
Chapter 6 Appl ied Instruct ions

6-201

6_

API Instruction code Operand Function

0708 D PIDE As shown in the following table PID algorithm

Device X Y M S T C HC D FR SM SR E K 16# “$” F

PID_RUN     

SV  

PV  

PID_MODE   

PID_MAN     

MOUT_AUTO     

CYCLE   

KC_Kp 

Ti_Ki 

Td_Kd 

Tf  

PID_EQ     

PID_DE     

PID_DIR     

ERR_DBW   

MV_MAX   

MV_MIN   

MOUT 

BIAS   

I_MV 

MV 

Data

type

BO
O

L

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
IN

T

IN
T

D
IN

T

LIN
T

R
EAL

LR
EAL

TM
R

C
N

T

STR
IN

G

 Pulse instruction 16-Bit instruction 32-Bit instruction

 － － AS

AS Ser ies Programming Manual

6-202

_6

Symbol

EN ： Enable/Disable the instruction

PID_RUN ： Enable the PID algorithm

SV ： Target value (SV)

PV ： Process value (PV)

PID_MODE ： PID control mode

PID_MAN ： PID Auto/Manual mode

MOUT_AUTO ： Manual/Auto output value

CYCLE ： Sampling time (CYCLE)

Kc_Kp ： Proportional gain

Ti_Ki ： Integral coefficient (sec. or 1/sec)

Td_Kd ： Derivative coefficient (sec)

Tf ： Derivate-action time constant (sec)

PID_EQ ： PID formula types

PID_DE ： Calculation of the PID derivative error

PID_DIR ： PID forward/reverse direction (PID_DIR)

ERR_DBW ：
Range within which the error value is

counted as 0

MV_MAX ： Maximum output value (MV_MAX)

MV_MIN ： Minimum output value (MV_MIN)

MOUT ： Manual output value (MOUT)

BIAS ： Feed forward output value

I_MV ： Accumulated integral value

MV ： Output value (MV)

Explanation

1. This instruction implements the PID algorithm. After the sampling time is reached, the instruction applies PID

algorithm. PID stands for Proportional, Integral, Derivative. The PID control is widely applied to mechanical,

pneumatic, and electronic equipment.

2. The parameter settings are listed in the following table.

Chapter 6 Appl ied Instruct ions

6-203

6_

Operand Data type Function Setting range Description

PID_RUN BOOL Enabling the PID algorithm

True: use the PID algorithm.

False: reset the output value (MV) to 0,

and stop using the PID algorithm.

SV REAL SV

Range of

single-

precision

floating-

point

numbers

Target value

PV REAL PV

Range of

single-

precision

floating-

point

numbers

Process value

PID_MODE DWORD/DINT PID control mode

0: Automatic control

When PID_MAN switches from True

to False, invoke the output value

(MV) in the automatic algorithm. If

the MV exceeds the limits of

MV_MAX or MV_MIN, I_MV value

stays the same and without

updating.

1: Auto tuning the parameters for the

temperature control. After tuning is

done, the system is in auto control

mode (PID_MODE is set to 0) and fill

in the appropriate parameters

(Kc_Kp, Ti_Ki, Td_Kd, and Tf)

2: Automatic control (including

I_MV): When PID_MAN switches

from TRUE to FALSE, the MV value

is invoke the output value (MV) in the

AS Ser ies Programming Manual

6-204

_6

Operand Data type Function Setting range Description

automatic algorithm. If the MV

exceeds the limits of MV_MAX or

MV_MIN, I_MV use the formula to

calculate the correct value and

adjust its value accordingly. This can

reduce the response time of the

reverse action.

Note: when the mode is set to 1, auto

tuning the parameter, you cannot

use numerical value to set up.

PID_MAN BOOL PID A/M mode

True: Manual

Output the MV according to

MOUT, but it is still between

MV_MIN and the MV_MAX. This

setting has no effect when

PID_MODE is set to 1.

False: Automatic

Output the MV according to the

PID algorithm, and the output

value is between MV_MIN and

MV_MAX.

MOUT_AUTO BOOL MOUT automatic change mode

True: Automatic

MOUT varies with the MV.

False: Normal

MOUT does not vary with the

MV.

CYCLE DWORD/DINT Sampling time (TS)
1–40,000

(unit: ms)

When the instruction

is scanned, use the

PID algorithm

according to the

sampling time, and

refresh MV. The PLC

requires that the

instruction execute; it

will not run the

Chapter 6 Appl ied Instruct ions

6-205

6_

Operand Data type Function Setting range Description

sampling time

automatically. If TS is

less than 1, it is

counted as 1. If TS is

larger than 40,000, it

is counted as 40,000.

When using the PID

instruction in an

interval interrupt task,

the sampling time is

the same as the

interval between the

timed interrupt tasks.

The sampling cycle

setting of the sampling

cycle is ignored here.

Kc_Kp REAL

Calculated proportional

coefficient (Kc or Kp, according

to the settings in PID_EQ)

Range of

positive

single-

precision

floating-

point

numbers

Calculated

proportional

coefficient (Kc or Kp)

If the P coefficient is

less than 0, the Kc_Kp

is 0. Independently, if

Kc_Kp is 0, it is not

controlled by P.

Ti_Ki REAL

Integral coefficient (Ti or Ki,

according to the settings in

PID_EQ)

Range of

positive

single-

precision

floating-

point

numbers

(unit: Ti =

sec; Ki =

1/sec)

If the calculated

coefficient I is less

than 0, Ti_Ki is 0. If

Ti_Ki is 0, it is not

controlled by I.

AS Ser ies Programming Manual

6-206

_6

Operand Data type Function Setting range Description

Td_Kd REAL

Derivative coefficient (Td or Kd,

according to the settings in

PID_EQ)

Range of

positive

single-

precision

floating-

point

numbers

(unit: sec)

If the calculated

coefficient D is less

than 0, Td_Kd is 0. If

Ti_Ki is 0, it is not

controlled by D.

Tf REAL Derivate-action time constant

Range of

positive

single-

precision

floating-

point

numbers

(unit: sec)

If the derivate-action

time constant is less

than 0, Tf is 0 and it is

not controlled by the

derivate-action time

constant (derivative

smoothing).

PID_EQ BOOL PID formula types
TRUE: dependent formula

FALSE: independent formula

PID_DE BOOL
The calculation of the PID

derivative error

TRUE: use the variations in the PV to

calculate the control value of the

derivative (Derivative of the PV).

FALSE: use the variations in the error

(E) to calculate the control value

of the derivative (derivative of

the error).

PID_DIR BOOL PID forward/reverse direction
True: forward action (E=SV-PV)

False: reverse action (E=PV-SV)

ERR_DBW REAL
Range within which the error

value is counted as 0.

Range of

single-

precision

floating-

point

numbers

The error value (E) is

the difference

between the SV and

the PV. When the

setting value is 0, the

function disabled;

otherwise the CPU

Chapter 6 Appl ied Instruct ions

6-207

6_

Operand Data type Function Setting range Description

module checks

whether the present

error is less than the

absolute value of

ERR_DBW, and

checks whether the

present error meets

the cross status

condition. If the

present error is less

than the absolute

value of ERR_DBW,

and meets the cross

status condition, the

present error is

counted as 0, and the

PLC applies the PID

algorithm ; otherwise

the present error is

brought into the PID

algorithm according to

the normal

processing.

MV_MAX REAL Maximum output value

Range of

single-

precision

floating-

point

numbers

Suppose MV_MAX is

set to 1,000. When

MV is larger than

1,000, 1,000 is the

output. The value in

MV_MAX should be

larger than that in

MV_MIN. Otherwise,

the maximum MV and

the minimum MV are

reversed.

MV_MIN REAL Minimum output value Range of Suppose MV_MIN is

AS Ser ies Programming Manual

6-208

_6

Operand Data type Function Setting range Description

single-

precision

floating-

point

numbers

set to -1,000. When

the MV is less than -

1,000, -1,000 is the

output.

MOUT REAL MV

Range of

single-

precision

floating-

point

numbers

When set to PID

Manual, the MV value

is output as the setting

value for MOUNT,

between MV_MAX

and MV_MIN.

BIAS REAL Feed forward output value

Range of

single-

precision

floating-

point

numbers

Feed forward output

value, used for the

PID feed forward.

I_MV

(occupies 15

consecutive

DWord

devices）

REAL I_MV

Accumulated

integral

value

Range of

single-

precision

floating-

point

numbers

Accumulated integral

value temporarily

stored, and usually for

reference. You can

still clear or modify it

according to your

needs.

PID mode in 0

(Automatic control):

When the MV is

greater than the

MV_MAX, or when the

MV is less than

MV_MIN, the

accumulated integral

value in I_MV is

unchanged.

PID mode in 2

Chapter 6 Appl ied Instruct ions

6-209

6_

Operand Data type Function Setting range Description

(Automatic control,

including I_MV):

When PID_MAN

switches from TRUE

to FALSE, the MV

value is invoke the

output value (MV) in

the automatic

algorithm. If the MV

exceeds the limits of

MV_MAX or MV_MIN,

I_MV use the formula

to calculate the

correct accumulated

integral value and

adjust its value

accordingly. This can

reduce the response

time of the reverse

action.

I_MV+1 The previous error value is temporarily stored here.

I_MV+2–

I_MV+5
For system use only

I_MV+6 The previous PV is temporarily stored here.

I_MV+7–

I_MV+14
For system use only

MV REAL MV The MV is between the MV_MIN and the MV_MAX.

AS Ser ies Programming Manual

6-210

_6

The diagram of switching to PID_MAN / MOUT_AUTO:

1. When switching the control mode (PID_MAN=0) from automatic to manual, you can set the flag MOUT_AUTO
to 1 and the output value of MOUT goes along with the output value of MV. After switching to the manual mode
(PID_MAN=1), you can set the MOUT_AUTO to 0.

2. When PID_RUN changes from TRUE to FALSE, the PLC resets the value in MV to 0. When the value in MV is
to be retained, you can set EN to FALSE to dismiss the instruction and to keep the output value in MV.

Example 1
1. Set all parameters before executing this instruction.
2. When M0 is ON, the instruction is executed. When PID_RUN is ON, the instruction applies the DPID algorithm.

When PIC_RUN is OFF, MV is 0, and store the value in MV. When M0 switches to OFF, the instruction is not
executed, and the previous data is unchanged.

Additional remarks
1. The instruction can be used several times, but the registers specified by I_MV–I_MV+14 cannot be the same.
2. I_MV occupies 30 registers.
3. You can only use the 32-bit instruction in cyclic tasks and interval interrupt tasks. When using the 32-bit instruction

in an interval interrupt task, the sampling time (Cycle) is the same as the interval between the timed interrupt tasks.
4. When the instruction is scanned, the 32-bit PID algorithm is applied according to the sampling time (Cycle), and it

refreshes MV. When you use the instruction in an interrupt task, the sampling time (Cycle) is the same as the

PID
Calculation

MOUT

MV

PID_MAN

FALSE

TRUE

TRUE

FALSE

MOUT_AUTO

Manual input

Chapter 6 Appl ied Instruct ions

6-211

6_

interval between the timed interrupt tasks. The PID algorithm is applied according to the interval between the timed
interrupt tasks.

5. Before the 32-bit PID algorithm is applied, the process value used in the PID instruction has to be a stable value.
When you need the input value in the module to implement the DPID algorithm, must note the time it takes for the
analog input to be converted into the digital input.

6. When the PV (process value) is in the range of ERR_DBW, at the beginning, the present error is brought into the
PID algorithm according to the normal processing, and then the CPU module checks whether the present error
meets the cross status condition: PV (process value) goes beyond the SV (target value). Once the condition is met,
the present error is counted as 0 when applying the PID algorithm. After the PV (process value) is out of the
ERR_DBW range, the present error is brought into the PID algorithm again. If PID_DE is true, that means it uses
the variations in the PV to calculate the control value of the derivative, and after the cross status condition is met,
the PLC treats Δ PV as 0 to apply the PID algorithm. (Δ PV= current PV – previous PV). In the following example,
the present error is brought into the PID algorithm according to the normal processing in section A ,and the present
error or Δ PV is counted as 0 to apply the PID algorithm in the section B.

The PID algorithm:
1. When you set PID_MODE to 0, the PID control mode is the automatic control mode.

 Independent Formula & Derivative of E（PID_EQ=False & PID_DE=False）

BIAS
dt
dEKdtEKiEKMV d

t

P +++= ∫ *
0

 E = SV – PV or E = PV – SV

 Independent Formula & Derivative of PV（PID_EQ=False & PID_DE=True）

 BIAS
dt

dPVKdtEKiEKMV d

t

P +−+= ∫ *
0

 E = SV – PV

Or

 BIAS
dt

dPVKdtEKiEKMV d

t

P +++= ∫ *
0

 E =PV – SV

 Dependent Formula & Derivative of E（PID_EQ=True & PID_DE=False）

 BIAS
dt
dETdtE

T
EKMV d

t

i
c +








++= ∫ *1

0

 E = SV – PV or E = PV – SV

 Dependent Formula & Derivative of PV（PID_EQ=True & PID_DE=True）

AS Ser ies Programming Manual

6-212

_6

 BIAS
dt
dETdtE

T
EKMV d

t

i
c +








−+= ∫ *1

0

 E = SV – PV

Or

 BIAS
dt
dETdtE

T
EKMV d

t

i
c +








++= ∫ *1

0

 E = PV – SV

2. When you set PID_MODE to 1, the PID control mode is the automatic tuning mode. After the tuning of the
parameter is complete, PID_MODE is set to 0. The PID control mode then becomes the automatic control mode.

PID Block Diagram:
PID Block Diagram (Independent)

SV

PV

+
- +

REVERSE

X(-1)

PID_DIR
E

DEAD BAND

ERR_DBW

0

1

PID-P

Kc_Kp

Kc_Kp

>0

<=00

PID-I

Ti_Ki

Ti_Ki

>0

<=00

0

>0

<=0

PID-D

Td_Kd, Tf

Td_Kd

BIAS
PID_MAN

0

1

0

1

MOUT

MOUT_AUTO
MOUT

PID_MAN

0

1 MOUT

MV

MV_LIMIT

MV_MAX, MV_MIN

++ +

+

+
+

+

Chapter 6 Appl ied Instruct ions

6-213

6_

PID Block Diagram (Dependent)

SV

PV

+
- + PID-P

Kc_Kp

REVERSE

X(-1)

PID_DIR

0

1
E

DEAD BAND

ERR_DBW

PID-I

Ti_Ki

Kc_Kp

>0

<=0
0

Ti_Ki

>0

<=0
0

PID-D

Td_Kd, Tf 0

>0

<=0

Td_Kd

BIAS
PID_MAN

++ +

MV

MV_LIMIT

MV_MAX, MV_MIN

MOUT_AUTO
MOUT

MOUT PID_MAN

MOUT

0

1

0

1

0

1

Suggestions
1. Since you can use the 32-bit instruction in a lot of controlled environments, you must choose the appropriate control

function. For example, to prevent improper control, do not use PID_MODE in the motor controlled environment when
it is set to 1.

2. When you tune the parameters Kc_Kp, Ti_Ki, and Td_Kd (PID_MODE is set to 0), you must tune KP first (based on
experience), and then set Ti_Ki and Td_Kd to 0. When you can handle the control, you can increase Ti_Ki and
Td_Kd. When Kc_Kp is 1, it means that the proportional gain is 100%. That is, the error value is increased by a
factor of one. When the proportional gain is less than 100%, the error value is decreased. When the proportional
gain is larger than 100%, the error value is increased.

3. To prevent the parameters that have been tuned automatically from disappearing after a loss of power, you must
store the parameters in the latched data registers when PID_MODE is set to 1. The parameters that have been
automatically tuned are not necessarily suitable for every controlled environment. Therefore, you can modify the
automatically tuned parameters; however, it is suggested that you only modify the Ti_Ki and the Td_Kd.

4. You can use this instruction with many parameters, but to prevent improper control, do not set the parameters
randomly.

AS Ser ies Programming Manual

6-214

_6

Example 2: Tuning the parameters used with the PID instruction

Suppose that the transfer function of the plant is the first-order function ()
a+s

b
=sG , the SV is 1, the sampling time Ts is

10 milliseconds. It is suggested that you follow these steps when tuning the parameters.

Step 1: First, set the KI and the KD to 0. Next, set the KP to 5, 10, 20 and 40 successively, and record the target values

and the process values. The results are shown in the following diagram.
1.5

1

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (sec)

K =40P

K =20P K =10P

SV= 1

K =5P

Step 2: When the KP is 40, there is overreaction. When the KP is 20, the reaction curve of PV is close to SV, and there is

no overreaction. However, due to the fast start-up, the transient output value (MV) is big. Neither 40 nor 20 is a
suitable value. When the KP is 10, the reaction curve of PV approaches SV smoothly. When KP is 5, the reaction
is too slow. Therefore, KP = 10 is the best choice.

Step 3: After setting KP to 10, increase KI. For example, KI is successively set to 1, 2, 4, and 8. KI should not be larger
than KP. Then, increase KD. For example, successively set KD to 0.01, 0.05, 0.1, and 0.2. KD should not be larger
than ten percent of KP. Finally, the relation between PV and SV is shown in the following diagram.

1.5

1

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (sec)

PV= SV

K =10,K = 8,K =0.2P I D

Note: This example is only for reference. You must tune the parameters properly according to the actual condition of the

control system.

Chapter 6 Appl ied Instruct ions

6-215

6_

Example 3: Using the automatic tuning function to control the temperature
Because you may not be familiar with the characteristics of the temperature environment to be controlled, you can use
the automatic tuning function to make an initial adjustment (PID_MODE is set to 1). After the automatic tuning of the
parameter is complete, PID_MODE is set to 0. The controlled environment in this sample is an oven. The following
example program shows the setting values for the instruction.

The experimental result of the automatic tuning function is shown in the following graph.

AS Ser ies Programming Manual

6-216

_6

The following graph shows the result of using the automatically tuned parameters to control the temperature.

This graph shows that using automatically tuned parameters can result in a good temperature control result. It only takes

about twenty minutes to control the temperature. The following graph shows the result of changing the target

temperature from 80°C to 100°C.

This graph shows that when the target temperature changes from 80°C to 100°C, the automatically tuned parameters still

work to control the temperature in a reasonable amount of time.

Chapter 6 Appl ied Instruct ions

6-217

6_

Example 4: Creating a DPIDE instruction in a function block and setting to the cyclic task mode to read the function

block written with a DPIDE instruction to control the temperature.

1. Set the value in DPIDE_CYCLE to 1000 ms, and execute the DPIDE instruction by reading the function block written

with a DPIDE instruction. Whenever the function block is scanned, the PID algorithm is applied according to the sampling

time (Cycle), and it refreshes the output value (DPIDE_MV).

2. Set the DPIDE_MODE =1 for auto tuning the parameters for the temperature control. After tuning is done, the

system is in auto control mode (PID_MODE is set to 0) and fill in the appropriate parameters (Kc_Kp, Ti_Ki, Td_Kd, and

Tf).

3. Main program (cyclic task): Since PLC only executes the DPIDE instruction when it is scanned. If we use TMRH to

work with the DPIDE instruction, for example, set the TMRH to 1000 ms, the system calls the function block written with

a DPIDE instruction (AS_DPIDE) every 1000 ms. See the example program below.

4. Function block (AS_DPIDE): Execute the DPIDE instruction by reading the function block written with a DPIDE

instruction. Whenever the function block is scanned, the PID algorithm is applied according to the sampling time (Cycle),

and it refreshes the output value (DPIDE_MV). (Refer to ISPSoft Manual for more details on how to create a function

block.)

AS Ser ies Programming Manual

6-218

_6

NOTE: The parameters PID_MODE, Kc_Kp, Ti_Ki, Td_Kd, Tf and I MV in the function block written with a DPIDE

instruction should be declared as VAR_IN_OUT.

Example 5: Creating a DPIDE instruction in a time interrupt program to control the temperature. (Note: use the time

interrupt as the cycle time of DPIDE.)

1. Set the time interrupt to 1000 ms in HWCONFIG.

2. Create a DPIDE instruction in a time interrupt program. Whenever a time interrupt occurs, the PID

algorithm is applied. The setting in DPIDE_CYCLE is invalid here.

3. Set the DPIDE_MODE =1 for auto tuning the parameters for the temperature control. After tuning is done,

the system is in auto control mode (PID_MODE is set to 0) and fill in the appropriate parameters (Kc_Kp, Ti_Ki,

Td_Kd, and Tf).

Main program (cyclic task)

Chapter 6 Appl ied Instruct ions

6-219

6_

Time interrupt program I601 and the setting parameters

