

Smarter. Greener. Together.

Industrial Automation Headquarters

Delta Electronics, Inc.
Taoyuan Technology Center
No.18, Xinglong Rd., Taoyuan District,
Taoyuan City 330477, Taiwan
TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Shanghai) Co., Ltd.

No.182 Minyu Rd., Pudong Shanghai, P.R.C. Post code : 201209

TEL: 86-21-6872-3988 / FAX: 86-21-6872-3996

TEL: 86-21-6872-3988 / FAX: 86-21-6872-3996

Customer Service: 400-820-9595

Delta Electronics (Japan), Inc.

Tokyo Office

Industrial Automation Sales Department

2-1-14 Shibadaimon, Minato-ku

Tokyo, Japan 105-0012

TEL: 81-3-5733-1155 / FAX: 81-3-5733-1255

Delta Electronics (Korea), Inc.

Seoul Office

1511, 219, Gasan Digital 1-Ro., Geumcheon-gu,

Seoul, 08501 South Korea

TEL: 82-2-515-5305 / FAX: 82-2-515-5302

Delta Energy Systems (Singapore) Pte Ltd.

4 Kaki Bukit Avenue 1, #05-04, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd.

Plot No.43, Sector 35, HSIIDC Gurgaon,

PIN 122001, Haryana, India

TEL: 91-124-4874900 / FAX: 91-124-4874945

Delta Electronics (Thailand) PCL.

909 Soi 9, Moo 4, Bangpoo Industrial Estate (E.P.Z),

Pattana 1 Rd., T.Phraksa, A.Muang,

Samutprakarn 10280, Thailand TEL: 66-2709-2800 / FAX: 662-709-2827

Delta Electronics (Australia) Pty Ltd.

Unit 2, Building A, 18-24 Ricketts Road,

Mount Waverley, Victoria 3149 Australia

Mail: IA.au@deltaww.com

TEL: +61-1300-335-823 / +61-3-9543-3720

Americas

Delta Electronics (Americas) Ltd.

Raleigh Office

5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3813 / FAX: 1-919-767-3969

Delta Electronics Brasil Ltd.

São Paulo Office

Estrada Velha Rio-São Paulo, 5300 Eugênio de Melo - São José dos Campos CEP: 12247-004 – SP - Brasil

TEL: 55-12-3932-2300 / FAX: +55-12-3932-237

Delta Electronics International Mexico S.A. de C.V.

Mexico Office

Gustavo Baz No. 309 Edificio E PB 103 Colonia La Loma, CP 54060

Tlalnepantla, Estado de México TEL: 52-55-3603-9200

EMEA Headquar

Headquarters: Delta Electronics (Netherlands) B.V.

Sales: Sales.IA.EMEA@deltaww.com

Marketing: Marketing.IA.EMEA@deltaww.com

Technical Support: iatechnicalsupport@deltaww.com

Customer Support: latechnicalsupport@deltaww.com

Service: Service.IA.emea@deltaww.com

TEL: +31(0)40 800 3900

BENELUX: Delta Electronics (Netherlands) B.V.

Automotive Campus 260, 5708 JZ Helmond, The Netherlands

Mail: Sales.IA.Benelux@deltaww.com

TEL: +31(0)40 800 3900

DACH: Delta Electronics (Netherlands) B.V.

Coesterweg 45, D-59494 Soest, Germany

Mail: Sales.IA.DACH@deltaww.com TEL: +49(0)2921 987 0

France: Delta Electronics (France) S.A.

ZI du bois Challand 2,15 rue des Pyrénées,

Lisses, 91090 Evry Cedex, France

Mail: Sales.IA.FR@deltaww.com

TEL: +33(0)1 69 77 82 60

Iberia: Delta Electronics Solutions (Spain) S.L.U

Ctra. De Villaverde a Vallecas, 265 1º Dcha Ed.

Hormigueras – P.I. de Vallecas 28031 Madrid

TEL: +34(0)91 223 74 20

Carrer Llacuna 166, 08018 Barcelona, Spain

Mail: Sales.IA.Iberia@deltaww.com

Italy: Delta Electronics (Italy) S.r.l.

Via Meda 2–22060 Novedrate(CO)

Piazza Grazioli 18 00186 Roma Italy

Mail: Sales.IA.Italy@deltaww.com

TEL: +39 039 8900365

Russia: Delta Energy System LLC

Vereyskaya Plaza II, office 112 Vereyskaya str.

17 121357 Moscow Russia

Mail: Sales.IA.RU@deltaww.com

TEL: +7 495 644 3240

Turkey: Delta Greentech Elektronik San. Ltd. Sti. (Turkey)

Şerifali Mah. Hendem Cad. Kule Sok. No:16-A

34775 Ümraniye – İstanbul

Mail: Sales.IA.Turkey@deltaww.com

TEL: + 90 216 499 9910

MEA: Eltek Dubai (Eltek MEA DMCC)

OFFICE 2504, 25th Floor, Saba Tower 1, Jumeirah Lakes Towers, Dubai, UAE

Mail: Sales.IA.MEA@deltaww.com

TEL: +971(0)4 2690148

S

ASDA A2-E EtherCAT Interface Servo Drive User Manual

Table of Contents

Chapter	1	CoE Drive Overview	1-1
1.1	Co	ommunication Specification ······ 1	-1
1.2	Th	ne Interface of Delta EtherCAT Servo Drive 1	-2
1.3	LE	ED Indicators1	-3
1.4	Co	onnecting Multiple Servo Drives1	-5
1.5	W	iring 1	-6
1.5	5.1	Wiring for CN1 I/O Connector 1	-6
1.5	5.2	CN2 Connector 1	-8
1.5	5.3	CN5 Connector (Applicable to Full-closed Loop) 1	-9
1.5	5.4	CN6 EtherCAT Communication Connector 1	-10
1.5	5.5	CN7 Extension DI Connector 1	-11
1.5	5.6	CN-STO Connector1	-12
1.5	5.7	Trigger STO with Safety Relay 1	-13
1.5	5.8	Disable STO1	-13
1.6	Di	mensions 1	-14
1.6	5.1	220V Series 1	-14
1.6	5.2	400V Series 1	-16
1.7	Re	egenerative Resistor····································	-18

Chap	ter	2	System Setup2-1
2.1		Pa	arameter Settings for EtherCAT Modes 2-1
2.2	2	Τv	vinCAT Setup 2-3
2.3	3	Sy	nchronization Mode Setting ······ 2-10
	2.3	.1	Synchronization Modes of the Servo Drive 2-10
	2.3	.2	Select Synchronization Modes 2-11
	2.3	.3	Distributed Clocks Setting 2-12
2.4	ļ	PΙ	OO Mapping 2-13
	2.4	.1	Default PDO Mapping Configuration 2-13
	2.4	.2	Set PDO Mapping2-14
	2.4	.3	Set PDO Mapping with TwinCAT 2-15
3.1		St	EtherCAT Communication Function
Chap	ter	5	CANopen Operation Mode5-1
5.1		Pr	ofile Position Mode····· 5-1
	5.1	.1	Description 5-1
	5.1	.2	Operation Procedures 5-1
	5.1	.3	Advanced Setting Procedures 5-2
	5.1	.4	Associated Object List 5-3
5.2	2	In	terpolation Position Mode······ 5-4
	5.2	.1	Description 5-4

	5.2.2	Operation Procedures ·····	5-5
	5.2.3	Associated Object List	5-5
5.	3 Cy	clic Synchronous Position Mode	5-6
	5.3.1	Description	5-6
	5.3.2	The Function of CSP Mode ·····	5-6
	5.3.3	Operation Procedures ·····	5-7
	5.3.4	Associated Object List ·····	5-7
5.	4 Ho	oming Mode·····	5-8
	5.4.1	Description ·····	5-8
	5.4.2	Operation Procedures ·····	5-8
	5.4.3	Associated Object List ·····	5-9
5.	5 Pro	ofile Velocity Mode ·····	5-10
	5.5.1	Description ·····	5-10
	5.5.2	Operation Procedures ·····	5-10
	5.5.3	Advanced Setting Procedures ······	5-11
	5.5.4	Associated Object List ·····	5-11
5.	6 Cy	clic Synchronous Velocity Mode ······	5-12
	5.6.1	Description ·····	5-12
	5.6.2	The Function of CSV Mode ·····	5-12
	5.6.3	Operation Procedures ·····	5-13
	5.6.4	Associated Object List	5-13
5.	7 Pro	ofile Torque Mode ·····	5-14
	5.7.1	Description	5-14
	5.7.2	Operation Procedures	5-14
	5.7.3	Advanced Setting Procedures ······	5-14

	5.7.4	Associated Object List	5-15
5.8	Су	clic Synchronous Torque Mode	5-16
į.	5.8.1	Description	5-16
į.	5.8.2	The Function of CST Mode	5-16
;	5.8.3	Operation Procedures ·····	5-16
į.	5.8.4	Associated Object List ······	5-17
5.9	Lin	nit Position Handling Procedure······	5-18
į.	5.9.1	Description	5-18
į.	5.9.2	Operation Procedures ·····	5-18
į.	5.9.3	Associated Object List	5-18
5.10	0 To	uch Probe Function	5-19
;	5.10.1	Description	5-19
;	5.10.2	Touch Probe Function ·····	5-19
į.	5.10.3	Touch Probe Status	5-21
į.	5.10.4	Associated Object List ·····	5-24
Chapt	ter 6	Object Dictionary ······	- 6-1
6.1	Sp	ecifications for Objects ······	6-1
(6.1.1	Object Type	6-1
(6.1.2	Data Type	6-1
6.2	Ov	rerview of Object Group 1000h	6-1
6.3	Ov	rerview of Object Group 6000h	6-2
6.4	De	tails of Objects·····	6-4

Table of Contents ASDA A2-E

Chapter	7 STO (Safe Torque Off) Function7-1
7.1	CN-STO Connector 7-1
7.	1.1 Functional Safety Standards and Certificates 7-2
7.2	Specifications of STO 7-3
7.3	Related Parameter Descriptions of STO Function 7-5
7.4	STO Type Alarms 7-7
-	8 Parameters
Chapter	9 Alarms and Troubleshooting ······9-1
9.1	EtherCAT Communication Alarm List 9-1
9.2	Alarm List 9-4
9.3	SDO Abort Codes ·
Chanter	10 Reference Material 10-1

ASDA A2-E Table of Contents

(This page is intentionally left blank.)

Chapter 1 CoE Drive Overview

1.1 Communication Specification

	Physical layer	100BASE-TX	
	Communication connector	RJ45 × 2 (Connector CN6A = input, CN6B = output)	
	Network topology	Line connection	
	Baud rate	2 x 100 Mbps (full duplex)	
	Data frame length	Maximum 1484 bytes	
	SyncManager	SM0: mailbox output SM1: mailbox input SM2: process data output SM3: process data input	
EtherCAT communication	FMMU (Fieldbus Memory Management Units)	FMMU0: process data output area FMMU1: process data input area FMMU2: mailbox status area	
functions	Device profile	CoE: CANopen over EtherCAT	
	Synchronization mode	DC synchronization (SYNC0) Non-synchronized (Free Run)	
	Communication object	SDO: Service Data Object PDO: Process Data Object EMCY: Emergency Data Object	
	LED indicator (On RJ45 connector)	EtherCAT ERR (ER) × 1 EtherCAT Link/Activity (L/A) × 2 EtherCAT RUN (RN) × 1	
	Application layer specifications	IEC61800-7 CiA402 Drive Profile	
Supported CiA4	02 operation modes	 Profile Position Mode (PP) Profile Velocity Mode (PV) Profile Torque Mode (PT) Homing Mode (HM) Interpolated Position Mode (IP) Cycle Synchronous Position Mode (CSP) Cycle Synchronous Velocity Mode (CSV) Cycle Synchronous Torque Mode (CST) 	

1.2 The Interface of Delta EtherCAT Servo Drive

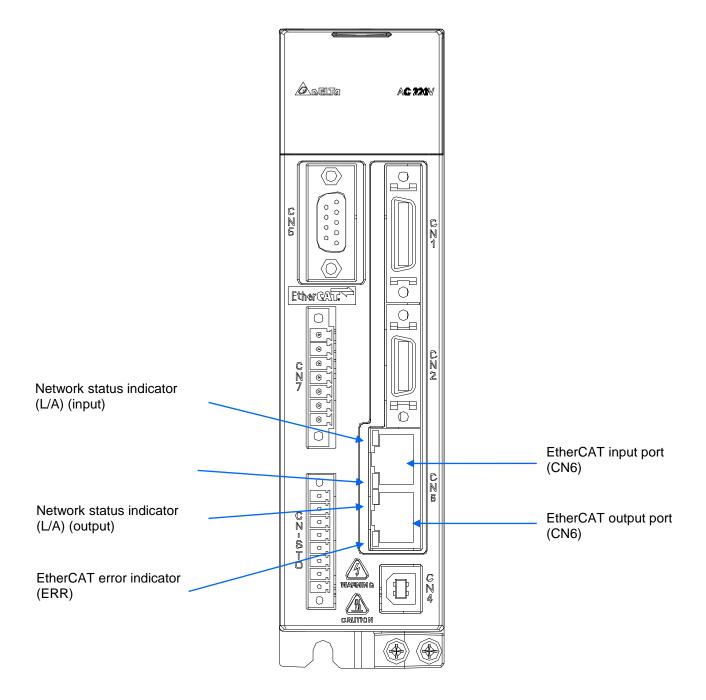


Figure 1.2.1 The Interface of Delta EtherCAT Servo Drive

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

1.3 LED Indicators

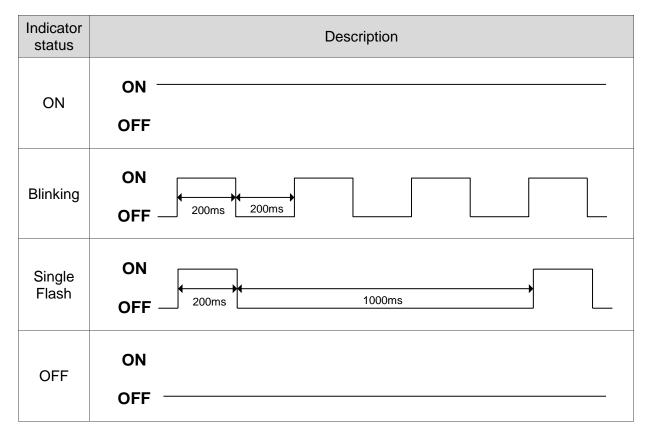
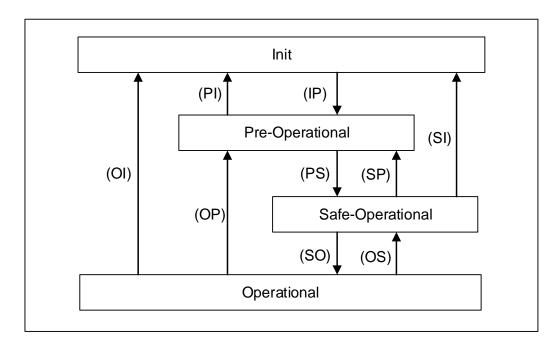


Figure 1.3.1. RJ45 LED indicator status description

Network status indicator (L/A)


Indicator	Status	Description
On	Network is connected	Network connection is established but no data transmission.
Blinking	Network connection is established and data is in transmission	Data in transmission.
Off	No connection	Network connection is not established.

■ EtherCAT connection status indicator (RUN)

Indicator	Status	Description
Off	Init (Initialization)	After power cycling and the initialization of the servo drive is complete, the communication has not yet started, but the controller can access the servo drive's register.
On	Operational	SDO, TxPDO, and RxPDO data packets can be transmitted.
Blinking	Pre-Operational	The servo drive can use the SDO data packets to communicate with the controller.
Single Flash	Safe-Operational	The servo drive can use the SDO and TxPDO data packets to exchange data with the controller.

■ EtherCAT error indicator (ERR)

Indicator	Status	Description	
Off	No error	No error has occurred.	
On	PDI Watchdog timeout	Servo drive malfunction. Contact the distributor for assistance.	
Blinking	State change error	Parameter setting error causes the system unable to switch the state. Refer to the following diagram.	
Single Flash	Synchronization error	The synchronization between the controller and the servo drive failed.	
	SyncManager error	The data was lost during data reception.	

1.4 Connecting Multiple Servo Drives

The connecting method of multiple servo drives varies with the controller you use. Refer to the controller's application manual for details. There are only one input port and one output port for EtherCAT communication on the ASDA A2-E servo drive.

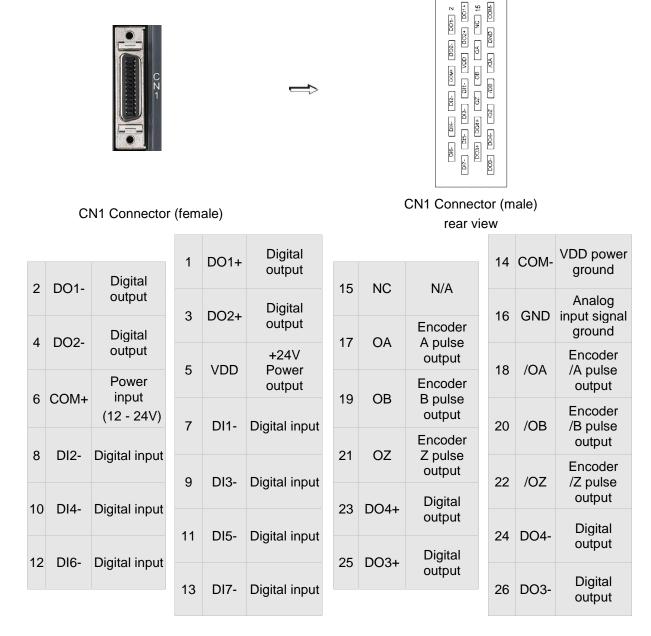


Figure 1.4.1 Example of EtherCAT connection for multiple servo drives

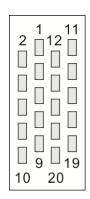
1.5 Wiring

1.5.1 Wiring for CN1 I/O Connector

For better communication with the controller, the CN1 IO connector includes 7 inputs (parameters P2-10 to P2-16) and 4 outputs (parameters P2-18 to P2-21) for you to define their functions. In addition, differential output signals (A+, A-, B+, B-, Z+, and Z-) for the encoder are also provided. The pin assignments are shown as follows:

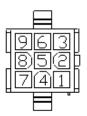
Note: NC represents "No connection", which is for internal use only. Do not connect to NC, or it may damage the servo drive.

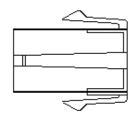
The following table details the signals listed in the previous section.


General signals:

Signal		Pin No.	Description	Wiring Method (Refer to the A2 manual)
	OA 17 /OA 18			
Position pulse (output)	OB /OB	19 20	Encoder signals A, B, and Z differential (line driver) output.	C13 / C14
(output)	OZ /OZ	21 22		
	VDD	5	VDD is the +24V power provided by the servo drive for Digital Input (DI) and Digital Output (DO) signals. The maximum permissible current is 500 mA.	
Power	COM+	6	COM+ is the common voltage input for Digital Input (DI) and Digital Output (DO). When using VDD, connect VDD to COM+. If not used, apply	
	COM-	14	external power (+12V to +24V) to the drive. The positive end of the external power should connect to COM+ and the negative end should connect to COM	-
	GND	16	VCC voltage is based on GND.	
Others NC 15 No connection. This is for internal use only. Do not connect to NC, or it may damage the servo drive.				

1.5.2 CN2 Connector



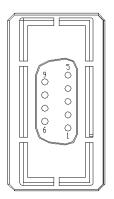


CN2 Connector (female)

CN2 Connector (male) Rear view

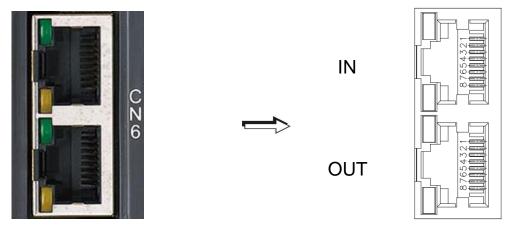
Quick Connector Housing: AMP (1-172161-9)

Military Connector 3106A-20-29S


	CN2	of Servo Drive	N	Notor Conne	ector
Pin No.	Signal	gnal Description		Quick connector	Color
5	T+	Serial communication signal input / output (+)	А	1	Blue
4 T- Serial communication signal input / output (-)		В	4	Blue & black	
-	-	Reserved	-	-	-
-	-	Reserved	-	-	-
14,16	+5V	+5V power supply	S	7	Red / Red & white
13,15	13,15 GND Power ground		R	8	Black / Black & white
-	-	Shielding	L	9	-

1.5.3 CN5 Connector (Applicable to Full-closed Loop)

The CN5 connector is for connecting to the external linear scale or the encoder (A, B, and Z), which forms a full-closed loop with the servo system. In Position mode, the pulse command issued by the controller is based on the control loop of the external linear scale; refer to Chapter 5 for details.

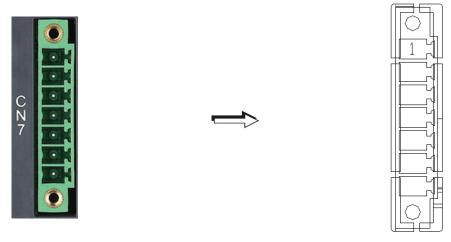

CN5 Connector (female)

Pin No.	Signal	Terminal	Description
1	/Z phase input	Opt_/Z	/Z phase
2	/B phase input	Opt_/B	/B phase
3	B phase input	Opt_B	B phase
4	A phase input	Opt_A	A phase
5	/A phase input	Opt_/A	/A phase
6	Ground for the encoder	GND	Ground
7	Ground for the encoder	GND	Ground
8	Encoder power	+5V	+5V power
9	Z phase input	Opt_Z	Z phase

Note:

- 1. CN5 only supports AB phase signals and the encoder of 5V.
- 2. Full-closed loop supports the encoder of highest resolution 1280000 pulse/rev, which is the pulse number per motor revolution in a full-closed loop that corresponds to an optical signal with AB (Quadrature) phase pulses (4x).

1.5.4 CN6 EtherCAT Communication Connector

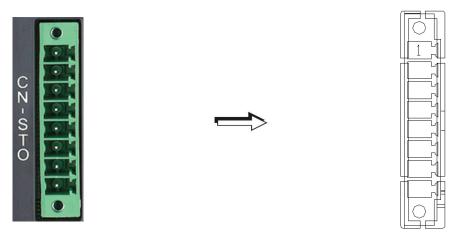

CN6 Connector (female)

Pin No.	Signal	Terminal	Description
1	TX +	TX +	Transmit +
2	TX -	TX -	Transmit -
3	RX +	RX +	Receive +
4	-	-	-
5	-	-	-
6	RX -	RX -	Receive -
7	-	-	-
8	-	-	-

Note:

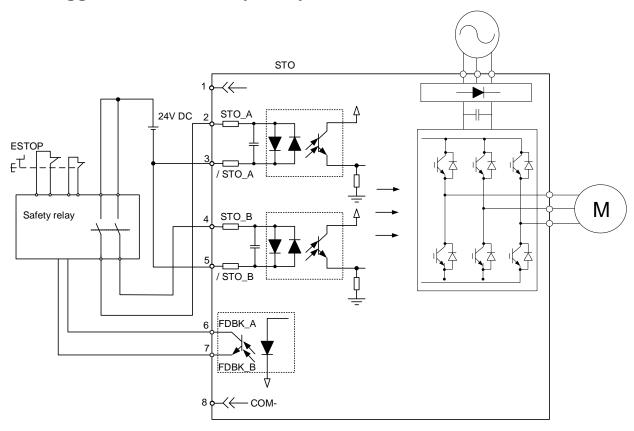
- 1. When multiple servo drives are connected, the maximum distance between each servo drive is 50 meters (164.04 inches).
- 2. Use CAT5e STP shielded cable.
- 3. It is suggested that you use a Beckhoff EtherCAT cable (model number: ZB9020).

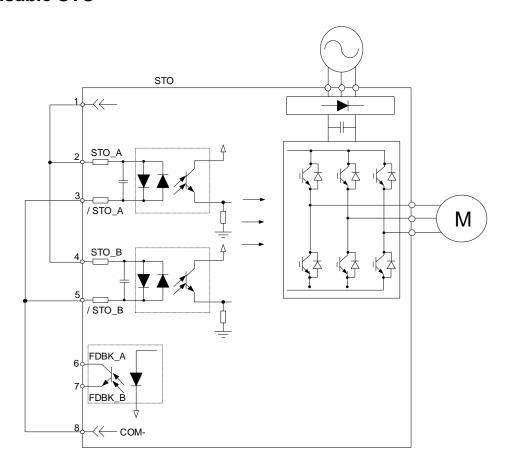
1.5.5 CN7 Extension DI Connector


CN7 Connector (male)

Pin No.	Signal	Terminal	Description
1*	Power input (12 - 24V)	COM+	Power input
2	Extension DI9	EDI 9-	Digital input pin 9-
3	Extension DI10	EDI 10-	Digital input pin 10-
4	Extension DI11	EDI 11-	Digital input pin 11-
5	Extension DI12	EDI 12-	Digital input pin 12-
6	Extension DI13	EDI 13-	Digital input pin 13-
7	Extension DI14	EDI 14-	Digital input pin 14-

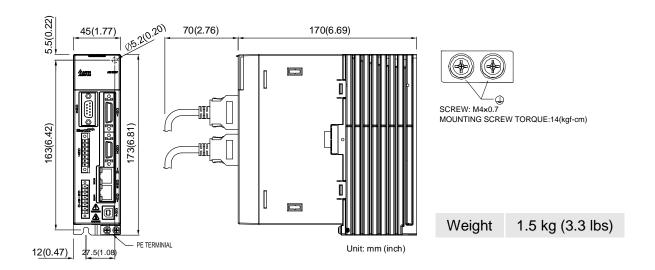
> Caution: do not apply dual power to Pin 1 or it may damage the servo drive.

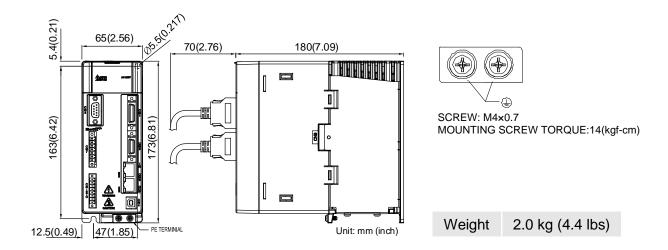

1.5.6 CN-STO Connector


CN-STO Connector (male)

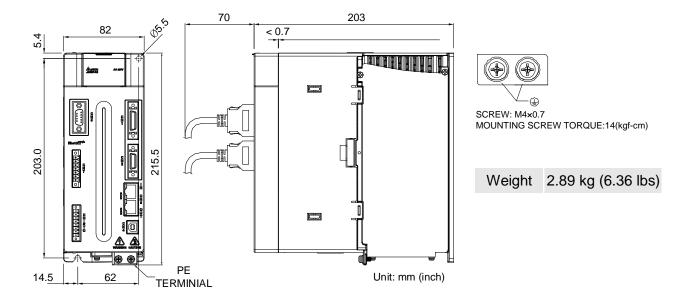
Pin No.	Signal	Terminal	Description
1	-	-	For short-circuiting the STO only. Do not connect the wiring for other purposes.
2	STO_A	STO_A	STO input pin A+
3	/STO_A	/STO_A	STO input pin A-
4	STO_B	STO_B	STO input pin B+
5	/STO_B	/STO_B	STO input pin B-
6	FDBK_A	FDBK_A	STO alarm output pin A Relay max. output current: 1 A
7	FDBK_B	FDBK_B	STO alarm output pin B Relay max. output current: 1 A
8	СОМ-	СОМ-	For short-circuiting the STO only. Do not connect the wiring for other purposes.

1.5.7 Trigger STO with Safety Relay

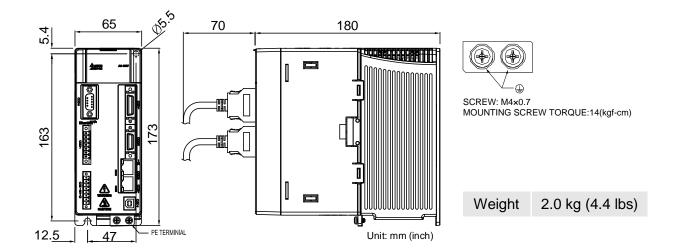

1.5.8 Disable STO


1.6 Dimensions

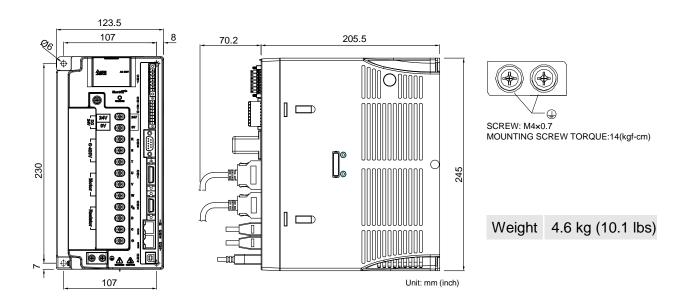
1.6.1 220V Series


100 W / 200 W / 400 W

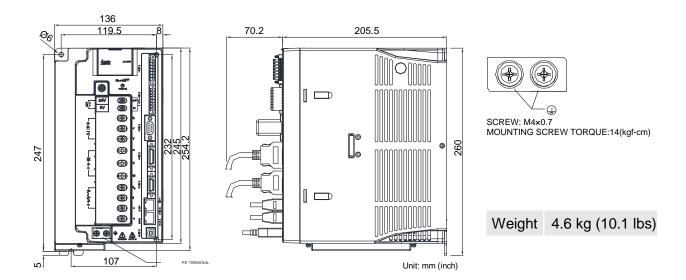
750 W / 1 kW / 1.5 kW



2 kW / 3 kW



1.6.2 400V Series


400 W / 750 W / 1 kW / 1.5 kW

2 kW / 3 kW / 4.5 kW / 5.5 kW

7.5 kW

Note: dimensions and weights of the servo drive may be updated without prior notice.

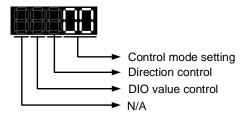
1.7 Regenerative Resistor

Specifications of the built-in regenerative resistor in the ASDA-A2-E 220V series:

Servo drive (kW)	Specificati built-in regene Resistance (P1-52) (Ohm)	erative resistor	Capacity of the built-in regenerative resistor (Watt)	Min. allowable resistance value (Ohm)
0.1	-	-	-	30
0.2	-	-	-	30
0.4	40	40	20	30
0.75	40	60	30	20
1.0	40	60	30	20
1.5	40	60	30	20
2.0	20	100	50	10
3.0	20	100	50	10
4.5	20	100	50	10
5.5	-	-	-	8
7.5	-	-	-	5

Specifications of the built-in regenerative resistor in the ASDA-A2-E 400V series:

Servo drive (kW)	Specificati built-in regene Resistance (P1-52)	Min. allowable resistance value	
	(Ohm)	Capacity (P1-53) (Watt)	(Ohm)
0.4	80	40	60
0.75	80	40	60
1.0	80	40	60
1.5	80	40	40
2.0	-	-	40
3.0	-	-	30
4.5	-	-	20
5.5	-	-	20
7.5	-	-	15
11	-	-	15
15	-	-	12


Chapter 2 System Setup

2.1 Parameter Settings for EtherCAT Modes

- 1. Set parameter P1-01 to 0x0Ch for EtherCAT communication and CANopen as the application layer.
- 2. Restart the servo drive.

P1-01●	CTL	_	Input for Control Mode and Control Command			Address: 0102H 0103H
Interface:	Panel / So	ftware	Communication	Reference:	-	
Default:	: 0x0C _h		Control Mode:	ALL		
	Pulse (Position mode); r/min (Speed mode); N-m (Torque mode)		Range:	0x0000	- 0x110F	
Format:	at: Hex		Data Size:	16-bit		

Settings:

■ Control mode setting

	РТ	PR	S	Т	Sz	Tz
		Sing	le Mo	de		
00	A					
01		A				
02			A			
03				A		
04					A	
05						A
	Multi-mode					
0E	A	A	A			
0F	A	A		A		

	PT	PR	S	Т	Sz	Tz
		Du	al Mod	de		
06	A		A			
07	•			•		
08		A	A			
09		•		•		
0A			A	•		
0B		N/A				
0C	CANopen Mode EtherCAT Mode					
0D	A	A				

PR: Position control mode; the command source is from the 64 sets of internal registers which you can select with DI.POS0 - POS5. Multiple homing methods are also available.

S: Speed control mode; the command source is from the external analog signal or the internal register, which you can select with DI.SPD0 and DI.SPD1.

T: Torque control mode; the command source is from the external analog signal or the internal register, which you can select with DI.TCM0 and DI.TCM1.

Sz: Speed control mode; the speed command is zero or the command source is from the internal speed registers, which you can select with DI.SPD0 and DI.SPD1.

Tz: Torque control mode; the torque command is zero or the command source is from the internal torque registers, which you can select with DI.TCM0 and DI.TCM1.

Dual Mode: you can switch between two modes with DI signals. For example, you can use DI.S-P to switch the dual mode of PT-S (refer to the A2 manual).

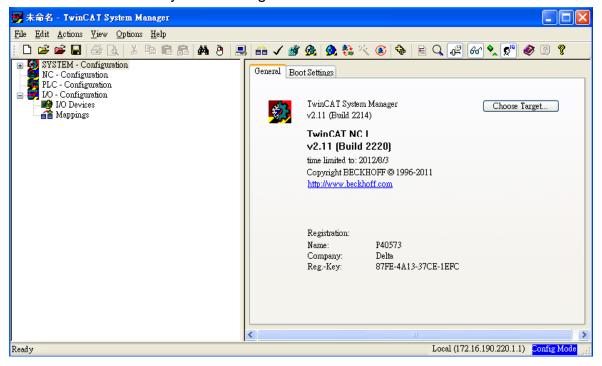
Multi-mode: you can switch between three modes with DI signals. For example, you can use DI.S-P and DI.PT-PR to switch the multi-mode of PT-PR-S (refer to the A2 manual).

Direction control

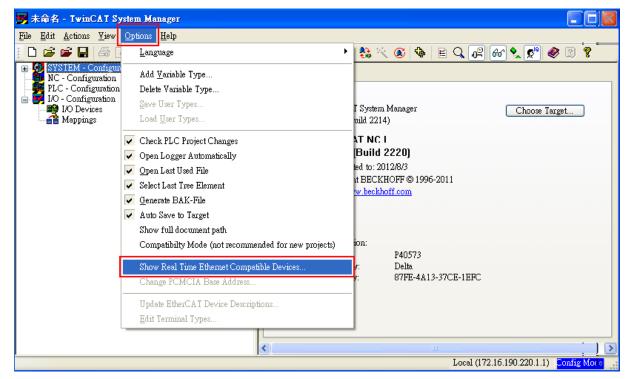
Direction	0	1
Positive	ccw	CW CW
Negative	CW CW	CC.W.

Note: when P1-01 = 0x0C, you need to set P3-12.Z to 1, or the direction setting in P1-01 will not be applied.

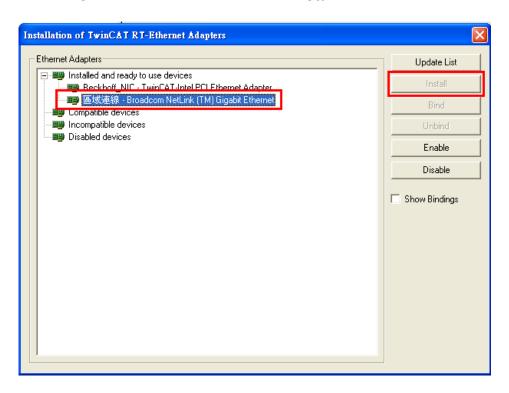
DIO value control

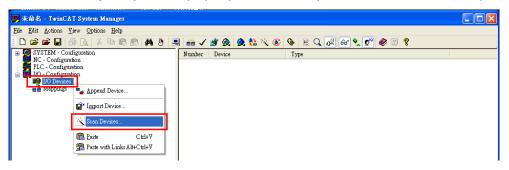

0: when modes are switched, DIO settings (P2-10 to P2-22) remain the same.

1: when modes are switched, DIO settings (P2-10 to P2-22) are reset to the default for each mode.

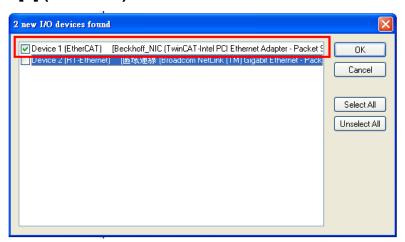

2.2 TwinCAT Setup

You can use different software to configure the EtherCAT system. The following steps use TwinCAT software of Beckhoff as an example. Please install the software before you start the TwinCAT setup.


- Copy Delta XML description to the TwinCAT installation folder (usually in C:\TwinCAT\lo\EtherCAT).
- Restart the TwinCAT.
- 3. Start the TwinCAT System Manager.


- 4. Install the Network Interface Card (NIC) for EtherCAT communication.
 - Select [Options] > [Show Real Time Ethernet Compatible Devices...].

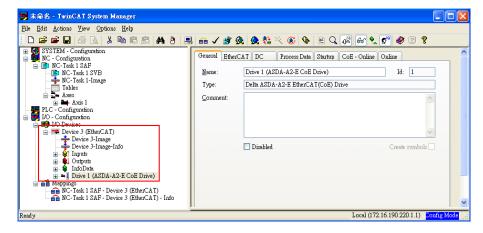
Select the correct Adapter from the devices (NICs) installed in the computer for EtherCAT communication and click Install.

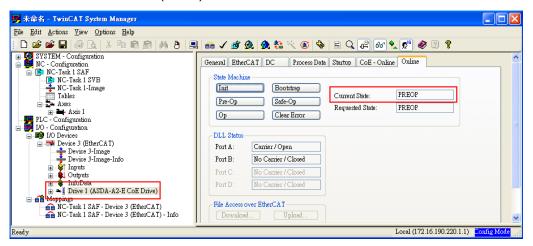


- 5. Select [File] > [New] from the drop-down list to create a new project.
- 6. Right-click [I/O Devices], and select [Scan Devices...] or press F5 to scan the devices. Click OK (確定) in the pop-up window to proceed to the next step.

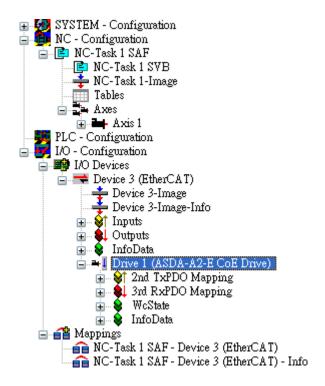
7. Select Device [n] (EtherCAT) and click OK.

8. Click **Yes** (是) to scan for the control boxes.

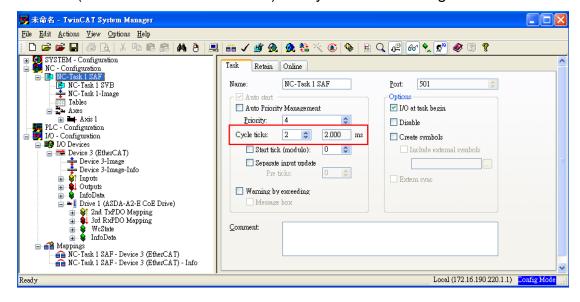

9. Click Yes (是) to add drives to NC-Configuration.


10. Click **No** (否) and TwinCAT will be switched to Config mode.

11. TwinCAT is in Config Mode. The window on the left shows Device 3 (EtherCAT) and Drive 1 (ASDA A2-E CoE Drive).

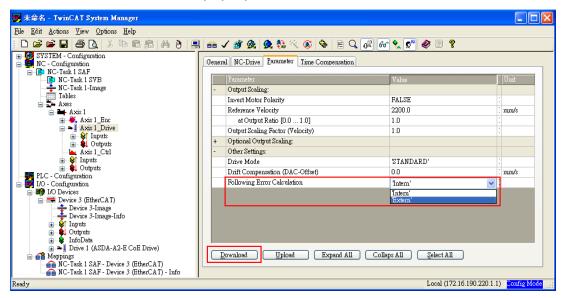


12. Select [**Drive 1 (ASDA A2-E CoE Drive)**] and in the **Online** tab you can check if the EtherCAT state machine (ESM) of the device is in PREOP state.



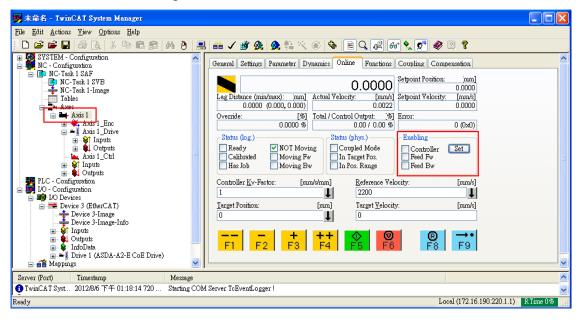
Double-click on [Drive 1 (ASDA A2-E CoE Drive)] and it will show:

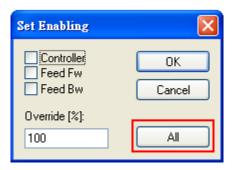
2nd TxPDO Mapping 3rd RxPDO Mapping WcState InfoData



- 14. Set the communication cycle time* and the default value is 2 ms.
 - Select [NC-Task 1 SAF] in the left window, and set the communication cycle time (the minimum value is 1 ms) for Cycle ticks in the right window.

^{*}The communication cycle time, SYNC0 cycle time, and PDO cycle time should be set to the same value.

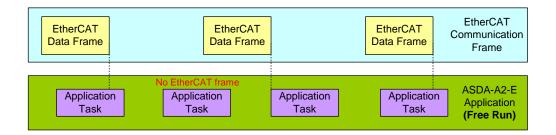

- 15. Set Following Error Calculation to Extern.
 - Select [Axis 1_Drive] in the left window > in the Parameter tab of the right window, select Extern for Following Error Calculation > click Download and then click OK in the pop-up window.


- 16. Switch TwinCAT to Run Mode.
 - Press to generate Mappings, press to confirm the configuration, press to activate the configuration, and then TwinCAT will be switched to Run Mode. Click **OK** in the pop-up window.

- 17. Enable the axis (Servo On).
 - Under [NC-Configuration] in the left window, select [Axis 1] > select the Online tab in the right window > click Set.

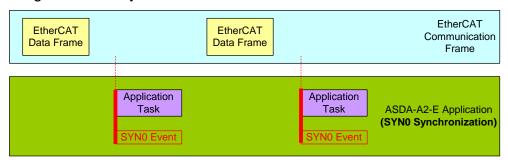
■ In the pop-up window, click **All** to enable the motor.

18. In the **Online** tab, there are jogging buttons with two different speed levels for forward and backward movement which can be used to test the system. During the operation, please ensure that the movement would not damage your system and endanger the personnel safety.

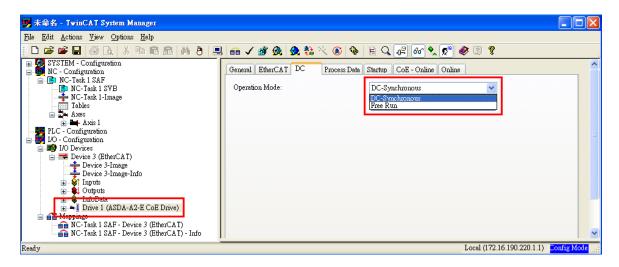

2.3 Synchronization Mode Setting

2.3.1 Synchronization Modes of the Servo Drive

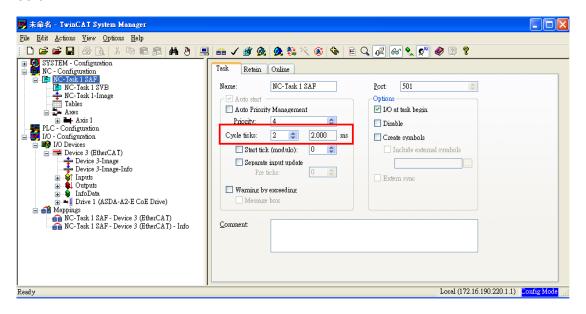
ASDA A2-E supports two synchronization modes: Free Run mode and DC-Synchronous mode. Note that the Free Run mode is defined as a synchronous mode in the EtherCAT specification established by the EtherCAT Technology Group (ETG).


■ Free Run Mode (Asynchronous)

The master and slave stations run asynchronously in the Free Run mode. The clock of the slave runs independently of the clock of the master. In other words, the clocks are not synchronized. The command and feedback transmissions between the master and slave are based on a sequential order instead of a precise time synchronization. For example, the master sends a PDO at the time T1, and the slave receives the PDO at the time T1 or T2.


DC-Synchronous Mode (SYNC0 synchronization)

There is a clock tick for the master and all slaves operation. A data sent by the master will be received by the slave(s) at the same time interval. The master will inform all slaves about its clock and ask the slaves to align according to the time. A strict clock tick is always running within this system.


2.3.2 Select Synchronization Modes

- 1. Select **Drive 1 (ASDA-A2-E CoE Drive)** in the left column of the TwinCAT System Manager software.
- 2. Under the **DC** tab in the right column, select **DC-Synchronous** or **Free Run** as the Operation Mode.

2.3.3 Distributed Clocks Setting

- Select NC-Task 1 SAF in the left column of the TwinCAT System Manager software.
- 2. Set the data exchange cycle in the **Cycle ticks** field under the **Task** tab in the right column.

The SYNC0 cycle (unit: 1 ms) is used to define the PDO cycle time.

```
Supported SYNC0 cycle time

1 ms (PDO cycle time = 1 ms)
2 ms (PDO cycle time = 2 ms)
3 ms (PDO cycle time = 3 ms)
...
```

2.4 PDO Mapping

The PDO mapping objects are allocated from OD 0x1600 to 0x1603 for RxPDOs and OD 0x1A00 to 0x1A03 for TxPDOs in the object dictionary.

2.4.1 Default PDO Mapping Configuration

The following tables show the default PDO mapping configuration of ASDA A2-E servo drive for data exchange. This is also defined in the XML file of the EtherCAT Slave.

■ 1st group of PDO Mapping

RxPDO	Control Word	Target Position	Target Velocity	Target Torque	Mode of Operation
(0x1600)	(0x6040)	(0x607A)	(0x60FF)	(0x6071)	(0x6060)
TxPDO (0x1A00)	Status Word (0x6041)	Actual Position (0x6064)	Actual Velocity (0x606C)	Actual Torque (0x6077)	Mode of Operation Display (0x6061)

■ 2nd group of PDO Mapping (default)

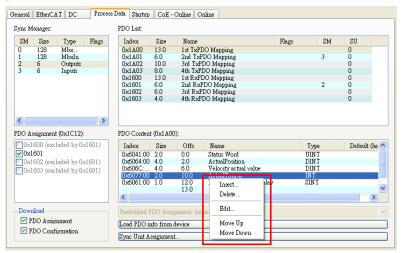
RxPDO	Control Word	Target Position
(0x1601)	(0x6040)	(0x607A)
TxPDO (0x1A01)	Status Word (0x6041)	Actual Position (0x6064)

■ 3rd group of PDO Mapping

RxPDO (0x1602)	Control Word (0x6040)	Target Velocity (0x60FF)	
TxPDO	Status Word	Actual Position	Actual Velocity
(0x1A02)	(0x6041)	(0x6064)	(0x606C)

■ 4th group of PDO Mapping

RxPDO	Control Word	Target Torque	
(0x1603)	(0x6040)	(0x6071)	
TxPDO (0x1A03)	Status Word (0x6041)	Actual Position (0x6064)	Actual Torque (0x6077)


2.4.2 Set PDO Mapping

Setup procedure

- 1. Set 【RxPDO Assignment:0x1C12:0/ TxPDO Assignment: 0x1C13:0】 to 0x0 for disabling the PDO assignment.
- 2. Set 【RxPDO mapping entry: ex. 0x1600:0/ TxPDO mapping entry: ex. 0x1A01:0】 to 0x0 for disabling the PDO mapping entry setting.
- 3. Set 【RxPDO mapping entry: ex. 0x1601:1 0x1601:7/ TxPDO mapping entry: ex. 0x1A01:1 0x1A01:7】.
- 4. Set 【RxPDO mapping entry: ex. 0x1601:0/ TxPDO mapping entry: ex. 0x1A01:0】 to the number of mapping entries in PDO mapping.
- 5. Set [RxPDO Assignment:0x1C12:1/TxPDO Assignment: 0x1C13:1] to the specified PDO assignment.
- 6. Set 【RxPDO Assignment:0x1C12:0/ TxPDO Assignment: 0x1C13:0】 to 0x1 for enabling the PDO assignment.

2.4.3 Set PDO Mapping with TwinCAT

- 1. Press or **Shift** and **F4** to set / reset TwinCAT to Config Mode (Click **OK** in the pop-up window).
- 2. Select [Drive 1 (ASDA A2-E CoE Drive)] in the left window. In Process Data field, you can change PDO Assignment for another PDO mapping.
- 3. Right-click the PDO Content window, and find the PDO mapping that you desire to set, and then you can configure (Insert... / Delete... / Edit... / Move Up / Move Down) the PDO mapping content. (Each set of PDO mapping allows up to 8 PDO assignments.)

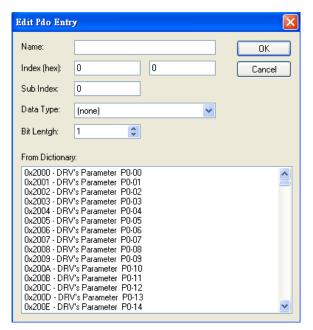


Figure 2.4.3.1 ASD-A2-E CoE drive Object List

4. After changing the PDO Assignment, press or F4 to reload I/O devices. (Click No in the pop-up window and stay in Config Mode.).

(This page is intentionally left blank.)

Chapter 3 EtherCAT Communication Function

ASDA A2-E supports four EtherCAT communication states:

- Init (Initialization)
- Pre-Operational
- Safe-Operational
- Operational

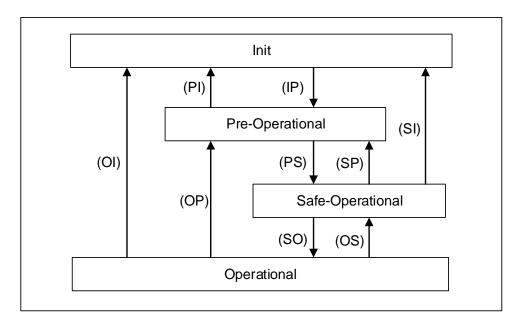
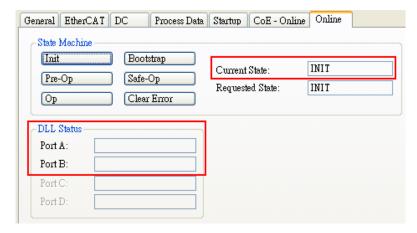


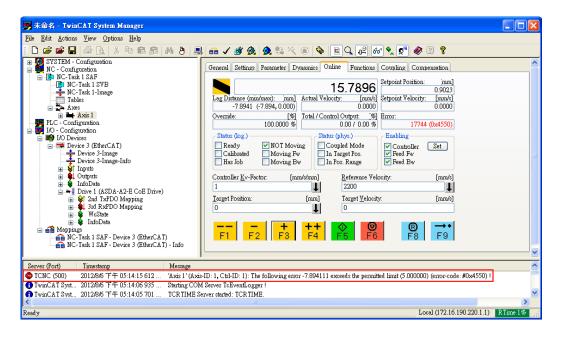
Figure 3.1 EtherCAT State machine

The EtherCAT controller (master) can have the servo drive (slave) switched between the four states. Different actions are allowed in each state.

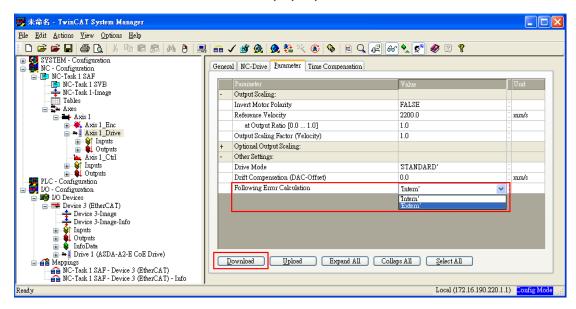
State	Description
Init	The servo drive successfully completes the initialization after being powered on without errors occurring. The packets cannot yet be transmitted in this stage.
Pre-Operational	Data can be exchanged with SDOs. If an alarm occurs in the servo drive, an emergency message is sent to notify the controller.
Safe-Operational	The servo drive can use SDO and TxPDO data packets to exchange data with the controller.
Operational	All data exchanges including SDOs and PDOs (TxPDO and RxPDO) are allowed.


3.1 State Transition

The EtherCAT controller (master) issues corresponding commands to the servo (slave) according to the state transition.

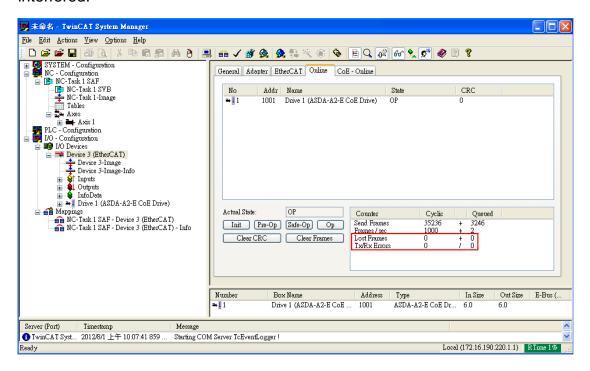

State Transition	Description
IP	The master defines the slave address as well as the SyncManager 0 and 1 (SM0 and SM1) registers and establishes the mailbox communication.
	 The master issues the command to have the slave switched to Pre-Operational state.
	 The master uses the SDOs to set the PDO mapping related parameters.
PS	 The master defines the FMMU as well as the SyncManager 2 and 3 (SM2 and SM3) registers, and the slaves continues to transmit the PDO (TxPDO) packets to the master.
	 The master issues the command to have the slave switched to Safe-Operational state.
	The master starts transmitting PDOs (RxPDOs).
SO	 The distributed clock synchronization process between the master and slave is started.
PI, SI, OI	 The slave disables all communication functions, including transmission of the SDOs and PDOs.
	The slave switches to the Init state.
SP, OP	The slave disables the PDO function.
JF , OF	The slave switches to the Pre-Operational state.
OS	 The master stops transmitting PDOs (RxPDOs).
03	The slave switches to the Safe-Operational state.

Chapter 4 EtherCAT FAQ


- Q1: Why my TwinCAT cannot find EtherCAT Device from the installed NIC (Network Interface Card) and only shows RT-Ethernet devices?
- A: 1. Refer to Section 2.2 TwinCAT Setup and make sure the NIC is installed properly.
 - 2. Check if the cable is correctly connected and if the L/A LED is on.
- Q2: The window shows "Unknown device type found" while using TwinCAT Scan boxes.
- A: Copy XML description of the ASDA-A2-E to TwinCAT device description folder (usually in C:\TwinCAT\lo\EtherCAT) and restart TwinCAT System.
- Q3: Why does EtherCAT State Machine shows INIT in the Current State field and blank in the DLL Status fields when TwinCAT is in Config Mode?

- A: 1. Set P1-01 to 0x0C (EtherCAT communication mode).
 - Check the wiring from the host to EtherCAT communication port (CN6A for input and CN6B for output) on the servo drive. If the Link LED lights up, it indicates that the physical connection is correct and the drive is connecting.
- Q4: TwinCAT shows "following error".

- A: Set Following Error Calculation to Extern:
 - 1. Select [Axis 1 Drive] in the left column.
 - 2. Under the Parameter tab, select Extern for Following Error Calculation.
 - 3. Click **Download** and click **OK** in the pop-up window.



Q5: ASDA A2-E servo drive shows AL185.

A: This alarm is triggered when the EtherCAT communication between the host and the slave is disconnected. Check the wiring and then switch the servo drive to on again or set OD 0x6040 to 0x86 for fault reset.

Q6: ASDA A2-E servo drive shows AL180.

- A: Working under Operational state without receiving any PDOs will trigger this alarm.
 - 1. Set P0-02 to 121 to monitor errors when receiving PDOs. If the value keeps increasing, it indicates server interference on the communication cable.
 - Select the servo drive and click the Online tab. If the values in the columns of Lost Frames and Rx Errors keep increasing, it means the system is severely interfered.

You can adjust the value of P3-22 to set the allowable communication cycle times before triggering AL180 when PDOs are not received.

Q7: ASDA A2-E servo drive shows AL3E1.

- A: When DC synchronization is enabled, if the reference clock jitters violently, it may trigger this alarm.
 - 1. Check the reference clock for violent time jitter.
 - 2. Set the control word OD 0x6040.7 = 1 for fault reset.

Q8: ASDA A2-E servo drive shows AL3E3.

- A: Working under Operational state in CANopen CSP/CSV/CST mode without receiving any PDOs for consecutive times triggers this alarm.
 - 1. Make sure the host controller periodically and stably sends PDOs.
 - 2. Make sure the drive is properly grounded and wired.
 - 3. You can adjust the value of P3-22 to set the allowable communication cycle times before triggering AL3E3 when PDOs are not received.

Chapter 5 CANopen Operation Mode

5.1 Profile Position Mode

5.1.1 Description

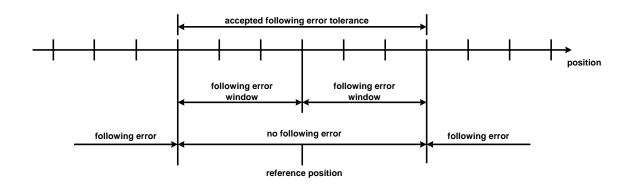
Servo drive (hereinafter "Drive") receives position command from the host (external) controller (hereinafter "Host") and then controls the servo motor to reach the target position.

Pulse of User-defined Unit Definition:

Pulse of User Unit (PUU): No. of
$$\frac{PUU}{Rev}$$
 = 1280000 × $\frac{Ox6093 \text{ Sub2}}{OD-6093 \text{h Sub1}}$

5.1.2 Operation Procedures

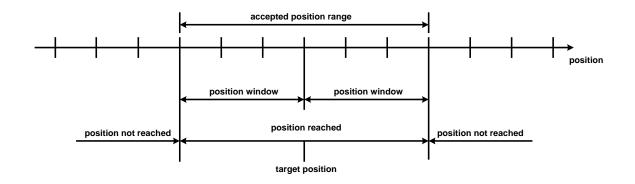
- 1. Set [Modes of operation: 6060h] to profile position mode (0x01).
- 2. Set Target position: 607Ah to the target position (unit: PUU).
- 3. Set [Profile velocity: 6081h] to the profile velocity (unit: PUU per second).
- Set 【Profile acceleration: 6083h】 to plan acceleration slope (millisecond from 0 rpm to 3000 rpm).
- Set [Profile deceleration: 6084h] to plan deceleration slope (millisecond from 0 rpm to 3000 rpm).
- 6. Set 【Controlword: 6040_h 】 to (0x06 > 0x07 > 0x0F) in sequence, switch the drive to Servo On state and enable the motor.
- 7. Read [Position actual value: 6064h] to obtain feedback position of the motor.
- 8. Read 【Statusword: 6041_h】 to obtain the drive status, including the following error, set-point acknowledge, and target reached.


5.1.3 Advanced Setting Procedures

- 1. The Host could obtain more information about profile position mode.
 - Read 【Position demand value: 6062h】 to obtain the internal position command. (unit: PUU)
 - Read 【Position actual value: 6063h】 to obtain the actual position value. (unit: increments)

2. Following error

- Set 【Following error window: 6065h】 to define a symmetrical range of the tolerated position value which is relative to the position demand value.


 (unit: PUU)
- Read 【Following error actual value: 60F4h】 to obtain the actual value of the following error. (unit: PUU)

Reference position

3. Position window

- Set 【Position window: 6067h】 to define a symmetrical range of the accepted positions which is relative to the target position. (unit: PUU)
- Set 【Position window time: 6068h】 to plan the activation time of target reached. (unit: millisecond)

Position reached

5.1.4 Associated Object List

Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW
6041 _h	Statusword	UNSIGNED16	RO
6060 _h	Modes of operation	INTEGER8	RW
6061 _h	Modes of operation display	INTEGER8	RO
6062 _h	Position demand value [PUU]	INTEGER32	RO
6063 _h	Position actual value [increment]	INTEGER32	RO
6064 _h	Position actual value	INTEGER32	RO
6065 _h	Following error window	UNSIGNED32	RW
6067 _h	Position window	UNSIGNED32	RW
6068 _h	Position window time	UNSIGNED16	RW
607A _h	Target position	INTEGER32	RW
6081 _h	Profile velocity	UNSIGNED32	RW
6083 _h	Profile acceleration	UNSIGNED32	RW
6084 _h	Profile deceleration	UNSIGNED32	RW
6093 _h	Position factor	UNSIGNED32	RW
60F4 _h	Following error actual value	INTEGER32	RO
60FC _h	Position demand value	INTEGER32	RO

5.2 Interpolation Position Mode

5.2.1 Description

The Host sends PDOs to the drive periodically with each PDO carrying the next reference Xi, difference $\triangle X_i$, and controlword. While receiving the next SYNC0, the drive interpolates from X_{i-1} to X_i .

- Extrapolation, Jitter Compensation
 - When PDO is delayed, the interpolator predicts the speed and position for the next time according to the last acceleration.
 - If PDO is delayed, the Drive stops and sends out an error message. Set the maximum tolerable delay time with P3-22.
- PDO Rx/Tx Mapping record
 - The Drive receives PDOs from the Host
 - 32-bit reference position [position increment]
 - 16-bit symmetrical difference [increments]

$$\triangle X_i = (X_{i+1} - X_{i-1})/2$$
 (It is the same for velocity.)

16-bit controlword

The Drive receives PDOs from the Host. (Every PDO contains 8 bytes field, which is shown as below.)

32-bit reference position	16-bit difference	16-bit controlword
---------------------------	-------------------	--------------------

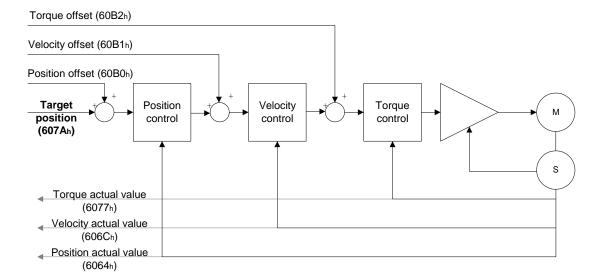
5.2.2 Operation Procedures

- 1. Set [Modes of operation: 6060h] to interpolation position mode (0x07).
- 2. Set [Interpolation sub mode select: 60C0_h] to Interpolation mode.
 - If 60C0_h is [0], the Host does not need to send [60C1_h Sub-2], which saves the calculating time for the host and the Drive is still operable.
 - If 60C0_h is [-1], the Host needs to send [60C1_h Sub-2] to increase the Drive precision.
- 3. Set 【Interpolation time period: 60C2h】, and the value should be identical to that of the SYNC0 cycle time.
 - 60C2_h Sub-1 is used for Interpolation time units, with the range from 1 ms to 20 ms.
 - 60C2h Sub-2 is used for Interpolation time index. The value is always -3,
 meaning the interpolation time unit is 10⁻³ second.

4. Drive PDO Rx:

- Use 60C1_h Sub-1 to set Pos Cmd (32-bit).
- Use 6040_h Sub-0 to set Controlword.

5.2.3 Associated Object List


Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW
6041 _h	Statusword	UNSIGNED16	RO
6060 _h	Modes of operation	INTEGER8	RW
6061 _h	Modes of operation display	INTEGER8	RO
6093 _h	Position factor	UNSIGNED32	RW
60C0 _h	Interpolation sub mode select	INTEGER16	RW
60C1 _h	Interpolation data record	ARRAY	RW

5.3 Cyclic Synchronous Position Mode

5.3.1 Description

The Host plans the path in Cyclic Synchronous Position mode and sends PDOs periodically to the drive with each PDO carrying the target position and controlword. The velocity offset and torque offset can be used as the velocity and torque feed forward.

5.3.2 The Function of CSP Mode

5.3.3 Operation Procedures

- 1. Set [Modes of operation: 6060h] to cyclic synchronous position mode (0x08).
- 2. Set 【Interpolation time period: 60C2h】, and the value should be identical to that of the SYNC0 cycle time.
 - 60C2h Sub-1 is used for Interpolation time units with the range from 1 ms to 20 ms.
 - 60C2_h Sub-2 is used for Interpolation time index. The value is always -3,
 meaning the interpolation time unit is 10⁻³ second.

3. Drive PDO Rx:

- Use 607Ah to set Target Pos Cmd (32-bit).
- Use 6040h Sub-0 to set Controlword.

5.3.4 Associated Object List

Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW
6041 _h	Statusword	UNSIGNED16	RO
6060 _h	Modes of operation	INTEGER8	RW
6061 _h	Modes of operation display	INTEGER8	RO
607A _h	Target position	INTEGER32	RW
60B0 _h	Position offset	INTEGER32	RW
6064 _h	Position actual value	INTEGER32	RO
60B1 _h	Velocity offset	INTEGER32	RW
606C _h	Velocity actual value	INTEGER32	RO
60B2 _h	Torque offset	INTEGER16	RW
6077 _h	Torque actual value	INTEGER16	RO

5.4 Homing Mode

5.4.1 Description

This mode helps the Drive to find the home position. Users can specify the speed, acceleration, and method of homing.

5.4.2 Operation Procedures

- 1. Set [Modes of operations: 6060h] to the homing mode (0x06).
- 2. Set [Home offset: 607Ch].
- 3. Set 【Homing method: 6098h】. The setting range is from 1 to 35. (Refer to the OD-6098h definition shown below.)
- 4. Set 【Homing speed: 6099h Sub-1】 to set speed during the search for Home Switch. (unit: rpm)
- 5. Set 【Homing speed: 6099h Sub-2】 to set speed during the search for zero. (unit: rpm)
- Set 【Homing acceleration: 609Ah】 for homing acceleration. (unit: millisecond from 0 rpm to 3000 rpm)
- 7. Set $[Controlword: 6040_h]$ to (0x06 > 0x07 > 0x0F) in sequence, switch the drive to Servo ON state and enable the motor.
- 8. Set [Controlword: 6040h] to (0x0F > 0x1F) in sequence to search for Home Switch and perform homing.
- 9. Read [Statusword: 6041h] to obtain the drive status.

5.4.3 Associated Object List

Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW
6041 _h	Statusword	UNSIGNED16	RO
6060 _h	Modes of operation	INTEGER8	RW
6061 _h	Modes of operation display	INTEGER8	RO
607C _h	Home offset	INTEGER32	RW
6093 _h	Position factor	UNSIGNED32	RW
6098 _h	Homing method	INTEGER8	RW
6099 _h	Homing speed	ARRAY	RW
609A _h	Homing acceleration	UNSIGNED32	RW

5.5 Profile Velocity Mode

5.5.1 Description

The Drive receives velocity command, and plans acceleration and deceleration.

5.5.2 Operation Procedures

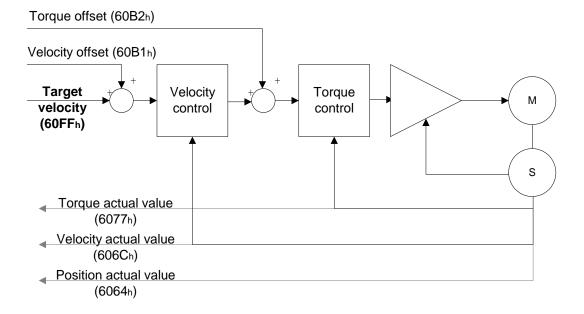
- 1. Set [Modes of operation: 6060h] to profile velocity mode (0x03).
- 2. Set 【Controlword: 6040h】 to (0x06 > 0x07 > 0x0F) in sequence, switch the drive to Servo ON state and enable the motor. (After Servo On, the internal velocity command will be reset and OD-60FFh will be cleared.)
- 3. Set 【Profile acceleration: 6083h】 to plan the acceleration slope. (millisecond from 0 rpm to 3000 rpm)
- 4. Set 【Profile deceleration: 6084h】 to plan the deceleration slope. (millisecond from 0 rpm to 3000 rpm)
- 5. Set 【Target velocity: 60FFh】. The unit of the target velocity is 0.1 rpm.

 (If the drive is already servo-on, it will work immediately after receiving the velocity command. OD-60FFh will be cleared to 0 if OD-6060h [Mode] is changed, Servo is off, or Quick-Stop is activated.)
- 6. Read [Statusword: 6041h] to obtain the drive status.

5.5.3 Advanced Setting Procedures

- 1. The Host could obtain more information about velocity mode.
 - Read 【Velocity demand value: 606Bh】 to inquire the internal velocity command. (unit: 0.1 rpm)
 - Read 【Velocity actual value: 606Ch】 to obtain the actual velocity value. (unit: 0.1 rpm)
- 2. The Host could set velocity monitor threshold.
 - Set [Velocity window: 606Dh] to allocate the velocity reached zone.
 (unit: 0.1 rpm)
 - Set 【Velocity window time: 606Eh】 in order to ensure the activation time is before the velocity reached. (unit: millisecond)
 - Set 【Velocity threshold: 606Fh】 to allocate the zero speed level. (unit: 0.1 rpm)

5.5.4 Associated Object List


Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW
6041 _h	Statusword	UNSIGNED16	RO
6060 _h	Modes of operation	INTEGER8	RW
6061 _h	Modes of operation display	INTEGER8	RO
606B _h	Velocity demand value	INTEGER32	RO
606C _h	Velocity actual value	INTEGER32	RO
606D _h	Velocity window	UNSIGNED16	RW
606E _h	Velocity window time	UNSIGNED16	RW
606F _h	Velocity threshold	UNSIGNED16	RW
60FF _h	Target velocity	INTEGER32	RW

5.6 Cyclic Synchronous Velocity Mode

5.6.1 Description

The Host plans the path in Cyclic Synchronous Velocity mode and sends PDOs periodically to the drive with each PDO carrying the target position and controlword. In addition, the velocity offset and torque offset can be used as the velocity and torque feed forward.

5.6.2 The Function of CSV Mode

5.6.3 Operation Procedures

- 1. Set [Modes of operation: 6060h] to cyclic synchronous velocity mode (0x09).
- 2. Set 【Interpolation time period: 60C2h】, and the value should be identical to that of the SYNC0 cycle time.
 - 60C2_h Sub-1 is used for Interpolation time units with the range from 1 ms to 20 ms.
 - 60C2_h Sub-2 is used for Interpolation time index. The value is always -3, meaning the interpolation time unit is 10⁻³ second.

3. Drive PDO Rx:

- Use 60FFh to set Target Velocity Cmd (32-bit).
- Use 6040_h Sub-0 to set Controlword.

5.6.4 Associated Object List

Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW
6041 _h	Statusword	UNSIGNED16	RO
6060 _h	Modes of operation	INTEGER8	RW
6061 _h	Modes of operation display	INTEGER8	RO
60FF _h	Target velocity	INTEGER32	RW
60B1 _h	Velocity offset	INTEGER32	RW
606C _h	Velocity actual value	INTEGER32	RO
6064 _h	Position actual value	INTEGER32	RO
60B2 _h	Torque offset	INTEGER16	RW
6077 _h	Torque actual value	INTEGER16	RO

5.7 Profile Torque Mode

5.7.1 Description

The Drive receives torque command and plans profile torque slope.

5.7.2 Operation Procedures

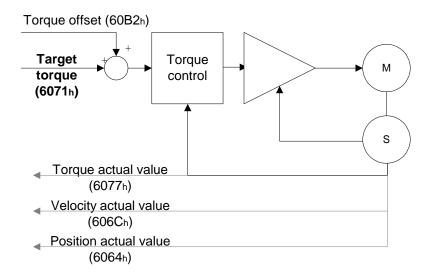
- 1. Set [Modes of operation: 6060_h] to profile torque mode ($6060_h = 04h$).
- 2. Set 【Controlword: 6040_h 】 to (0x6 > 0x7 > 0x0F) in sequence, switch the drive to Servo ON state and enable the motor.
 - (After Servo On, the internal torque command will be reset and OD-6071h will be cleared. It means the drive is servo-on and starts to receive the torque command.)
- 3. Set 【Torque slope: 6087h】 to plan torque slope time. (unit: millisecond from 0 to 100% rated torque)
- 4. Set 【Target torque: 6071h】 to the target torque. The unit is given one rated torque in a thousand. (OD-6071h will be cleared to 0 if OD-6060h [Mode] is changed, Servo is off, or Quick-Stop is activated.)

5.7.3 Advanced Setting Procedures

The Host could obtain more information about torque mode.

- Read 【Torque demand value: 6074_h】 to obtain the output value of the torque limit function. (unit: one rated torque in a thousand)
- Read 【Torque rated current: 6075h】 to obtain the rated current determined by the motor and drive type. (unit: multiples of milliamp)
- Read 【Torque actual value: 6077h】 to obtain the instantaneous torque in the servo motor. (unit: one rated torque in a thousand)
- Read 【Current actual value: 6078h】 to obtain the instantaneous current in the servo motor. (unit: one rated torque in a thousand)

5.7.4 Associated Object List


Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW
6041 _h	Statusword	UNSIGNED16	RO
6060 _h	Modes of operation	INTEGER8	RW
6061 _h	Modes of operation display	INTEGER8	RO
6071 _h	Target torque	INTEGER16	RW
6074 _h	Torque demand value	INTEGER16	RO
6075 _h	Motor rated current	UNSIGNED32	RO
6077 _h	Torque actual value	INTEGER16	RO
6078 _h	Current actual value	INTEGER16	RO
6087 _h	Torque slope	UNSIGNED32	RW

5.8 Cyclic Synchronous Torque Mode

5.8.1 Description

The Host plans the path in Cyclic Synchronous Torque mode and sends PDO periodically to the drive with each PDO carrying the target position and controlword. In addition, the velocity offset and torque offset can be used as the velocity and torque feed forward.

5.8.2 The Function of CST Mode

5.8.3 Operation Procedures

- 1. Set [Modes of operation: 6060h] to cyclic synchronous torque mode (0x0A).
- 2. Set [Interpolation time period: 60C2h] to predict the cycle that SYNC0 receives PDO.
 - 60C2h Sub-1 is used for Interpolation time units with the range from 1 ms to 20 ms.
 - 60C2_h Sub-2 is used for Interpolation time index. The value is always -3,
 meaning the interpolation time unit is 10⁻³ second.

3. Drive PDO Rx:

- Use 6071h to set Target Torque Cmd (16-bit)
- Use 6040_h Sub-0 to set Controlword.

5.8.4 Associated Object List

Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW
6041 _h	Statusword	UNSIGNED16	RO
6060 _h	Modes of operation	INTEGER8	RW
6061 _h	Modes of operation display	INTEGER8	RO
6071 _h	Target torque	INTEGER16	RW
60B2 _h	Torque offset	INTEGER16	RW
6077 _h	Torque actual value	INTEGER16	RO
606C _h	Velocity actual value	INTEGER32	RO
6064 _h	Position actual value	INTEGER32	RO

5.9 Limit Position Handling Procedure

5.9.1 Description

The Drive switches to Quick-Stop status while the motor travels to the position of positive or negative limit sensors, and it can be handled by the following procedures.

5.9.2 Operation Procedures

- The servo panel shows the alarm while the sensors are close to the positive or negative limit. The motor is stopped by a deceleration slope and the drive is at Quick-Stop status. The drive keeps in servo-on status but will not accept further motion commands.
- 2. Set 【Controlword: 6040h】 to 0x8F for fault reset and clear the alarm displayed on the panel.
- 3. Set 【Controlword: 6040h】 to 0x1F / 0x0F for Operation Enabled, and then the servo drive can receive the motion command again.
- 4. When the motor reaches the limit position, there must be a command which can drive the motor to the backward direction. Or the alarm will be triggered again while the motor starts moving.

5.9.3 Associated Object List

Index	Name	Data Type	Access
6040 _h	Controlword	UNSIGNED16	RW

5.10 Touch Probe Function

5.10.1 Description

Touch Probe function can be enabled by the high-speed DI on CN7 (only DI13 is a high-speed DI, with the hardware response time as 5 μ s) or by the zero signal from the encoder; among that, the feedback position can be latched as positive or negative edge with DI13 on CN7 with P2-40. This function is used for high-speed measurement or packaging applications.

5.10.2 Touch Probe Function

The current status of Touch Probe can be obtained by Object 60B8_h. Note the following:

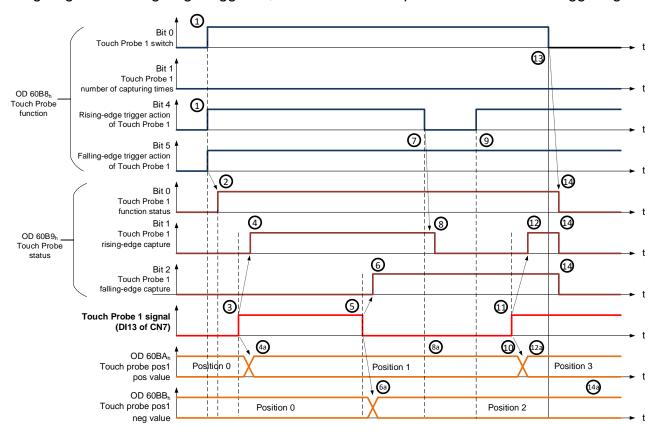
- 1. When the capture source is set to the motor Z pulse, you can only use Touch Probe 1. Regardless of the settings of OD 60B8h [Bit 4] and [Bit 5], the command is rising-edge triggered and the data is stored in OD 60BAh.
- 2. When the capture source is set to the DI of CN1, the previously set function code for the DI is changed to 0x0100 so one DI does not have two functions.

The definition of each bit is as follows.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			l .								l	l				

Bit	Function	Description
Bit 0	Touch Probe 1 switch	0: disable Touch Probe 1. 1: enable Touch Probe 1.
Bit 1	Touch Probe 1 number of capturing times	0: capture one time. 1: capture multiple times.
Bit 2	Touch Probe 1 capture source	0: DI13 of CN7. 1: motor Z-pulse.
Bit 3	Reserved	-
Bit 4	Rising-edge trigger action of Touch Probe 1	0: N/A 1: start capturing when the Touch Probe 1 signal is rising-edge triggered and store the data in OD 60BA _h .
Bit 5	Falling-edge trigger action of Touch Probe 1	0: N/A 1: start capturing when the Touch Probe 1 signal is falling-edge triggered and store the data in Object 60BB _h .
Bit 6 - 7	Reserved	-

Bit	Function	Description
Bit 8	Touch Probe 2 switch	0: disable Touch Probe 2. 1: enable Touch Probe 2.
Bit 9	Touch Probe 2 number of capturing times	0: capture one time. 1: capture multiple times.
Bit 10	Touch Probe 2 capture source	0: DI14 of CN7.
Bit 11	Reserved	-
Bit 12	Rising-edge trigger action of Touch Probe 2	0: N/A 1: start capturing when the Touch Probe 2 signal is rising-edge triggered and store the data in OD 60BCh.
Bit 13	Falling-edge trigger action of Touch Probe 2	0: N/A 1: start capturing when the Touch Probe 2 signal is falling-edge triggered and store the data in OD 60BDh.
Bit 14 - 15	Reserved	-

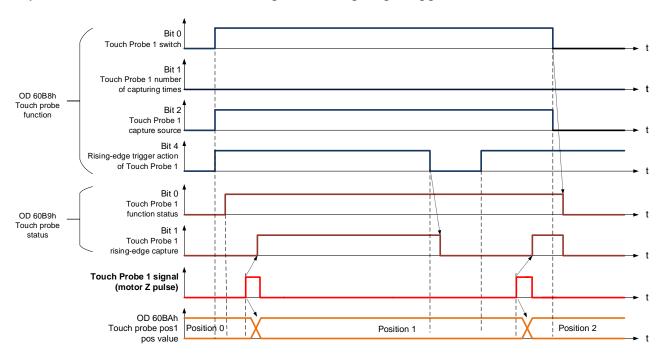

5.10.3 Touch Probe Status

The current status of Touch Probe can be obtained by Object 60B9_h. The definition of each bit is as follows.

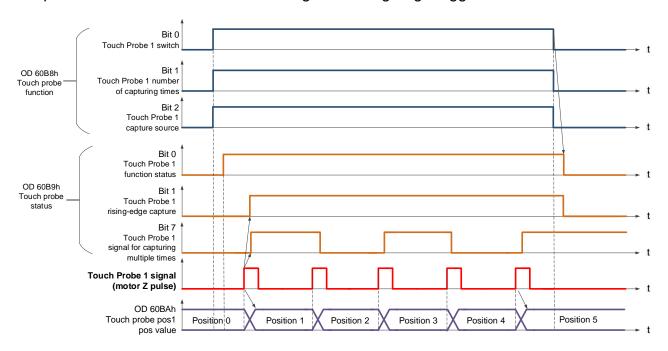
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
-----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---	--

Bit	Function	Description
Bit 0	Touch Probe 1 function status	0: Touch Probe 1 disabled. 1: Touch Probe 1 enabled.
Bit 1	Touch Probe 1 rising-edge capture	O: capturing is not triggered. 1: the Touch Probe 1 signal is rising-edge triggered and the data is successfully captured.
Bit 2	Touch Probe 1 falling-edge capture	capturing is not triggered. the Touch Probe 1 signal is falling-edge triggered and the data is successfully captured.
Bit 3 - 5	Reserved	-
Bit 6	Touch Probe 1 capture source	0: DI13 of CN7. 1: motor Z pulse.
Bit 7	Touch Probe 1 signal for capturing multiple times (Available when OD 60B8 _h [Bit 1] is enabled)	The status is reversed once the capturing succeeds. Refer to the timing diagram in Example 3.
Bit 8	Touch Probe 2 function status	0: Touch Probe 2 disabled. 1: Touch Probe 2 enabled.
Bit 9	Touch Probe 2 rising-edge capture	capturing is not triggered. the Touch Probe 2 signal is rising-edge triggered and the data is successfully captured.
Bit 10	Touch Probe 2 falling-edge capture	capturing is not triggered the Touch Probe 2 signal is falling-edge triggered and the data is successfully captured.
Bit 11 - 13	Reserved	-
Bit 14	Touch Probe 2 capture source	0: DI14 of CN7.
Touch Probe 2 signal for capturing multiple times (Available when OD 60B8h [Bit 9] is enabled)		The status is reversed once the capturing succeeds.

Example 1: the following is the timing diagram for Touch Probe 1 function. In this example, the data capturing action is triggered through the external DI. When OD 60B8h [Bit 1] is set to 0 and OD 60B8h [Bit 4] & [Bit 5] are set to 1, the Touch Probe 1 signal is both rising-edge and falling-edge triggered, and the data is captured once for each triggering.



The timing status is described below:


Status	Function	Description
(1)	OD $60B8_h$ Bit $0 = 1$ OD $60B8_h$ Bit $1 = 0$ OD $60B8_h$ Bit $4 = 1$ OD $60B8_h$ Bit $5 = 1$	1: enable Touch Probe 1. 0: capture the data once. 1: start capturing when the Touch Probe 1 signal is rising-edge triggered. 1: start capturing when the Touch Probe 1 signal is falling-edge triggered.
(2)	OD 60B9 _h Bit 0 = 1	Touch Probe status: Touch Probe 1 function enabled.
(3)	-	Touch Probe 1 is rising-edge triggered by external signal.
(4)	OD 60B9 _h Bit 1 = 1	Touch Probe status: Touch Probe 1 is rising-edge triggered and the data is successfully captured.
(4a)	OD 60BA _h	Store the captured data in OD 60BA _h when the Touch Probe 1 signal is rising-edge triggered.
(5)	-	Touch Probe 1 is falling-edge triggered by external signal.
(6)	OD 60B9 _h Bit 2 = 1	Touch Probe status: Touch Probe 1 signal is falling-edge triggered and the data is successfully captured.

Status	Function	Description
(6a)	OD 60BB _h	Store the captured data in OD 60BB _h when the Touch Probe 1 signal is falling-edge triggered.
(7)	OD 60B8 _h Bit 4 = 0	Disable the rising-edge trigger action of Touch Probe 1.
(8)	OD 60B9 _h Bit 1 = 0	Touch Probe status: reset the rising-edge capture status to non-triggered.
(8a)	OD 60BA _h	Data at the rising-edge remains the same.
(9)	OD 60B8 _h Bit 4 = 1	Start capturing when the Touch Probe 1 signal is rising-edge triggered.
(10)	OD 60BA _h	Data at the rising-edge remains the same.
(11)	-	Touch Probe 1 is rising-edge triggered by external signal.
(12)	OD 60B9 _h Bit 1 = 1	Touch Probe status: Touch Probe 1 signal is rising-edge triggered and the data is successfully captured.
(12a)	OD 60BA _h	Store the captured data in OD 60BA _h when the Touch Probe 1 signal is rising-edge triggered.
(13)	OD 60B8 _h Bit 0 = 0	Disable Touch Probe 1.
(14)	OD $60B9_h$ Bit $0 = 0$ OD $60B9_h$ Bit $1 = 0$ OD $60B9_h$ Bit $2 = 0$	Reset Touch Probe 1 status.
(14a)	OD 60BA _h ,OD 60BB _h	The previously captured data remain the same.

Example 2: the following is the timing diagram for the Touch Probe 1 function. In this example, the Touch Probe function is triggered by the motor Z pulse. The data is captured only once when the Touch Probe 1 signal is rising-edge triggered.

Example 3: the following is the timing diagram for the Touch Probe 1 function. In this example, the Touch Probe function is triggered by the motor Z pulse. The data is captured multiple times when the Touch Probe 1 signal is rising-edge triggered.

5.10.4 Associated Object List

Index	Name	Data Type	Access
60B8 _h	Touch probe function	UNSIGNED16	RW
60B9 _h	Touch probe status	UNSIGNED16	RO
60BA _h	Touch probe pos1 pos value	INTEGER32	RO
60BB _h	Touch probe pos1 neg value	INTEGER32	RO
60BC _h	Touch probe pos2 pos value	INTEGER32	RO
60BD _h	Touch probe pos2 neg value	INTEGER32	RO

Chapter 6 Object Dictionary

6.1 Specifications for Objects

6.1.1 Object Type

Object Name	Comments		
VAR	A single value such as an UNSIGNED8, Boolean, float, or INTEGER16, etc.		
ARRAY	A multiple data field object where each data field is a sample variable of the SAME basic data type e.g. array of UNSIGNED16 etc. Sub-index 0 is UNSIGNED8 but is not part of the ARRAY data.		
RECORD	A multiple data field object where the data fields may be any combination of simple variables. Sub-index 0 is UNSIGNED8 but is not part of the RECORD data.		

6.1.2 Data Type

Refer to CANopen Standard 301.

6.2 Overview of Object Group 1000h

Index	Object Type	Name	Data Type	Access
1000 _h	VAR	Device type	UNSIGNED32	RO
1001 _h	VAR	Error register	UNSIGNED8	RO
1600 _h - 03 _h	RECORD	Receive PDO mapping	UNSIGNED32	RW
1A00 _h - 03 _h	RECORD	Transmit PDO mapping	UNSIGNED32	RW

 $[\]ensuremath{\mathbb{X}}$ Only 1001_h could be mapped to PDO.

6.3 Overview of Object Group 6000h

Index	Object Type	Name	Data Type	Access	Mappable
603F _h	VAR	Error Code	UNSIGNED16	RO	Y
6040 _h	VAR	Controlword	UNSIGNED16	RW	Υ
6041 _h	VAR	Statusword	UNSIGNED16	RO	Υ
605B _h	VAR	Shutdown option code	INTEGER16	RW	N
605E _h	VAR	Fault reaction option code	INTEGER16	RW	N
6060 _h	VAR	Modes of operation	INTEGER8	RW	Υ
6061 _h	VAR	Modes of operation display	INTEGER8	RO	Υ
6062 _h	VAR	Position demand value [PUU]	INTEGER32	RO	Υ
6063 _h	VAR	Position actual value [increment]	INTEGER32	RO	Υ
6064 _h	VAR	Position actual value	INTEGER32	RO	Υ
6065 _h	VAR	Following error window	UNSIGNED32	RW	Υ
6067 _h	VAR	Position windows	UNSIGNED32	RW	Υ
6068 _h	VAR	Position window time	UNSIGNED16	RW	Υ
606B _h	VAR	Velocity demand value	INTEGER32	RO	Υ
606C _h	VAR	Velocity actual value	INTEGER32	RO	Υ
606D _h	VAR	Velocity window	UNSIGNED16	RW	Υ
606E _h	VAR	Velocity window time	UNSIGNED16	RW	Υ
606F _h	VAR	Velocity threshold	UNSIGNED16	RW	Υ
6071 _h	VAR	Target torque	INTEGER16	RW	Υ
6072 _h	VAR	Max torque	UNSIGNED16	RW	Υ
6074 _h	VAR	Torque demand value	INTEGER16	RO	Υ
6075 _h	VAR	Motor rated current	UNSIGNED32	RO	Υ
6076 _h	VAR	Motor rated torque	UNSIGNED32	RO	Υ
6077 _h	VAR	Torque actual value	UNSIGNED16	RO	Υ
6078 _h	VAR	Current actual value	INTEGER16	RO	Υ
607A _h	VAR	Target position	INTEGER32	RW	Υ
607C _h	VAR	Home Offset	INTEGER32	RW	Υ
607D _h	ARRAY	Software position limit	INTEGER32	RW	Υ
607E _h	VAR	Polarity	UNSIGNED8	RW	Y
607F _h	VAR	Max profile velocity	UNSIGNED32	RW	Y
6080 _h	VAR	Max motor speed	UNSIGNED32	RW	Y
6081 _h	VAR	Profile velocity	UNSIGNED32	RW	Υ
6083 _h	VAR	Profile acceleration	UNSIGNED32	RW	Υ
6084 _h	VAR	Profile deceleration	UNSIGNED32	RW	Υ

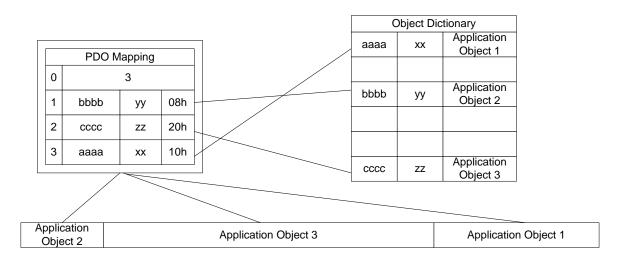
Index	Object Type	Name	Data Type	Access	Mappable
6085 _h	VAR	Quick stop deceleration	UNSIGNED32	RW	Υ
6086 _h	VAR	Motion profile type	INTEGER16	RW	Υ
6087 _h	VAR	Torque slope	UNSIGNED32	RW	Υ
6093 _h	ARRAY	Position factor	UNSIGNED32	RW	Υ
6098 _h	VAR	Homing method	INTEGER8	RW	Υ
6099 _h	ARRAY	Homing speeds	UNSIGNED32	RW	Y
609A _h	VAR	Homing acceleration	UNSIGNED32	RW	Y
60B0 _h	VAR	Position offset	INTEGER32	RW	Y
60B1 _h	VAR	Velocity offset	INTEGER32	RW	Υ
60B2 _h	VAR	Torque offset	INTEGER16	RW	Υ
60B8 _h	VAR	Touch probe function	UNSIGNED16	RW	Υ
60B9 _h	VAR	Touch probe status	UNSIGNED16	RO	Υ
60BA _h	VAR	Touch probe pos1 pos value	INTEGER32	RO	Υ
60BB _h	VAR	Touch probe pos1 neg value	INTEGER32	RO	Y
60BC _h	VAR	Touch probe pos2 pos value	INTEGER32	RO	Y
60BD _h	VAR	Touch probe pos2 neg value	INTEGER32	RO	Y
60C0 _h	VAR	Interpolation sub mode select	INTEGER16	RW	Y
60C1 _h	ARRAY	Interpolation data record	UNSIGNED16 / 32	RW	Y
60C2 _h	RECORD	Interpolation time period	SIGNED8	RW	Y
60C5 _h	VAR	Max acceleration	UNSIGNED32	RW	Y
60C6 _h	VAR	Max deceleration	UNSIGNED32	RW	Υ
60F2 _h	VAR	Positioning option code	UNSIGNED16	RW	Y
60F4 _h	VAR	Following error actual value	INTEGER32	RO	Y
60FC _h	VAR	Position demand value	INTEGER32	RO	Y
60FD _h	VAR	Digital inputs	UNSIGNED32	RO	Y
60FF _h	VAR	Target velocity	INTEGER32	RW	Υ
6502 _h	VAR	Supported drive modes	UNSIGNED32	RO	Υ
Delta parameter definition					
2xxx	VAR	Parameter Mapping	INTEGER16/32	RW	Y

6.4 Details of Objects

Object 1000h: Device Type

INDEX	1000 _h
Name	device type
Object Code	VAR
Data Type	UNSIGNED32
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	04020192 _h : A2 Series

Object 1001_h: Error Register


INDEX	1001 _h
Name	error register
Object Code	VAR
Data Type	UNSIGNED8
Access	RO
PDO Mapping	Yes
Value Range	UNSIGNED8
Default Value	0

Object 1600h - 1604h: Receive PDO Mapping Parameter

INDEX	1600 _h - 1603 _h
Name	Receive PDO mapping
Object Code	RECORD
Data Type	PDO Mapping
Access	RW
PDO Mapping	No

Sub-Index	0
Description	Number of mapped application objects in PDO
Data Type	UNSIGNED8
Access	RW
PDO Mapping	No
Value Range	0: deactivated
	1 - 8: activated
Default Value	0

Sub-Index	1 - 8
Description	PDO mapping for the nth application object to be mapped
Data Type	UNSIGNED32
Access	RW
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	0

Object 1A00h - 1A04h: Transmit PDO Mapping Parameter

INDEX	1A00 _h - 1A03 _h
Name	Transmit PDO mapping
Object Code	RECORD
Data Type	PDO Mapping
Access	RW
PDO Mapping	No

Sub-Index	0
Description	Number of mapped application objects in PDO
Data Type	UNSIGNED8
Access	RW
PDO Mapping	No
Value Range	0: deactivated 1 - 8: activated
Default Value	0

Sub-Index	1 - 8
Description	PDO mapping for the nth application object to be mapped
Data Type	UNSIGNED32
Access	RW
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	0

Object 1C12_h: RxPDO assign

INDEX	1C12 _h
Name	RxPDO assign
Object Code	RECORD
Data Type	PDO Mapping assign
Access	RW
PDO Mapping	No

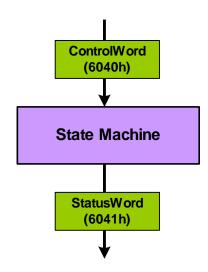
Sub-Index	0
Description	Number of assigned PDO mapping
Data Type	UNSIGNED8
Access	RW
PDO Mapping	No
Value Range	0: deactivated
	1: one PDO mapping be assigned to SycManager2 for RxPDO
Default Value	1

Sub-Index	1
Description	Index of assigned PDO mapping
Data Type	UNSIGNED16
Access	RW
PDO Mapping	No
Value Range	1600 _h to 1603 _h
Default Value	1601 _h

Object 1C13_h: TxPDO assign

INDEX	1C13 _h
Name	TxPDO assign
Object Code	RECORD
Data Type	PDO Mapping assign
Access	RW
PDO Mapping	No

Sub-Index	0
Description	Number of assigned PDO mapping
Data Type	UNSIGNED8
Access	RW
PDO Mapping	No
Value Range	0: deactivated
	1: one PDO mapping be assigned to SycManager3 for TxPDO
Default Value	1


Sub-Index	1
Description	Index of assigned PDO mapping
Data Type	UNSIGNED16
Access	RW
PDO Mapping	No
Value Range	1A00 _h to 1A03 _h
Default Value	1A01 _h

Object 603F_h: Error code (error code of CANopen defined)

INDEX	603F _h
Name	Error code
Object Code	VAR
Data Type	UNSIGNED16
Access	RO
PDO Mapping	Yes
Value Range	UNSIGNED16
Default Value	0

Object 6040h: Controlword

INDEX	6040 _h
Name	Controlword
Object Code	VAR
Data Type	UNSIGNED16
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED16
Default Value	When P1-01 = 0x0C, default is 0x0004

State machine in system context

Bit definition

15 -	9 8	7	6 - 4	3	2	1	0
N/A	Halt	Fault reset	Operation mode specific	Enable operation	Quick Stop (B-contact)	Enable voltage	Switch on

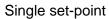
Note:

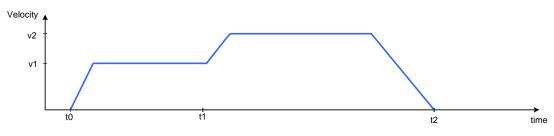
You need to set 6040h to 0x0006 > 0x0007 > 0x000F for Servo On step by step.

Bit	Operation mode					
	PP	HM	IP	PV	PT	
4	New set-point (positive trigger)	Homing operation start (positive trigger)	N/A	N/A	N/A	
5	Change set immediately	N/A	N/A	N/A	N/A	
6	Absolute(0) / relative(1)	N/A	N/A	N/A	N/A	

Abbreviation:

PP Profile Position Mode


HM Homing Mode


IP Interpolated Position Mode

PV Profile Velocity Mode

PT Profile Torque Mode

Change settings immediately

Object 6041_h: Statusword

INDEX	6041 _h
Name	Statusword
Object Code	VAR
Data Type	UNSIGNED16
Access	RO
PDO Mapping	Yes
Value Range	UNSIGNED16
Default Value	0

Data description

MSB LSB

Bit definition

0	Ready to switch on					
1	Switch on					
2		Operation enal	oled (status of serv	o on)		
3		Fault (the	drive will servo off)		
4		Volt	age enabled			
5		C	Quick stop			
6		Switc	ch on disabled			
7		Warning (the	drive is still servo	on)		
8			N/A			
9	Remote					
10	Target reached					
11	Internal limit active (Not supported)					
	PP HM IP PV PT					
12	Set-point Homing acknowledge Homing attained IP mode active Zero Speed No				N/A	
13	Following error	Homing error	N/A	N/A	N/A	
14	N/A	N/A	N/A	N/A	N/A	
15	N/A	N/A	N/A	N/A	N/A	

Note:

Set-point acknowledge: Trajectory generator has assumed the positioning values

Homing attained: Homing mode carried out successfully

IP mode active: interpolated position mode active – mode is running in IP mode

Object 605B_h: Shutdown option code

INDEX	605B _h
Name	Shutdown option code
Object Code	VAR
Data Type	INTEGER16
Access	RW
PDO Mapping	Yes
Value Range	INTEGER16
Default Value	0
Comment	0: disable drive function -1: dynamic break enable

Object 605Eh: Fault reaction option code

INDEX	605E _h
Name	Fault reaction option code
Object Code	VAR
Data Type	INTEGER16
Access	RW
PDO Mapping	Yes
Value Range	INTEGER16
Default Value	2
Comment	0: disable drive, motor is free to rotate
	1: slow down on slow down ramp
	2: slow down on quick stop ramp

Object 6060h: Modes of operation

INDEX	6060 _h
Name	Modes of operation
Object Code	VAR
Data Type	INTEGER8
Access	RW
PDO Mapping	Yes
Value Range	INTEGER8
Default Value	0
Comment	0: reserved
	1: Profile position mode
	3: Profile velocity mode
	4: Profile torque mode
	6: Homing mode
	7: Interpolated position mode
	8: Cyclic synchronous position mode
	9: Cyclic synchronous velocity mode
	10: Cyclic synchronous torque mode

Object 6061_h: Modes of operation display

INDEX	6061 _h
Name	Modes of operation display
Object Code	VAR
Data Type	INTEGER8
Access	RW
PDO Mapping	Yes
Value Range	INTEGER8
Default Value	0

Object 6062_h: Position demand value

INDEX	6062 _h
Name	Position demand value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Position command is calculated by Interpolation theory Unit: PUU

Object 6063_h: Position actual value

INDEX	6063 _h
Name	Position actual value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: increments

Object 6064_h: Position actual value

INDEX	6064 _h
Name	Position actual value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: PUU

Object 6065_h: Following error window

INDEX	6065 _h
Name	Following error window
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	3840000
Comment	Unit: PUU

Object 6067_h: Position window

INDEX	6067 _h
Name	Position window
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	100
Comment	Unit: PUU

Object 6068_h: Position window time

INDEX	6068 _h
Name	Position window time
Object Code	VAR
Data Type	UNSIGNED16
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED16
Default Value	0
Comment	Unit: millisecond

Object 606B_h: Velocity demand value

INDEX	606B _h
Name	Velocity demand value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Comment	Unit: 0.1 rpm

Object 606C_h: Velocity actual value

INDEX	606C _h
Name	Velocity actual value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Comment	Unit: 0.1 rpm

Object 606D_h: Velocity window

INDEX	606D _h
Name	Velocity window
Object Code	VAR
Data Type	INTEGER16
Access	RO
PDO Mapping	Yes
Value Range	0 - 3000
Default Value	100
Comment	Unit: 0.1 rpm

Object 606Eh: Velocity window time

INDEX	606E _h
Name	Velocity window time
Object Code	VAR
Data Type	UNSIGNED16
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED16
Default Value	0
Comment	Unit: millisecond

Object 606Fh: Velocity threshold

INDEX	606F _h
Name	Velocity threshold
Object Code	VAR
Data Type	UNSIGNED16
Access	RW
PDO Mapping	Yes
Value Range	0 - 2000
Default Value	100
Comment	Unit: 0.1 rpm

Object 6071_h: Target torque

INDEX	6071 _h
Name	Target torque
Object Code	VAR
Data Type	INTEGER16
Access	RW
PDO Mapping	Yes
Value Range	-3000 to +3000
Default Value	0
Comment	Unit: one rated torque in a thousand

Object 6072h: Max torque

INDEX	6072 _h
Name	Max torque
Object Code	VAR
Data Type	UNSIGNED16
Access	RW
PDO Mapping	Yes
Value Range	0 - 3000
Default Value	3000
Comment	Unit: one rated torque in a thousand

Object 6074_h: Torque demand value

INDEX	6074 _h
Name	Torque demand value
Object Code	VAR
Data Type	INTEGER16
Access	RO
PDO Mapping	Yes
Value Range	INTEGER16
Comment	Unit: one rated torque in a thousand

Object 6075_h: Motor rated current

INDEX	6075 _h
Name	Motor rated current
Object Code	VAR
Data Type	UNSIGNED32
Access	RO
PDO Mapping	Yes
Value Range	UNSIGNED32
Comment	Unit: milliamp

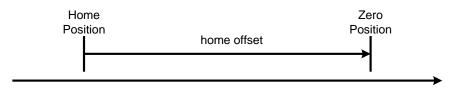
Object 6076h: Motor rated torque

INDEX	6076 _h
Name	Motor rated torque
Object Code	VAR
Data Type	UNSIGNED32
Access	RO
PDO Mapping	Yes
Value Range	UNSIGNED32
Comment	Unit: one rated torque in a thousand

Object 6077_h: Torque actual value

INDEX	6077 _h
Name	Torque actual value
Object Code	VAR
Data Type	INTEGER16
Access	RO
PDO Mapping	Yes
Value Range	INTEGER16
Comment	Unit: one rated torque in a thousand

Object 6078_h: Current actual value


INDEX	6078 _h
Name	Current actual value
Object Code	VAR
Data Type	INTEGER16
Access	RO
PDO Mapping	Yes
Value Range	INTEGER16
Comment	Unit: one rated current in a thousand

Object 607A_h: Target position

INDEX	607A _h
Name	Target position
Object Code	VAR
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	For Profile position mode 6060 _h = 1 Unit: PUU

Object 607C_h: Home offset

INDEX	607C _h
Name	Home offset
Object Code	VAR
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit : PUU

Home offset

Object 607Dh: Software position limit

INDEX	607D _h
Name	Software position limit
Object Code	ARRAY
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes

Sub-Index	0
Description	Number of entries
Data Type	UNSIGNED8
Access	RO
PDO Mapping	Yes
Value Range	2
Default Value	2

Sub-Index	1
Description	Min position limit
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	-2147483648 to +2147483647
Default Value	-2147483648
Comment	Unit: PUU

Sub-Index	2
Description	Max position limit
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	-2147483648 to +2147483647
Default Value	+2147483647
Comment	Unit: PUU

Object 607Fh: Max profile velocity

INDEX	607F _h
Name	Max profile velocity
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	P1-55 (rpm) * 10
Comment	Unit: 0.1 rpm

Object 6080h: Max motor speed

INDEX	6080 _h
Name	Max motor speed
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	P1-55 (rpm)
Comment	Unit: rpm

Object 6081_h: Profile velocity

INDEX	6081 _h
Name	Profile Velocity
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	10000
Comment	For Profile position mode 6060 _h = 1 Unit: PUU per second

Object 6083_h: Profile acceleration

INDEX	6083h
Name	Profile acceleration
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	1 - UNSIGNED32
Default Value	200
Comment	For Profile position mode $6060_h = 1 \& $ Profile velocity mode $6060_h = 3$
	Unit: millisecond (time from 0 rpm to 3000 rpm)

Object 6084_h: Profile deceleration

INDEX	6084 _h
Name	Profile deceleration
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	1 - UNSIGNED32
Default Value	200
Comment	For Profile position mode $6060_h = 1 \& $ Profile velocity mode $6060_h = 3$
	Unit: millisecond (time from 0 rpm to 3000 rpm)

Object 6085h: Quick stop deceleration

INDEX	6085 _h
Name	Quick stop acceleration
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	0
Comment	Unit: millisecond (time from 0 rpm to 3000 rpm)

Object 6086_h: Motion profile type

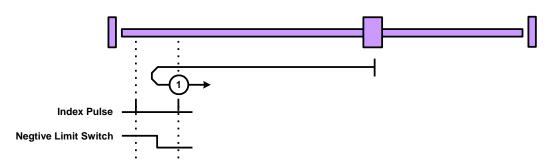
INDEX	6086 _h
Name	Motion profile type
Object Code	VAR
Data Type	INTEGER16
Access	RW
PDO Mapping	Yes
Value Range	INTEGER16
Default Value	0

Object 6087_h: Torque slope

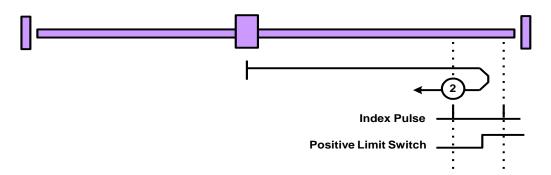
INDEX	6087 _h
Name	Torque slope
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	0
Comment	Unit: millisecond (time from 0 to 100% rated torque)

Object 6093h: Position factor

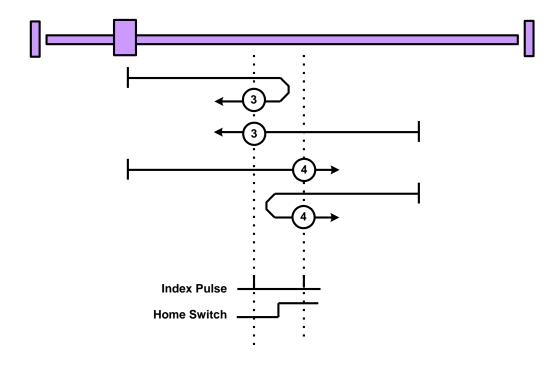
INDEX	6093 _h
Name	Position factor
Object Code	ARRAY
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Comment	Position factor = Numerator / Feed_constant

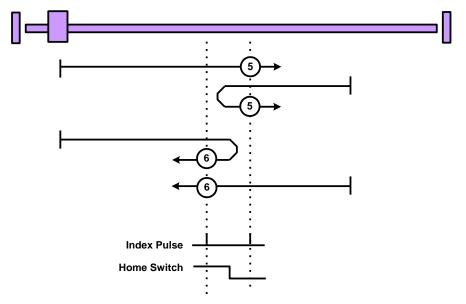

Sub-Index	0
Description	Number of entries
Data Type	UNSIGNED8
Access	RO
PDO Mapping	No
Value Range	2
Default Value	2

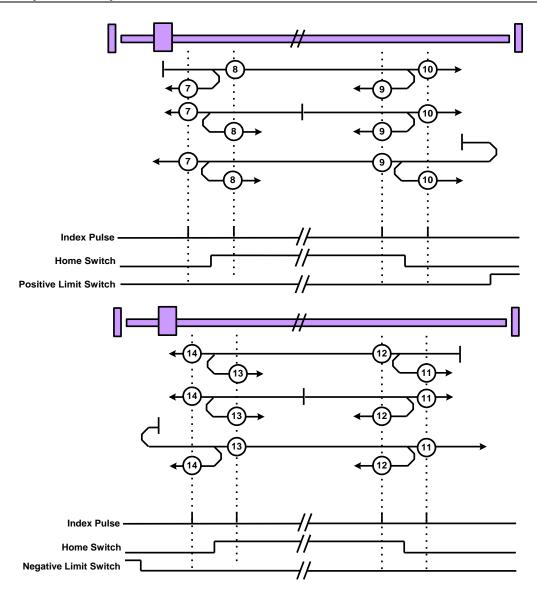
Sub-Index	1
Description	Numerator
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Default Value	1
Comment	Same as P1-44


Sub-Index	2
Description	Feed_constant
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Default Value	1
Comment	Same as P1-45

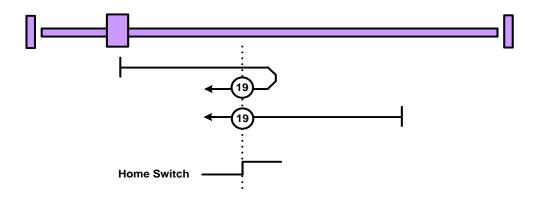
Object 6098h: Homing method


INDEX	6098 _h
Name	Homing method
Object Code	VAR
Data Type	INTEGER8
Access	RW
PDO Mapping	Yes
Value Range	0 - 35
Default Value	0


Method 1: homing on negative limit switch and index pulse

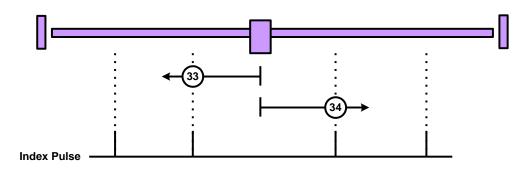

Method 2: homing on positive limit switch and index pulse

Methods 3 and 4: homing on positive home switch and index pulse



Methods 5 and 6: homing on negative home switch and index pulse

Methods 7 to 14: homing on home switch and index pulse


Methods 15 and 16: reserved (no picture)

Methods 17 to 30: Homing without an index pulse

Note: Methods 19 and 20 are the same. So are Methods 21 and 22, Methods 23 and 24, Methods 25 and 26, Methods 27 and 28, and Methods 29 and 30.

Methods 31 and 32: reserved (no picture)

Methods 33 to 34: homing on index pulse

Method 35: homing on current position (no picture)

Object 6099h: Homing speed

INDEX	6099 _h
Name	Homing speed
Object Code	ARRAY
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes

Sub-Index	0
Description	Number of entries
Data Type	UNSIGNED8
Access	RO
PDO Mapping	Yes
Value Range	2
Default Value	2

Sub-Index	1
Description	Speed during search for switch
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	1 - 2000 rpm
Default Value	100
Comment	Unit: 0.1 rpm

Sub-Index	2
Description	Speed during search for zero
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	1 - 500 rpm
Default Value	20
Comment	Unit: 0.1 rpm

Object 609A_h: Homing acceleration

INDEX	609A _h
Name	Homing acceleration
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	100
Comment	Unit: millisecond (time of acc from 0 rpm to 3000 rpm)

Object 60B0h: Position offset

INDEX	60B0 _h
Name	Position offset
Object Code	VAR
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: PUU

Object 60B1h: Velocity offset

INDEX	60B1 _h
Name	Velocity offset
Object Code	VAR
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: 0.1 rpm

Object 60B2h: Torque offset

INDEX	60B2 _h
Name	Torque offset
Object Code	VAR
Data Type	INTEGER16
Access	RW
PDO Mapping	Yes
Value Range	-3000 to +3000
Default Value	0
Comment	Unit: one rated torque in a thousand

Object 60B8_h: Touch probe function

	,
INDEX	60B8 _h
Name	Touch probe function
Object Code	VAR
Data Type	UNSIGNED16
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED16
Default Value	0
Comment	0
Default Value	0

Object 60B9h: Touch probe status

INDEX	60B9 _h
Name	Touch probe status
Object Code	VAR
Data Type	UNSIGNED16
Access	RO
PDO Mapping	Yes
Value Range	UNSIGNED16
Default Value	0
Comment	0

Object 60BAh: Touch probe pos1 pos value

INDEX	60BA _h
Name	Touch probe pos1 pos value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: PUU

Object 60BB_h: Touch probe pos1 neg value

INDEX	60BB _h
Name	Touch probe pos1 neg value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: PUU

Object 60BCh: Touch probe pos2 pos value

INDEX	60BC _h
Name	Touch probe pos2 pos value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: PUU

Object 60BDh: Touch probe pos2 neg value

INDEX	60BD _h
Name	Touch probe pos2 neg value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: PUU

Object 60C0_h: Interpolation sub mode select

INDEX	60C0 _h
Name	Interpolation sub mode select
Object Code	VAR
Data Type	INTEGER16
Access	RW
PDO Mapping	Yes
Value Range	INTEGER16
Default Value	0
Comment	0: manufacturer specific
	(Linear interpolation <u>no</u> need the Pos Difference [OD-60C1sub2])
	-1: manufacturer specific
	(Delta definition need pos difference [OD-60C1sub2])

Object 60C1_h: Interpolation data record

INDEX	60C1 _h
Name	Interpolation data record
Object Code	ARRAY
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Comment	Set this record by PDO every <i>T</i> msec before SYNC message where <i>T</i> is specified by 60C2 _h : 01 _h

Sub-Index	0
Description	Number of entries
Data Type	UNSIGNED8
Access	RO
PDO Mapping	No
Value Range	2
Default Value	2

Sub-Index	1
Description	Pos_Cmd
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	INTEGER32
Default Value	0
Comment	Unit: 32-bit CMD_PUU

Sub-Index	2
Description	Velocity – Pos_Cmd difference
Data Type	INTEGER16
Access	RW
PDO Mapping	Yes
Value Range	INTEGER16
Default Value	0
Comment	$\triangle X_i = (X_{i+1} - X_{i-1})/2$
	(It is also the same as velocity.) Unit: PUU

Object 60C2_h: Interpolation time period

INDEX	60C2 _h
Name	Interpolation time period
Object Code	RECORD
Data Type	UNSIGNED8
Access	RW
PDO Mapping	Yes
Comment	The unit of <i>interpolation time unit</i> is given in 10 ^{interpolation time index} seconds

Sub-Index	0			
Description	Number of entries			
Data Type	JNSIGNED8			
Access	RO			
PDO Mapping	No			
Value Range	2			
Default Value	2			

Sub-Index	1
Description	Interpolation time units
Data Type	UNSIGNED8
Access	RW
PDO Mapping	Yes
Value Range	UNSIGNED8
Default Value	1

Sub-Index	2
Description	Interpolation time index
Data Type	INTEGER8
Access	RW
PDO Mapping	Yes
Value Range	-128 to +63
Default Value	-3

Object 60C5_h: Max acceleration

INDEX	60C5 _h
Name	Max acceleration
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	1 - 65500
Default Value	200
Comment	Unit: millisecond (min. time from 0 rpm to 3000 rpm)

Object 60C6_h: Max deceleration

INDEX	60C6 _h
Name	Max deceleration
Object Code	VAR
Data Type	UNSIGNED32
Access	RW
PDO Mapping	Yes
Value Range	1 - 65500
Default Value	200
Comment	Unit: millisecond (min. time from 3000 rpm to 0 rpm)

Object 60F2_h: Positioning option code

INDEX	60F2 _h			
Name	Positioning option code			
Object Code	VAR			
Data Type	UNSIGNED16			
Access	RW			
PDO Mapping	Yes			
Value Range	UNSIGNED16			
Default Value	0			

Object 60F4_h: Following error actual value

INDEX	60F4 _h
Name	Following error actual value
Object Code	VAR
Data Type	INTEGER32
Access	RO
PDO Mapping	Yes
Value Range	INTEGER32
Comment	Unit: PUU

Object 60FC_h: Position demand value

INDEX	60FC _h			
Name	Position demand value			
Object Code	VAR			
Data Type	INTEGER32			
Access	RO			
PDO Mapping	Yes			
Value Range	INTEGER32			
Comment	Unit: increment			

Object 60FDh: Digital inputs

INDEX	60FD _h			
Name	Digital inputs			
Object Code	VAR			
Data Type	UNSIGNED32			
Access	RO			
PDO Mapping	Yes			
Value Range	UNSIGNED32			
Default Value	0			

Object function:

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit	Function	Description
Bit 0	Negative limit switch	-

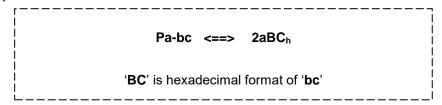
Bit	Function	Description
Bit 1	Positive limit switch	-
Bit 2	Home switch	-
Bit 3 - 15	-	-
Bit 16		Set P3-18 U = 1 or 2 and this bit is mapped to DI 1.
Bit 17		Set P3-18 U = 1 or 2 and this bit is mapped to DI 2.
Bit 18		Set P3-18 U = 1 or 2 and this bit is mapped to DI 3.
Bit 19		Set P3-18 U = 1 or 2 and this bit is mapped to DI 4.
Bit 20		Set P3-18 U = 1 or 2 and this bit is mapped to DI 5.
Bit 21		Set P3-18 U = 1 or 2 and this bit is mapped to DI 6.
Bit 22		Set P3-18 U= 1 or 2 and this bit is mapped to DI 7.
Bit 23		Reserved.
Bit 24	Manufacturer- specific area	Set P3-18 U = 1 or 2 and this bit is mapped to EDI 9.
Bit 25	•	Set P3-18 U = 1 or 2 and this bit is mapped to EDI 10.
Bit 26		Set P3-18 U = 1 or 2 and this bit is mapped to EDI 11.
Bit 27		Set P3-18 U = 1 or 2 and this bit is mapped to EDI 12.
Bit 28		Set P3-18 U = 1 or 2 and this bit is mapped to EDI 13.
Bit 29		Set P3-18 U = 1 or 2 and this bit is mapped to EDI 14.
Bit 30		Reserved.
Bit 31		Set P3-18 U = 2 and this bit is mapped to the Z pulse of encoder.

Object 60FF_h: Target velocity

INDEX	60FF _h
Name	Target velocity
Object Code	VAR
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	INTEGER32
Comment	Unit: 0.1 rpm

Object 6502h: Supported drive modes

INDEX	6502 _h
Name	Supported drive modes
Object Code	VAR
Data Type	UNSIGNED32
Access	Ro
PDO Mapping	Yes
Value Range	UNSIGNED32
Default Value	3ED _h


31					16	15			7	6	5	4	3	2	1	0
	Manufact	turer	spe	cific			r	eserved		ijр	hm	reserved	tg	pν	νl	рр
MSB																LSB

Object 2xxxh: Manufacturer parameter

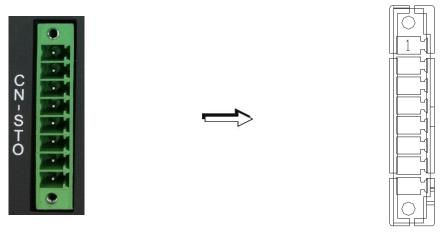
INDEX	2xxx _h
Name	Manufacturer parameter
Object Code	VAR
Data Type	INTEGER16 / INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	NTEGER16 / INTEGER32
Default Value	N/A

Object 2xxx is defined to parameter.

If you desire to use CANopen protocol for accessing parameter values, the conversion between parameter number and index is as follows:

You can read the Index first for knowing the Length of Parameter and then change the data by SDO or PDO.

Example 1: Object 2309h: EtherCAT Synchronization Setting [P3-09]

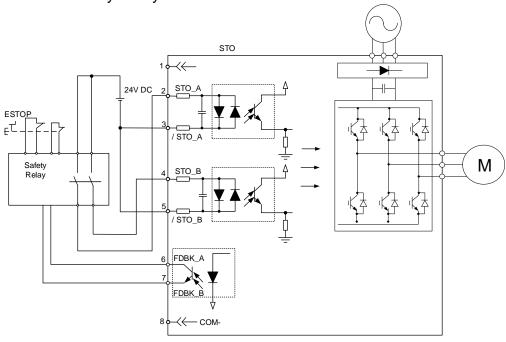

INDEX	2309 _h
Name	EtherCAT Synchronization Setting
Object Code	VAR
Data Type	INTEGER16
Access	RW
PDO Mapping	Yes
Value Range	INTEGER16
Default Value	1512 _h

Example 2: Object 212Ch: Electronic Gear 【P1-44】

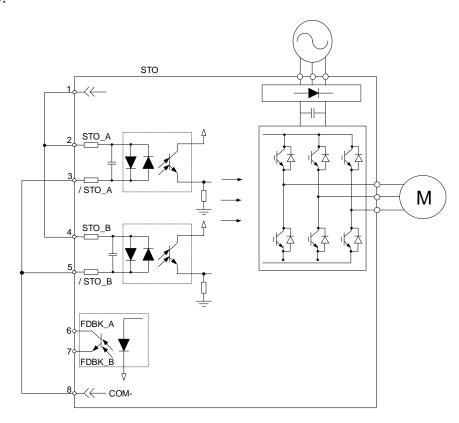
INDEX	212C _h
Name	Electronic Gear
Object Code	VAR
Data Type	INTEGER32
Access	RW
PDO Mapping	Yes
Value Range	INTEGER32

Chapter 7 STO (Safe Torque Off) Function

7.1 CN-STO Connector


CN-STO Connector (male)

Pin No.	Terminal Symbol	Function and Description
1*	-	For short-circuiting the STO only. Do not connect the wiring for other purposes.
2	STO_A	STO input pin A+
3	/STO_A	STO input pin A-
4	STO_B	STO input pin B+
5	/STO_B	STO input pin B-
6	FDBK_A	STO alarm output pin A Relay max. output current: 1 A
7	FDBK_B	STO alarm output pin B Relay max. output current: 1 A
8 COM-		For short-circuiting the STO only. Do not connect the wiring for other purposes.



> Caution: do not apply dual power to Pin 1 or it may damage the servo drive.

Trigger STO with a Safety Relay:

Disable STO:

7.1.1 Functional Safety Standards and Certificates

Refer to Chapter 10.

7.2 Specifications of STO

Safety specifications

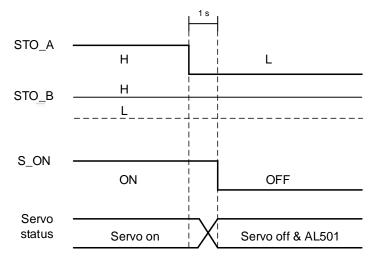
Item	Definition	Standard	Performance
CEE	Cafa failura frantian	IEC64500	Channel 1: 80.08%
SFF	Safe failure fraction	IEC61508	Channel 2: 68.91%
HFT (Type A subsystem)	Hardware fault tolerance	IEC61508	1
SIL	Sofaty intogrity lovel	IEC61508	SIL 2
SIL	Safety integrity level	IEC62061	SILCL 2
PFH	Probability of dangerous failure per hour [h-1]	IEC61508	9.56 × 10 ⁻¹⁰
PFD _{avg}	Average probability of failure on demand	IEC61508	4.18 × 10 ⁻⁶
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTF _d	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

How does the STO Function work?

The STO function controls the motor current by two individual circuits. The two circuits cut off the power supply to the motor when needed, making the motor free from torque force. Refer to the following table.

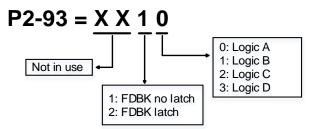
Description of STO ON/OFF

S	ignal	Status of opto-isolator					
0.12	STO_A /STO_A	ON	ON	OFF	OFF		
310	STO STO_B ON OF		OFF	ON	OFF		
Servo drive	Servo drive output status		STO_B lost (AL502) (Torque off)	STO_A lost (AL501) (Torque off)	STO Mode (AL501) (Torque off)		


Note: ON = 24V; OFF = 0V.

(1) Status description of STO alarms:

See the following diagram. When the motor runs normally (Servo On), but both STO_A and STO_B signals (safety signal source) are low for 10 ms simultaneously, AL500 is triggered and the servo drive is Off.



See the following diagram. When the motor runs normally (Servo On), but one of the safety signal source is low for 1 second, AL501 or AL502 is triggered and the servo drive is Off.

7.3 Related Parameter Descriptions of STO Function

Through the setting of P2-93, you can determine the FDBK status and whether FDBK will latch when an STO alarm occurs. Refer to the following figure for the setting of P2-93:

Description of STO Function:

See the following table. Four logics (Logic A, Logic B, Logic C, and Logic D) are provided to standardize FDBK status when different STO alarms occur. You can select the corresponding logic according to the demands.

In this table, Open means FDBK+ and FDBK- of CN8 are open circuit. Take Logic C as an example, when AL500 occurs, FDBK+ and FDBK- of CN8 are closed circuit.

Status of servo drive		FDBK_A & FDBK_B Status									
		Log	ic A	Logic B		Logic C		Logic D			
Parame	ter P2-93	XX10	XX20	XX11	XX21	XX12	XX22	XX13	XX23		
FDBK	status	No Latch	Latch	No Latch	Latch	No Latch	Latch	No Latch	Latch		
	O alarm curs	Open		Close		Open		Close			
	AL500	Close		Open		Close		Open			
Alarm	AL501 Close		Open		Open		Close				
occure		Close		Open		Open		Close			
	AL503	Clo	se	Ор	en	Open		Close			

Open = open circuit; Close = closed circuit

If FDBK is latched when an STO alarm occurs, the FDBK status will remain the same even when the alarm is cleared. Note that when more than one alarm occur at the same time, the drive panel will only display AL500.

Example of Latch:

When Logic C P2-93 = XX22, the safety signal is lost and AL005 occurs, the FDBK status is Close.

- 1. Since FDBK is selected as Latch, even when the safety signal is back to normal, FDBK status remains Close. Use the following approaches to reset.
 - i. Reconnect power supply. FDBK status returns to Open.
 - ii. Do not reconnect power supply. Instead, set P2-93 = XX12 to make FDBK status return to Open. Then set P2-93 = XX22 again. This step is to set FDBK to Latch.
- 2. After the FDBK status restores, alarms can be cleared by normal corrective actions. In this case, AL500 can be cleared by DI.Alm Reset.

Example of No Latch:

When Logic C P2-93 = XX12, the safety signal is lost and AL005 occurs, the FDBK status will be Close.

- Since FDBK is selected as No Latch, the safety signals return to normal and the FDBK status automatically changes from Close to Open when AL500 occurs. You do not need to set P2-93 to XX12 again.
- 2. After the FDBK status restores, alarms can be cleared by normal corrective actions. In this case, AL500 can be cleared by DI.Alm Reset.

P2-93	STO	STO F	DBK Control		Address: 02BAH 02BCH	
Interface:	Panel / Sc	oftware	Communication	Reference:	_	
Default:	0			Control Mode:	ALL	
Unit:	-			Range:	-	
Format:	DEC			Data Size:	16-bit	

Settings:

BIT 0: select the logic for FDBK status.

BIT 1: determine if FDBK is latched.

7.4 STO Type Alarms

Display	Alarm Name	Error Type	Servo State
AL500	STO function is enabled	ALM	Servo Off
AL501	STO_A loss (signal loss or signal error)	ALM	Servo Off
AL502	STO_B loss (signal loss or signal error)	ALM	Servo Off
AL503	STO_error	ALM	Servo Off

Causes and Corrective Actions:

AL500: STO Function is enabled

Cause	Checking Method	Corrective Action
Safe torque off function (STO) is enabled	,	Use DI.ARST, 0x6040.Fault Reset, or set P0-01 to 0.

AL502: STO_A loss (signal loss or signal error)

Cause	Checking Method	Corrective Action
Loss of STO_A signal, or STO_A and STO_B signals are not synchronized for more than 1 second.	Make sure the wiring of STO_A is correct.	Cycle power on the servo drive.

AL502: STO_B loss (signal loss or signal error)

Cause	Checking Method	Corrective Action
Isinnais are not	Make sure the wiring of STO R is	Cycle power on the servo drive.

AL503: STO_error

Cause	Checking Method	Corrective Action
STO self-diagnostic error	Make sure the STO wiring is correct.	STO circuit error. Contact the distributor.

(This page is intentionally left blank.)

Chapter 8 Parameters

The basic parameters for A2-E are the same as those for the general A2 models, so refer to ASDA-A2 User Manual for more details. The following introduces EtherCAT- and STO-related parameters only.

P3-18	ECATO	Ether	CAT Special Fund	Address: 0324H 0325H		
Interface:	Panel / So	ftware	Communication	Reference:	-	
Default:	0x000020	00		Control Mode:	EtherC/	AT
Unit:	-		Range:	0x00000	0000 - 00112101	
Format:	HEX		Data Size:	32-bit		

Settings:

Α	Source for EtherCAT Station Alias Register 0x0012	Х	Select the unit for speed command and speed feedback
В	Calculating methods for OD 60F4 _h position error	Υ	Reserved
С	Select the unit for OD 607F _h / OD 6080 _h	Z	Set the checking method for communication disconnection
D	Reserved	U	Set the manufacturer-specific area for OD 60FD _h mapping
h	High word	L	Low word

- A: set the source for the content of EtherCAT Station Alias Register 0x0012 after applying power to the drive.
 - 0: determined by the EtherCAT EEPROM address field (ADR 0x0004) setting, which needs to be set through the controller interface.
 - 1: determined by the address set in P3-00.
- B: calculating method for OD 60F4_h position deviation
 - 0: calculated by the motion controller.
 - 1: directly calculated by the motor (pos_err), and then converted with the E-gear ratio.
- X: in Profile Velocity mode or CSV mode, select the unit for speed command (OD 60FF_h) and speed feedback (OD 606C_h).
 - 0: 0.1 rpm
 - 1: pulse/sec
- Z: set the checking method for communication disconnection (AL185).
 - 0: check for the disconnection after the EtherCAT communication is in OP status.
 - 1: check for the disconnection after the EtherCAT communication is in INIT status.

- U: set the manufacturer-specific area for OD 60FD_h mapping (see detailed information in Chapter 6)
 - 0: disabled. The manufacturer-specific area is not in use.
 - 1: map DI/EDI status to the manufacturer-specific area of OD 60FDh.
 - 2: map the Z pulse of the encoder and DI/EDI status to the manufacturer-specific area of OD 60FD_h .

P3-19	CSTSA	Status	sword Status Dis	Address: 0326H 0327H		
Interface:	Panel / So	ftware	Communication	Reference:	-	
Default:	0x0021			Control mode:	CANope	en/EtherCAT
Unit:	-		Range:	0x0000	- 0x1121	
Format:	HEX			Data size:	16-bit	

Settings:

U	Z	Υ	X

Α	Reserved	Х	OD 6041 _h Bit 4 status
В	Reserved	Υ	OD 6041 _h Bit 10 status
С	Reserved	Z	OD 6041 _h Bit 14 status
D	Reserved	U	OD 6041 _h Bit 15 status
h	High word	L	Low word

- X: OD 6041_h Bit 4 status (applicable to EtherCAT only)
 - 0: the bit is On
 - 1: RST output status
- Y: OD 6041_h Bit 10 status (applicable to EtherCAT only)
 - 0: in CSP mode, OD 6041h Bit 10 is invalid.
 - 2: in CSP mode, OD 6041h Bit 10 is in Target Reach status.
- Z: OD 6041_h Bit 14 status (applicable to CANopen / EtherCAT)
 - 0: OD 6041_h Bit 14 is in positive limit status.
 - 1: OD 6041_h Bit 14 outputs the current status of the servo and controller synchronization. If it shows On, it means they have already been synchronized (SYN_OK).
- U: OD 6041_h Bit 15 status (applicable to CANopen / EtherCAT)
 - 0: OD 6041_h Bit 15 is in negative limit status.
 - 1: N/A

P3-22	ЕРТО	Ether	CAT PDO Timeou	Address: 032CH 032DH		
Interface:	Panel / So	ftware	Communication	Reference:	-	
Default:	0xFF04			Control mode:	EtherCA	ΛT
Unit:	-		Range:	0x0002	- 0xFF14	
Format:	HEX			Data size:	16-bit	

Settings:

When exchanging Process Data with PDOs, you can set the following two sets of value to monitor the number of continuous packet loss and thus triggering the alarm if the number is exceeded.

YX	Allowable cycle times of packet loss for AL3E3
UZ	Allowable time for AL180

YX: allowable cycle times of packet loss for AL3E3

When in synchronous modes (IP/CSP/CSV/CST), use this parameter to set the allowable consecutive cycle times for packet loss within the range from 0x02 to 0x14. If the cycle time exceeds the range, AL3E3 occurs.

Example: the communication cycle time is 4 ms, and if you set this parameter to 02, it means 2 cycle times are permissible. That is, if A2-E does not receive a PDO within 8 ms, it triggers AL3E3.

■ UZ: allowable time for AL180 (applicable to all modes)

Calculate the consecutive milliseconds for not receiving PDOs. The allowable range is from 0x00 (disabled) to 0xFF (default). If the time exceeds the range, AL180 occurs.

P4-27	AL503 diagnosis time			Address: 0436H 0437H
Default:	200	Control mode:	All	
Unit:	ms	Range:	0 - 500	
Format:	DEC	Data size:	16-bit	

Settings:

Adjusts the diagnosis time duration for the STO internal circuit to avoid misdetection and triggering AL503.

(This page is intentionally left blank.)

Chapter 9 Alarms and Troubleshooting

9.1 EtherCAT Communication Alarm List

Emergency Object

Byte	0	1	2	3		4	5	6	7
Content	Emergen Co	cy Error de	Error register	Panel A	larm	Code		N/A	

For the alarm codes not included here, refer to the ASDA-A2 User Manual.

Display	Alarm Name	Description	Alarm Clearing Method
AL185	Bus hardware error	EtherCAT communication is cut off.	6040h fault reset
AL180	Bus communication timeout (Servo Off)	The drive does not receive any PDO data within three communication cycle times.	6040h fault reset
AL122	Object's sub-index does not exist when PDO is accessed	The specified sub-index in the message does not exist.	6040h fault reset
AL123	Data length error occurs when PDO is accessed	The data length in the message does not match the length of the specified object.	6040h fault reset
AL124	Data range error occurs when PDO is accessed	The data value in the message is out of range for the specified object.	6040h fault reset
AL125	PDO object is read- only and write- protected	The specified object in the message is read-only and write-protected (cannot be changed).	6040h fault reset
AL126	Specified object does not support PDO mapping	The specified object does not support PDO mapping.	6040h fault reset

Display	Alarm Name	Description	Alarm Clearing Method
AL127	PDO object is write- protected when servo drive is on	PDO object is write-protected (unchangeable) when the servo drive is on.	6040h fault reset
AL128	Error occurs when PDO object is read from EEPROM	An error occurs when loading the default settings from EEPROM at start-up. All CANopen objects are restored to the default settings automatically.	6040h fault reset
AL129	Error occurs when PDO object is written to EEPROM	An error occurs when the PDO object is written to EEPROM.	6040h fault reset
AL130	Accessing address of EEPROM is out of range	The amount of data in the ROM is greater than the allowable space specified by the firmware. It is probably because the firmware has been updated, but the data in the ROM was stored by the previous firmware version.	6040h fault reset
AL131	EEPROM CRC calculation error	The data saved in EEPROM has been damaged and all CANopen objects return to the default settings automatically.	6040h fault reset
AL132	Parameter is write- protected	The parameter is password-protected when using CANopen communication to access the parameter. The users must enter the valid password to unlock the parameter.	6040h fault reset
AL201	Initialization error of object dictionary data	An error occurs while reading / writing data from / to EEPROM.	After firmware upgrade, set P2-08 = 10, or set P2-08 = 30 and then 28.
AL3E1	Communication fails to synchronize (Servo Off)	The synchronous communication with the external controller has failed.	6040h fault reset
AL3E2	Communication synchronization signal is sent too soon (Servo Off)	The CANopen SYNC signal is received too soon.	6040h fault reset

Display	Alarm Name	Description	Alarm Clearing Method
AL3E3	Communication synchronization signal timeout (Servo Off)	The CANopen SYNC signal is not received within four consecutive communication cycle times. If the interference is too great to be removed by the hardware, increase the communication cycle for P3-22 XY to loosen the condition for triggering AL3E3.	6040h fault reset
AL3E4	CANopen IP command failed (Servo Off)	Internal command of CANopen IP mode cannot be sent and received.	6040h fault reset
AL3E5	SYNC period error (Servo Off)	SYNC period 1006h value is invalid.	6040h fault reset
AL500	STO function is enabled (Servo Off)	The safety function (STO) is enabled. STO_A and STO_B change state simultaneously.	6040h fault reset
AL501	STO_A lost (Servo Off)	Loss of STO_A signal, or STO_A and STO_B signals are not synchronized for more than 1 second. Make sure the wiring of STO_A is correct.	6040h fault reset
AL502	STO_B lost (Servo Off)	Loss of STO_B signal, or STO_A and STO_B signals are not synchronized for more than 1 second. Make sure the wiring of STO_B is correct.	6040h fault reset
AL503	STO self-diagnostic error (Servo Off)	An error occurs during STO self-diagnosis, which may be caused by an abnormality in the STO circuit.	Sent your servo drive back to Delta.

9.2 Alarm List

Display	Alarm Name	32-bit Error Code (16-bit Error Code + 16-bit Additional Info)
AL001	Overcurrent	2310-0001 _h
AL002	Overvoltage	3110-0002 _h
AL003	Undervoltage	3120-0003 _h
AL004	Motor error	7122-0004 _h
AL005	Regeneration error	3210-0005 _h
AL006	Overload	3230-0006 _h
AL007	Overspeed	8400-0007 _h
AL008	Abnormal pulse control command	8600-0008 _h
AL009	Excessive deviation	8611-0009 _h
AL010	Reserved	0000-0010 _h
AL011	Encoder error	7305-0011 _h
AL012	Adjustment error	6320-0012 _h
AL013	Emergency stop activated	5441-0013 _h
AL014	Reverse limit switch error	5443-0014 _h
AL015	Forward limit switch error	5442-0015 _h
AL016	IGBT temperature error	4210-0016 _h
AL017	Memory error	5330-0017 _h
AL018	Encoder output error	7306-0018 _h
AL019	Serial communication error	7510-0019 _h
AL020	Serial communication time out	7520-0020 _h
AL021	Reserved	Reserved
AL022	Input power phase loss	3130-0022 _h
AL023	Early warning for overload	3231-0023 _h
AL024	Encoder initial magnetic field error	7305-0024 _h
AL025	Encoder internal error	7305-0025 _h
AL026	Unreliable internal data of the encoder	7305-0026 _h
AL027	Encoder data error	7305-0027 _h
AL030	Motor protection error	7121-0030h
AL031	U,V,W wiring error	3300-0031h
AL040	Full-closed loop excessive deviation	8610-0040h
AL099	DSP firmware upgrade	5500-0099h

Display	Alarm Name	32-bit Error Code (16-bit Error Code + 16-bit Additional Info)
	-	
AL283	Software positive limit	5444-0283 _h
AL285	Software negative limit	5445-0285 _h
	-	
AL185	Bus hardware error (Servo Off)	8120-0185 _h
AL180	Bus communication timeout (Servo Off)	8130-0180 _h
AL122	Object's sub-index does not exist when PDO is accessed	8200-0122 _h
AL123	Data length error occurs when PDO is accessed	8200-0123 _h
AL124	Data range error occurs when PDO is accessed	8200-0124 _h
AL125	PDO object is read-only and write-protected	8200-0125 _h
AL126	Specified object does not support PDO mapping	8200-0126 _h
AL127	PDO object is write-protected when servo drive is on	8200-0127 _h
AL128	Error occurs when PDO object is read from EEPROM	8200-0128 _h
AL129	Error occurs when PDO object is written to EEPROM	8200-0129 _h
AL130	Accessing address of EEPROM is out of range	8200-0130 _h
AL131	EEPROM CRC calculation error	8200-0131 _h
AL132	Parameter is write-protected	8200-0132 _h
AL201	Initialization error of object dictionary data	6310-0201 _h
AL3E1	Communication fails to synchronize (Servo Off)	6200-03E1 _h
AL3E2	Communication synchronization signal is sent too soon (Servo Off)	6200-03E2 _h
AL3E3	Communication synchronization signal timeout (Servo Off)	6200-03E3 _h
AL3E4	CANopen IP command failed (Servo Off)	6200-03E4 _h
AL3E5	SYNC period error (Servo Off)	6200-03E5 _h
AL500	STO function is enabled (Servo Off)	9000-0500 _h
AL501	STO_A lost (Servo Off)	9000-0501 _h
AL502	STO_B lost (Servo Off)	9000-0502 _h
AL503	STO self-diagnostic error (Servo Off)	9000-0503 _h

9.3 SDO Abort Codes

SDO Abort Code	Description
05040001 _h	Client / server command specifier not valid or unknown
06010002 _h	Attempt to write a read-only object
06020000 _h	Object does not exist in the object dictionary
06040041 _h	Object cannot be mapped to PDO
06040042 _h	The number and the length of the objects to be mapped would exceed PDO length
06060000 _h	Access failed due to a hardware error (store or restore error)
06070010 _h	Data type does not match; length of the service parameter does not match
06090011 _h	Sub-index does not exist
06090030 _h	Value range of parameter exceeded (only for writing access)
08000000 _h	General error
080000a1 _h	Object error when reading from EEPROM
080000a2 _h	Object error when writing to EEPROM
080000a3 _h	Invalid range when accessing EEPROM
080000a4 _h	Checksum error when accessing EEPROM
080000a5 _h	Password error when writing encryption zone
08000020 _h	Data cannot be transferred or stored in the application
08000021 _h	Data cannot be transferred or stored in the application because of the local control (store or restore in wrong state)
08000022 _h	Object is in use

Chapter 10 Reference Material

- 1. CANopen Application Layer and Communication Profile, CiA Draft Standard 301, Version 4.02, Date: 13 February 2002
- 2. CANopen Device Profile Drives and Motion Control, CiA Draft Standard Proposal 402, Version 2.0, Date: 26 July 2002

0/222 12. 12 E A4 ® TÛV, TUEV and TUV are registered trademarks. Utilisation and application requires prior approval.

EC Type-Examination Certificate

Functional Safety Type Approved

www.tuv.com ID 0600000000

Reg.-No.: 01/205/5429.00/15

Product tested

Safety Function "Safe Torque Off" (STO)

Certificate holder

Delta Electronics, Inc. 18 Xinglong Road

Taoyuan County Taoyuan City 33068 Taiwan, R.O.C.

Type designation

within the drive series VFD-C, VFD-CP, VFD-CT, VFD-CH, VFD-HH,

DPD, VFD-ED-S and ASD-A2.

Details see Annex (Version Release List)

Codes and standards

IEC 61800-5-2:2007

IEC 61800-5-1:2007 (in extracts)

IEC 61800-3:2012 IEC 62061:2012 EN ISO 13849-1:2008 + AC:2009

IEC 60204-1:2009 (in extracts) IEC 61508 Parts 1-7:2010

Intended application

The safety function complies with the requirements of the relevant standards (Cat. 3 / PL d acc. to EN ISO 13849-1, SIL CL 2 acc. to IEC 62061 / IEC 61508) and can be used in applications up to PL d acc. to EN

ISO 13849-1 and SIL 2 acc. to IEC 62061 / IEC 61508.

Specific requirements

The instructions of the associated Installation and Operating Manual shall

be considered.

It is confirmed, that the product under test complies with the requirements for machines defined in Annex I of the EC Directive 2006/42/EC.

Valid until 2020-01-08

The issue of this certificate is based upon an examination, whose results are documented in

Report No. 968/FSP 1074.00/15 dated 2015-01-08.

This certificate is valid only for products which are identical with the product tested. It becomes invalid at any change of the codes and standards forming the basis of testing for the intended application.

the codes and standards forming the basis of testing for the intended application.

Berlin, 2015-01-08

Certification Body for Machinery, NB 0035

0035

Dipl.-Ing. Eberhard Frejno

Rheinland Industrie Service GmbH, Alboinstr. 56, 12103 Berlin / Germany +49 30 7562-1557, Fax: +49 30 7562-1370, E-Mail: industrie-service@de.

TÜVRheinland®

www.fs-products.com www.tuv.com