 will be triggered due to the Z axis's actual position being smaller than the setting position.

6.18 Robot arm control

The NC5 controller provides multi-axes and multi-channel functions. On the different channels, users can define each channel with different mechanisms, such as a Cartesian coordinate system or robot coordinate system. Furthermore, users can use the machine for regular processes and utilize the robot arm for load and unload procedures.

MLC special D

Servo On / Off	M2x012	MPG Ratio Selection	D2x009
Robot Coordinate System	M2x048 M2x049 M2x050 M2x051	Robot's Coordinate System Switch in Manual Mode	D2x016
NC Mode Switch	D2x000	Robot's Tool System Switch in Manual Mode	D2x017
Feed Rate Override for JOG, INC and Dry Run Mode	D2x006	Current Coordinate System	D3x016
MPG Axes Selection	D2x008	Current Robot Tool Coordinate System	D3x017

[Servo ON / OFF] M2x012

Servo ON or OFF for all connected servo drives in the corresponding channel.

• The parameter [N1.010 Axes Manually Enable after Startup] must be set to 1.

[Robot Coordinate System Switching] M2x048 ~ M2x051

Robot coordinate system can be switched as shown in the table below. CNC controllers need to be in manual mode.

Robot Mode Control	M2x048	M2x049	M2x050	M2x051	D2x016
PCS (Piece)	1	1	1	1	-
TCS (Tool)	1	1	0	1	-
JCS (Joint)	0	0	0	0	-

[NC Mode Switch] D2x000

The NC system uses this D2x000 to switch between different NC modes. The x in D2x000 represents different NC channels.

NC Mode Switch	Value	Mode	Mode Status
	0	AUTO	M3x000
	1	EDIT	M3x001
	2	MDI	M3x002
D2v000	3	MPG	M3x003
D2X000	4	JOG	M3x004
	5	RAPID	M3x005
	6	INC	M3x006
	7	HOME	M3x007

[Dry Run, Feed Rate] M2x005, D2x006

When the controller is in AUTO or MDI mode, if **[Dry Run]** is triggered, the system will load the main program or MDI program and then start the execution with the **[Feed Rate]** speed.

- When [Dry Run] is triggered as ON, the system will take [Feed Rate] as the process speed.
- When the system is executing in dry run mode and the [Dry Run] is reset to OFF, the system will continue running but at the NC programed speed.

[MPG Axes Selection] D2x008

Users can switch the MPG axis by setting this special D to the indicated axes as below. When the channel is configured as a robot system, the system will determine whether the robot is in the PCS (Piece Coordinate) or TCS (Tool Coordinate) mode, and it will switch MPG axis control accordingly as

0 = X Axis, 1 = Y Axis, 2 = Z Axis, 3 = A Axis, 4 = B Axis or 5 = C Axis.

When the robot system is in JCS (Joint Coordinate) mode, the system will switch the MPG axis control accordingly as

0 = J1 Axis, 1 = J2 Axis, 2 = J3 Axis, 3 = J4 Axis, 4 = J5 Axis or 5 = J6 Axis.

[MPG Ratio Selection] D2x009

This **[MPG Ratio Selection]** can be set to 1, 10 or 100. When users rotate one unit from the wheel, the system will obtain 1 pulse from the MPG device. The system will take the parameter **N9.013 (Unit Decimal Point)** as the command unit for each pulse. In addition, the system will multiply the **[MPG Ratio Selection]** as the ratio for the final command sent to a specific axis. For example: **[MPG Ratio Selection]** is 10 and the N9.013 (Unit Decimal Point) set to 0.001mm. The minimum movement of the MPG control will be 0.001 × 10 = 0.01 mm.

[Robot's Coordinate System Switch in Manual Mode] D2x016

When the robot system is in manual mode, users can use this special D to switch between different work coordinate systems.

1 ~ 6: corresponding to G54 to G59.

[Robot's Tool System Switch in Manual Mode] D2x017

When the robot system is in manual mode, users can use this special D to switch between different tool coordinate systems.

0: Not using tool offset.

 $1 \sim n$: corresponding to the tool number.

[Current Coordinate System] D3x016

This shows the current applied working coordinate system.

• When the **[model]** in the **[Channel Setting]** page is not set to Robot, this special D will show the current coordinate system.

 $1 \sim 6$: corresponding to G54 to G59.

7: corresponding to G54 P1 to G54 P256

- When the **[model]** in the **[Channel Setting]** page is set to Robot, this special D will show the current robot coordinate system.
 - $1 \sim 6$: corresponding to G54 to G59.

[Current Coordinate System] D3x017

This shows the current applied tool coordinate system.

- 0: Not using tool offset
- $1 \sim n$: corresponding to the tool number.

Relevant Parameter

N1.301~N1.320 (Robot Arm Length 1~20):

The NC5 controller provides a Robot arm control mechanism, users will need to provide corresponding hardware mechanical arm length parameters (MDH definition) for the system's algorithm.

• Unit: mm, available range: -100000 to +100000

N1.064 MPG Path Acc and Dec Time

The system will use this parameter as the path filter to smooth out the machining speed between each command. The smoother the machining speed, the longer the total process time. Larger value settings could cause the command deceleration to become too long, which can cause the machine to continue moving for a short distance after MPG is stopped.

N1.065 MPG Path S Curve Time

The system will use this parameter as the path filter to smooth out the machining speed between each command. Larger value settings could cause a loss in precision.

N.915 Enable the Robot Teaching Programming

Users can easily teach and program the robot control program directly on the controller. After moving and confirming the robot to the teaching point using MPG or JOG control, users can click on the linear move (G01.1) or point-to-point (G00.1) buttons on the lower left corner. The system will insert the relative command to the user's NC program. The teaching position is based on the Robot's current coordinate mode, which is PCS, TCS or JCS. In the PCS and TCS modes, the point command is based on XYZABC coordinates. Furthermore, the XYZABC coordinates will describe the values of the machine coordinates when it is in JCS mode.

Robot mode switching example

User can manage the system mode of the robot arm directly on the controller HMI.

In this example, the robot mode switch is demonstrated using the mandatory button, utilizing the corresponding *SYSVRM to ON/OFF button source with after call macro to complete the mode switch function. The following description illustrates the mode switching and macro content with *SYSVRW.

PCS (Piece Coordinate System): *SYSVRW_0_40.2

Macro content: Setting [**Robot Coordinate System manual switch**] to 0 to disable manual mode, and then set [**Robot Coordinate System Switching**] to PCS (Piece Coordinate) and then reset other button sources to OFF.

```
$D_0_21016 = 0
BITON M_0_21048
BITON M_0_21049
BITON M_0_21050
BITON M_0_21051
BITOFF *SYSVRW_0_40.4
BITOFF *SYSVRW_0_40.3
BITOFF *SYSVRW_0_40.1
```

TCS (Tool Coordinate System): *SYSVRW_0_40.3
 Macro content: Setting [Robot Coordinate System Switching] to TCS (Tool Coordinate) and then reset other button sources to OFF.

BITON M_0_21048 BITON M_0_21049 BITOFF M_0_21050 BITON M_0_21051 BITOFF *SYSVRW_0_40.1 BITOFF *SYSVRW_0_40.2 BITOFF *SYSVRW_0_40.4

• JCS (Joint Coordinate): *SYSVRW_0_40.4

Macro content: Setting **[Robot Coordinate System Switching]** to JCS (Joint Coordinate) and then reset other button sources to OFF.

BITOFF M_0_21048 BITOFF M_0_21049 BITOFF M_0_21050 BITOFF M_0_21051 BITOFF *SYSVRW_0_40.2 BITOFF *SYSVRW_0_40.3 BITOFF *SYSVRW_0_40.1

Instruction description

When the system is in AUTO or MDI mode, the robot is controlled by G code instructions, as shown below.

G00.1 **MovP** point-to-point moving instruction.

Format	G00.1 X_Y_Z_A_B_C_ P0000 H_R_Q_F_
Example	G00.1 X400. Y0. Z300. A180. B0. C0. P0000 H0 R1 Q1 F20

G01.1 MovL linear moving instruction.

Format	G01.1 X_Y_Z_A_B_C_ P0000 H_R_Q_F_
Example	G01.1 X400. Y0. Z300. A180. B0. C0. P0000 H0 R1 Q1 F20

Instruction Description

Instruction	Description					
XYZABC	Refers to Q coordinate settings, if the coordinate system is PCS or TCS (Q = 0 to 2), the XYZABC represent space coordinates for each direction. If the coordinate system is JCS (Q = 3), the XYZABC represent joint coordinates for J1 to J6.					
P0000	Posture setting of Robot arm control can be defined as below, in bits.					
	Bit	0	1	2	3	
	Robot posture	PS*	Shoulder	Elbow	Flip	
	Note: represents applying the current posture and ignores any other setting.					
н	Tool coordinate system 0: Not using tool offset 1 ~ n: corresponding to the tool number					
R	Working coordinate 1 ~ 6: corresponding to G54 to G59.					
Q	Coordinate system setting 1: PCS (Piece coordinate) 2: TCS (Tool coordinate) 3: JCS (Joint coordinate)					
F	Speed percentage (%)					

CH1 M Code

MLC Example

The following example provides a two channels application as multi-channel. Therefore, the same MLC can access two different CH1 and CH2 and exchange data or whether to execute or to hold execution based on the other channel's status.

M31064 ┥┟ K3000 D31048 -(M3000) = CH1 M code CH1 1st M Call Robot Go Step1 execution Code of Current... D31048 K3001 (M3001) = CH1 1st M Call Robot Code of Go Step2 Current... = D31048 K3002 -(M3002) CH1 1st M Call Robot Code of Go Step3 Current... D31048 K3003 -(M3003) += CH1 1st M Call Robot Code of Go Step4 Current... D31048 K3004 -(M3004) CH1 1st M Call Robot Code of Go Step5 Current... M3005 M3000 + +1 (M70) Call Robot Call CNC Go CH1 M Code Finish Go Step1 Step1 Singel M3001 M3006 ++Call CNC Go Call Robot Go Step2 Step2 M3002 M3007 +┥┟ Call Robot Call CNC Go Go Step3 Step3 M3003 M3008 \dashv + +Call CNC Go Call Robot Go Step4 Step4 M3004 M3009 +┥┟ Call Robot Call CNC Go Go Step5 Step5

Program execution procedure:

The 1st channel (CH1) is defined as a milling machine and the 2nd channel (CH2) is defined as a robot arm. Users can use M / S / T code to exchange status or data and hold procedures based on the status of each other. For more information on the M / S / T functions, please refer to section 6.8.

The above example demonstrates that when the CH1 milling machine finishes the process it will activate M3000 to acknowledge the CH2 to start the robot action. Furthermore, after CH2 finishes the procedure with the command as G00.1, G01.1 or M code, it will acknowledge CH1 to continue work by M3005.

Important:

In order to enable the teaching function, users need to set up the below items.

- 1. Set N.915 (Enable the Robot Teaching Programming) to 1.
- Set up two function keys as function number 9226 (Linear move) and function number 9227 (Point-to-point move).

6.19 Axes Oscillation Control

The NC5 controller provides axes oscillation control, which is special design for grinding solution. Controller system will add a SIN wave position directly on the configured axes. In the grinding field, this oscillation can greatly improve performance and the grinding wheel can efficiently uniform the usage.

MLC Special M & Special D

Axes Oscillation Control Enable	M2x264	-	-
Axes Oscillation Amplitude	D2x018 D2x019	Axes Oscillation Cycle Time	D2x020 D2x021
Oscillation Axes Enable	D2x022	Axes Oscillation Wave Type	D2x023

[Axes Oscillation Control Enable]: M2x264

Set this **[Axes Oscillation Control Enable]** to ON to enable the axes oscillation function, and the system will execute axis oscillation commands based on the settings in **[Axes Oscillation Amplitude]** and **[Axes Oscillation Cycle Time]**. The **[Oscillation Axes Enable]** defines the axes number to be performed the oscillation function.

- If the axis is already performing path interpolation, the oscillation command will be added to the original position command.
- The system will enable the function when [Axes Oscillation Control Enable] is ON instead of raising edge. During the function is enabled, the system will continuously add oscillation command based on [Axes Oscillation Amplitude] and [Axes Oscillation Cycle Time] and return an alarm code [0602 Over speed acceleration] once axes speed acceleration is too fast.
- When the **[Axes Oscillation Control Enable]** is ON and function is enabled, any alarm occur will stop the oscillation function immediately. If users want to enable the function again after the system reset, they will need to set **[Axes Oscillation Control Enable]** to OFF and then turn it ON again.
- When the [Axes Oscillation Wave Type] set as mode 0, the system will stop adding oscillation command after axes pass the beginning position by set the [Axes Oscillation Control Enable] from ON to OFF to turn off the function.
- When the [Axes Oscillation Wave Type] set as mode 1, the system will stop adding oscillation command after axes at the beginning position by set the [Axes Oscillation Control Enable] from ON to OFF to turn off the function.
- When the **[Axes Oscillation Control Enable]** is ON, the current position of each axis is showing the added new position.
- Only available on modes other than HOME and EDIT.

[Axes Oscillation Amplitude]: D2x018 ~ D2x019

When the axes oscillation control **[Axes Oscillation Control Enable]** is enabled, the activated axes will oscillate based on the amplitude here.

- Value range -2,147,483,648 ~ +2,147,483,647
- Unit: mm
- When the **[Axes Oscillation Wave Type]** set as mode 0 and **[Axes Oscillation Amplitude]** is positive, the axes will oscillate forward first and then backward continuously. On the other hands, it will oscillate backward first and then forward continuously when the value is negative.
- When the **[Axes Oscillation Wave Type]** set as mode 1 and **[Axes Oscillation Amplitude]** is positive, the axes will oscillate forward first to the amplitude value and then backward to the beginning position continuously. On the other hands, it will oscillate backward first and then forward continuously when the value is negative.

[Axes Oscillation Cycle Time]: D2x020 ~ D2x021

The system will take this **[Axes Oscillation Cycle Time]** as the cycle time for each oscillation command.

- Unit: ms
- The cycle time is defined as the axes pass through one cycle distance from original position to the amplitude movement and then back to the original position.

[Oscillation Axes Enable]: D2x022

The oscillation axes use this 16-bit **[Oscillation Axes Enable]** as the mask to determine whether to enable the function on each specific axis.

For example, if this set to 5, it means the X and Z axes will both have their oscillation function activated.

- Value range 0 ~ 65535.
- For example, if this set to 5, it means the X and Z axes will both have their oscillation function activated.
[Axes Oscillation Wave Type]: D2x023

Setting for axes oscillation wave type.

- Value range 0 ~ 65535.
- When set as 0, the system will apply [Asin(w)] as overlay oscillation wave. In this [Asin(W)] formula, the added command will take 0 as median incremental position and then add positive and negative additional movement continuously as shown below in green line.

When set as 0, the system will apply [A-cos(w) + A] as overlay oscillation wave. In this [A-cos(w) + A] formula, the added command will take 0 as based incremental position and then add positive or negative as one direction additional movement continuously as shown below in green line.

MLC example

The following example provides oscillation function enable through real digital input and then

indicated to the X axis.

Program execution procedure:

- 1. The example MLC will continuously move user provide amplitude and cycle time into special D register.
- 2. When users triggered the digital input signal (X300), the MLC will enable the oscillation function on the X axis.
- 3. After trigger the system Reset, the MLC will disable the oscillation function on the X axis.

Important:

Only available on modes other than HOME and EDIT.

CNC Alarm Information

This appendix provides the information about the alarms and troubleshooting methods for the NC system. Search this appendix for the methods of handling the NC system related malfunctions.

A.1 CNC Alarm Categories A-2
A.2 CNC System Alarms ······A-2
A.2.1 NC Instruction Errors A-3
A.2.2 NC Axis Alarms ······A-9
A.2.3 NC Motion Interpolation Alarms ······ A-11
A.2.4 NC Kernel Alarms ······A-12

A.1 CNC Alarm Categories

The CNC alarms can be divided into three categories, which are system alarms, user-defined alarms, and user-defined macro alarms. This appendix only describes the **[system alarms]** while the rest are user-defined.

Alarm Category	Alarm Code	Alarm Description
System alarms	-	The system alarms caused by system error or operation error. Some system alarms include information, which has different meanings according to the different alarms.
User-defined alarms	Α_	The user-defined alarms which are programed in the MLC. When the A_ device is triggered, the alarm corresponding to the A_ device defined in [DOPSoft - User-defined alarm] will reported as well. Range: A0~A511
User-defined macro alarms	MR_	The user-defined macro alarm works with NC program # variable. When the command as #20020=_, the alarm triggered and have the corresponding macro alarm defined in [DOPSoft - Macro-defined alarm] will displayed on the controller. Range: M1~M1000

A.2 CNC System Alarms

The system alarms are divided into MLC related alarms and NC related alarms by function.

System alarm category	Alarm code range	Abnormal action	Description
NC alarms	0x0000 ~ 0x1FFF	NC error	The alarms in this range are the error code that terminate the execution when an error occurs during the operation of the NC system, mainly divided into system abnormalities or operation error alarms. If the reason of the error cannot be identified, please report to Delta for assistance.
MLC alarms	0xA000 ~ 0xAFFF	MLC error	The alarms in this range are the warning errors reported when the MLC and HMI screen inside the controller make errors
HMI alarms	0x8000 ~ 0x8FFF	HMI error	during operation. If there is a related alarm, powering on the CNC again first, and if it still cannot be resolved, please contact Delta or supplier for assistance.
Servo related alarms	0xF002	-	The error code is an alarm when the errors of servo axes occur during system operation. When the error occurs, the servo alarm message will display on the screen.

A.2.1 NC Instruction Errors

Alarm code (Hex)	Name	Cause and correction
0x0000	NC internal error.	An internal error occurred in the control system, please contact Delta or supplier.
0x0002	The specified line number or N line number cannot be found.	The specified file message cannot be found.
0x0004	Macro file call error.	Macro number error.
0x0005	Macro call mode error.	System mode error.
0x0201	Undefined operator.	Incorrect syntax. (Undefined symbol) Wrong example: G01O100.; "O" is undefined.
0x0202	Repeated operators command in one line.	Incorrect syntax. Please correct the syntax. Wrong example: G01 X100 G01 X50.
0x0203	Operators that must be command at the beginning of the block are not written at the beginning of the line.	Specific commands need to be used at the beginning of the line. Wrong example: G01 IF → IF misused. G01 WHILE → WHILE is misused.
0x0204	Operators that are forbidden to be command at the beginning of the block are written at the beginning of the line.	Specific commands cannot be used at the beginning of the line. Ex: DO, THEN
0x0205	Operators that must be command at the end of the block are not written at the end of the line.	Specific commands are not used at the end of the line. Wrong example: END 1 X100. → END misused.
0x0206	Operators' syntax error.	Wrong example: #100=*3 ➔ character * misused.
0x0207	Command syntax error.	Wrong example: X10. G1 ➔ command "X10." misused.
0x0208	Command syntax error. Statements and motion command cannot program in the same line.	Wrong example: #1=2 G01 X10. ➔"#1=2" and "G01 X10." cannot be on the same line.
0x0209	Command syntax error. Wrong use of brackets.	"[" and "]" are not paired.
0x020A	Command syntax error. Wrong command characters.	Example error: #1=BIT[2,SIN[3]]. The command content is incorrect with a comma. Only numbers or '#' for arithmetic operations are allowed.
0x020B	Command syntax error. Cannot resolve multi-input operators.	Multi-input instructions such as ATAN can't recognized by the system when it comes to negative numbers or the minus sign.
0x020C	Command syntax error. Newline character error.	Newline character incomplete.
0x020D	Command syntax error. Violation of judgement operator in command syntax.	Syntax error. Correct the syntax format. Invalid syntax for judgement operators such as '>', '<', '<>', '='. Error example: #1>G01.
0x020E	Command syntax error. IF command error.	Syntax error. Correct the syntax format. There is no condition after the IF judgement.
0x020F	Command syntax error. WHILE condition statement error.	Syntax error. Correct the syntax format. There is no condition after the WHILE statement.

Alarm code (Hex)	Name	Cause and correction
0x0210	Command syntax error. Divisor is 0.	Syntax error. Correct the syntax format. Expression divided by zero, unable to compute.
0x0211	Command syntax error. Assignment operator used incorrectly.	Syntax error. Correct the syntax format. Incorrect syntax for the '=' operator. Error example: #1=G01.
0x0212	The macro program is being called more times than the allowed limit.	Subprogram or macro program stack exceeds 8 levels.
0x0213	Command syntax error. WHILE loop command without END instruction.	Syntax error. Correct the syntax format. The WHILE statement lacks the END instruction.
0x0214	Command syntax error. The loop count for DO is not an integer.	The character following DO can only be an integer.
0x0215	Command syntax error. The WHILE command lacks a DO instruction in its syntax.	Missing DO instruction in the syntax of the WHILE command.
0x0216	Command syntax error. The relevant instruction is missing the D parameter.	Missing usage of the D parameter in the command syntax. Error example: G42 X100.
0x0217	Command syntax error. The value of D exceeds the maximum limit.	The value of D parameter exceeds the maximum limit. Error example: G42 D1234567.
0x0218	Command syntax error. The relevant instruction is missing the H parameter.	Missing usage of the H parameter in the command syntax. Error example: G43 X100.
0x0219	Command syntax error. The value of H exceeds the maximum limit.	The value of H parameter exceeds the maximum limit. Error example: G43 H1234567.
0x021A	The T value of lathe tool compensation exceeds the maximum limit.	Error example: M06 T1234567.
0x021B	Error in using the G53.1 command.	The G53.1 command must be used after the G68.2 command.
0x021C	The T value exceeds the maximum limit.	Error example: M06 T1234567.
0x021D	Not supported G code instruction.	Syntax error. Correct the syntax format. G code number not supported.
0x021E	The coordinates instruction of robot system command is incorrect.	Syntax of [X, Y, Z] or [J1, J2, J3] command error. Correct the syntax format. Correct format: G01.1 X_Y_Z_A_B_C_ P0000 H0 R0 Q0 When Q is 0,1 or 2, use XYZABC. G01.1 J1_J2_J3_ P0000 H0 R0 Q3 When Q is 3, use J1, J2,, J6.
0x021F	The tool number of robot system command is incorrect.	Syntax of H command error of H. Correct the syntax format. Correct format: G01.1 X_Y_Z_A_B_C_ P0000 H0 R0 Q0
0x0220	The workpiece number of robot system command is incorrect.	Syntax of R command error. Correct the syntax format. Correct format: G01.1 X Y Z A B C P0000 H0 R0 Q0

Alarm code (Hex)	Name	Cause and correction
0x0221	The coordinates setting of robot system command is incorrect.	Syntax of Q command error. Correct the syntax format. Correct format: G01.1 X_Y_Z_A_B_C_ P0000 H0 R0 Q0 Q: setting range from 0 to 3.
0x0222	Command syntax error. No value specified in the instruction.	Syntax error. Correct the syntax format. Error example: G01 X Y100. ➔ No value specified after X.
0x0223	Command syntax error. Coordinate command value exceeds the range.	Syntax error. Correct the syntax format. Correct format: G01 X987654.321 G01 X98765432.1 The maximum number of digits is 9.
0x0224	Command syntax error. GOTO statement error.	Syntax error. Correct the syntax format. Error example: GOTO 2 N2 can't be found in the NC program.
0x0225	Command syntax error. END statement error.	Syntax error. Correct the syntax format. Error example: END No value specified after END.
0x0226	Command syntax error. DO statement error.	Syntax error. Correct the syntax format. Error example: WHILE DO No value specified after DO.
0x0229	Operational error. The specified file line number can't be found.	Error example: M98 Q10 Specifies line 10, but the NC program only contains 9 lines of content.
0x022A	Operational error. The specified N line number can't be found.	Error example: M98 H10 Specifies line 10, but there is no N10 line number instruction in the NC program.
0x022B	Operational error. The specified DO loop instruction can't be found.	Syntax error. Correct the syntax format. The END command doesn't have a corresponding DO.
0x022C	Operational error. The specified END can't be found.	The specified number of DO layers doesn't have corresponding END layer number. For example: While using WHILE DO 2, it should be ended with END 2.
0x022D	Operational error. Subprogram calling layers exceeds the maximum limit.	The maximum layer of subprogram call or macro stack is 8.
0x022E	Operational error. Missing P command in M98 subprogram calling function.	Missing P_ definition for the subprogram in M98 subprogram calling function.
0x022F	Operational error. Missing B command after G122.	B_ is not used with G122 command.
0x0230	Operational error. G122 B command misused.	B_ misused in G122 command.
0x0231	Operational error. The axis of drilling cycle is incorrect.	The axis used in the drilling cycle command doesn't exist.
0x0232	Operational error. Missing P_ or Q_ in the drilling cycle command.	The drilling cycle command doesn't apply P or Q.

Alarm code (Hex)	Name	Cause and correction
0x0233	Operational error. The drilling cycle command can't find the specified Q label.	The Q label defined by the drilling cycle command can't be found in the NC program.
0x0234	Operational error. Unable to find the specified N line number or file line number during breakpoint search.	While using breakpoint search, there is no corresponding N line number or file line number in the NC program.
0x0235	The # variable number exceeds the usage range.	Using an undefined # variable number or when the odd addresses are used between the # variable range #25128 ~ #25255 and #25384 ~ #25511 while using the floating- point MLC variable type with [N1.010 Bit7=1] , which occupies 32 bits of memory space.
0x0236	Error in the format of the extended workpiece coordinates.	The extended value for workpiece coordinates must be an integer. G54 P_ → The parameter of P command must be an integer.
0x0237	The extended workpiece coordinates exceed the range.	The extended workpiece coordinates exceed the maximum limit. The range is G54 P1 to G54 P256.
0x0238	IF command error.	Correct the syntax of IF.
0x0239	THEN command error.	Correct the syntax of IF and THEN.
0x023A	ELSEIF command error.	Correct the syntax of IF and ELSEIF.
0x023B	ELSE command error.	Correct the syntax of IF and ELSE.
0x023C	ENDIF command error.	Correct the syntax of IF and ENDIF.
0x023D	Cannot find the specified ENDIF.	The NC program has IF statement but doesn't have the corresponding ENDIF.
0x023E	The layers used of IF command exceed the maximum limit.	The maximum layers used of IF command is 5.
0x0241	The P command is not marked.	The P command is not marked with the corresponding number.
0x0242	The value of P command exceeds the maximum value.	The limit value of P command is 1 to 256.
0x0243	The P command value is incorrect.	Syntax error. Correct the syntax format.
0x0244	The setting value of the # variable exceeds the limit range.	The setting value of the special # variable exceeds the allowed range. Error example: #20020 = 32768 (The value range of #20020 is 0 to 32767).
0x0245	The command P or Q is not used in the nested loop.	Syntax error. Correct the syntax format.
0x0246	The cutting amount in the roughing cycle is invalid.	Syntax error. Correct the syntax format.
0x0247	The nested loop must be followed by 2 consecutive blocks of instructions.	Syntax error. Correct the syntax format.
0x0248	The number of M codes used in a single block instruction exceeds the limit.	The maximum number of M codes allowed in a single block instruction is 4.
0x0249	M code usage error.	Syntax error. Correct the syntax format. Error example: M98 M1 M3
0x024B	Call instruction usage error.	Error example: M98 G65 One block can only have one call command.
0x024D	Multi Z axis application with tool compensation cannot specify the movement amount of the slave axis.	Syntax error. Correct the syntax format.

Alarm code (Hex)	Name	Cause and correction
0x024E	Usage error of the HSI value of multi-Z axis.	The trigger contact of G31 contains undefined contacts.
0x024F	Usage error of V_ or XYZABCUVW_ in the G31 skip function of multi-Z axis.	G31 command for the slave axis was used in the NC program.
0x0250	Usage error of the input function of the multi-Z axis in the G10 programmable parameter function.	Syntax error of G10 L50.
0x0251	Error parameters of the call subprogram function. Only P_, H(Q)_, L_, can be used.	Error example: M98 K5 K5 is not supported by M98.
0x0252	Usage error of read and write servo parameters of G10 programmable parameters function.	Syntax error of G10 L40 / G10 L41.
0x0253	Data error of the intermedia point for returning to the reference point.	Syntax error of G28.
0x0254	Attempt to assign a value to a ready-only # variable.	Error example: #20005 = 10 #20005 is a constant value π (3.1415) and cannot be written
0x0255	The number of interpolation axes in a single block exceeds the limit.	The maximum number of interpolation axes in a single section is 16.
0x0256	Usage error of the arithmetic command.	Syntax error of the arithmetic command. Error example: #100=BIT[1] The BIT command requires 2 input values for calculation, but only one set of value is provided.
0x0257	Input numerical error in arithmetic command.	Syntax numerical error of the arithmetic command. Error example: B=ASIN[A] The range of A value is not between -1 to 1.
0x0258	Decimal point is not allowed.	The value of the command does not allow decimal points. Error example: G04 P1.2 The parameter of P does not support decimal values.
0x0259	The radius of the arc command is incorrect.	The distance between the center and the end point calculated by the arc command exceeds the arc radius tolerance of N1.040 .
0x025A	The center of the arc command is incorrect.	The distance between the center and the end point calculated by the arc command exceeds the arc radius tolerance of N1.040 .
0x025B	3-dimension arc command error.	The distance between the center and the end point calculated by the 3-dimension arc command exceeds the arc radius tolerance of N1.040 .
0x025C	Blending function data registration error	G10 L60 blending function data registration error. Please check the value of the P command.
0x025D	Working plane setting error.	While enabling synchronize axis function, the plane selections such as G17, G18 and G19 have the same axis, or the plane selection is incorrect.

Alarm code (Hex)	Name	Cause and correction
0x025E	System obtained NULL pointers.	RBTask obtained NULL pointers. Controller malfunction, please contact Delta or supplier for assistance.
0x025F	Not supported instruction for the scaling function.	When using the G68 rotation command, it is not allowed to use 3-dimension arc command, G28/G29/G30, and G54~G59 commands simultaneously. If you need to use them, you must first cancel the G68 function with G69.
0x0260	Insufficient information for circle command by three points method.	The input information used for circle command by three points is insufficient.
0x0261	Subprogram calling function missing H_ statement.	Syntax error. Correct the syntax format.
0x0262	Switching arm gesture is prohibited during arm moving.	Switching hand orientation is prohibited during motion.
0x0263	File not found.	Cannot find the specified NC program file.
0x0264	The P_Q_ command does not exist in looping command.	Make sure the NC program file includes the N line number or file line number for specified by P_Q
0x0265	G53 or G28/ G30 commands error	G53 and G28/G30 commands cannot be used in the same block.

A.2.2 NC Axis Alarms

Alarm code (Hex)	Name	Cause and correction
0x0401	Emergency stop signal is triggered.	Exclude the EMG signal.
0x0402	Hardware limit signal is triggered.	Exclude the hardware limit signal.
0x0601	Axes reference information error	Communication is disconnected after established. Reset after reconnecting the physical cable. When the alarm occurs, the origin state of the axis will be canceled if it's an incremental type of axis.
0x0602	Overspeed protection.	System overspeed protection. The axis will servo off when the alarm occurs. It will be automatically servo on again after reset command and clearing the alarm.
0x0A01	The 1 st segment of software limit is triggered.	The axis has reached the software limit position of 1 st segment. The machine must move away from the limit position before system reset.
0x0A02	The status of 1 st segment of software limit needs to be cleared.	After moving away from the 1 st segment of software limit, this alarm will be displayed. Please reset the machine.
0x0A03	The 2 nd segment of software limit is triggered.	The axis has reached the software limit position of 2 nd segment. The machine must move away from the limit position before system reset.
0x0A04	The status of 2 nd segment of software limit needs to be cleared.	After moving away from the 2 nd segment of software limit, this alarm will be displayed. Please reset the machine.
0x0A05	Hardware limit triggered.	The axis has reached the hardware limit position. The machine must move away from the limit position before system reset.
0x0A06	The status of hardware limit needs to be cleared.	After moving away from the hardware limit, this alarm will be displayed. Please reset the machine.
0x0A07	Servo is not ready.	The axis is not servo ON.
0x0A08	Origin status of the axis is missing.	Please execute the homing operation.
0x0C01	Spindle positioning failed.	Verify the spindle positioning process or check if the spindle positioning time setting is incorrect. N0.1025 , Positioning check time for 1 st spindle. N0.1075 , Positioning check time for 2 nd spindle. N0.1125 , Positioning check time for 3 rd spindle. N0.1375 , Positioning check time for 8 th spindle.
0x0C02	Spindle is not rotating before cutting.	[N1.011 bit8 the spindle enables checks before cutting] is set to 1, and the spindle is not rotating when executing the motion command.
0x0C03	The spindle speed setting exceeds the maximum speed.	[N0.1000 bit7 the spindle maximum speed command check] is set to 1, and the S value in the NC instruction exceeds the maximum spindle speed setting in N0.1008 .
0x0C04	Incorrect switching of the spindle and C-axis.	Make sure all channel parameters are set, whether the C-axis and the spindle are both configured as active axes.
0x0C05	The spindle C-axis is not set as rotational axis.	Check the C axis setting of N2.001 bits 2 to 4 for the rotational axis feed mode.
0x0C06	The spindle is not enabled.	Please check if the spindle is enabled.

0x1601	The hardware limit is triggered during execution of home mode 4. The search direction does not match.	 The hardware limit is triggered during homing. Please check the following: Make sure the machine is out of any limit positions before executing the homing procedure. Verify the wiring signals for the hardware limits are functioning correctly. Chek if the homing search direction is correct.
0x1602	The hardware limit alarm not cleared of the home mode 4.	This alarm will be triggered after clearing 0x1601 hardware limit alarm.
0x1603	Oscillation function is not allowed in the home mode.	The M2x264 oscillation function cannot be enabled in the homing mode.
0x1604	The home mode is not supported.	Please confirm the parameter settings of N2.50 homing mode.
0x1605	The axis is set as non-rotary axis in home mode 6.	Please confirm the parameter settings of N2.01 axis configuration.
0xF002	The alarm codes of Delta servo.	The alarm of 0xF002 needs to be interpreted in conjunction with the alarm codes of the Delta servo. For example, if the Delta servo displays an alarm code 0x09 (following error), the controller will display 0xF002 and indicate the servo's alarm code as 0x09.

A.2.3 NC Motion Interpolation Alarms

Alarm code (Hex)	Name	Cause and correction
0x1001	Feed rate is not specified.	The NC program needs to specify F or set default feed rate value.
0x1201	Block command error.	Command block error.
0x1202	The repeated points of tool compensation have exceeded the maximum limit.	The repeated points exceed the maximum limit.
0x1203	Plane changing after enabling tool compensation.	Changing the plane is prohibited after enabling tool compensation.
0x1204	Unable to calculate the tool compensation path at arc-to-linear command.	Unable to calculate the tool compensation path.
0x1205	Tool compensation path interference occurred at arc-to-linear.	Tool compensation result has path interference. For example: The arc entry is smaller than the tool diameter.
0x1206	Changing tool diameter during arc command performing.	Tool diameter cannot be changed during arc command while tool compensation is enabled.
0x1207	Unable to calculate the tool compensation path at arc-to-arc command.	Unable to calculate the tool compensation path.
0x1208	Tool compensation path interference occurred between linear-to-arc.	Tool compensation result has path interference. For example: The arc entry is smaller than the tool diameter.
0x1209	Unable to calculate the tool compensation path at linear-to-arc command.	Unable to calculate the tool compensation pat.
0x120A	The arc radius is less than 0 after tool compensation.	Tool compensation result has path interference.
0x120B	Tool compensation path interference occurred at two linear commands.	Tool compensation result has path interference.
0x120C	Calculation error at the arm path interpolation.	The endpoint position is outside the working range of the robot arm.
0x120D	The P value of G05 command does not correspond to HMI recipe.	The corresponding recipe values must be filled in within the HMI interface.
0x120E	Path interpolation distance exceeds the maximum travel distance.	Motion coordinate point exceeds the maximum distance. Error example: X[tan[90]] → tan[90] is a infinity value Please correct the coordinate position of the motion command.

A.2.4 NC Kernel Alarms

Alarm code (Hex)	Name	Cause and correction
0x1401	System kernel construction failed.	Controller malfunction, please contact Delta or supplier for assistance.
0x1402	System kernel RT construction failed.	Controller malfunction, please contact Delta or supplier for assistance.
0x1403	System kernel RT memory error.	Controller malfunction, please contact Delta or supplier for assistance.
0x1404	System RT deployment configuration error.	Controller malfunction, please contact Delta or supplier for assistance.
0x1405	Path UTY construction failed.	Controller malfunction, please contact Delta or supplier for assistance.
0x1406	Path NRT construction failed.	Controller malfunction, please contact Delta or supplier for assistance.
0x1407	Path RT construction failed.	Controller malfunction, please contact Delta or supplier for assistance.
0x1408	Path UTY memory error.	Controller malfunction, please contact Delta or supplier for assistance.
0x1409	Path NRT memory error.	Controller malfunction, please contact Delta or supplier for assistance.
0x140A	Path RT memory error.	Controller malfunction, please contact Delta or supplier for assistance.
0x140B	Retentive # variable error.	Controller malfunction, please contact Delta or supplier for assistance.
0x140C	Path UTY deployment parameter error.	Parameter error.
0x140D	Path UTY deployment configuration error.	Parameter error.
0x140E	Path NRT association error.	Controller malfunction, please contact
		Delta or supplier for assistance.
0x140F	Path NRT deployment parameter error.	Parameter error.
0x1410	Path NRT deployment configuration error.	Parameter error.
0x1411	Path RT association error.	Controller malfunction, please contact Delta or supplier for assistance.
0x1412	Path RT deployment parameter error.	Parameter error.
0x1413	Path RT deployment configuration error.	Parameter error.
0x1414	Path NRT registration # variable error.	Controller malfunction, please contact Delta or supplier for assistance.
0x1415	Virtual axis type error.	The system axis parameters have both physical and virtual axis setting on the same axis.
0x1416	The slave address does not match.	The slave address is different from the system address setting. Please confirm the slave address or reset.
0x1417	The slave address is duplicated.	Duplicate slave addresses are being used. Please check the address setting of the slave devices and eliminate the duplicate addresses.
0x1418	The number of channels in the multi- channel is incorrect.	The NC multi-channel must be used sequentially and cannot be used with only channel one and channel three.
0x1419	NC axis number setting error.	Controller malfunction, please contact Delta or supplier for assistance.
0x141A	Spindle number setting error.	Controller malfunction, please contact Delta or supplier for assistance.
0x141B	Coding of the tool magazine setting error.	Controller malfunction, please contact Delta or supplier for assistance.

0x141C	Setting error of the axis type.	The axis type setting, such as NC axis or PLC axis, is incorrect. Please contact Delta or supplier for assistance.
0x141D	The number of Cartesian axes and joint axes in the path dose not match.	Controller malfunction, please contact Delta or supplier for assistance.
0x141E	System PDO mapping mismatch.	Controller malfunction, please contact Delta or supplier for assistance. The system DAT configuration does not match the connected products.
0x141F	The system interrupt execution time is not supported.	The servo does not support the current interpolation time.
0x1420	EtherCAT communication establish failed.	Check if the communication cables are properly connected to the slave devices.
0x1426	The system remote module (EIO) failed.	Verify if there are any conflicts with the settings in the controller EIO interface and confirm the changes to save the modified parameter values.
0x1427	Failed to trigger the EtherCAT communication OP mode.	Check if the fieldbus is properly connected.
0x1428	Failed to switch the EtherCAT communication to OP mode.	Check if the fieldbus is properly connected.
0x1429	EtherCAT communication initialization error.	Please restart the system.
0x142A	The number of axes defined in the channel exceeds the limit.	Please check the parameter definition of the channel axis.
0x142B	EtherCAT slave devices not found.	Check if the cables are properly connected.
0x142C	Conflicting setting between multi-Z and synchronization function.	Check for any conflicts between the multi-Z parameters and the synchronization control parameter N2.015 .
0x142D	Setting error of the multi-Z machine parameters.	Check if the setting of multi-Z parameters is correct.
0x142E	The system remote module (EIO) connection device type mismatch with the settings.	Check if the EIO module type settings match the devices on the fieldbus.
0x142F	The corresponding port number for the remote module (EIO) connection was not found.	Check if the port number setting for the EIO module is correct.

Special Memory

This chapter introduces CNC system definition device list. It supplies users to check MLC special *#* variable action correct or not in CNC system.

B CNC Special # Variable ·····	В-2
B.1 Constant Variable ·····	В-2
B.1.1 Null Variable (#0) ·····	В-2
B.1.2 Constant Variable (#20000~#20012) ·····	В-3
B.2 Alarm Variable ·····	·····B-4
B.2.1 Macro Defined Alarm (#20020) ·····	·····B-4
B.3 Field Special Variables ·····	·····B-4
B.3.1 User-Defined Coordinate (#20021) ·····	·····B-4
B.3.2 Multi-Z Axis Synchronize (#20022)·····	·····B-4
B.4 NC System Status ·····	В-5
B.4.1 Servo Parameter Read and Write (#20023, #20024)······	•••••В-5
B.4.2 System Time (#20025, #20026) ·····	•••••В-5
B.4.3 NC System Mode (#20300~#20330) ·····	•••••В-5
B.4.4 NC Command Status (#20400~#20411)·····	•••••В-6
B.4.5 Coordinate Information (#21000~#21079) ·····	•••••В-6
B.4.6 G54-G59 Workpiece Coordinate (#22000~#23183) ·····	В-7
B.5 Tool Management and Breakpoints	В-8
B.5.1 Tool Magazine (#24001~#24004) ·····	В-8
B.5.2 Breakpoint Search (#24039~#24095) ·····	В-8
B.6 MLC Exchange Variable	······B-10
B.6.1 MLC M Relay Write to # Variable (#25000~#25127)·····	······B-10
B.6.2 MLC Word D Register Write to # Variable (#25128~#25255)·····	······ B-11
B.6.3 # Variable Write to MLC M Relay (#25256~#25383)······	······B-12
B.6.4 # Variable Write to MLC D Register (#25384~#25511)······	·····B-13
B.7 Tool Management ·····	·····B-14
B.7.1 Tool Length (#26000~#41999) ·····	······B-14
B.7.2 Tool Wear (#42000~#57999) ·····	······B-14
B.7.3 Tool Radius/ Status (#42000~#57999)·····	·····B-15
B.7.4 Tool Tolerance (#61000~#76999)·····	······B-15
B.7.5 Tool Lifetime Target (#77000~92999)·····	······B-16
B.7.6 Tool Lifetime Accumulation (#93000~108999) ·····	······B-17
B.7.7 Tool Lifetime (#192000~195999) ·····	······B-17

B CNC Special # Variable

This appendix provides functional mapping tables of # variables in the NC 5 controller system.

Variables are independently working in each channel of NC, mainly used in operation, read and system setting of NC program.

System # variable corresponding table define as following:

- 1. # variable name, beginning as # and number from 0 to 223999. Number after 20000 are system variables or reserved variables.
- 2. # variable function description.
- 3. *#* variable operation attribute and its attribute description:
 - R: # variable read only.
 - W: # variable writable.
 - •: When NC system execute this # variable, it will stop look-ahead and block preview which ensure the system can obtain the current state of the NC system.

B.1 Constant Variable

B.1.1 Null Variable (#0)

Variable			Description			Туре
	A null a Users variabl Null (N differer	and read only variable can move #0 value in e as null. (The value v ULL) and 0 is differer nces when the #100 is	e (Null). to specified variable, will display as NULL). nt in usage, the follow s given in NULL or 0:	and then set this spec ing table describes the	ified e	
		ludgomont	Value o	of #100		1
	Judgement	Judgement	NULL	0		
		#100 == #0	True	False		
#0		#100 != #0	False	True		R/-/-
		#100 >= #0	True	True		l
		#100 <= #0	True	True		l
		#100 > 0	False	False		l
		#100 < 0	False	False		1
		#100 != 0	True	False		1
		G90X99Y#100	G90 X99	G90 X99 Y0		1
						I

B.1.2 Constant Variable (#20000~#20012)

Variable	Description	Туре
#20000	$e \cong 2.718281828$	R/-/-
#20001	$\log_2 e \cong 1.442695041$	R/-/-
#20002	$\log_{10} e \cong 0.434294482$	R/-/-
#20003	$\ln 2 \cong 0.693147181$	R/-/-
#20004	$\ln 10 \cong 2.302585093$	R/-/-
#20005	$\pi \cong 3.141592654$	R/-/-
#20006	$\frac{\pi}{2} \cong 1.570796327$	R/-/-
#20007	$\frac{\pi}{4} \cong 0.785398163$	R/-/-
#20008	$\frac{1}{\pi} \cong 0.318309886$	R/-/-
#20009	$\frac{2}{\pi} \cong 0.636619772$	R/-/-
#20010	$\frac{2}{\sqrt{\pi}} \cong 1.128379167$	R/-/-
#20011	$\sqrt{2} \cong 1.414213562$	R/-/-
#20012	$\frac{1}{\sqrt{\pi}} \cong 0.707106781$	R/-/-

B.2 Alarm Variable

B.2.1 Macro Defined Alarm (#20020)

Variable Description Type Macro defined alarm (MR) Image: Comparison of the term of			
Macro defined alarm (MR)	Variable	Description	Туре
#20020 When non-zero value is written into this variable, the system will display Macro defined alarm on the controller screen. Value range: from 0 to 32767. If the value is not in the range, the system will return alarm 0x0244. The error message from MR1 to MR1000 are configured in the [CNCSoft] – [DOPSoft]. For example: #20020 = 100; the system displays MR100.	#20020	Macro defined alarm (MR) When non-zero value is written into this variable, the system will display Macro defined alarm on the controller screen. Value range: from 0 to 32767. If the value is not in the range, the system will return alarm 0x0244. The error message from MR1 to MR1000 are configured in the [CNCSoft] – [DOPSoft]. For example: #20020 = 100; the system displays MR100.	R/W/●

B.3 Field Special Variables

B.3.1 User-Defined Coordinate (#20021)

Variable	Description	Туре
#20021	Special for woodworking machine, used for displaying the working coordinate of the multi-channel. *Need to be used with file sequence function	R/-/●

B.3.2 Multi-Z Axis Synchronize (#20022)

Variable	Description	Туре
#20022	Slave axes number shielding of multi-Z axis. This value is associated with D3X014.	R/-/●

B.4 NC System Status

B.4.1 Servo Parameter Read and Write (#20023, #20024)

Variable	Description	Туре
#20023	This variable store the servo parameter which return from the slave parameters reading instruction. Servo parameters reading instruction includes G10 L40, L41, L45 and L46. For example: After executing G10 L40 I3 P4 D5, this variable will store the value of P4-5 from the servo drive of address number 3. After executing G10 L45 I3 P4 D5, this variable will store the value of [OD- code 4] [Sub OD code 5] from the slave device of address number 3.	R/-/●
#20024	This variable store the execution result (error code) after executing the slave parameters reading instruction. Servo parameters reading instruction includes G10 L40, L41, L45 and L46. For example: After executing G10 L40 I3 P4 D5, this variable will store the execution result (error code). When executing G10 L45 I3 P4 D5, this variable will store the execution result (error code).	R/-/●

B.4.2 System Time (#20025, #20026)

Variable	Description	Туре
#20025	System time: YYMMDD For example: controller system time is 2023/04/17, the value of #20025 is 230417	R/-/●
#20026	System time: hhmmss For example: controller system time is 17:30:01, the value of #20026 is 173001	R/-/●

B.4.3 NC System Mode (#20300~#20330)

Variable	Function description (Milling machine type G code)	Туре
#20300	G code group [0] mode: Temporary G command information	R/-/-
#20301	G code group [1] mode: Interpolation mode (G00~G03)	R/-/-
#20302	G code group [2] mode: Plane selection (G17~G19)	R/-/-
#20303	G code group [3] mode: Absolute/ incremental instruction (G90, G91).	R/-/-
#20304	G code group [4] mode: Procedure check (G22, G23).	R/-/-
#20305	G code group [5] mode: Feeding mode G94, G95.	R/-/-
#20306	G code group [6] mode: Metric/ inch mode (G20, G21).	R/-/-
#20307	G code group [7] mode: Tool radius compensation (G40, G41, G42).	R/-/-
#20308	G code group [8] mode: Tool length compensation (G43, G44, G49).	R/-/-
#20309	G code group [9] mode: Circulation instruction (G80).	R/-/-
#20310	G code group [10] mode: Drilling return mode (G98, G99).	R/-/-
#20311	G code group [11] mode: Ratio mode (G50, G51).	R/-/-
#20312	G code group [12] mode: Workpiece coordinate (G54~G59).	R/-/-
#20313	G code group [13] mode: Cutting mode (G61, G64).	R/-/-
#20314	G code group [14] mode: Macro call (G66, G67).	R/-/-
#20315	G code group [15] mode: Coordinate rotation (G68, G69).	R/-/-
#20316	G code group [16] mode: Polar coordinate instruction (G15, G16).	R/-/-
#20317	G code group [17] mode: Cut speed (G96, G97).	R/-/-
#20318	G code group [18] mode: Mirror function (G24, G25).	R/-/-
#20319 #20330	System reserved. Do not use this sector variable.	-/-/-
#20331	G code group [31] mode: Extend work coordinate (G54 P1-P64).	R/-/-

B.4.4 NC Command Status (#20400~#20411)

Variable NO.	Function description	Туре
	Current execution feed rate F.	
#20400	This variable records the last F command before the specified search break	R/-/-
_	block when executing breakpoint search function.	
	Current tool compensation H value	R/-/-
#20401	This variable records the last H command before the specified search break	
	block when executing breakpoint search function.	
	Current tool compensation D value	R/-/-
#20402	This variable records the last D command before the specified search break	
	block when executing breakpoint search function.	
	Current tool number T value	R/-/-
#20403	This variable records the last T command before the specified search break	
	block when executing breakpoint search function.	
#20404	1 st spindle current program speed S.	R/-/●
#20405	2 nd spindle current program speed S.	R/-/●
#20406	3 rd spindle current program speed S.	R/-/●
#20407	4 th spindle current program speed S.	R/-/●
#20408		R/-/●
	System reserved.	
#20411	Do not use variables in this range.	

B.4.5 Coordinate Information (#21000~#21079)

	Machine Coordinate	Absolute Coordinate	Target Position	G31 Machine	G31 Absolute	Axis Compensate Feedback	Туре
1 st axis (X)	#21000	#21016	#21032	#21048	#21064	#21080	R/-/●
2 nd axis (Y)	#21001	#21017	#21033	#21049	#21065	#21081	R/-/●
3 rd axis (Z)	#21002	#21018	#21034	#21050	#21066	#21082	R/-/●
4 th axis (A)	#21003	#21019	#21035	#21051	#21067	#21083	R/-/●
5 th axis (B)	#21004	#21020	#21036	#21052	#21068	#21084	R/-/●
6 th axis (C)	#21005	#21021	#21037	#21053	#21069	#21085	R/-/●
7 th axis (U)	#21006	#21022	#21038	#21054	#21070	#21086	R/-/●
8 th axis (V)	#21007	#21023	#21039	#21055	#21071	#21087	R/-/●
9 th axis (W)	#21008	#21024	#21040	#21056	#21072	#21088	R/-/●
10 th axis	#21009	#21025	#21041	#21057	#21073	#21089	R/-/●
11 th axis	#21010	#21026	#21042	#21058	#21074	#21090	R/-/●
12 th axis	#21011	#21027	#21043	#21059	#21075	#21091	R/-/●
13 th axis	#21012	#21028	#21044	#21060	#21076	#21092	R/-/●
14 th axis	#21013	#21029	#21045	#21061	#21077	#21093	R/-/●
15 th axis	#21014	#21030	#21046	#21062	#21078	#21094	R/-/●
16 th axis	#21015	#21031	#21047	#21063	#21079	#21095	R/-/●

	Β.	4.6	G54-G59	Workpiece	Coordinate	(#22000~#23183
--	----	-----	---------	-----------	------------	----------------

	Offset Position	G54	G55	G56	G57	G58	G59	Туре
1 st axis (X)	#22000	#22002	#22003	#22004	#22005	#22006	#22007	R/W/●
2 nd axis (Y)	#22078	#22080	#22081	#22082	#22083	#22084	#22085	R/W/●
3 rd axis (Z)	#22156	#22158	#22159	#22160	#22161	#22162	#22163	R/W/●
4 th axis (A)	#22234	#22236	#22237	#22238	#22239	#22240	#22241	R/W/●
5 th axis (B)	#22312	#22314	#22315	#22316	#22317	#22318	#22319	R/W/●
6 th axis (C)	#22390	#22392	#22393	#22394	#22395	#22396	#22397	R/W/●
7 th axis (U)	#22468	#22470	#22471	#22472	#22473	#22474	#22475	R/W/●
8 th axis (V)	#22546	#22548	#22549	#22550	#22551	#22552	#22553	R/W/●
9 th axis(W)	#22624	#22626	#22627	#22628	#22629	#22630	#22631	R/W/●
10 th axis	#22702	#22704	#22705	#22706	#22707	#22708	#22709	R/W/●
11 th axis	#22780	#22782	#22783	#22784	#22785	#22786	#22787	R/W/●
12 th axis	#22858	#22860	#22861	#22862	#22863	#22864	#22865	R/W/●
13 th axis	#22936	#22938	#22939	#22940	#22941	#22942	#22943	R/W/●
14 th axis	#23014	#23016	#23017	#23018	#23019	#23020	#23021	R/W/•
15 th axis	#23092	#23094	#23095	#23096	#23097	#23098	#23099	R/W/●
16 th axis	#23170	#23172	#23173	#23174	#23175	#23176	#23177	R/W/●

	G54 Offset Position	G55 Offset Position	G56 Offset Position	G57 Offset Position	G58 Offset Position	G59 Offset Position	Туре
1 st axis (X)	#22008	#22009	#22010	#22011	#22012	#22013	R/W/•
2 nd axis (Y)	#22086	#22087	#22088	#22089	#22090	#22091	R/W/•
3 rd axis (Z)	#22164	#22165	#22166	#22167	#22168	#22169	R/W/●
4 th axis (A)	#22242	#22243	#22244	#22245	#22246	#22247	R/W/●
5 th axis (B)	#22320	#22321	#22322	#22323	#22324	#22325	R/W/●
6 th axis (C)	#22398	#22399	#22400	#22401	#22402	#22403	R/W/•
7 th axis (U)	#22476	#22477	#22478	#22479	#22480	#22481	R/W/●
8 th axis (V)	#22554	#22555	#22556	#22557	#22558	#22559	R/W/●
9 th axis(W)	#22632	#22633	#22634	#22635	#22636	#22637	R/W/●
10 th axis	#22710	#22711	#22712	#22713	#22714	#22715	R/W/•
11 th axis	#22788	#22789	#22790	#22791	#22792	#22793	R/W/•
12 th axis	#22866	#22867	#22868	#22869	#22870	#22871	R/W/●
13 th axis	#22944	#22945	#22946	#22947	#22948	#22949	R/W/●
14 th axis	#23022	#23023	#23024	#23025	#23026	#23027	R/W/•
15 th axis	#23100	#23101	#23102	#23103	#23104	#23105	R/W/•
16 th axis	#23178	#23179	#23180	#23181	#23182	#23183	R/W/•

B-7

B.5 Tool Management and Breakpoints

B.5.1 Tool Magazine (#24001~#24004)

Variable	Function description	Туре
#24001	Activated tool number from the 1 st tool magazine.	R/-/●
#24002	Activated tool number from the 2 nd tool magazine.	R/-/●
#24003	Tool exchange number of the 1 st tool magazine. In the 1 st tool magazine, after search the [#24003 specified number] and get the current tool slot, user can exchange the [#24001 activated tool number] and the [#24003 Tool exchange number] and then the tool number in the tool slot will be changed automatically. if #24003 specified tool number is not in the tool magazine, the system will not exchange the tool number.	R/W/●
#24004	Tool exchange number of the 2 nd tool magazine. In the 2 nd tool magazine, after search the [#24004 specified number] and get the current tool slot, user can exchange the [#24002 activated tool number] and the [#24004 Tool exchange number] and then the tool number in the tool slot will be changed automatically. if #240044 specified tool number is not in the tool magazine, the system will not exchange the tool number.	R/W/●

B.5.2 Breakpoint Search (#24039~#24095)

After executing the breakpoint row-searching or label execution, the NC system will direct current line number to the specified breakpoint, and the status information of M, S, T, F and axis coordinates are saved as following table:

Variable	Function Description	Туре
#24042 #24076	Last M code record before breakpoint. When using breakpoint search function, those used M code before breakpoint line number or breakpoint label will record in #24042 to #24076 variables. * If there are more than 35 M codes are used before the breakpoint line number, the system retains only the last 35 sets of M codes based on the first- in-first-out principle. * If less than 35 M codes are used before the breakpoint line number, the corresponding variable will be NULL.	R/-/-
#24077	Last S code record before breakpoint. When using breakpoint search function, the last S code before breakpoint line number or breakpoint label will record in #24077 variable. *If there are no S code has been used before the breakpoint line number, this variable will be null (NULL).	R/-/-
#24078	Last T code record before breakpoint. When using breakpoint search function, those used T code before breakpoint line number or breakpoint label will record in #24078 to #24079 variables. * If there are more than 2 T codes are used before the breakpoint line number,	R/-/-
#24079	the system retains only the last 2 sets of T codes based on the first-in-first-out principle. * If less than 2 T codes are used before the breakpoint line number, the corresponding variable will be NULL.	R/-/-

Variable		Function description	Туре
#24080	1 st axis (X)		R/-/-
#24081	2 nd axis (Y)		R/-/-
#24082	3 rd axis (Z)		R/-/-
#24083	4 th axis (A)		R/-/-
#24084	5 th axis (B)		R/-/-
#24085	6 th axis (C)		R/-/-
#24086	7 th axis (U)	Target position of each axis record before breakpoint line.	R/-/-
#24087	8 th axis (V)	position before breakpoint line or breakpoint label of each	R/-/-
#24088	9 th axis (W)	axis will be store in #24080 to #24095 variables.	R/-/-
#24089	10 th axis	*If the axis is not used before the breakpoint line number,	R/-/-
#24090	11 th axis		R/-/-
#24091	12 th axis		R/-/-
#24092	13 th axis		R/-/-
#24093	14 th axis		R/-/-
#24094	15 th axis		R/-/-
#24095	16 th axis		R/-/-
#24100	Multiple T code rec	ord before breakpoint line.	R/-/-
#24101	When using breakp	point searching function, the T code command before	R/-/-
#2/102	Maximum 4 sets of	T code will be recorded.	R/-/-
#24102	*If the multiple T co	de is not used before the breakpoint line number, the	R/-/-
#24103	corresponding varia	able will be null (NULL).	

B.6 MLC Exchange Variable

B.6.1 MLC M Relay Write to # Variable (#25000~#25127)

	+0	+1	+2	+3	+4	Туре
#25000	M2X128	M2X129	M2X130	M2X131	M2X132	R/-/-
#25005	M2X133	M2X134	M2X135	M2X136	M2X137	R/-/-
#25010	M2X138	M2X139	M2X140	M2X141	M2X142	R/-/-
#25015	M2X143	M2X144	M2X145	M2X146	M2X147	R/-/-
#25020	M2X148	M2X149	M2X150	M2X151	M2X152	R/-/-
#25025	M2X153	M2X154	M2X155	M2X156	M2X157	R/-/-
#25030	M2X158	M2X159	M2X160	M2X161	M2X162	R/-/-
#25035	M2X163	M2X164	M2X165	M2X166	M2X167	R/-/-
#25040	M2X168	M2X169	M2X170	M2X171	M2X172	R/-/-
#25045	M2X173	M2X174	M2X175	M2X176	M2X177	R/-/-
#25050	M2X178	M2X179	M2X180	M2X181	M2X182	R/-/-
#25055	M2X183	M2X184	M2X185	M2X186	M2X187	R/-/-
#25060	M2X188	M2X189	M2X190	M2X191	M2X192	R/-/-
#25065	M2X193	M2X194	M2X195	M2X196	M2X197	R/-/-
#25070	M2X198	M2X199	M2X200	M2X201	M2X202	R/-/-
#25075	M2X203	M2X204	M2X205	M2X206	M2X207	R/-/-
#25080	M2X208	M2X209	M2X210	M2X211	M2X212	R/-/-
#25085	M2X213	M2X214	M2X215	M2X216	M2X217	R/-/-
#25090	M2X218	M2X219	M2X220	M2X221	M2X222	R/-/-
#25095	M2X223	M2X224	M2X225	M2X226	M2X227	R/-/-
#25100	M2X228	M2X229	M2X230	M2X231	M2X232	R/-/-
#25105	M2X233	M2X234	M2X235	M2X236	M2X237	R/-/-
#25110	M2X238	M2X239	M2X240	M2X241	M2X242	R/-/-
#25115	M2X243	M2X244	M2X245	M2X246	M2X247	R/-/-
#25120	M2X248	M2X249	M2X250	M2X251	M2X252	R/-/-
#25125	M2X253	M2X254	M2X255	-	-	R/-/-

B.6.2 MLC Word D Register Write to # Variable (#25128~#25255)

This function effected by the parameter **[N1.010 Bit7 MLC variable status]**. When the parameter set as 0 single word type, the D register uses 16-bit signed integer is converted into the # variable, for example: D2X128 as -19, the #25128 will read out of -19.000; if set parameter as 1 floating-point type, D register uses 32-bit floating-point format conversion passed in the # variable and odd-numbered of # variables are forbidden to operate, for example: set the value of D2X128, D2X129 as 19.999, read #25128 out of 19.999 and the #25129 is not available to operate.

	+0	+1	+2	+3	+4	Туре
D2X128	#25128	#25129 ^{note}	#25130	#25131 ^{note}	#25132	R/-/-
D2X133	#25133 ^{note}	#25134	#25135 ^{note}	#25136	#25137 ^{note}	R/-/-
D2X138	#25138	#25139 ^{note}	#25140	#25141 ^{note}	#25142	R/-/-
D2X143	#25143 ^{note}	#25144	#25145 ^{note}	#25146	#25147 ^{note}	R/-/-
D2X148	#25148	#25149 ^{note}	#25150	#25151 ^{note}	#25152	R/-/-
D2X153	#25153 ^{note}	#25154	#25155 ^{note}	#25156	#25157 ^{note}	R/-/-
D2X158	#25158	#25159 ^{note}	#25160	#25161 ^{note}	#25162	R/-/-
D2X163	#25163 ^{note}	#25164	#25165 ^{note}	#25166	#25167 ^{note}	R/-/-
D2X168	#25168	#25169 ^{note}	#25170	#25171 ^{note}	#25172	R/-/-
D2X173	#25173 ^{note}	#25174	#25175 ^{note}	#25176	#25177 ^{note}	R/-/-
D2X178	#25178	#25179 ^{note}	#25180	#25181 ^{note}	#25182	R/-/-
D2X183	#25183 ^{note}	#25184	#25185 ^{note}	#25186	#25187 ^{note}	R/-/-
D2X188	#25188	#25189 ^{note}	#25190	#25191 ^{note}	#25192	R/-/-
D2X193	#25193 ^{note}	#25194	#25195 ^{note}	#25196	#25197 ^{note}	R/-/-
D2X198	#25198	#25199 ^{note}	#25200	#25201 ^{note}	#25202	R/-/-
D2X203	#25203 ^{note}	#25204	#25205 ^{note}	#25206	#25207 ^{note}	R/-/-
D2X208	#25208	#25209 ^{note}	#25210	#25211 ^{note}	#25212	R/-/-
D2X213	#25213 ^{note}	#25214	#25215 ^{note}	#25216	#25217 ^{note}	R/-/-
D2X218	#25218	#25219 ^{note}	#25220	#25221 ^{note}	#25222	R/-/-
D2X223	#25223 ^{note}	#25224	#25225 ^{note}	#25226	#25227 ^{note}	R/-/-
D2X228	#25228	#25229 ^{note}	#25230	#25231 ^{note}	#25232	R/-/-
D2X233	#25233 ^{note}	#25234	#25235 ^{note}	#25236	#25237 ^{note}	R/-/-
D2X238	#25238	#25239 ^{note}	#25240	#25241 ^{note}	#25242	R/-/-
D2X243	#25243 ^{note}	#25244	#25245 ^{note}	#25246	#25247 ^{note}	R/-/-
D2X248	#25248	#25249 ^{note}	#25250	#25251 ^{note}	#25252	R/-/-
D2X253	#25253	#25254	#25255	-	-	R/-/-

Note: parameter **[N1.010 Bit7 MLC variable status]** set as 1 floating-point type, the odd # variable number are prohibited.

B.6.3 # Variable Write to MLC M Relay (#25256~#25383)

	+0	±1	+2	+3	+1	Туре
#25256	MOVOEG	M0V057	12	MOVOED	MOVOGO	
#25250	IVI2A250	10127257	10127230	10127259	10127200	K/VV/-
#25261	M2X261	M2X262	M2X263	M2X264	M2X265	R/W/-
#25266	M2X266	M2X267	M2X268	M2X269	M2X270	R/W/-
#25271	M2X271	M2X272	M2X273	M2X274	M2X275	R/W/-
#25276	M2X276	M2X277	M2X278	M2X279	M2X280	R/W/-
#25281	M2X281	M2X282	M2X283	M2X284	M2X285	R/W/-
#25286	M2X286	M2X287	M2X288	M2X289	M2X290	R/W/-
#25291	M2X291	M2X292	M2X293	M2X294	M2X295	R/W/-
#25296	M2X296	M2X297	M2X298	M2X299	M2X300	R/W/-
#25301	M2X301	M2X302	M2X303	M2X304	M2X305	R/W/-
#25306	M2X306	M2X307	M2X308	M2X309	M2X310	R/W/-
#25311	M2X311	M2X312	M2X313	M2X314	M2X315	R/W/-
#25316	M2X316	M2X317	M2X318	M2X319	M2X320	R/W/-
#25321	M2X321	M2X322	M2X323	M2X324	M2X325	R/W/-
#25326	M2X326	M2X327	M2X328	M2X329	M2X330	R/W/-
#25331	M2X331	M2X332	M2X333	M2X334	M2X335	R/W/-
#25336	M2X336	M2X337	M2X338	M2X339	M2X340	R/W/-
#25341	M2X341	M2X342	M2X343	M2X344	M2X345	R/W/-
#25346	M2X346	M2X347	M2X348	M2X349	M2X350	R/W/-
#25351	M2X351	M2X352	M2X353	M2X354	M2X355	R/W/-
#25356	M2X356	M2X357	M2X358	M2X359	M2X360	R/W/-
#25361	M2X361	M2X362	M2X363	M2X364	M2X365	R/W/-
#25366	M2X366	M2X367	M2X368	M2X369	M2X370	R/W/-
#25371	M2X371	M2X372	M2X373	M2X374	M2X375	R/W/-
#25376	M2X376	M2X377	M2X378	M2X379	M2X380	R/W/-
#25381	M2X381	M2X382	M2X383	-	-	R/W/-

B.6.4 # Variable Write to MLC D Register (#25384~#25511)

This function effected by the parameter **[N1.010 Bit7 MLC variable status]**, when set parameter as 0 single word type, the # variable uses 16-bit signed integer conversion is passed to the D register, for example: set #25384 as -19.999, read D3X128 out of -19; if set parameter as 1 floating-point type, # variable uses 32-bit floating-point format in D register and odd-numbered of # variables are forbidden to operate, for example: set the value of #25328 as 19.999, read D3X128 out of 19.999, read D3X128 and D3X129 out of 19.999 and the #25329 is not available to operate.

	+0	+1	+2	+3	+4	Туре
D3X128	#25384	#25385 ^{note}	#25386	#25387 ^{note}	#25388	R/W/-
D3X133	#25389 ^{note}	#25390	#25391 ^{note}	#25392	#25393 ^{note}	R/W/-
D3X138	#25394	#25395 ^{note}	#25396	#25397 ^{note}	#25398	R/W/-
D3X143	#25399 ^{note}	#25400	#25401 ^{note}	#25402	#25403 ^{note}	R/W/-
D3X148	#25404	#25405 ^{note}	#25406	#25407 ^{note}	#25408	R/W/-
D3X153	#25409 ^{note}	#25410	#25411 ^{note}	#25412	#25413 ^{note}	R/W/-
D3X158	#25414	#25415 ^{note}	#25416	#25417 ^{note}	#25418	R/W/-
D3X163	#25419 ^{note}	#25420	#25421 ^{note}	#25422	#25423 ^{note}	R/W/-
D3X168	#25424	#25425 ^{note}	#25426	#25427 ^{note}	#25428	R/W/-
D3X173	#25429 ^{note}	#25430	#25431 ^{note}	#25432	#25433 ^{note}	R/W/-
D3X178	#25434	#25435 ^{note}	#25436	#25437 ^{note}	#25438	R/W/-
D3X183	#25439 ^{note}	#25440	#25441 ^{note}	#25442	#25443 ^{note}	R/W/-
D3X188	#25444	#25445 ^{note}	#25446	#25447 ^{note}	#25448	R/W/-
D3X193	#25449 ^{note}	#25450	#25451 ^{note}	#25452	#25453 ^{note}	R/W/-
D3X198	#25454	#25455 ^{note}	#25456	#25457 ^{note}	#25458	R/W/-
D3X203	#25459 ^{note}	#25460	#25461 ^{note}	#25462	#25463 ^{note}	R/W/-
D3X208	#25464	#25465 ^{note}	#25466	#25467 ^{note}	#25468	R/W/-
D3X213	#25469 ^{note}	#25470	#25471 ^{note}	#25472	#25473 ^{note}	R/W/-
D3X218	#25474	#25475 ^{note}	#25476	#25477 ^{note}	#25478	R/W/-
D3X223	#25479 ^{note}	#25480	#25481 ^{note}	#25482	#25483 ^{note}	R/W/-
D3X228	#25484	#25485 ^{note}	#25486	#25487 ^{note}	#25488	R/W/-
D3X233	#25489 ^{note}	#25490	#25491 ^{note}	#25492	#25493 ^{note}	R/W/-
D3X238	#25494	#25495 ^{note}	#25496	#25497 ^{note}	#25498	R/W/-
D3X243	#25499 ^{note}	#25500	#25501 ^{note}	#25502	#25503 ^{note}	R/W/-
D3X248	#25504	#25505 ^{note}	#25506	#25507 ^{note}	#25508	R/W/-
D3X253	#25509 note	#25510	#25511 ^{note}	-	-	R/W/-

Note: parameter **[N1.010 Bit7 MLC variable status]** set as 1 floating-point type, the odd # variable number are prohibited.

B.7 Tool Management

B.7.1 Tool Length (#26000~#41999)

	T1	T2	Т3	T4	~	T1000	Туре
Axis 1	#26000	#26001	#26002	#26003	~	#26999	R/W/-
Axis 2	#27000	#27001	#27002	#27003	~	#27999	R/W/-
Axis 3	#28000	#28001	#28002	#28003	~	#28999	R/W/-
Axis 4	#29000	#29001	#29002	#29003	~	#29999	R/W/-
Axis 5	#30000	#30001	#30002	#30003	~	#30999	R/W/-
Axis 6	#31000	#31001	#31002	#31003	~	#31999	R/W/-
Axis 7	#32000	#32001	#32002	#32003	~	#32999	R/W/-
Axis 8	#33000	#33001	#33002	#33003	~	#33999	R/W/-
Axis 9	#34000	#34001	#34002	#34003	~	#34999	R/W/-
Axis 10	#35000	#35001	#35002	#35003	~	#35999	R/W/-
Axis 11	#36000	#36001	#36002	#36003	~	#36999	R/W/-
Axis 12	#37000	#37001	#37002	#37003	~	#37999	R/W/-
Axis 13	#38000	#38001	#38002	#38003	~	#38999	R/W/-
Axis 14	#39000	#39001	#39002	#39003	~	#39999	R/W/-
Axis 15	#40000	#40001	#40002	#40003	~	#40999	R/W/-
Axis 16	#41000	#41001	#41002	#41003	~	#41999	R/W/-

B.7.2 Tool Wear (#42000~#57999)

	T1	T2	Т3	T4	~	T1000	Туре
Axis 1	#42000	#42001	#42002	#42003	~	#42999	R/W/-
Axis 2	#43000	#43001	#43002	#43003	2	#43999	R/W/-
Axis 3	#44000	#44001	#44002	#44003	~	#44999	R/W/-
Axis 4	#45000	#45001	#45002	#45003	~	#45999	R/W/-
Axis 5	#46000	#46001	#46002	#46003	2	#46999	R/W/-
Axis 6	#47000	#47001	#47002	#47003	~	#47999	R/W/-
Axis 7	#48000	#48001	#48002	#48003	~	#48999	R/W/-
Axis 8	#49000	#49001	#49002	#49003	2	#49999	R/W/-
Axis 9	#50000	#50001	#50002	#50003	~	#50999	R/W/-
Axis 10	#51000	#51001	#51002	#51003	~	#51999	R/W/-
Axis 11	#52000	#52001	#52002	#52003	~	#52999	R/W/-
Axis 12	#53000	#53001	#53002	#53003	~	#53999	R/W/-
Axis 13	#54000	#54001	#54002	#54003	~	#54999	R/W/-
Axis 14	#55000	#55001	#55002	#55003	~	#55999	R/W/-
Axis 15	#56000	#56001	#56002	#56003	~	#56999	R/W/-
Axis 16	#57000	#57001	#57002	#57003	~	#57999	R/W/-

B.7.3 Tool Radius/ Status (#42000~#57999)

	T1	T2	Т3	T4	~	T1000	Туре
Tool radius	#58000	#58001	#58002	#58003	1	#58999	R/W/-
Radius wear	#59000	#59001	#59002	#59003	~	#59999	R/W/-
Tool status	#60000	#60001	#60002	#60003	~	#60999	R/W/-

B.7.4 Tool Tolerance (#61000~#76999)

Tool tolerance # variable can be defined in the DOPSoft's tool table and then can be applied to tool wear, end tool detection by macro program.

	T1	T2	Т3	T4	~	T1000	Туре
Axis 1	#61000	#61001	#61002	#61003	~	#61999	R/W/-
Axis 2	#62000	#62001	#62002	#62003	~	#62999	R/W/-
Axis 3	#63000	#63001	#63002	#63003	~	#63999	R/W/-
Axis 4	#64000	#64001	#64002	#64003	~	#64999	R/W/-
Axis 5	#65000	#65001	#65002	#65003	~	#65999	R/W/-
Axis 6	#66000	#66001	#66002	#66003	~	#66999	R/W/-
Axis 7	#67000	#67001	#67002	#67003	~	#67999	R/W/-
Axis 8	#68000	#68001	#68002	#68003	~	#68999	R/W/-
Axis 9	#69000	#69001	#69002	#69003	~	#69999	R/W/-
Axis 10	#70000	#70001	#70002	#70003	~	#70999	R/W/-
Axis 11	#71000	#71001	#71002	#71003	~	#71999	R/W/-
Axis 12	#72000	#72001	#72002	#72003	~	#72999	R/W/-
Axis 13	#73000	#73001	#73002	#73003	~	#73999	R/W/-
Axis 14	#74000	#74001	#74002	#74003	~	#74999	R/W/-
Axis 15	#75000	#75001	#75002	#75003	~	#75999	R/W/-
Axis 16	#76000	#76001	#76002	#76003	~	#76999	R/W/-

B.7.5 Tool Lifetime Target (#77000~92999)

These variables are tool lifetime setting for multi head machine.

Lathe and milling machine, please refer to tool lifetime description (#192000~#195999)

	T1	T2	Т3	T4	~	T1000	Туре
Axis 1	#77000	#77001	#77002	#77003	~	#77999	R/W/-
Axis 2	#78000	#78001	#78002	#78003	~	#78999	R/W/-
Axis 3	#79000	#79001	#79002	#79003	~	#79999	R/W/-
Axis 4	#80000	#80001	#80002	#80003	~	#80999	R/W/-
Axis 5	#81000	#81001	#81002	#81003	~	#81999	R/W/-
Axis 6	#82000	#82001	#82002	#82003	~	#82999	R/W/-
Axis 7	#83000	#83001	#83002	#83003	~	#83999	R/W/-
Axis 8	#84000	#84001	#84002	#84003	~	#84999	R/W/-
Axis 9	#85000	#85001	#85002	#85003	2	#85999	R/W/-
Axis 10	#86000	#86001	#86002	#86003	~	#86999	R/W/-
Axis 11	#87000	#87001	#87002	#87003	~	#87999	R/W/-
Axis 12	#88000	#88001	#88002	#88003	2	#88999	R/W/-
Axis 13	#89000	#89001	#89002	#89003	~	#89999	R/W/-
Axis 14	#90000	#90001	#90002	#90003	~	#90999	R/W/-
Axis 15	#91000	#91001	#91002	#91003	~	#91999	R/W/-
Axis 16	#92000	#92001	#92002	#92003	~	#92999	R/W/-

B.7.6 Tool Lifetime Accumulation (#93000~108999)

These variables are tool actual lifetime setting for multi head machine.

Lathe and milling machine, please refer to tool lifetime description (#192000~#195999)

	T1	T2	Т3	T4	~	T1000	Туре
Axis 1	#93000	#93001	#93002	#93003	~	#93999	R/W/-
Axis 2	#94000	#94001	#94002	#94003	~	#94999	R/W/-
Axis 3	#95000	#95001	#95002	#95003	~	#95999	R/W/-
Axis 4	#96000	#96001	#96002	#96003	~	#96999	R/W/-
Axis 5	#97000	#97001	#97002	#97003	~	#97999	R/W/-
Axis 6	#98000	#98001	#98002	#98003	~	#98999	R/W/-
Axis 7	#99000	#99001	#99002	#99003	~	#99999	R/W/-
Axis 8	#100000	#100001	#100002	#100003	~	#100999	R/W/-
Axis 9	#101000	#101001	#101002	#101003	~	#101999	R/W/-
Axis 10	#102000	#102001	#102002	#102003	~	#102999	R/W/-
Axis 11	#103000	#103001	#103002	#103003	~	#103999	R/W/-
Axis 12	#104000	#104001	#104002	#104003	~	#104999	R/W/-
Axis 13	#105000	#105001	#105002	#105003	~	#105999	R/W/-
Axis 14	#106000	#106001	#106002	#106003	~	#106999	R/W/-
Axis 15	#107000	#107001	#107002	#107003	~	#107999	R/W/-
Axis 16	#108000	#108001	#108002	#108003	~	#108999	R/W/-

B.7.7 Tool Lifetime (#192000~195999)

	T1	T2	Т3	T4	~	T1000	Туре
Tool target lifetime	#192000	#192001	#192002	#192003	~	#192999	R/W/-
Tool actual use time	#193000	#193001	#193002	#193003	~	#193999	R/W/-
Tool target lifetime count	#194000	#194001	#194002	#194003	~	#194999	R/W/-
Tool actual used count	#195000	#195001	#195002	#195003	~	#195999	R/W/●

Industrial Automation Headquarters

Taiwan: Delta Electronics, Inc. Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan District, Taoyuan City 33068, Taiwan TEL: +886-3-362-6301 / FAX: +886-3-371-6301

Asia

China: Delta Electronics (Shanghai) Co., Ltd.

No.182 Minyu Rd., Pudong Shanghai, P.R.C. Post code : 201209 TEL: +86-21-6872-3988 / FAX: +86-21-6872-3996 Customer Service: 400-820-9595

Japan: Delta Electronics (Japan), Inc.

Industrial Automation Sales Department 2-1-14 Shibadaimon, Minato-ku Tokyo, Japan 105-0012 TEL: +81-3-5733-1155 / FAX: +81-3-5733-1255

Korea: Delta Electronics (Korea), Inc. 1511, 219, Gasan Digital 1-Ro., Geumcheon-gu, Seoul, 08501 South Korea

TEL: +82-2-515-5305 / FAX: +82-2-515-5302

Singapore: Delta Energy Systems (Singapore) Pte Ltd.

4 Kaki Bukit Avenue 1, #05-04, Singapore 417939 TEL: +65-6747-5155 / FAX: +65-6744-9228

India: Delta Electronics (India) Pvt. Ltd.

Plot No.43, Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL: +91-124-4874900 / FAX: +91-124-4874945

Thailand: Delta Electronics (Thailand) PCL.

909 Soi 9, Moo 4, Bangpoo Industrial Estate (E.P.Z), Pattana 1 Rd., T.Phraksa, A.Muang, Samutprakarn 10280, Thailand TEL: +66-2709-2800 / FAX: +66-2709-2827

Australia: Delta Electronics (Australia) Pty Ltd.

Unit 2, Building A, 18-24 Ricketts Road, Mount Waverley, Victoria 3149 Australia Mail: IA.au@deltaww.com TEL: +61-1300-335-823 / +61-3-9543-3720

Americas

USA: Delta Electronics (Americas) Ltd. 5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: +1-919-767-3813 / FAX: +1-919-767-3969

Brazil: Delta Electronics Brazil Ltd.

Estrada Velha Rio-São Paulo, 5300 Eugênio de Melo - São José dos Campos CEP: 12247-004 - SP - Brazil TEL: +55-12-3932-2300 / FAX: +55-12-3932-237

Mexico: Delta Electronics International Mexico S.A. de C.V.

Gustavo Baz No. 309 Edificio E PB 103 Colonia La Loma, CP 54060 Tlalnepantla, Estado de México TEL: +52-55-3603-9200

EMEA

EMEA Headquarters: Delta Electronics (Netherlands) B.V.

Sales: Sales.IA.EMEA@deltaww.com Marketing: Marketing.IA.EMEA@deltaww.com Technical Support: iatechnicalsupport@deltaww.com Customer Support: Customer-Support@deltaww.com Service: Service.IA.emea@deltaww.com TEL: +31(0)40 800 3900

BENELUX: Delta Electronics (Netherlands) B.V.

Automotive Campus 260, 5708 JZ Helmond, The Netherlands Mail: Sales.IA.Benelux@deltaww.com TEL: +31(0)40 800 3900

DACH: Delta Electronics (Netherlands) B.V.

Coesterweg 45, D-59494 Soest, Germany Mail: Sales.IA.DACH@deltaww.com TEL: +49 2921 987 238

France: Delta Electronics (France) S.A.

ZI du bois Challand 2,15 rue des Pyrénées, Lisses, 91090 Evry Cedex, France Mail: Sales.IA.FR@deltaww.com TEL: +33(0)1 69 77 82 60

Iberia: Delta Electronics Solutions (Spain) S.L.U

Ctra. De Villaverde a Vallecas, 265 1º Dcha Ed. Hormigueras – P.I. de Vallecas 28031 Madrid TEL: +34(0)91 223 74 20 Carrer Llacuna 166, 08018 Barcelona, Spain

Mail: Sales.IA.Iberia@deltaww.com Italy: Delta Electronics (Italy) S.r.I.

Via Meda 2–22060 Novedrate(CO) Piazza Grazioli 18 00186 Roma Italy Mail: Sales.IA.Italy@deltaww.com TEL: +39 039 8900365

Turkey: Delta Greentech Elektronik San. Ltd. Sti. (Turkey)

Şerifali Mah. Hendem Cad. Kule Sok. No:16-A 34775 Ümraniye – İstanbul Mail: Sales.IA.Turkey@deltaww.com TEL: + 90 216 499 9910

MEA: Eltek Dubai (Eltek MEA DMCC)

OFFICE 2504, 25th Floor, Saba Tower 1, Jumeirah Lakes Towers, Dubai, UAE Mail: Sales.IA.MEA@deltaww.com TEL: +971(0)4 2690148

*We reserve the right to change the information in this catalogue without prior notice.