
1

1. Lua program execution function

Lua is a programming language similar to Python and JavaScript. Its syntax is easier and

more user-friendly than the macros provided by the HMI. You can use simple instructions

to complete complicated computing and develop variable functions, as well as

programming the functions on your own, which makes the programming more flexible and

easier to meet the application requirements.

The Lua program runs repeatedly during the HMI operation, which is similar to the HMI

Clock macro and can run with other HMI macros at the same time without affecting the

execution efficiency of each.

Execute Clock macro

Clock macro execution completed

Execute screen cycle macro based

on the delay time of cycle macro

(100 ms)

HMI boots up or

exits system screen and enters HMI screen

HMI power off

Repeat

Execute Lua

Lua execution completed

No delay and execution continues

Repeat

The Lua program editing interface and the IDE (Integrated Development Environment) are

similar. In addition to the program editing function, it has a debug function that allows you

to run the program on the HMI or simulate online (with a simulator) to check if the Lua

program is suitable for the circumstance. The debug function can set the breakpoint, run

the code line by line, as well as monitor the variables for quick modification of the program.

Компания "СТОИК"
Авторизованный дистрибьютор в России
Тел.: (495) 661-2441, 661-2461
email: sales@deltronics.ru
www.deltronics.ru

2

Please refer to Table 1.1 Lua programming example.

Table 1.1 Lua programming example

1. Lua programming

Edit [Main]
program

Step 1: double-click the [Main] tab in the DOPSoft project tree to enter the editing interface.

3

1. Lua programming

Edit [Main]
program

Step 2: add the following string to the [Main] program.
This program reads the value from $100 and write this value plus 1 to $200. Next, write the string
“Hello World!” to $300.

 -- read $100
 v1 = mem.inter.Read(100)
 -- add 10
 v1 = v1 + 1
 -- write to $200
 rev = mem.inter.Write(200,v1)

 s1 = "Hello World!"
 mem.inter.WriteAscii(300,s1,string.len(s1))

4

1. Lua programming

Edit HMI
screen

Go to Screen_1 to create two Numeric Entry elements with the read addresses as $100 and $200
respectively. Then, create one Character Entry element with the read address as $300 and the
string length as 12.

Execution
results

Step 1: download this project to the HMI. The display is as follows after HMI power-on.

Step 2: change the value of $100 to 95, and the value of $200 changes to 96 immediately.

5

1.1 Lua program window

1.1.1 Lua programming window

Double-click on the Lua Program to open the Lua programming window as shown in
the figure below.

Toolbar function description for the Lua programming window is as follows:

Toolbar for the Lua programming window

Symbol Name Hotkey Description

Start online
program

debugging
F5

Enable online debugging of the Lua program;
the debugging target can be the HMI or simulator.

Stop
program

debugging
Shift+F5 Stop the current Lua program in execution.

Toolbar

Programming area

6

Toolbar for the Lua programming window

Symbol Name Hotkey Description

Pause
program

debugging
-

Pause the current Lua program in execution. When pausing, a
yellow arrow points to the the next instruction to be executed.

Run line
by line

F10

Run line by line. If the instruction to be executed is a function, this
instruction is executed completely. In the example below, if you
execute [Run line by line] at line 24, the program jumps to line 26.

7

Toolbar for the Lua programming window

Symbol Name Hotkey Description

Jump into F11

When the instruction to be executed is a function, jump into the
function to be executed. In the example below, line 24 “result =
equal (10,20)” is a function, and its contents are in line 4 - 8. At line
24, if you execute “Jump into”, it jumps to execute line 4.

Jump out Shift+F11

If the instructions in the function are in execution, jump out of the
current function and go to the next instruction. As shown in the
example below, the function contents are in line 4 - 8 that are called
by line 24. Execute “Jump out” at line 4, it automatically runs line 4 -
8 and then goes to line 26.

Function
contents

Function

contents

8

Toolbar for the Lua programming window

Symbol Name Hotkey Description

Resume F5 Carry on executing the program after the program pauses.

Breakpoint F9
Set the breakpoint. During online debugging, the program
execution pauses at a breakpoint. You can set multiple
breakpoints at the same time.

Delete all
breakpoints

Delete all breakpoints in the program.

Input
Address

Open the Input Address window to input the bit or word address.

Program
syntax
check

Check if the Lua syntax in the project is correct. If there is any
incorrect syntax, the output window displays the error description.

9

The Lua program editing window includes four parts, “Line number”, “Breakpoint
setting”, “Program code folding”, and “program code editing”. You can click on
[Breakpoint setting] to set or cancel the breakpoints.

Line
number

Breakpoint

setting

Program code editing

Program
code folding

10

1.1.2 Program monitor variable window

You can go to [View] to open the [Program monitor variable window]. This window
allows you to monitor the Lua program execution results by specifying the
variables. You can also change the variable in this window. For the operation
example, please refer to the description in 3.2 Debug mode.

11

1.1.3 Program example helper window

You can go to [View] to open the [Program example helper window].

This window lists all the Lua functions, including Basic syntax, Internal memory -$
(for reading and writing), Static memory- $M (internal register for non-volatile
reading and writing), External link (reading / writing address for controller), File
read / write / export / list, Math, Screen (for screen operation), String, System
library, Serial port communication, Text encoding, and Utility.

12

The window has two parts, the upper part is the instruction list and the lower is
the description and example of each instruction.

By clicking the Add button, you can add the instruction example in the Lua
program. Please refer to Table 3.2 Example of adding Lua instruction.

Instruction list

Instruction description and example

13

Table 1.2 Example of adding Lua instruction

1. Lua program

Open
programming

window

Step 1: double-click the [Main] tab in the DOPSoft project tree to enter the editing interface.

14

1. Lua program

Open
programming

window

Step 2: go to [View] to open the [Program example helper window]

15

1. Lua program

Add Lua
instruction

mem.inter.Read

Step 1: execute [Internal memory - $] > [mem.inter.Read] > click the Add button.

Step 2: a new instruction is added to the Lua program editing interface. Users can edit the
program by referring to this example.

16

1.2 Debug mode

For the Lua program debugging method, please refer to Table 3.3 Lua program debugging

example.

Table 1.3 Lua program debugging example

1. Lua programming

Edit [Main]
program

Step 1: double-click the [Main] tab in the DOPSoft project tree to enter the editing interface.

17

1. Lua programming

Edit [Main]
program

Step 2: add the following string to the [Main] program.

This program reads the value from $100 and write this value plus 1 to $200. Next, write the string
“Hello World!” to $300.

 -- read $100

 v1 = mem.inter.Read(100)

 -- add 10

 v1 = v1 + 1

 -- write to $200

 rev = mem.inter.Write(200,v1)

 s1 = "Hello World!"

 mem.inter.WriteAscii(300,s1,string.len(s1))

18

1. Lua programming

Edit HMI
screen

Step 1: go to Screen_1 to create two Numeric Entry elements and set the read addresses as $100
and $200 respectively. Then, create one Character Entry element with the read address as $300
and the string length as 12.

Step 2: create four numeric display elements on Screen_1. Set the read address as NET1_IP1,
NET1_IP2, NET1_IP3, and NET1_IP4 of Internal Parameter.

Execution
results

Step 1: download the project to the HMI. The HMI display is as follows:

19

1. Lua programming

Execution
results

Step 2: click the left side of line 13 in the Lua program to set a breakpoint.

Step 3: go to the Lua programming window to start online program debugging.

Step 4: specify the address as the HMI IP.

20

1. Lua programming

Execution
results

Step 5: click OK and the Lua program starts running online. Then, it stops at line 13 where the
breakpoint is placed.

21

1. Lua programming

Monitoring
variable

Step 1: enter “v1” in the monitoring variable window.

Step 2: set 50 for $100 on the HMI.

Step 3: click on the arrow button to carry on the execution in the Lua program editing window.

Step 4: Lua program runs and then stops again at line 13, where the breakpoint is placed.
Because of the instructions of line 9 and 11, “v1” reads the value of $100 and plus 1, then “v1” in
the variable monitoring window is 51.

22

1.3 Subroutine execution

You can use subroutines in the Lua program to simplify the program for easy maintenance
and development. In the Main program, you can use a “require” instruction to load the
subroutine. Please refer to Table 1.4 Subroutine execution example.

Table 1.4 Subroutine execution example

1. Lua programming

Edit [Main]
program

Step 1: double-click [Main] in the DOPSoft project tree to enter the editing interface.

23

1. Lua programming

Edit [Main]
program

Step 2: add the following string to the [Main] program.

This part of the program compares the values of $100 and $101, and then write the result to $200.
If these two values are equal, the result is 1; if not, the result is 0.

[require "Prog001"] in the second line loads Prog001. The instruction in line 9 calls the function in the
subroutine.

 require "Prog001"

while true do

 -- Add loop code here (cyclic run)

 -- read $100,$101

 v1 = mem.inter.Read(100)

 v2 = mem.inter.Read(101)

 -- compare these values

 result = equal(v1,v2)

 --write result to $200

 rev = mem.inter.Write(200,result)

 -- one cycle is 250ms

 sys.Sleep(250)

end

24

1. Lua programming

Edit sub-
program

Step 1: right-click [Program] in the DOPSoft project tree to add a new program.

Step 2: double-click Prog001 to enter the editing interface.

25

1. Lua programming

Edit sub-
program

Step 3: add the string below to Prog001.

This program is a function and compares the two values to check if they are equal. If these two
values are equal, the result is 1; if not, the result is 0.

 function equal (val_1,val_2)

 if val_1 == val_2 then

 return 1

 else

 return 0

 end

end

Edit HMI
screen

Go to Screen_1 to create three Numeric Entry elements with the read addresses as $100, $101,
and $200 respectively.

.

Execution
results

Step 1: download the project to the HMI. Set 250 for both $100 and $101, and the HMI displays
the comparison result as 1 as shown below:

Step 2: change the value of $100 to 200, and the HMI displays the comparison result as 0 as
shown below:

