KKomnanusa "CTOUNK"

. automation ABTOpPU30BaHHbIN AMcTpubbioTop B Poccum
BEI-'I'A e Ten.: (495) 661-2441, 661-2461
I . g M K email: sales@deltronics.ru

www.deltronics.ru

1. Lua program execution function

Lua is a programming language similar to Python and JavaScript. Its syntax is easier and
more user-friendly than the macros provided by the HMI. You can use simple instructions
to complete complicated computing and develop variable functions, as well as
programming the functions on your own, which makes the programming more flexible and
easier to meet the application requirements.

The Lua program runs repeatedly during the HMI operation, which is similar to the HMI
Clock macro and can run with other HMI macros at the same time without affecting the
execution efficiency of each.

HMI boots up or
. D E—
exits system screen and enters HMI screen
—> Execute Clock macro Execute Lua D
Repeat Clock macro exeizution completed Lua executiin completed Repeat
Execute screen cycle macro based
on the delay time of cycle macro No delay and execution continues
(100 ms) _

HMI power off

The Lua program editing interface and the IDE (Integrated Development Environment) are
similar. In addition to the program editing function, it has a debug function that allows you
to run the program on the HMI or simulate online (with a simulator) to check if the Lua
program is suitable for the circumstance. The debug function can set the breakpoint, run
the code line by line, as well as monitor the variables for quick modification of the program.

A AELTA

Please refer to Table 1.1 Lua programming example.

Table 1.1 Lua programming example

Step 1: double-click the [Main] tab in the DOPSoft project tree to enter the editing interface.

. Project X
=8 NewHMI

iRim] Screen

Eg.--jj Communication

@ Tag

EEI" Recipe

El History Buffer
¥ Multi-language
..... m Account Settings
..... # Configuration

.....] Text Bank

Edit [Main]
program

1 -— Bdd initial code here (run once)
3

4

5 [Hwhile trues do

[

T —-— Add loop code here (cyclic run)
]

9

10

11 —-— one cycle is Z250ms

1z sys.S8leep(250)

13

14 end

15

le e

17

A AELTA

1. Lua programming

Edit [Main]
program

Step 2: add the following string to the [Main] program.
This program reads the value from $100 and write this value plus 1 to $200. Next, write the string
“Hello World!” to $300.

-- read $100

vl = mem.inter.Read(100)

-- add 10

vli =vl + 1

-- write to $200

rev = mem.inter.Write(200,v1)

sl = "Hello World!"
mem.inter.WriteAscii(300,s1,string.len(sl))

S IO T 4 Y R % I o

e e e e e e
o O T T Ay S T =

| I I]
|l = ¥

I3
[a

]
Ll

!!:;:i:iliilllli’fl[] Main rII
|=III E'aii=-) .a ﬁlg

—— 2dd initial code here (run once)

while trus do

—— Add lDDE code hers 1cxclic runi
—— read 5100

vl = mem.inter.Read{100)
—— add 10

vl = w1l + 1

-—— write to 5200

rev = mem.linter.Write (200,v1)
2l = "Hello World!™

mem. inter.Writelscii (200,21, string.len(=sl))

—-— one cycle is 250ms
sys.8lesp (230)

end

A AELTA

Go to Screen_1 to create two Numeric Entry elements with the read addresses as $100 and $200
respectively. Then, create one Character Entry element with the read address as $300 and the
string length as 12.

$100 $200

Edit HMI
screen
W:5300
Step 1: download this project to the HMI. The display is as follows after HMI power-on.
$100 $200
Execution . .
results | Step 2: change the value of $100 to 95, and the value of $200 changes to 96 immediately.

$100 $200

A AELTA

1.1 Lua program window

1.1.1 Lua programming window

Double-click on the Lua Program to open the Lua programming window as shown in
the figure below.

Toolbar

S I T Y R P %

oo

e e e e
P T I Sy =

15

while trus do

end

—— Add loop code here (cyclic run)
—— read 5100

vl = mem.inter.Bead(100)

—— add 10

vl = w1l + 1

—— write to 3200

rev = mem.inter.Write (200, w1)

sl = "Hello World!"™
mem.inter .Writelscii (300,sl,string.len(=sl))

—-— one cycle 1is Z250ms

sys.31lesp (250)

Programming area

)

Toolbar function description for the Lua programming window is as follows:

Symbol Name Hotkey Description
Star:)t c:glrlrr:e F5 Enable online debugging of the Lua program;
ﬂ dgbuggging the debugging target can be the HMI or simulator.
Stop
‘ program Shift+tF5 | Stop the current Lua program in execution.
debugging

A AELTA

Symbol Name Hotkey Description
Pause the current Lua program in execution. When pausing, a
yellow arrow points to the the next instruction to be executed.
1 —— &dd initial code here (run once)
:
4
5 while trus do
&
7 —— Add loop code here (cyclic run)
Pause 9 Ly vl = mem.inter.Read(100) I
“ program - : --add U
d b . 11 vl =wvl + 1
epugging 1z —— write to 5200
13 rev = mem.inter.Write(200,vl)
14
15 =1 = "Hello World!"™
16 mem.inter.Writelscii (200,51, string.len(sl))
17
8 —-- one cycle is 250ms
15 sys.8leep (250)
20
21 end
23
24
Run line by line. If the instruction to be executed is a function, this
instruction is executed completely. In the example below, if you
execute [Run line by line] at line 24, the program jumps to line 26.
11 while trus do
12
iz -— Add loop code here (cyclic run)
14 —— read 5100
15 vl = mem.inter.Read(100)
. 16 -— add 10
Run_llne F10 17 vi=ovl+l
by||ne 18 write to 5200
18 rev = mem.inter.Write (200,wl)
20
21 sl = "Hello World!"™

22 mem.inter.Writelscii (300,sl,string.len(sl))

result = equal (10,20)

sys.Slesp (250)

28 end

AELTA

Toolbar for the Lua programming window

Symbol Name Hotkey Description
When the instruction to be executed is a function, jump into the
function to be executed. In the example below, line 24 “result =
equal (10,20)” is a function, and its contents are in line 4 - 8. At line
24, if you execute “Jump into”, it jumps to execute line 4.
11 while true do
:_5 -— Add loop code here (cyclic run)
14 -— read 5100
15 vl = mem.inter.Read(100)
16 -— add 10
17 vl = w1 + 1
18 -— write to 5200
19 rev = mem.lnter.Write (200, vl)
. E_ sl = "Hello World!"™
:].. JUmp into F11 22 mem.inter.Writehscii (300,sl,string.len(sl))
4 result = egual (10,20) I
25 -— one cycle 1s Z50ms
26 sys.Sleep (250)
E-_ end
e
L= flm—+4 -1 ﬁ—m.:'l (=]] o= |
4 if wal 1 == val 2 then |
15 return 1 :
lg else F . 1
:’.- return 0 unctlon :
e end contents |
k;__fﬂg______________________________/
If the instructions in the function are in execution, jump out of the
current function and go to the next instruction. As shown in the
example below, the function contents are in line 4 - 8 that are called
by line 24. Execute “Jump out” at line 4, it automatically runs line 4 -
8 and then goes to line 26.
(w4 Jump out | Shift+F11 A ; o)
— q
|5 return 1 :
:6 el=e 1
i’ return O Function |
18 end 1
I end contents

Y o e e e e e o e
]

A AELTA

Symbol Name Hotkey Description

11 while true do
12
L3 -— Add loop code here (cyclic run)
14 -— read 5100
15 vl = mem.inter.Read (100)
16 —-— add 10
17 vl =wl + 1
18 -— write to 3200
15 rev = mem.inter.Write (200, vl)
20
&, sl = "Hello World!"
22 mem.inter.Writelscii (300,sl,string.len(sl))
=
z4 result = equal(10,20)
IES 3 sys.Sleef:(SSO] I
EE end

& Resume F5 Carry on executing the program after the program pauses.

Set the breakpoint. During online debugging, the program
‘ Breakpoint F9 execution pauses at a breakpoint. You can set multiple
breakpoints at the same time.
Delete all

%

breakpoints

Delete all breakpoints in the program.

Input

Open the Input Address window to input the bit or word address.

Input Address e

Type Address
ﬁ Address OBt | ®Wt |]
Check if the Lua syntax in the project is correct. If there is any
incorrect syntax, the output window displays the error description.
Ouput o X
[Message | Error |[] Warning | =]
Program
M
E syntax i o
check % Progranm syt amalysds failed

x Program name: Main (6): ='expected near '

A AELTA

The Lua program editing window includes four parts, “Line number”, “Breakpoint

setting”, “Program code folding”, and “program code editing”. You can click on
[Breakpoint setting] to set or cancel the breakpoints.

. boB T
Line _ , Program
number | / code folding 1l code here (run once) \‘I
P 2 1 H
3 i ction egual (val 1,val Z2) !
11 while trues do H
. 1
12 i 1
13 | —— Add loop code here (cyclic run) i
12 ! -- read $100 i
15 @ vl = mem.inter.Bead{100) !
16 | -— add 10 I
17 vl = vl + 1 I
18 1 -— write to 3200 H
19 | rev = mem.linter.Write (200, wvl) H
e 1
2 ; 1
21 ! sl = "Hello World!" i
: mem.inter.Writekscii (300,51, string.len(sl)) i
1
- |
i result = equal (10,20) I
1 . -
Breakpoint : -— ones CYC,J.._EHJ_S 250ms i
setting ; sys.5leep(Z30) :
1
. v 1 = Program code editing i
29 | i
: 1
30 Y end /
= D e e e e e i ,&'

A AELTA

1.1.2 Program monitor variable window

You can go to [View] to open the [Program monitor variable window]. This window
allows you to monitor the Lua program execution results by specifying the
variables. You can also change the variable in this window. For the operation
example, please refer to the description in 3.2 Debug mode.

Element 5 Tools Options

Tools 2
|T| Project Window
|?| Address List Window
|?| Properties
|?| Element Bank Window
|?| Output Window
o Find Results Window k

|I| Screen Manager

u"rl Prograrn monitor variable window

| v | Program example helper window

@ | T 1
.Watch variable
| Mame |Va|ue | Global / Local | Type | Format |
| wn 1 Global Mumber DEC
BE! Hello World! Global String DEC
| |valt nil Local DEC

10

A AELTA

1.1.3 Program example helper window

You can go to [View] to open the [Program example helper window].

Element Screen Tools Options

Tools [
Project Window

Address List Window

Properties

Element Bank Window

| s |

Output Window
Find Results Window b

<

Screen Manager

v | Program monitor variable window
v

Program example helper window

&)

This window lists all the Lua functions, including Basic syntax, Internal memory -$
(for reading and writing), Static memory- $M (internal register for non-volatile
reading and writing), External link (reading / writing address for controller), File
read / write / export / list, Math, Screen (for screen operation), String, System
library, Serial port communication, Text encoding, and Utility.

11

A AELTA

The window has two parts, the upper part is the instruction list and the lower is
the description and example of each instruction.

Program example assistant o x

Items Action
v Basic syntax
[F] if then else elseif end
[l forvar=1,3 do ...end
[while
[l table, array
[+-=r%n
[l function, call function
[logic: xor and or not Ishift rshift
~ Internal memory - §
mem.inter.Read Add
[mem.inter.ReadDW
[l mem.inter.ReadFloat
[l mem.inter.ReadBit
[l mem.inter.Write
[l mem.inter. WriteDW
[l mem.inter.WriteFloat
[mem.inter.WriteBit
[l mem.inter.ReadAscii Instruction list
[l mem.inter.WriteAscii

v Static memory - SM
N s e s) e, o o, . . o e e o e

i e s s —————————————
o

\,

Y
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]

V4

[Detail]
[Range]
range: $0 ~ $65535

[Read, write unsigned word]
—vl=4%100
v1 = mem.inter.Read(100) -- Read
vl=v1l+ 100
mem.interWrite(100, v1) -- Write

[Read signed word]

--v1 =%101 (Signed)
v1 = mem.interRead(101, "signed™)

Instruction description and example

o ——————————————————————
-

N P

LGN = G =L TS Program example assistant _

By clicking the Add button, you can add the instruction example in the Lua
program. Please refer to Table 3.2 Example of adding Lua instruction.

12

A AELTA

Table 1.2 Example of adding Lua instruction

Step 1: double-click the [Main] tab in the DOPSoft project tree to enter the editing interface.

Project 14
= MewHMI
Eﬂ--ﬁ Screen

Eg---jj Communication
P Tag

..... Alarm

EEl" Recipe

El History Buffer
-4 Multi-language
..... ﬂ Account Settings
..... A Configuration

.....] Text Bank

Open
programming
window

1 -— Add initial code here (run once)
-

3

4

5 [Hdwhile true do

[

T —— Add loop code here (cyclic run)
8

9

10

11 -— one cycle is 250ms

1z sys.Sleep(250)

13

14 end

15

1& i

17

13

I:XBEUM

Step 2: go to [View] to open the [Program example helper window]

Element 5 n Teols Options

Tools »

<,
=)
3,
m
s
=
= |
g
=

Address List Window

Properties
Open
programming
window

Elernent Bank Window

FEEEE

Output Window
Find Results Window b

Screen Manager

(<]

Macro Manager Window

Program example helper window

foom In

14

A AELTA

1. Lua program

Add Lua
instruction
mem.inter.Read

Step 1: execute [Internal memory - $] > [mem.inter.Read] > click the Add button.

Program example assistant o X

ltems Action ™
* Basic syntax
[']l i then else elseif end
[l forvar=1,3do ... end
[while
[] table, array
[+-=roe
[']l function, call function
[l legic: xor and or not Ishift rshift
% Internal memory - §
merm.inter.Read
[mem.inter.ReadDW
[mem.inter.ReadFloat
[mem.inter.ReadBit
[l mem.inter.Write
[mem.inter.WriteDW
[mem.inter.WriteFloat
[l mem.inter.WriteBit
[mem.inter.ReadAscii
[mem.inter.WriteAscii
w Static memory - SM
-

[+ 8
[+

- . L
Step 2: a new instruction is added to the Lua program editing interface. Users can edit the
program by referring to this example.

pEU|[GGG 2|0 &

—— Bdd initial code here (run once)
10 while trues do

1z —-— 2dd loop code here (cyclic run)

14
15 [vl = mem.inter.Read(0)]

8 -— one cycle is 250ms
=l sys.Sleep (250)

22 end

15

A AELTA

1.2 Debug mode
For the Lua program debugging method, please refer to Table 3.3 Lua program debugging
example.

Table 1.3 Lua program debugging example

Step 1: double-click the [Main] tab in the DOPSoft project tree to enter the editing interface.

Project o ox

R T—

=0 MewHMI
-7 Sereen
Eg.--jj Communication

EEI-- Recipe
El History Buffer
- Multi-language
..... m. Account Settings
..... A Configuration

..... | Text Bank

..... % Picture Bank

@ Main

Edit [Main]
program

“/E‘I Main x _
L R e 0

1 —-— Add initial code here (run once)
3

4

5 [Iwhile trus do

[

7 —— Add loop code here {(cyclic run)
8

b]

1a

11 —-— one cycle is Z50ms

12 sys.Sleep (250)

13

14 end

15

16 o

=
=]

16

A\ neLta
Iy I

Step 2: add the following string to the [Main] program.

This program reads the value from $100 and write this value plus 1 to $200. Next, write the string
“Hello World!” to $300

-- read $100

vl = mem.inter.Read(100)

-- add 1o

vli =vl +1

-- write to $200

rev = mem.inter.Write(200,v1)

sl = "Hello World!"
mem.inter.WriteAscii(300,s1,string.len(sl))

WS & v <

. . 1 —— 2dd initial code here (run once)

Edit [Main] -

program N
4
5 [Hwhile true do
6
T — add f=¥atat Egdﬁ hﬁ;ﬁ [—er=~]14 -~ +212n1)
8 —— read 5100 y
o vl = mem.inter.Read{100)
10 —— add 10
11 vl =1 + 1
1z —— write to 5200
13 rev = mem.linter.Write (200,v1)
14
15 gl = "Hello World!™
16 mem. inter.Writelscii (200,21, string.len(=sl))
17
18 —-— one cycle is Z50ms
iz L?ys.sleep{_.E-D} y
21 =nd

17

A\ neLta
ey I

Step 1: go to Screen_1 to create two Numeric Entry elements and set the read addresses as $100
and $200 respectively. Then, create one Character Entry element with the read address as $300
and the string length as 12.

$100 $200
H H
Edit HMI W:3300
screen
Step 2: create four numeric display elements on Screen_1. Set the read address as NET1_IP1,
NET1_IP2, NET1_IP3, and NET1_IP4 of Internal Parameter.
R:NET1 IP1 R:NET1 IP2 R:NET1 IP3 R:NET1 IP4
IP :
Step 1: download the project to the HMI. The HMI display is as follows:
$100 $200
Execution
results

18

A AELTA

Step 2: click the left side of line 13 in the Lua program to set a breakpoint.

1 —— Add initial code here (run once)
3
4
5 while trus do
&
7 —— Add loop code here (cyclic run)
8 —-— read 5100
9 vl = mem.inter.Read (100)
10 —— add 10
11 vl = w1 + 1
Y -— write to 5200
134 rev = mem.inter.Write (200,vl)
15 8]l = "Hello World!"
16 mem.inter.Writekscii (200, sl,string.len(sl))
17
18 result = egqual (10,20)
19 —-— ons cycle is Z50ms
20 sys.3leep (250)
21
z3 end

) Step 3: go to the Lua programming window to start online program debugging.
Executon o e < R
results Main

—-— Bdd initial code here (run once)

Step 4: specify the address as the HMI IP.

IP address X
Static [P [172.16.196.104 i I
[] Auto Search Update
HMI Model type Source IP Address Port

e ok]| omen

19

A AELTA

Step 5: click OK and the Lua program starts running online. Then, it stops at line 13 where the
breakpoint is placed.
1 —— 2dd initial code here (run once)
3
4
5 [lwhile true do
=
7 —— Add loop code here (cyclic run)
a8 —— read 3100
g vl = mem.inter.Read(100)
Execution 10 —— add 10
results 11 vl =+vl + 1
3 3 — Hiilii P L nTh]
13(} rev = mem.inter.Write (200,v1)
13
15 sl = "Hello World!"
16 mem. inter .Writehscii (300, =sl,string.len(=sl))
17
18 result = equal (10,20)
19 —-— one cycle is 250ms
20 gys.8lesp (250)
21
23 =nd

20

A AELTA

Monitoring
variable

Step 1: enter “v1” in the monitoring variable window.

Watch variable

| Mame |‘l.|"ah.1:-:- |‘.'3h:mt:al,ir Local | Type | Format |
Jlil I Global Number DEC
|| |

Step 2: set 50 for $100 on the HMI.

$100

Step 3: click on the arrow button to carry on the execution in the Lua program editing window.

ME Main x_

—— 2dd initial codes here

(run once)

Step 4: Lua prograr'r; runs and then stops again at line 13, where the breakpoint is placed.
Because of the instructions of line 9 and 11, “v1” reads the value of $100 and plus 1, then “v1” in
the variable monitoring window is 51.

| Mame Value Global / Local | Type | Format |

n | 51 Global Number DEC

21

A AELTA

1.3 Subroutine execution

You can use subroutines in the Lua program to simplify the program for easy maintenance
and development. In the Main program, you can use a “require” instruction to load the
subroutine. Please refer to Table 1.4 Subroutine execution example.

Table 1.4 Subroutine execution example

Step 1: double-click [Main] in the DOPSoft project tree to enter the editing interface.

Project o =

i

=8 NewHMI

- Screen
Eg..-jj Communication

"“‘v Tag

EEI" Recipe

-.[HH] History Buffer
) Multi-language
..... ‘ﬁ. Account Settings
----- # Configuration

Edit [Main]
program

1 -— Bdd initial code here (run once)
3

4

5 while true do

[

7 —- Add loop code here (cyclic run)
8

g

10

11 —-- one cycle is Z250ms

1z sys.38leep (250)

13

14 end

22

A AELTA

Step 2: add the following string to the [Main] program.

This part of the program compares the values of $100 and $101, and then write the result to $200.
If these two values are equal, the result is 1; if not, the result is 0.

[require "Prog001"] in the second line loads Prog001. The instruction in line 9 calls the function in the
subroutine.

require "Progeel”
while true do
-- Add loop code here (cyclic run)
-- read $100,%101
vl = mem.inter.Read(100)
v2 = mem.inter.Read(101)
-- compare these values
result = equal(vil,v2)
--write result to $200
rev = mem.inter.Write(200,result)

-- one cycle is 250ms

Edit [Main] sys.Sleep(250)
program

end

1 —— 2dd initial code here (run once)

2 require "ProgO0Ol”

3 while trus do

4 —— 2&dd loop code here (cyclic run)
5 —-— read 5100,5101

& vl = mem.inter.Read{100)

7 v2 = mem.inter.Read(l101)

g —— compares these values

g result = equal{vl,vZI)
10 ——write result to 5200
11 rev = mem.linter.Write (200, result)
12
13 —-— one cycle is Z250ms
14 sys.8lesp (250)
15 end
le

23

A AELTA

1. Lua programming

Step 1: right-click [Program] in the DOPSoft project tree to add a new program.

Project o

@ +
= MewHMI
[}E Screen
[j---jj Communication
@ Tag
..... [Z] Alarm
-] Recipe
.[HB History Buffer
..... @) Multi-language
..... {ﬁ Account Settings
..... A Configuration

.....] Text Bank
----- 5% Picture Bank
9@ Add
L la] N mo—
Export
Import
Edit sub-
program ' siep 2: double-click Prog001 to enter the editing interface.
Project B x
=8 NewHM|
[]--E Screen
[]---jj Communication
@ Tag
----- [5] Alarm
[]--E Recipe

[History Buffer
.....) Multi-language
..... ‘ﬁ Account Settings
..... v Configuration
..... 7] Text Bank

..... % Picture Bank
E'"E Program

W30

l F'rogElEl1 .

24

A AELTA

1. Lua programming

Step 3: add the string below to Prog001.
This program is a function and compares the two values to check if they are equal. If these two
values are equal, the result is 1; if not, the result is 0.

function equal (val_1,val_2)

if val_1 == val_2 then

return 1
else
return @
end
Editsub- =~ "
program _
PR |GG >0
1 function egqual (val 1,wval Z)
2 if val 1 == wal 2 then
3 return 1
- =l=es
5 return 0O
6 =nd
7 =nd
Go to Screen_1 to create three Numeric Entry elements with the read addresses as $100, $101,
and $200 respectively.
Edit HMI $100 $101 Result
screen wswoT wsllT L —
’ 12345 _J ’ 12345 _J ’ 12345 _J
Step 1: download the project to the HMI. Set 250 for both $100 and $101, and the HMI displays
the comparison result as 1 as shown below:
$100 $101 Result
| 250 J | 250 J | 1 J
Execution
results Step 2: change the value of $100 to 200, and the HMI displays the comparison result as 0 as

shown below:

$100 $101 Result

[= fe

25

