

Delta CNC Solution

Серия NC300 Руководство пользователя

Предисловие

Благодарим Вас за приобретение данного устройства. Перед его включением, пожалуйста, ознакомьтесь внимательно с данным Руководством, чтобы избежать последствий неправильной эксплуатации устройства. Мы рекомендуем также хранить данное Руководство в доступном месте для быстрого поиска ответов при необходимости.

Данное Руководство включает следующие разделы:

- Установка и предэксплуатационный осмотр NC контроллера
- Разъемы и подключение
- Функции и режимы работы
- Параметры NC системы
- Описание G-кодов
- При возникновении проблем

Основные характеристики:

- встроенный 32-битный высокоскоростной, обладающий высокой производительностью 2-х ядерный процессор позволяет реализовать многофункциональный центр управления в режиме реального времени
- удобный интерфейс пользователя обеспечивает простоту управления и эффективный мониторинг процессов
- автонастройка сервопривода позволяет определить параметры привода автоматически. Таким образом, настроить узлы механической системы в режиме реального времени не составляет труда
- программа CNC Software предлагает удобный интерфейс настроек, а также позволяет создавать пользовательские экраны для различных режимов работы
- USB порт может использоваться для хранения или резервирования данных, а также для копирования параметров
- для шпинделя возможен выбор как типа связи, так и аналогового напряжения
- функция MPG поддерживает управление как по импульсному входу, так и от внешнего триггера
- использование подключаемых по последовательному интерфейсу модулей входов-выходов

Как пользоваться данным Руководством

Это Руководство может рассматриваться как учебное пособие по NC контроллеру. Оно содержит материал об установке, подключении, использовании и техническом обслуживании данного устройства.

Техническая поддержка

Есть ли у Вас возникнут любые вопросы, касающиеся данного продукта, свяжитесь с ближайшим дистрибьютером или сервис-центром Delta.

Необходимые меры предосторожности

- в зоне эксплуатации устройства не допускается присутствие воды, коррозийного или легковоспламеняющегося газа
- подключение устройства необходимо производить в строгом соответствии со схемой. Заземление — обязательно!
- во избежание поражения электрическим током, не отсоединяйте провода от контроллера при включенном напряжении питания

Уделяйте особое внимание нижеприведенным мерам предосторожности каждый раз, проводя предэксплуатационный осмотр, монтаж, выполняя подключения, а также при эксплуатации и контрольных осмотрах.

Знаки «Опасно!», «Внимание!» и «Стоп!» означают:

Опасно! – потенциальная угроза. Несоблюдение указанных мер предосторожности может причинить серьезные повреждения здоровью персонала или к фатальному исходу.

Внимание! - потенциальная угроза. Несоблюдение указанных мер предосторожности может причинить повреждение или вызвать серьезный дефект устройства и стать причиной его неправильного функционирования.

Стоп! – продолжение действия запрещено. Несоблюдение указанных мер предосторожности может причинить дефект устройству или стать причиной его неправильного функционирования.

Установка

- соблюдайте инструкцию по установке. В противном случае, устройство может быть повреждено.
- запрещается эксплуатировать устройство в среде, содержащей воду, коррозийный или легковоспламеняющийся газ и т.п. из-за вероятности поражения электрическим током или возникновения пожара.

Подключение

- устройство должно быть надежно заземлено (сопротивление в контуре заземления не должно превышать 100 Ом) во избежание поражения электрическим током или возникновения пожара.
- используйте только источники питания 24 В постоянного тока. Для предотвращения возможных повреждений подключение к контроллеру CNC необходимо производить в соответствии со схемой.
- используйте витую или экранированную витую пару для подключения удаленных модулей входов-выходов, а также DMCNET шины. Максимально допустимая длина кабеля при этом составляет 20 м. Для других типов сигнальных кабелей 10 м.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

- внешняя плата входов-выходов, подключаемая к контроллеру CNC, должна использовать внешний источник питания 24 В для цифровых входов и выходов.

Эксплуатация

- используйте утилиту MLC, чтобы задать правильную конфигурацию входов-выходов. В противном случае, это может привести к неправильной работе устройства.
- перед запуском в работу контроллера измените его настройки в соответствии с Вашим конкретным приложением. Если этого не будет сделано, возможна некорректная работа станка или его полная неуправляемость.
- перед включением станка убедитесь в работоспособности и легкодоступности кнопки аварийного останова.
- не производите никаких подключений во время работы. Это может привести к поражению электрическим током или травмам персонала.
- никогда не пользуйтесь острыми предметами для нажатий на экране панели. Это может повредить панель и привести к некорректной работе.

Техническое обслуживание и осмотр

- запрещается касаться внутренних деталей и компонентов устройства во избежание поражения электрическом током.
- запрещается вскрывать панель контроллера во избежание поражения электрическом током.
- не прикасайтесь к клемме заземления в течение 10 минут после выключения питания устройства, так как остаточное напряжение может привести к поражению электрическим током.
- перед заменой батарейки необходимо сначала отключить питание устройства. После замены проверьте значения системных параметров.
- не загромождайте вентиляционные отверстия во время работы контроллера. Недостаточное охлаждение может привести к выходу из строя устройства.

Подключение коммуникационного контура

- подключение необходимо производить в соответствии с документацией по подключению DMCNET.
- убедитесь, что все соединения и подключения выполнены надежно, чтобы избежать некорректного функционирования устройства.

Содержание данного Руководства может быть изменено без предварительного уведомления. Актуальную версию можно получить у дистрибьютера или скачать по адресу http://www.delta.com.tw/industrialautomation/.

Содержание

П	редисловие	2 -
1.	. Таблица функциональных клавиш	10 -
	1.1 Функциональные клавиши основной клавиатуры	11 -
2.	. Режимы работы	12 -
	2.1 Режим автоматического выполнения (AUTO)	13 -
	2.2 Режим редактирования программы (EDIT)	13 -
	2.3 Режим ручного ввода (MDI)	13 -
	2.4 Режим управления с внешнего штурвала (MPG)	
	2.5 Режим управления JOG (JOG)	13 -
	2.6 Режим возврата в начальную точку (НОМЕ)	13 -
3.	Структура функциональных групп	14 -
	Группа функций позиционирования (POS)	15 -
	Группа функций для работы с программой (PRG)	16 -
	Группа функций смещения (OFS)	20 -
	Группа функций диагностики (DGN)	21 -
	Группа функций тревог (ALM)	27 -
	Группа графических функций (GRA)	
	Группа функций параметризации(PAR)	30 -
4.	. Группа функций позиционирования (POS)	32 -
	4.1 Абсолютные координаты	34 -
	4.2 Относительные координаты	34 -
	4.3 Механические координаты	34 -
5.	. Группа функций для работы с программой (PRG)	35 -
	5.1 Настройки сети	37 -
	5.2 Создание нового файла	43 -
	5.3 Копирование	44 -
	5.4 Вставка	44 -
	5.5 Удаление файлов и каталогов	45 -
	5.6 Выбор/Отмена выбора нескольких файлов	45 -
	5.7 Переименование	47 -
	5.8 Создание каталога	48 -
	5.9 Поиск файлов	49 -

	5.10 Слияние файлов	50 -
	5.11 Сортировка	50 -
	5.12 Конвертирование DXFфайлов	51 -
	5.13 Файлы макросов	52 -
	5.14 Редактирование файлов	52 -
	5.15 Другие режимы	57 -
6.	6. Группа функций смещения (OFS)	66 -
	6.1 Задание координат	67 -
	6.2 Регистр инструмента	77 -
	6.3 Регистр магазина инструментов	
	6.4 Переменные макросов	83 -
7	7 Группа функций диагностики (DGN)	85 -
	7.1 Текущая информация процесса (PROCESS)	86 -
	7.2 Пользовательские переменные	87 -
	7.3 Мониторинг внешних устройств	88 -
	7.4 Установка пароля	89 -
	7.5 Импорт	91 -
	7.6 Экспорт	93 -
8	3 Группа функций тревог (ALM)	95 -
	8.1 Тревоги	96 -
	8.2 Журнал тревог	96 -
9	Э Группа функций графического отображения (GRA)	98 -
	9.1 Траектория обработки (РАТН)	99 -
	9.2 Предварительный просмотр траектории обработки (Preview)	100 -
10	10 Группа функций параметризации (PAR)	102 -
	10.1 Основной метод ввода параметров	103 -
	10.2 Альтернативный метод ввода параметров	104 -
	10.3 Настройка канала управления (Канал/Ось)	105 -
	10.4 Настройка RIO	106 -
	10.5 Поиск	107 -
	10.6 Группа параметров	107 -
1:	11 Таблица Скодов	109 -
	11.1 Таблица поддерживаемых Скодов для фрезерных станков	110 -
12	12 Описание Скодов	112 -
	G00: быстрое позиционирование	114 -

G01: линейная резка	114 -
G02/G03: дуговая резка	114 -
G04: пауза	116 -
G09: точный останов	117 -
G10/G11: включение/выключение режима ввода программируемых данных	117 -
G15: выключение режима полярных координат	118 -
G16: включение режима полярных координат	118 -
G17/G18/G19: выбор рабочей плоскости XY, XZ или YZ	119 -
G21/ G20: выбор системы измерения (метрическая или дюймовая)	119 -
G24/G25: включение/выключение зеркалирования	120 -
G28: возврат через первую заданную точку	
G29: возврат к начальной точке	121 -
G30: автовозврат через вторую, третью и четвертую заданные точки	122 -
G31: функция пропуска	122 -
G40: отмена коррекции радиуса инструмента	123 -
G41/G42: коррекция радиуса инструмента влево/вправо	123 -
G43/G44: компенсация длины инструмента	130 -
G49: отмена компенсации длины инструмента	131 -
G50/G51: включение и выключение масштабирования	131 -
G52: локальная система координат	132 -
G53: система координат станка (механическая система координат)	132 -
G54 ~ G59: стандартные рабочие системы координат	133 -
G61: режим точного останова	133 -
G64: режим резки	134 -
G65: вызов макроса	134 -
G66/G67: модальный вызов макроса и отмена вызова	135 -
G68/G69: вращение системы координат и его отмена	135 -
G73: цикл прерывистого сверления	136 -
G74: цикл нарезания левой резьбы	137 -
G76: цикл растачивания с бесконтактным извлечением инструмента	138 -
G80: отмена постоянного цикла	139 -
G81: стандартный цикл сверления	140 -
G82: цикл сверления с временной задержкой	140 -
G83: цикл прерывистого сверления	141 -
G84: цикл нарезания правой резьбы	142 -

	G85: стандартный цикл растачивания протяжкой	143 -
	G86: стандартный цикл растачивания	144 -
	G87: цикл растачивания детали с обратной стороны	145 -
	G88: цикл растачивания с временной задержкой	146 -
	G89: цикл растачивания протяжкой с временной задержкой	147 -
	G90: режим абсолютного позиционирования	148 -
	G91: режим относительного позиционирования	148 -
	G92: установка текущей позиции нулевой точкой абсолютной системы координат	148 -
	G94: скорость подачи в мм/мин	149 -
	G98: возврат к исходной точке в цикле	149 -
	G99: возврат к заданной точке в цикле	150 -
1	3 Мкоды	151 -
	13.1 М00 Остановка выполнения программы	152 -
	13.2 М01 Опциональная остановка выполнения программы	152 -
	13.3 М02 конец программы	152 -
	13.4 M30 конец программы, возврат курсора в начало программы	
	13.5 М98 вызов подпрограммы	153 -
	13.6 М99 возврат из подпрограммы	153 -
	13.7 Таблица часто используемых Мкодов	154 -
1	4 Макросы и переменные	155 -
	14.1 Переменные	156 -
	14.2 Синтаксис переменных	156 -
	14.3 Математические операции	157 -
	14.4 Изменение пути выполнения программы	158 -
1	5 Подключение	160 -
	15.1 Обзор интерфейсов	161 -
	15.2 Разъемы контроллера NC300	162 -
	15.3 Подключение разъема RS485	166 -
	15.4 Подключение разъема AXIS 1~4	166 -
	15.5 Подключение шпинделя	170 -
	15.6 Подключение внешнего штурвала MPG	174 -
	15.7 Подключение удаленных модулей входов/выходов	178 -
	15.8 Назначение входов/выходов станочного пульта NC300	182 -
	15.9 Назначение входов/выходов станочного пульта NC311	186 -
1	6 Параметры	- 190 -

	16.1 Обзор	- 191 -
	16.2 Параметры процесса	- 191 -
	16.3 Операционные параметры	- 193 -
	16.4 Магазин инструментов	- 196 -
	16.5 Шпиндель	- 197 -
	16.6 Механика	- 200 -
	16.7 Операция возврата в исходную точку	- 201 -
	16.8 Сеть	- 202 -
	16.9 Компенсация	- 203 -
	16.10 Система	- 206 -
	16.11 MLC	- 208 -
	16.12 Графика	- 209 -
	16.13 Сервопривод	- 210 -
	16.14 Описание и настройка RIO	
	16.15 Абсолютный энкодер	
17	7 Возможные проблемы и их решение	- 214 -
	17.1 Системные ошибки ПЛК (Коды: 0x1200 ~ 0x1300)	- 215 -
	17.2 Ошибки ЧПУ (Коды: 0х4200 ~ 0х4300)	- 216 -
	17.3 Ошибки каналов управления (Коды: 0xA000 ~ 0xD000)	- 218 -
	17.4 Ошибки конфигурации макросов	- 220 -
	17.5 Ошибки панели оператора (Коды: 0x3010 ~ 0x3FFF)	- 221 -
	17.6 Ошибки сервопривода	- 223 -

1. Таблица функциональных клавиш

Этот раздел знакомит пользователя с функциональными клавишами основной клавиатуры и станочного пульта.

- 1.1 Функциональные клавиши основной клавиатуры
- 1.2 Функциональные клавиши станочного пульта

1.1 Функциональные клавиши основной клавиатуры

Название	Описание	Поддерживаемые розима
		Поддерживаемые режимы
POS	Отображение координат. Групповая	Bce
DDC	клавиша	D
PRG	Редактирование программы.	Bce
	Групповая клавиша	_
OFS	Задание координат и смещения.	Bce
	Групповая клавиша	
DGN	Функции диагностики, параметры и	Bce
	состояние системы. Групповая	
	клавиша	
ALM	Отображение тревог. Групповая	Bce
	клавиша	
GRA	Графические функции. Групповая	Bce
	клавиша	
PAR	Изменение системных параметров.	Bce
	Специальная групповая клавиша	
SOFT	Панель управления ПО.	Bce
	Специальная групповая клавиша	
RESET	Клавиша сброса	Bce
Xi Dh	Координаты оси и код команды	Группа PRG
0^ 9/	Цифровые клавиши, а также	Группы PRG, OFS, DGN
,	символы мат. операций	, , ,
.>	Знак точки и символ мат. операции	Группы PRG, OFS
-]	Знак минуса и символ мат.	Группы PRG, OFS
'	операции	,
∩ PageUP,	Клавиши для пролистывания	Группы PRG, OFS, DGN
O PageDown	страниц вверх и вниз	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
↑ ; ↓,	Клавиши-стрелки, а также символы	Группы PRG, OFS, DGN
(& →#	мат. операций	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HOME end	Переход к началу (концу) слова	Группа PRG
SPACE	Пробел	Группа PRG
SHIFT	Переключение регистра заглавных и	Группа PRG
3,111	строчных букв	i pyima i ito
DEL ins	Удаление (вставка)	Группа PRG
BACKSPACE	Удаление (вставка) Удаление символа перед курсором	Группа PRG
ENTER	Клавиша ввода	Группы PRG, OFS, DGN
EXIT	Диалоговое окно для выхода	Группы PRG, DGN
()		Группы PRG, DGN
()	Скобки	
	Клавиши влево и вправо	Bce
F1 F6	Функциональные клавиши	Bce

2. Режимы работы

Контроллер ЧПУ предлагает несколько режимов функционирования. Данный раздел вкратце рассказывает о каждом из них.

- 2.1 Режим автоматического выполнения (AUTO)
- 2.2 Режим редактирования программы (EDIT)
- 2.3 Режим ручного ввода (MDI)
- 2.4 Режим управления с внешнего штурвала (MPG)
- 2.5 Режим управления JOG (JOG)
- 2.6 Режим возврата в начальную точку (НОМЕ)

2.1 Режим автоматического выполнения (AUTO)

Режим AUTO должен быть включен прежде чем произведен запуск программы на выполнение. В этом режиме доступен только файл исполняемой программы, в отличии от таких функций как редактирование программы или осевое перемещение в ручном режиме.

2.2 Режим редактирования программы (EDIT)

Редактирование программы возможно только в режиме EDIT. В этом режиме доступны различные функции из группы PRG. Обратите внимание, что запуск программы и ограничение осевых перемещений здесь запрещены.

2.3 Режим ручного ввода (MDI)

В этом режиме можно вывести на экран один программный блок из группы PRG для его выполнения. Как правило, ввод вручную одного программного блока делается для его немедленного исполнения. Функции редактирования или выполнения программы, а также осевых перемещений вручную недоступны в этом режиме.

2.4 Режим управления с внешнего штурвала (MPG)

В MPG режиме становится возможным управление осевыми перемещениями с внешнего штурвала. Таким образом можно в ручном режиме достигнуть более быстрых и точных перемещений по каждой оси. Функции редактирования, выполнения программы, а также функция JOG недоступны в этом режиме.

2.5 Режим управления JOG (JOG)

Этот режим работает с помощью клавиш осевых перемещений на станочном пульте, управляя таким образом, как скоростью, так и длиной каждого JOG движения. Используя клавишу быстрой подачи, скорость движения по оси определяется коэффициентом быстрой подачи. Функции редактирования и выполнения программы недоступны в режиме JOG.

2.6 Режим возврата в начальную точку (НОМЕ)

Когда система находится в режиме Home, клавишами осевых перемещений на станочном пульте можно привести каждую ось в исходную позицию. После перезапуска контроллера рекомендуется сразу же производить данную процедуру возврата в начальную точку. После того как она завершена, можно запустить программу на исполнение.

3. Структура функциональных групп

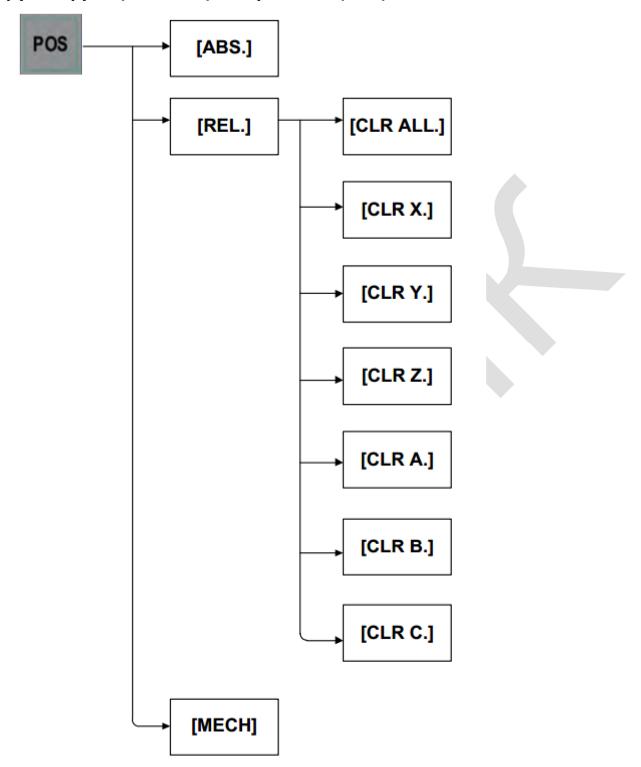
В этом разделе показывается место каждой функции контроллера ЧПУ в общей структуре функциональных групп. Раздел хорошо подходит для быстрого обзора функций.

Группа функций позиционирования (POS)

Группа функций для работы с программой (PRG)

Группа функций смещения (OFS)

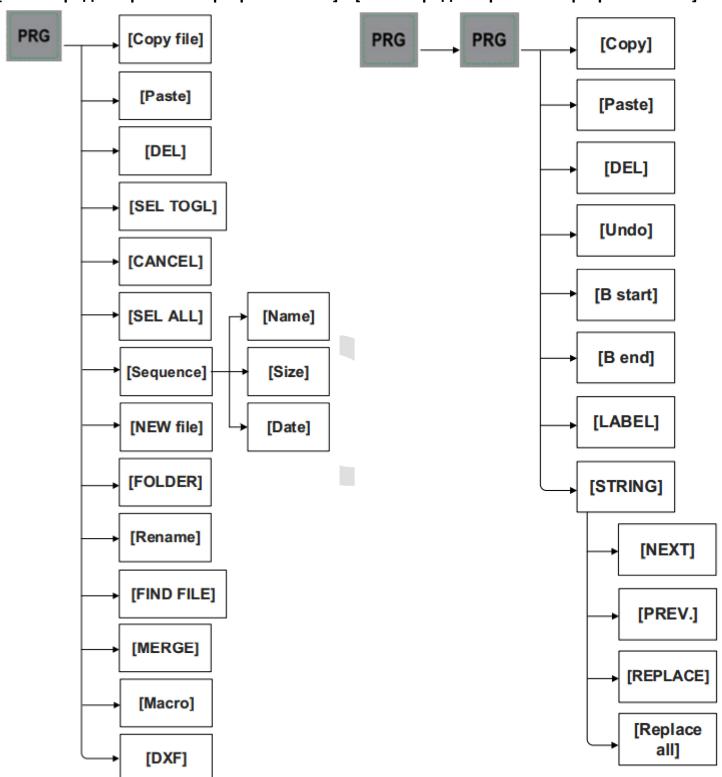
Группа функций диагностики (DGN)


Группа функций тревог (ALM)

Группа графических функций (GRA)

Группа функций параметризации (PAR)

Группа функций позиционирования (POS)

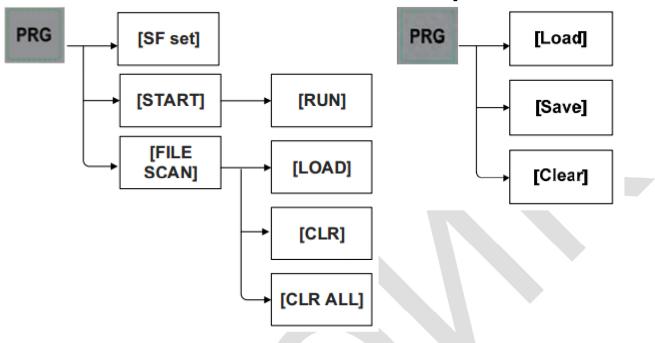


Группа функций для работы с программой (PRG) – 1

Группа функций для работы с программой (PRG) – 2

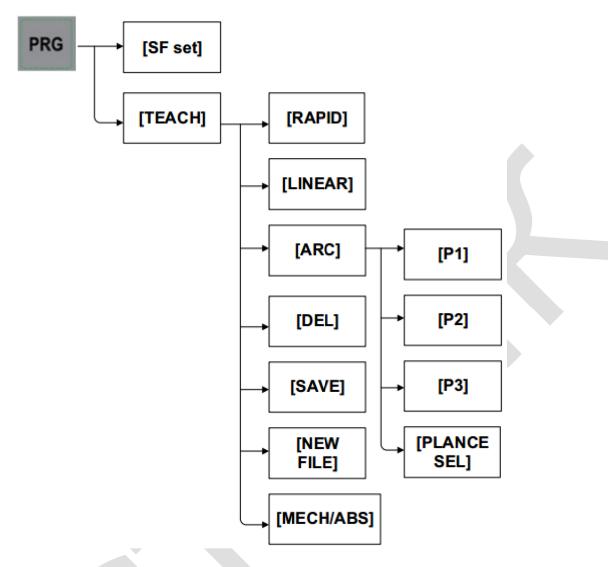
[Режим редактирования программы Edit]

[Режим редактирования программы Edit]

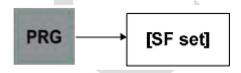


Группа функций для работы с программой (PRG)

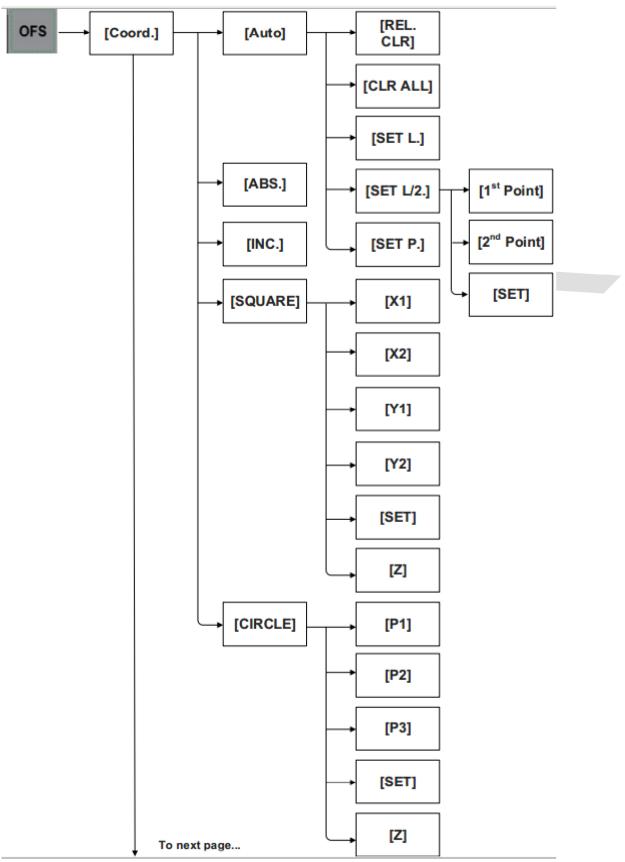
[Режим автоматического выполнения Auto]


Группа функций для работы с программой (PRG)

[Режим ручного выполнения Manual]

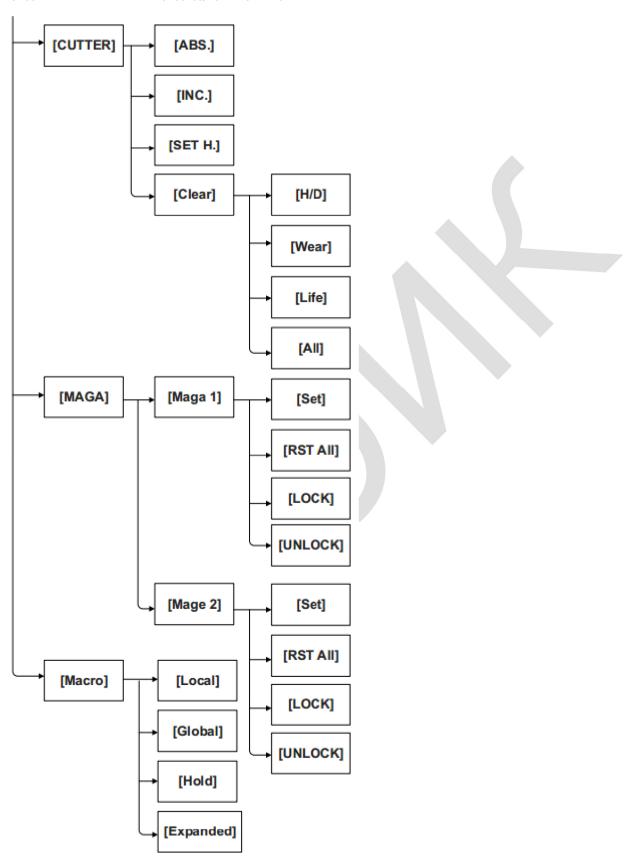

Группа функций для работы с программой (PRG)

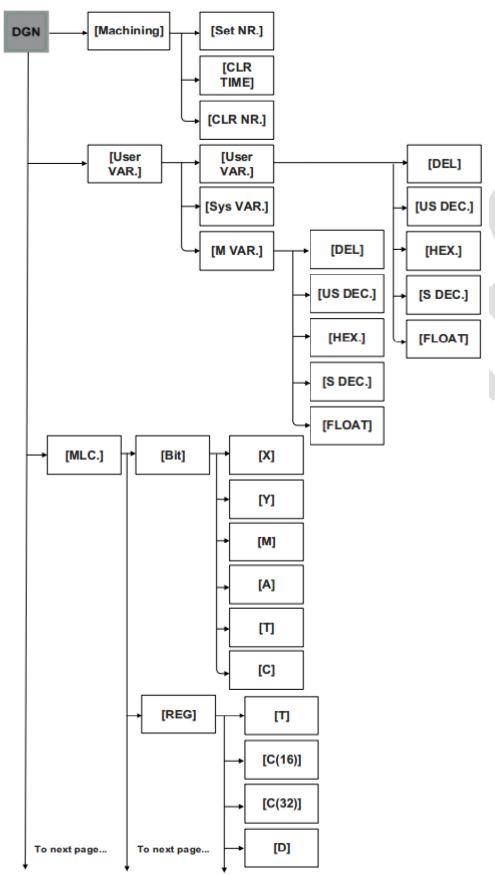
[Режим JOG], [Режим MPG]

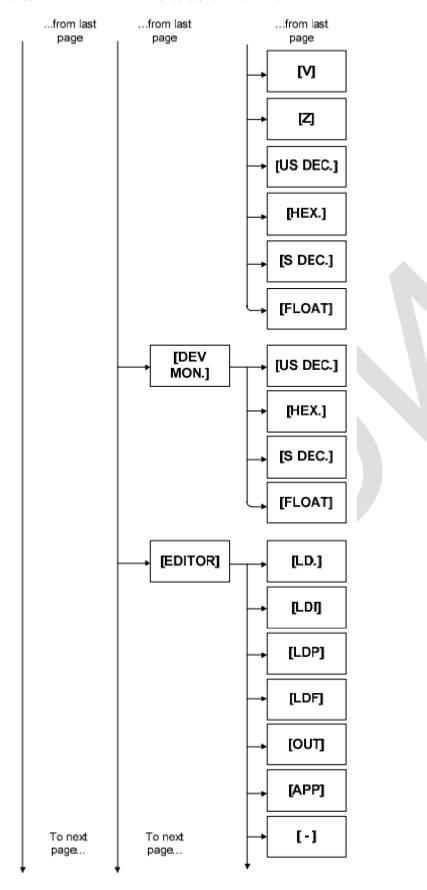


Группа функций для работы с программой (PRG)

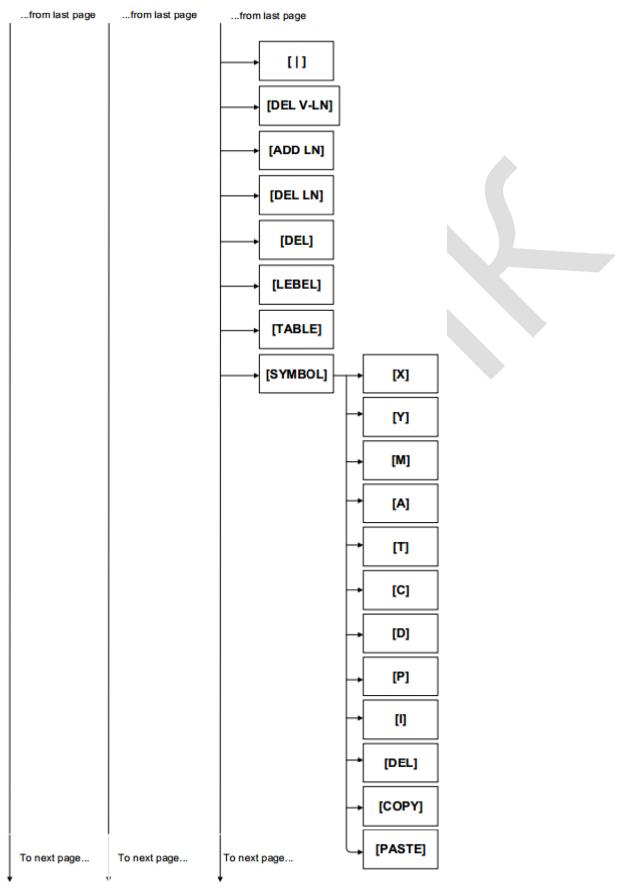
[Режим возврата в начальную точку НОМЕ]



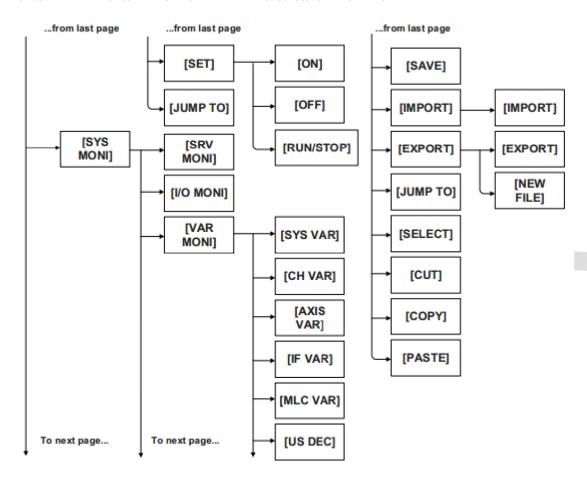

Группа функций смещения (OFS) - 1

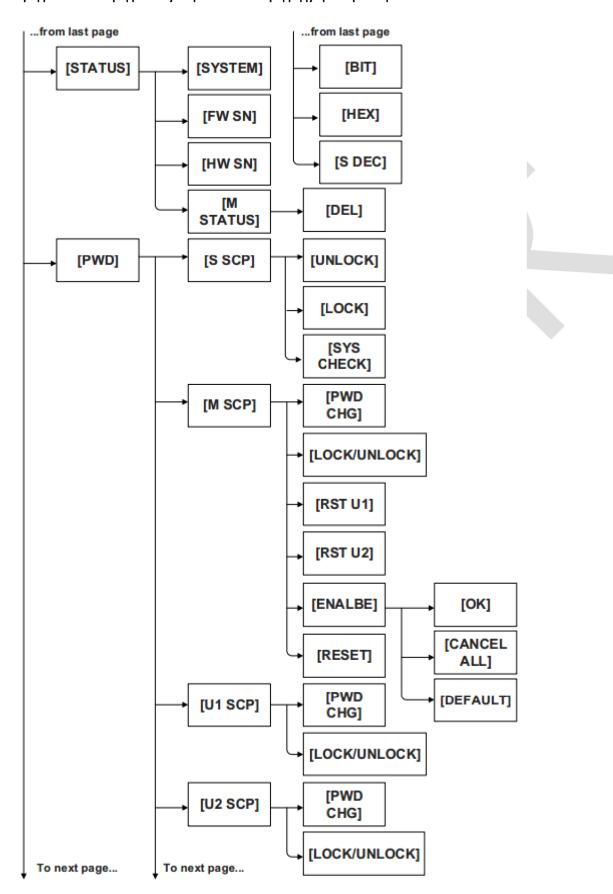

Группа функций смещения (OFS) - 2

Продолжение. Начало на предыдущей странице



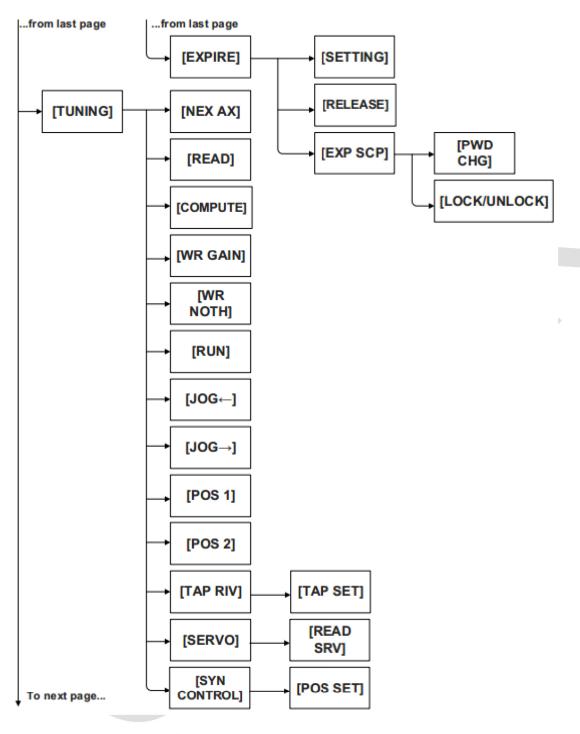
Продолжение. Начало на предыдущей странице

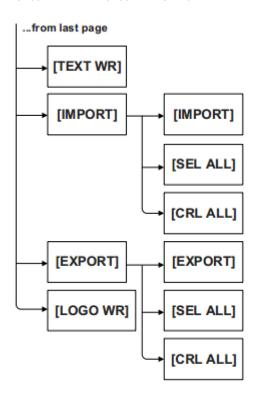

Продолжение. Предшествующая часть на предыдущей странице


продолжение на следующей странице

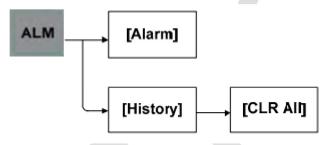
Перевод и адаптация компании «СТОИК» +7(495)661-24-61

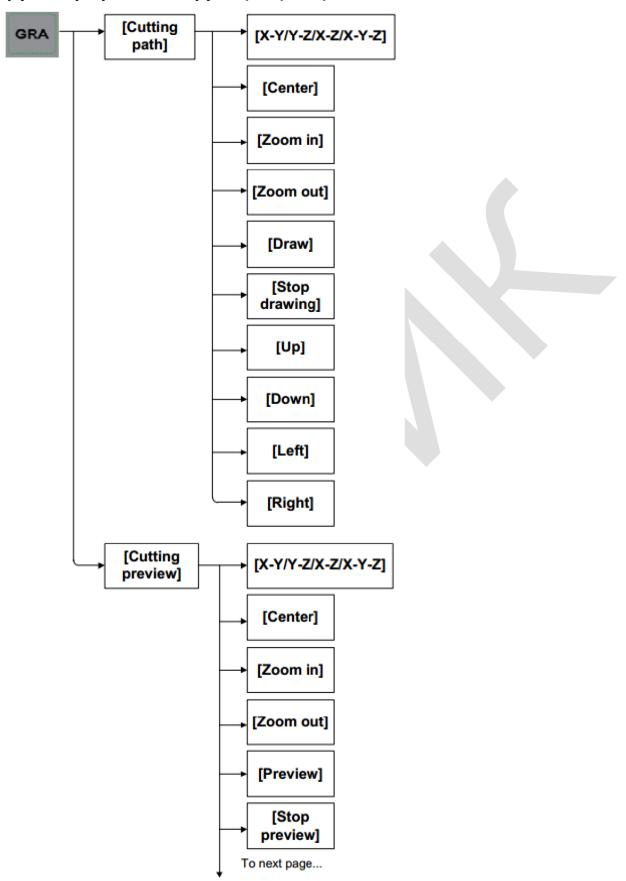
Продолжение. Предшествующая часть на предыдущей странице


Продолжение. Предшествующая часть на предыдущей странице

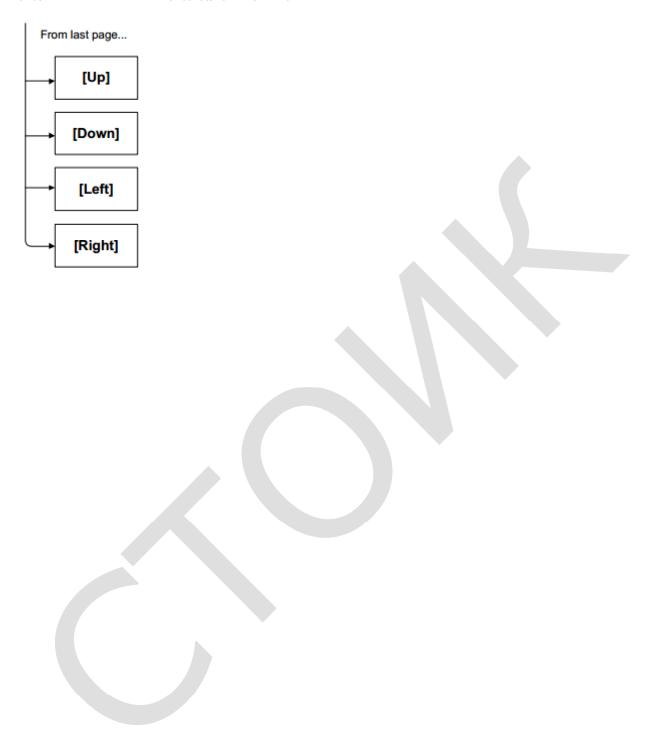

продолжение на следующей странице

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

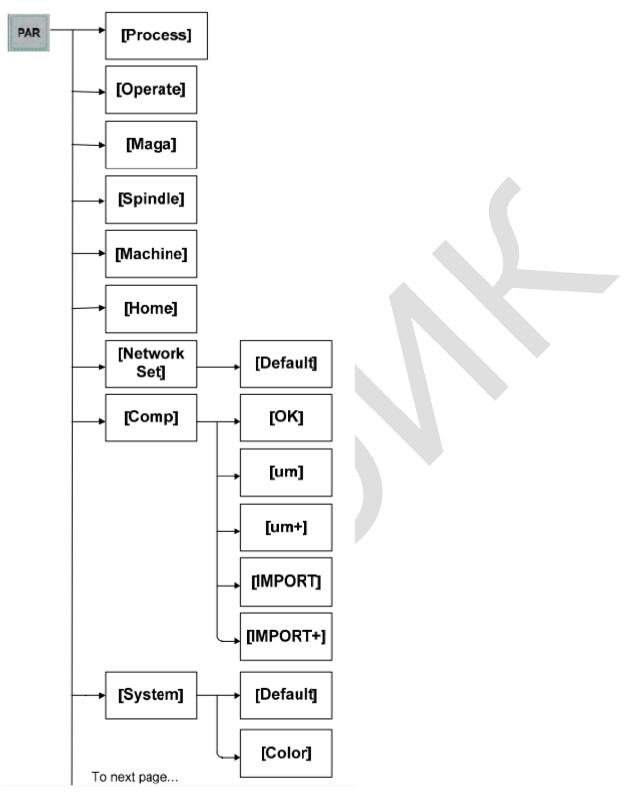

Продолжение. Предшествующая часть на предыдущей странице


Продолжение. Предшествующая часть на предыдущей странице

Группа функций тревог (ALM)

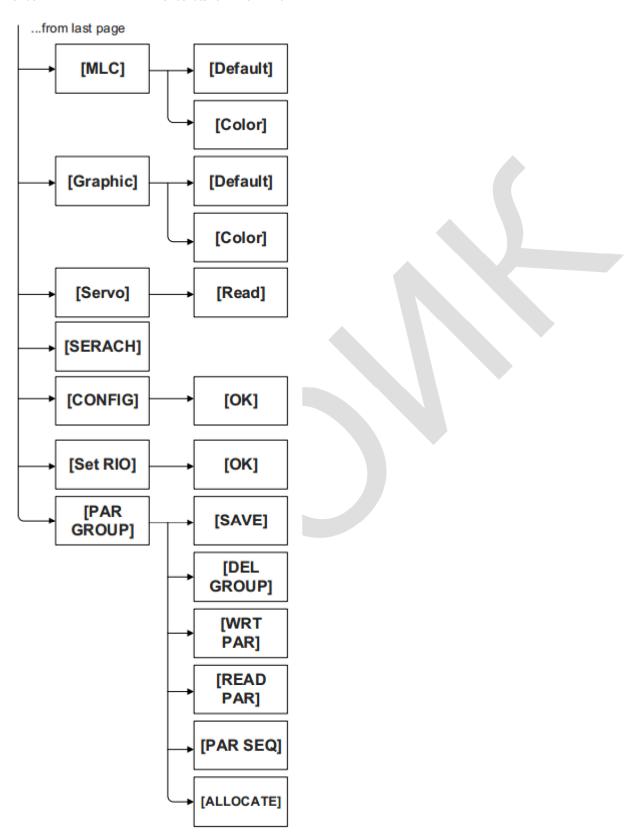


Группа графических функций (GRA) - 1



Группа графических функций (GRA) - 2

Продолжение. Начало на предыдущей странице



Группа функций параметризации(PAR) - 1

Группа функций параметризации(PAR) - 2

Продолжение. Начало на предыдущей странице

4. Группа функций позиционирования (POS)

Группа POS включает в себя команды для работы с тремя разными типами координат: абсолютными, относительными и механическими.

- 4.1 Абсолютные координаты
- 4.2 Относительные координаты
- 4.3 Механические координаты

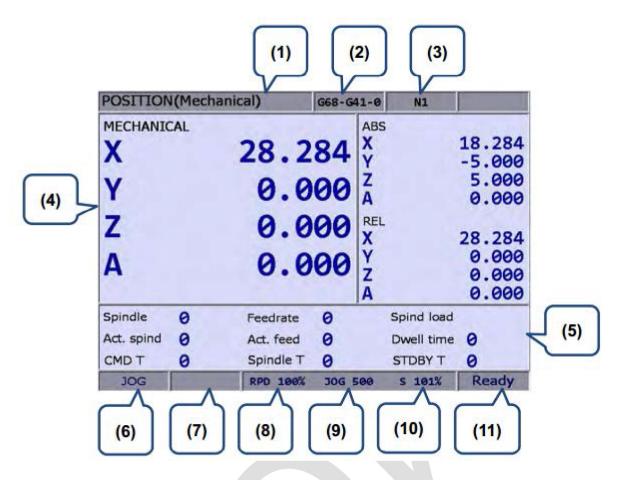


Рисунок 4.0.1

- (1) Выбранная группа
- (2) Название текущей программы (имя файла)
- (3) Выполняемая строка кода
- (4) Текущие координаты
- (5) Spindel. Скорость шпинделя (заданное значение)

Feedrate: Скорость подачи (заданное значение)

Spind load: Нагрузка шпинделя

Act. spind: скорость шпинделя (текущее значение)
Act. feed: скорость подачи (текущее значение)

Dwell time: длительность паузы

CMD Т: идентификатор инструмента Spindle Т: идентификатор шпинделя

STDBY T: идентификатор следующего инструмента

- (6) Текущий режим работы
- (7) Поле для отображения тревог/ошибок
- (8) Коэффициент повышенной скорости
- (9) Коэффициент скорости подачи
- (10) Коэффициент скорости шпинделя

4.1 Абсолютные координаты

Значения абсолютных координат отсчитываются от начальной точки, заданной в G-коде. Абсолютные координаты используются для валидации позиции перемещения в одном программном блоке. Для этого:

- 1. Нажмите клавишу POS, чтобы активировать экран группы функций позиционирования, т.е. экран с опциями для абсолютных, относительных и механических координат.
- 2. Нажмите клавишу F1 (ABS), чтобы перейти на экран абсолютных координат.

4.2 Относительные координаты

Относительные координаты отображают расстояние от заданной начальной точки:

- 1. Нажмите клавишу POS, чтобы активировать экран группы функций позиционирования.
- 2. Нажмите клавишу F2 (REL), чтобы перейти на экран относительных координат.
- 3. Нажмите F1 (CLR ALL) в нижней части экрана, чтобы удалить все значения относительных координат для всех осей.

Нажмите F2 (CLR X), чтобы удалить значения относительных координат для оси X. Нажмите F3 (CLR Y), чтобы удалить значения относительных координат для оси Y.

Нажмите F4 (CLR Z), чтобы удалить значения относительных координат для оси Z.

Нажмите F5 (CLR A), чтобы удалить значения относительных координат для оси А. Нажмите F6 (CLR B), чтобы удалить значения относительных координат для оси В.

Или нажмите F1 (CLR C) на следующей странице, чтобы удалить значения относительных координат для оси C.

Внимание! Функции удаления для осей X, Y, Z, A, B и C активны только, если они соответствуют реальным осям.

4.3 Механические координаты

Механические координаты привязаны к реальному механизму и не могут быть изменены или удалены. Они также не зависят от координат выбранной рабочей детали. Для перехода к экрану механических координат:

- 1. Нажмите клавишу POS, чтобы активировать экран группы функций позиционирования.
- 2. Нажмите клавишу F3 (МЕСН).

5. Группа функций для работы с программой (PRG)

Функции из группы PRG позволяют управлять файлами G-кодов и макросов, а также редактировать их. В этой же группе имеются функции для различных режимов работы.

- 5.1 Настройки сети
- 5.2 Создание нового файла
- 5.3 Копирование
- 5.4 Вставка
- 5.5 Удаление файлов и каталогов
- 5.6 Выбор/Отмена выбора нескольких файлов
- 5.7 Переименование
- 5.8 Создание каталога
- 5.9 Поиск файлов
- 5.10 Слияние файлов
- 5.11 Сортировка
- 5.12 Конвертирование DXF файлов
- 5.13 Файлы макросов
- 5.14 Редактирование файлов
 - 5.14.1 Поиск по номеру строки
 - 5.14.2 Поиск по ключевым словам
 - 5.14.3 Выделение блока программы
 - 5.14.4 Удаление отдельных строк и блоков программы
 - 5.14.5 Копирование и вставка отдельных строк и блоков программы
 - 5.14.6 Отмена последней операции
- 5.15 Другие режимы

Файловый менеджер [File manage] разделен на три части: (1) СF карта памяти, внутренняя память, USB диск и сеть; (2) каталоги и файлы G-кодов; (3) только файлы G-кодов. В каждой части есть свои эксклюзивные функции, такие как, например, функция поиска точки прерывания программы в автоматическом режиме и редактирование и выполнение программы в ручном режиме.

- (1) Выбранная группа
- (2) Текущая программа
- (3) Рабочая линия
- (4) Опции диска
- (5) Текущий режим работы

Активируйте режим редактирования программы EDIT. После этого нажмите клавишу PRG основной клавиатуры, чтобы перейти на экран [Program].

5.1 Настройки сети

Функция NETWORK позволяет установить соединение с удаленным компьютером через Ethernet. С помощью CNC Network software и удаленного соединения с одного компьютера возможно управление файлами сразу на нескольких контроллерах NC300. Можно открыть удаленный доступ к файлам, производить операции и над ними, а также исполнять их прямо с компьютера (DNC).

Перед тем как использовать функцию NETWORK, настройте сетевой протокол обмена между NC300 и компьютером, согласно следующим инструкциям:

Настройка сетевого протокола для NC300: Экран PRG group > Network Setting

Параметры настройки сети		
Код	Название	Диапазон или формат
10030	Имя устройства в сети	Длина: 1 ~ 8
		Текущее значение: 1 ~ 8 символов
10031	IP адрес	Длина: ххх.ххх.ххх .ххх
		Текущее значение: 192.168.0.2
10032	Маска подсети	Длина: ххх.ххх.ххх.ххх
		Текущее значение: 255.255.255.0
10033	Шлюз по умолчанию	Длина: ххх.ххх.ххх.ххх
		Текущее значение: 0.0.0.0
10034	Включение функции	Длина: 0 ~ 1
	Network	Текущее значение: 1
10035	Включение DHCP	Длина: 0 ~ 1
		Текущее значение: 0
10036	IP адрес удаленного	Длина: ххх.ххх.ххх.ххх
	компьютера 1	Текущее значение: 192.168.0.1
10037	IP адрес удаленного	Длина: ххх.ххх.ххх.ххх
	компьютера 2	Текущее значение: 0.0.0.0
10038	IP адрес удаленного	Длина: ххх.ххх.ххх.ххх
	компьютера 3	Текущее значение: 0.0.0.0
10039	IP адрес удаленного	Длина: ххх.ххх.ххх.ххх
	компьютера 4	Текущее значение: 0.0.0.0
10040	IP адрес удаленного	Длина: xxx.xxx.xxx
	компьютера 5	Текущее значение: 0.0.0.0
10041	IP адрес удаленной папки	Длина: 0 ~ 5
	общего пользования	Текущее значение: 0

Настройка сетевого протокола для компьютера: Hacтройка Internet Protocol (TCP/IP) в операционной системе компьютера (см Рис. 5.1.1) или CNC Network software > Options

Настройка сети в операционной системе компьютера:

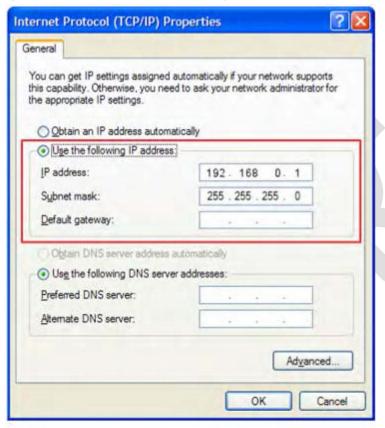


Рисунок 5.1.1

(a) Выберите Use the following IP address и затем введите следующие адреса:

IP address: 192.168.0.1 Subnet mask: 255.255.255.0

(b) Нажмите **ОК**, чтобы завершить настройку.

Настройка сети в CNC Network software:

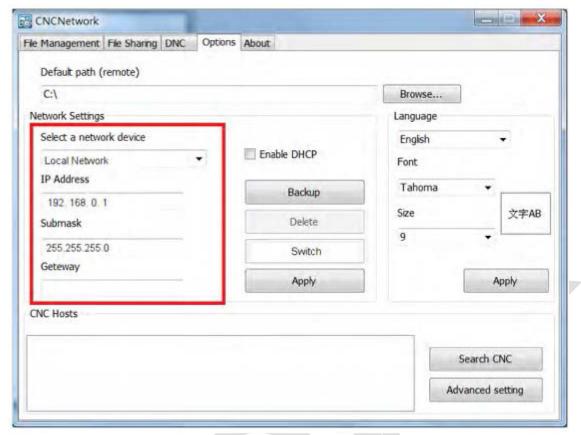


Рисунок 5.1.2

(a) Запустите программу **CNC Network software.** Перейдите на вкладку [Options] и введите следующие адреса:

IP address: 192.168.0.1 Subnet mask: 255.255.255.0

(b) Нажмите **Search CNC**, чтобы подключиться к контроллеру ЧПУ с указанными выше адресами.

Подключение DNC:

С помощью **CNC Network software** можно открыть файлы общего доступа, отображаемые в отдельном списке. После чего возможно исполнение этих файлов в ЧПУ через Ethernet (режим DNC). При этом не требуется дополнительного дискового пространства в ЧПУ для хранения файлов - достаточно указать путь к файлам общего доступа. Выполните следующие шаги:

- 1. Настройте протокол обмена между NC300 и компьютером.
- 2. Запустите программу CNC Network software.
- 3. Щелкните мышкой на строке Function. Перейдите на вкладку **DNC**.

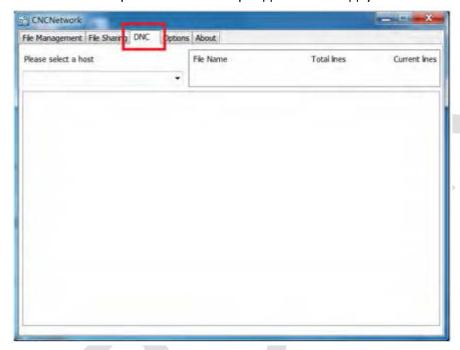


Рисунок 5.1.3

4. Активируйте режим редактирования программы **EDIT**, после чего перейдите в каталог NETWORK\Option в файловом менеджере [File manage].

Рисунок 5.1.4

В открывшемся экране выберите и откройте необходимый G-код файл общего доступа.

Рисунок 5.1.5

- 5. Активируйте режим автоматического выполнения **AUTO** и нажмите кнопку **Cycle start**, чтобы запустить G-код файл через DNC соединение. Процедура запуска такая же и для обычных файлов.
- 6. Во время выполнения через DNC соединение информация о файле отображается на вкладке DNC программы CNC Network software. Она включает в себя название подключенной системы, имя исполняемого файла, общее количество строк в файле, номер исполняемой строки, а также содержание файла (содержание прокручивается автоматически вниз по мере выполнения файла. Рис. 5.1.6).

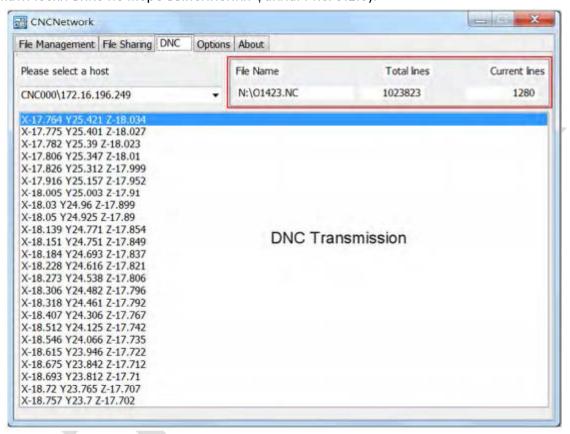


Рисунок 5.1.6

5.2 Создание нового файла

Новый G-код файл может быть создан с помощью интерфейса контроллера в режиме редактирования программы **EDIT**.

Для этого выполните следующее:

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используя клавиши ♠, ♣, PAGE UP или PAGE DN переведите курсор в требуемый каталог накопителя (например, подкаталоги корневого каталога карты памяти или USB диска).
- 4. Нажмите клавишу 🏲 для перехода к следующей странице функциональной панели.
- 5. Нажмите **F2** (NEW file). На экране появится диалоговое окно для ввода имени нового файла.

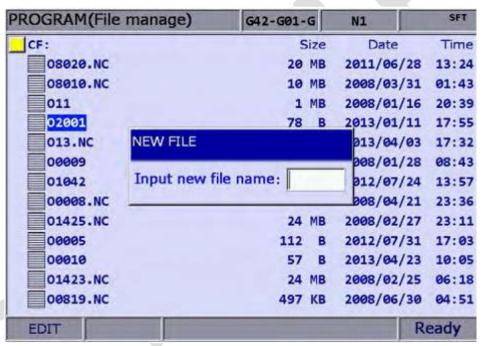


Рисунок 5.2.1

6. Введите имя файла, состоящее из цифр и букв (специальные символы не допускаются) и нажмите клавишу **ENTER** для создания нового файла.

Правила написания имени файла:

Требования к формату файла		
Формат имени исполняемого файла (G-код)	Без ограничений для мастер-файла (имя файла должно быть уникальным в одном каталоге). О + 00018999 (для подпрограмм)	
Формат имени макроса (О-макрос)	O + 90009999	
Примечания в имени файла	Суффикс '-' и другие цифры и буквы	
Допустимые расширения файлов	.NC .ANC .CNC .PIM .TAP .PTP .UOO .DEMO	
Формат имени макроса (М-макрос)	M + 1000029999	
Формат имени макроса (G-макрос)	G + 3000049999	

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Допустимая максимальная длина имени	31 символ	
файла		
Место хранения	2 и 3 уровень вложенности в файловом	
	менеджере	
Недопустимые символы в имени файла	*, /, , <, >, ?, ", :	

Примечания:

- (1) Имя файла должно быть уникальным в одном каталоге, т.е. О0001 и О1 рассматриваются как одинаковые.
- (2) На экране файлового менеджера [File Manage] отображаются только исполняемые файлы. Файлы макросов показываются только при наличии специального разрешения.
- (3) Имя G-код файла может включать в себя только цифры. При этом после последней цифры должно следовать расширение файлы согласно приведенным выше правилам, например, 1.1.1.1.**NC**

5.3 Копирование

Позволяет копировать существующие на накопители файлы.

Для использования данной функции выполните следующее:

- 1. Активируйте режим редактирования программы EDIT.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используя клавиши ↑, ↓, PAGE UP или PAGE DN переведите курсор в требуемый каталог накопителя (например, подкаталоги корневого каталога карты памяти или USB диска).
- 4. Наведите курсор на файл, который необходимо скопировать.
- 5. Чтобы скопировать файл, нажмите **F1** (Copy file). Для получения файла-копии скопированного файла необходимо выполнить функцию вставки.

5.4 Вставка

Как уже было показано в п. 5.3 функция вставки применяется в паре с функцией копирования. Это одна из функций управления файлами в группе PRG.

В продолжение шагов п. 5.3 выполните следующее:

- 6. Используя клавиши $\mathbf{1}_{r}$, **PAGE UP** или **PAGE DN** переведите курсор в требуемый каталог накопителя.
- 7. Войдите в каталог и нажмите **F2** (Paste). После этого в появившемся окне введите новое имя файла или оставьте его старое название. Нажмите **ENTER**. Операция копирования и вставки файла завершена.

Примечания:

- (1) Создаваемый методом копирования файл должен иметь отличное от файла-источника имя, если они оба будут располагаться в одном каталоге.
- (2) Если копирование файла не было сделано до применения функции вставки, то система выводит сообщение "Please copy a file at first" в информационном поле экрана. Функция вставки при этом не работает.
- (3) Описанным выше методом также могут быть скопированы файлы с USB диска и вставлены на карту памяти CF.

5.5 Удаление файлов и каталогов

Эта функция позволяет удалять файлы и каталоги на втором уровне [File manage].

Выполните следующие шаги:

- 1. Активируйте режим редактирования программы EDIT.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. Используйте клавиши **1**, **↓**, **PAGE UP** или **PAGE DN**, а также клавишу **ENTER**, чтобы войти в требуемый каталог накопителя, в котором находится удаляемая папка или файл.
- 4. Наведите курсор на удаляемую папку тли файл.
- 5. Нажмите **F3** (DEL). После этого на экране появится диалоговое окно "Do you really want to delete?". Нажмите "**Y**" и затем **ENTER** для подтверждения удаления выбранной папки или файла.

Примечание: Удаленный файл не может быть восстановлен посредством отмены операции удаления.

5.6 Выбор/Отмена выбора нескольких файлов

Вдобавок к операциям с отдельными файлами существует возможность копирования и удаления сразу нескольких файлов.

Следуйте следующим инструкциям, для того чтобы скопировать и вставить несколько файлов:

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. Войдите в требуемый каталог для выбора нескольких файлов.
- 4. На экране файлового менеджера [File manage], используя клавиши ↑, ↓, PAGE UP или PAGE DN перемещайте курсор к нужным файлам. Нажимайте F4 (SEL TOGL), чтобы выбрать или отменить выбор файла (см Рис. 5.6.1). Или нажмите F6 (SEL ALL) для выбоа сразу всех файлов в каталоге. Нажатие F6 (CANCEL ALL) приведет к отмене выбора всех уже выбранных файлов.

PROGRAM(File manage)	G42-G01-G		N1	
CF:\POSITION	S	ze	Date	Time
05405-1	1019	В	2012/07/20	10:07
05405-2	330	В	2012/07/20	10:13
05406-1	164	В	2012/07/24	09:03
05406-2	164	В	2012/07/24	09:09
1000	156	В	2012/08/30	14:35
1111	65	В	2012/09/10	16:48
1112	56	В	2012/07/10	16:45
1113	65	В	2012/08/10	17:23
1001	93	В	2012/09/04	15:07
5401-01	303	В	2012/11/02	13:35
G54-G28	499	В	2012/07/09	14:36
G54-G28-1	753	В	2012/06/29	15:39
05401	286	В	2012/06/26	08:53

Рисунок 5.6.1

- 5. Нажмите **F1** (Copy file), чтобы скопировать выбранные файлы.
- 6. Переместите курсор в другой каталог. Нажмите **F2** (Paste), чтобы вставить скопированные файлы, как показано на рис. 5.6.2.

Рисунок 5.6.2

Выполните следующие инструкции, чтобы удалить сразу несколько файлов:

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. Войдите в требуемый каталог для выбора нескольких файлов.

- 5. Нажмите **F3** (DEL). После чего нажмите "**Y**" и **ENTER** в появившемся диалоговом окне для подтверждения удаления выбранных файлов (см Рис. 5.6.3).

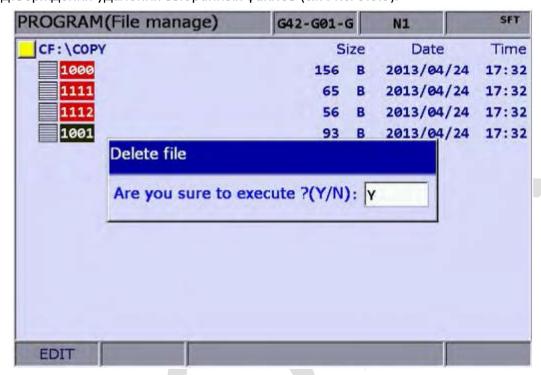


Рисунок 5.6.3

Примечания:

- (1) После копирования файлов из какой-либо папки необходимо вставлять их в другом каталоге. При попытке вставить их в той же папке система попросит указать другой каталог и отменит текущую операцию вставки.
- (2) В случае нахождения в целевой папке файла с одинаковым именем во время операции вставки, система спросит пользователя, следует ли заменить существующий файл вставляемым файлом. Нажатие "Y" приведет к замене существующего файла, "N" оставит существующий файл в каталоге, "EXIT" к отмене операции вставки.

5.7 Переименование

Данная функция используется для изменения имени существующих файлов.

Чтобы выполнить переименование:

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].

- 4. Нажмите клавишу Right, чтобы перейти к следующей странице функциональной панели.
- 5. Переместите курсор к файлу, название которого требуется изменить. Затем нажмите **F4** (Rename). На экране появится окно для ввода имени файла.
- 6. Введите новое имя файла, несовпадающее ни с одним из уже существующих в текущем каталоге, и нажмите **ENTER**.

Примечания:

- (1) G-код файл может быть добавлен только в подкаталоги корневого каталога файлового менеджера [File manage], но не в корневой каталог.
- (2) Формат имени файла при переименовании должен быть соблюден. Если пользователь укажет в качестве нового имени файла имя уже существующего в текущем каталоге файла, то произойдет ошибка и операция переименования будет отменена.

5.8 Создание каталога

Новый каталог для G-код файлов может быть создан в качестве подкаталога корневого каталога в файловом менеджере [File manage]. На этом, втором уровне вложенности могут находиться как подкаталоги, так и отдельные G-код файлы.

Для создания нового каталога выполните следующие шаги:

- 1. Активируйте режим редактирования программы EDIT.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. Нажмите клавишу 🕨 для перехода на следующую страницу функциональной панели.
- 4. Находясь на втором уровне вложенности файлового менеджера [File manage], нажмите **F3** (FOLDER). При этом появится диалоговое окно для ввода имени нового каталога.

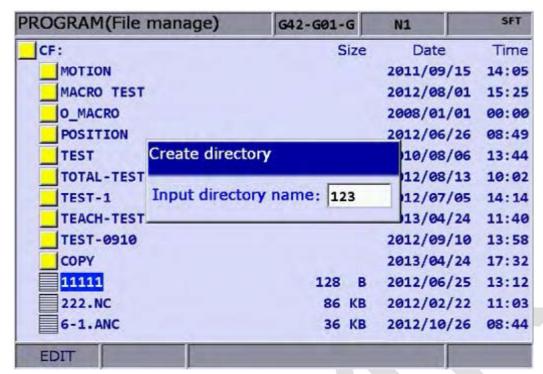


Рисунок 5.8.1

5. Введите имя каталога и нажмите **ENTER**, чтобы завершить создание каталога.

Описанная процедура создает новый каталог (папку) на втором уровне вложенности файлового менеджера [File manage]. После этого пользователи могут создавать и редактировать файлы (такие как G-код файлы) на третьем уровне вложенности файлового менеджера [File manage].

Правила написания имени каталога:

Правила написания имени каталога		
Формат Любые буквенно-цифровые символы		
Максимальная длина	31 символ	
Место хранения	2 уровень вложенности в файловом менеджере	

5.9 Поиск файлов

Данная функция позволяет по заданному имени быстро найти и открыть нужный G-код файл.

- 1. Активируйте режим редактирования программы EDIT.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используйте клавиши ♠, ♣, PAGE UP или PAGE DN а также клавишу ENTER, чтобы перейти в требуемый каталог накопителя.
- 4. Нажмите клавишу Р для перехода на следующую страницу функциональной панели.
- 5. Нажмите **F5** (FIND FILE). При этом появится диалоговое окно для ввода имени файла, который необходимо найти. После ввода имени файла нажмите **ENTER**.

Примечания

(1) Данная функция имеет ограничение по поиску файлов только в одной папке, а не во всех каталогах.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

(2) Чтобы найти и открыть правильный файл, вводите точное полное имя требуемого файла.

5.10 Слияние файлов

Данная функция копирует и объединяет два G-код файла в один.

Для осуществления слияния файлов проделайте следующее:

- 1. Активируйте режим редактирования программы EDIT.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используйте клавиши ↑, ↓, PAGE UP или PAGE DN а также клавишу ENTER, чтобы перейти в требуемый каталог накопителя.
- 4. Выберите G-код файл, который нужно скопировать.
- 5. Нажмите **F1** (COPY FILE), чтобы сохранить выбранный файл в системном буфере.
- 6. Переместите курсор в каталог, где находится файл (целевой файл), с которым требуется произвести слияние.
- 7. Нажмите клавишу 🏲 для перехода на следующую страницу функциональной панели.
- 8. Нажмите **F6** (MERGE). В появившемся диалоговом окне введите имя файла и нажмите ENTER, чтобы открыть целевой файл.
- 9. Переместите курсор внутри целевого файла на позицию, где необходимо вставить скопированный файл. Нажмите **F2** (PASTE). В появившемся диалоговом окне нажмите "**Y**" и затем **ENTER** для слияния двух файлов.
- 10. Выполните автосохранение посредством переключения режима работы, открытием других файлов или нажатием клавиши RESET, чтобы завершить операцию слияния.

5.11 Сортировка

Используя данную функцию можно упорядочивать списки каталогов и файлов согласно заданным критериям. Это делает более удобным управление файлами и их поиск.

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используйте клавиши ↑, ↓, PAGE UP или PAGE DN а также клавишу ENTER, чтобы перейти в требуемый каталог накопителя.
- 4. Нажмите клавишу 🏲 для перехода на следующую страницу функциональной панели.
- 5. Нажмите **F1** (SEQUENCE), чтобы отобразить второй ряд функциональной панели.
- 6. Нажмите **F1** (NAME). Каталоги и файлы будут теперь упорядочены по имени, с приоритетом цифр над буквами (сверху вниз). Нажмите **F1** (NAME) еще раз, и критерий упорядочивания по имени изменится на обратный: сначала буквы, потом цифры (снизу вверх).

- 7. Нажмите **F2** (SIZE). Каталоги и файлы будут упорядочены по размеру от меньшего к большему (сверху вниз). Нажмите **F2** (SIZE) еще раз. Теперь вначале следуют каталоги и файлы большего размера, а затем меньшего (снизу вверх).
- 8. Нажмите **F3** (DATE). Каталоги и файлы будут упорядочены по дате создания от более поздней к более ранней (сверху вниз). Нажмите **F2** (DATE) еще раз. Порядок следования изменится на обратный: сначала более ранние каталоги и файлы, а потом более поздние (снизу вверх).

5.12 Конвертирование DXF-файлов

Файловый менеджер предоставляет интерфейс для работы с DXF-файлами. Для этого, сначала необходимо выбрать нужный DXF-файл и затем задать параметры преобразования DXF-файла в G-код файл.

- 1. Активируйте режим редактирования программы EDIT.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. Последовательно нажимайте клавишу , чтобы перейти на третью страницу функциональной панели.
- 4. Нажмите F2 (DXF) для отображения интерфейса проводника DXF-файлов.
- 5. На экране файлового менеджера [File manage], пользуясь клавишами ↑, ↓, PAGE UP или PAGE DN для перемещения курсора, а также клавишей ENTER, выберите необходимый для конвертирования DXF-файл.
- 6. После этого на экране появится диалоговое окно для ввода параметров преобразования (см Рис. 5.12.1).

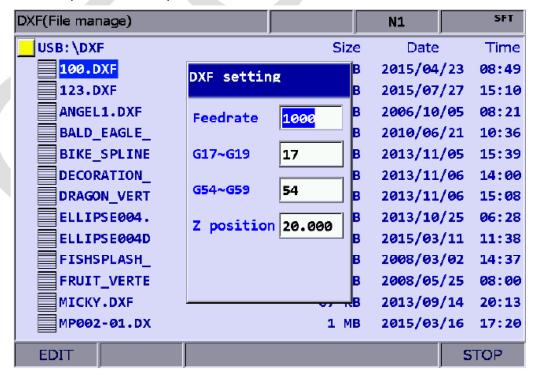


Рисунок 5.12.1

- 7. После ввода всех параметров преобразования нажмите **ENTER**. На экране появится другое диалоговое окно для ввода имени нового файла.
- 8. Введите имя файла и нажмите **ENTER**, чтобы начать процесс конвертирования DXF-файл. Новый G-код файл будет создан в каталоге CF (на карте памяти).
- 9. Только что созданный G-код файл можно теперь запустить на исполнение.

5.13 Файлы макросов

Существует также возможность управления файлами макросов, а также их редактирования. Эти файлы привязаны к аппаратным средствам ЧПУ. При наличии соответствующих прав доступа пользователи могут использовать весь арсенал функций управления файлами макросов и их редактирования, как показано в п. 5.14. При отсутствии прав, возможен только просмотр наличия файлов макросов в каталогах, без доступа к их содержанию. Для получения соответствующих прав доступа необходимо обратиться к ближайшему дистрибьютеру Delta Electronics.

5.14 Редактирование файлов

Это набор функций для редактирования G-код файлов. После того как G-код файл открыт на экране файлового менеджера [File manage], произойдет переключение на экран редактирования файла [File edit]. Перемещая курсор в тексте файла и используя клавиши основной клавиатуры, можно внести в файл необходимые изменения. Когда редактирование завершено и требуется сохранить файл, нужно либо переключить режим работы, либо нажать клавишу RESET или просто открыть другой файл. Сохранения файла произойдет автоматически.

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 4. Выберите нужный G-код файл и нажмите клавишу **ENTER**, чтобы открыть файл и перейти на экран редактирования [File edit].
- перейти на экран редактирования [File edit].

 5. Для перемещения курсора в нужную позицию в тексте файла используйте клавиши

 1.

- 6. Используйте буквенные, цифровые и клавиши редактирования основной клавиатуры для внесения необходимых изменения в содержание файла.
- 7. Сохраните внесенные в файл изменения, выполнив автосохранение посредством переключения режима работы, нажатием клавиши RESET или открытием другого файла.

Характеристики функции редактирования

Характеристики функции редактирования	
Максимальное количество символов в	255 символов

одной строке	
Поддерживаемые режимы	Режим редактирования
Максимальный размер редактируемого	до 3 Мб
файла	

Примечания:

- (1) Функциональная панель отображает функции для редактирования файла только в режиме редактирования **Edit mode**. Иначе, возможен только просмотр программного кода и координат открытых в текущий момент файлов.
- (2) Существует возможность вставки комментариев в конце каждого программного блока G-код файла. Комментарий должен быть заключен между скобками "()" и располагаться в конце программного блока. Если комментарий будет находиться перед программным блоком, весь блок будет игнорирован контроллером.

5.14.1 Поиск по номеру строки

Позволяет найти определенную строку по номеру в программном коде G-код файла.

Для применения данной функции выполните следующие шаги:

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используйте клавиши ↑, ↓, PAGE UP или PAGE DN а также клавишу ENTER, чтобы перейти в требуемый каталог накопителя.
- 4. Выберите нужный G-код файл и нажмите клавишу **ENTER**, чтобы открыть файл и перейти на экран редактирования [File edit].
- 5. Нажмите клавишу для перехода на следующую страницу функциональной панели.
- 6. Нажмите **F1** (LABEL). На экране появится диалоговое окно для ввода номера строки (только цифровые клавиши 0...9).
- 7. Введите требуемый номер строки и нажмите клавишу **ENTER**. Курсор переместится в заданную строку программного кода.

Правила поиска по номеру строки:

Правила поиска по номеру строки		
Максимальная длина строки поиска	62 символа	
Формат строки поиска	только цифры 09	

5.14.2 Поиск по ключевым словам

Позволяет находить определенное место в программе по ключевому слову:

- 1. Активируйте режим редактирования программы EDIT.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

- 3. На экране файлового менеджера [File manage], используйте клавиши 👚, 🌷 PAGE UP
- или **PAGE DN** а также клавишу **ENTER**, чтобы перейти в требуемый каталог накопителя.
- 4. Выберите нужный G-код файл и нажмите клавишу **ENTER**, чтобы открыть файл и перейти на экран редактирования [File edit].
- 5. Нажмите клавишу 🏲 для перехода на следующую страницу функциональной панели.
- 6. Нажмите **F2** (STRING). На экране появится диалоговое окно для ввода ключевого слова (см Рис. 5.14.2.1).

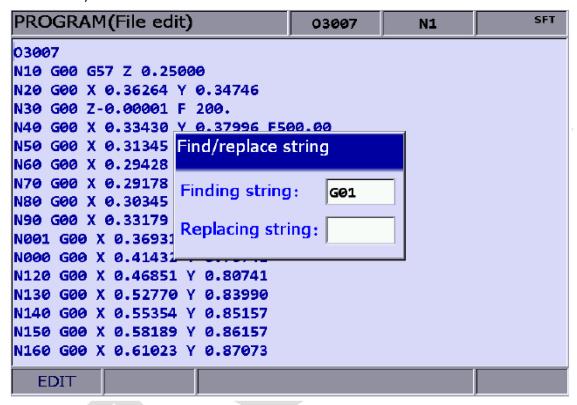


Рисунок 5.14.2.1

- 7. Введите искомое слово или последовательность символов для поиска, а также, если требуется, слово, на которое нужно заменить искомое слово. Нажмите **ENTER.** Курсор переместится в то место программного кода, где находится искомое слово.
- 8. Искомое слово при этом выделено в тексте программы, а в функциональной панели отображаются следующие команды: "Вперед", "Назад", "Заменить", "Заменить все".
- 9. Последующие нажатия **F1** (NEXT) приводят к поиску новых совпадений, а нажатия **F2** (PREV) к возврату к предыдущим.
- 10. Нажатие клавиши **F3** (REPLACE) вызовет замену найденной последовательности символов на введенную ранее в параметрах поиска. Нажатие **F4** (REPLACE ALL) заменяет все найденные в тексте программного кода совпадения.
- 11. Нажмите клавишу **¬**, чтобы вернуться на предыдущую страницу функциональной панели.
- 12. Не забудьте сохранить результаты редактирования файла с помощью автосохранения (переключение режима работы, нажатие RESET или открытие другого файла).

Правила поиска по ключевым словам:

Правила поиска по ключевым словам		
Поддерживаемые режимы	Режим редактирования EDIT	
Максимальный размер редактируемого	до 3 Мб	
файла		

5.14.3 Выделение блока программы

Данная функция упрощает редактирование файла в случае, когда требуется внести изменения в большой блок программы. Пользователь может задать с помощью курсора начальную и конечную точку блока, а затем применить к блоку стандартные функции удаления, копирования или вставки.

Для этого:

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши PRG переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используйте клавиши ♠, ♣, PAGE UP или PAGE DN а также клавишу ENTER, чтобы перейти в требуемый каталог накопителя.
- 4. Выберите нужный G-код файл и нажмите клавишу **ENTER**, чтобы открыть файл и перейти на экран редактирования [File edit].
- 5. Нажмите **F5** (B start), чтобы обозначить текущую позицию курсора как начало блока.
- 6. Используйте клавиши **1**, **1**, **←**и **→**, чтобы переместить курсор в позицию, определяющую конец блока.
- 7. Нажмите **F6** (В end), чтобы обозначить текущую позицию курсора как конец блока (см Рис. 5.14.3.1).

Рисунок 5.14.3.1

- 8. Проделайте указанные выше шаги с 5 по 7 и нажмите клавишу **F3** (DEL) для удаления требуемого фрагмента кода программы из файла.
- 9. Проделайте указанные выше шаги с 5 по 7 и нажмите клавишу **F1** (COPY), чтобы скопировать выделенный блок кода программы. Затем переместите курсор в нужную позицию в тексте файла и вставьте скопированный фрагмент кода нажатием **F2** (PASTE).

5.14.4 Удаление отдельных строк и блоков программы

Данная функция удаляет строку кода, в которой расположен курсор или целый блок кода, выделенный ранее.

Выполните следующие шаги:

- 1. Активируйте режим редактирования программы EDIT.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используйте клавиши ♠, ♣, РАGE UP или РАGE DN а также клавишу ENTER, чтобы перейти в требуемый каталог накопителя.
- 4. Выберите нужный G-код файл и нажмите клавишу **ENTER**, чтобы открыть файл и перейти на экран редактирования [File edit].
- 5. Переместите курсор в строку, которую необходимо удалить, и нажмите **F3** (DEL).
- 6. Для удаления целого блока программного кода выполните инструкции, описанные в п. 5.14.3, шаг 8.

5.14.5 Копирование и вставка отдельных строк и блоков программы

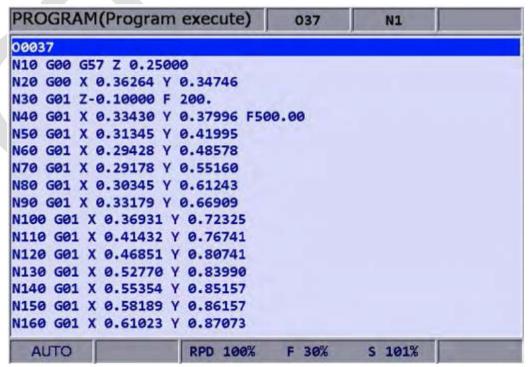
Эта функция предназначена для копирования, как отдельных строк программного кода, так и целых блоков, и вставки их в другом месте файла. Для выполнения этой операции используются две функциональные клавиши: копирования и вставки:

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используйте клавиши **↑**, **↓**, **PAGE UP** или **PAGE DN** а также клавишу **ENTER**, чтобы перейти в требуемый каталог накопителя.
- 4. Выберите нужный G-код файл и нажмите клавишу **ENTER**, чтобы открыть файл и перейти на экран редактирования [File edit].
- 5. Переместите курсор в строку, которую необходимо скопировать, и нажмите **F1** (Copy).
- 6. Переместите курсор в то место программы, куда следует вставить скопированную строку и нажмите **F1** (Paste).
- 7. Для копирования целого блока программного кода выполните инструкции, описанные в п. 5.14.3, шаг 9.

5.14.6 Отмена последней операции

Для отмены предыдущих операций по редактированию программы (до 7 последовательных операций) используется функциональная клавиша отмены:

- 1. Активируйте режим редактирования программы **EDIT**.
- 2. Нажатием клавиши **PRG** переключите экран на [PROGRAM].
- 3. На экране файлового менеджера [File manage], используйте клавиши ↑, ↓, PAGE UP или PAGE DN а также клавишу ENTER, чтобы перейти в требуемый каталог накопителя.
- 4. Выберите нужный G-код файл и нажмите клавишу **ENTER**, чтобы открыть файл и перейти на экран редактирования [File edit].
- 5. Нажмите **F4** (Undo), чтобы отменить последнее действие.


5.15 Другие режимы

Автоматический режим работы (Auto):

При открытии экрана PRG отображается содержание текущего G-код файла. В информационных полях экрана показывается статус текущего открытого/выполняемого файла, а также выполняемая строка кода. В автоматическом режиме функции PRG отображают только ту информацию, которая актуальна для выполняемой программы, а также координаты перемещений.

Выполните следующие шаги:

1. Нажмите клавишу **PRG** в автоматическом режиме **Auto mode**, чтобы увидеть статус выполняемой программы на полном экране (см Рис. 5.15.1).

2. Нажмите клавишу **PRG** еще раз, чтобы переключить экран для одновременного отображения кода программы и координат (см Рис. 5.12.2).

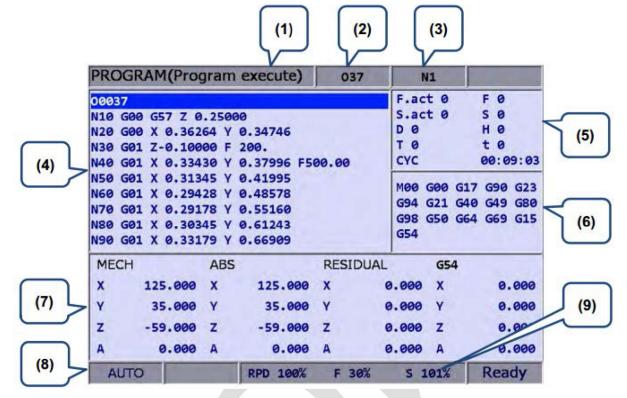


Рисунок 5.15.2

- (1) Текущая группа
- (2) Текущая программа (имя файла)
- (3) Выполняемая строка кода
- (4) Код выполняемой программы
- (5) F.act: текущая скорость подачи

S.act: текущая скорость шпинделя

- D: Идентификатор компенсации радиуса инструмента
- Н: Идентификатор компенсации длины инструмента
- Т: Идентификатор инструмента
- F: Скорость подачи
- S: Скорость шпинделя
- t: длительность паузы

СҮС: время выполнения одной операции

- (6) Статус текущей команды
- (7) Информация по каждой координате
- (8) Текущий режим работы
- (9) Коэффициент текущего перемещения

Если в автоматическом режиме выполнение программы приостановлено, с помощью функции поиска точки прерывания (Search) существует возможность «отмотать» программу назад и повторно выполнить программный код (см Рис. 5.15.3).

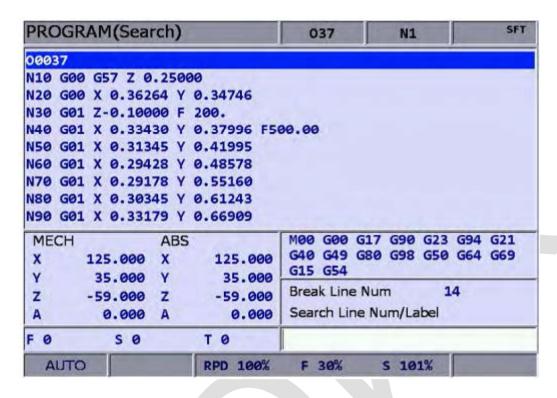


Рисунок 5.15.3

Для этого проделайте следующее:

- 1. В автоматическом режиме **Auto mode** нажмите клавишу **PRG**, чтобы открыть окно выполняемой программы [PROGRAM].
- Нажмите клавишу F2 (START). Появится диалоговое окно поиска точки прерывания.
- 3. Введите по Вашему выбору номер строки кода, с которой нужно перезапустить выполнение программы, или количество последовательных строк кода от текущей точки останова программы. Затем нажмите **ENTER**.
- 4. Нажмите клавишу **F1** (RUN) для выполнения программой необходимых вычислений и перемещения в заданную в предыдущем шаге точку прерывания.
- 5. Контроллер перейдет в режим ожидания команды на продолжение выполнения программы.
- 6. Нажмите клавишу **Cycle start**, чтобы продолжить выполнение программы.

Примечания:

- (1) Выполнение программы останавливается, как только будет достигнут программный блок, следующий за точкой прерывания. Этот блок будет выполнен сразу после перезапуска программы, т.е. нажатия **Cycle start**.
- (2) Для поиска точки прерывания используется либо номер строки кода, либо количество строк кода от текущей строки программы (точка останова программы).

(3) Во время выполнения программы или поиска точки прерывания любые запросы к функции поиска точки прерывания игнорируются.

Для изменения скорости подачи (команда F) или скорости шпинделя (команда S) во время выполнения G-код файла используется функция SF (см Рис. 5.15.4). Таким образом, с помощью данной функции можно изменить скорость в выполняемой программе.

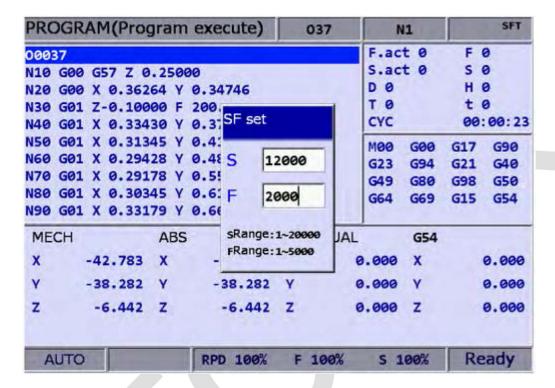


Рисунок 5.15.4

Чтобы применить эту функцию:

- 1. В автоматическом режиме **Auto mode** нажмите клавишу **PRG**, чтобы открыть окно выполняемой программы [PROGRAM].
- 2. Нажмите клавишу **F1** (SF set). Появится диалоговое окно ввода параметров команд функции SF.
- 3. Введите новые значения команд S и F и нажмите **ENTER**. Значения скоростей будут изменены.

Примечания:

- (1) Значения функции SF действительно только для однократного исполнения в G-коде. Если возникает необходимость повторных изменений значений скоростей с помощью функции SF, рекомендуется проверить правильность значений скоростей и внести изменения непосредственно в код программы (в режиме редактирования Edit).
- (2) После ввода значения для команды S скорость шпинделя немедленно изменится в G-коде. С другой стороны, новое значение для команды F повлияет на скорость подачи только после обработки контроллером системного буфера.

- (3) Не используйте эту функцию для изменения текущей команды задания скорости в G-код программе без применения команд S и F.
- (4) В параметрах SF функции возможность задания значения команде F активируется с помощью параметра «Разрешить задание скорости подачи» (параметр № 10017).

При использовании штрих-код считывателя функция File Scan позволяет быстро загружать и упорядочивать файлы, имеющие соответствующие штрих-коды. Это экономит время при поиске файлов. Штрих-код считыватель может быть подключен через USB порт.

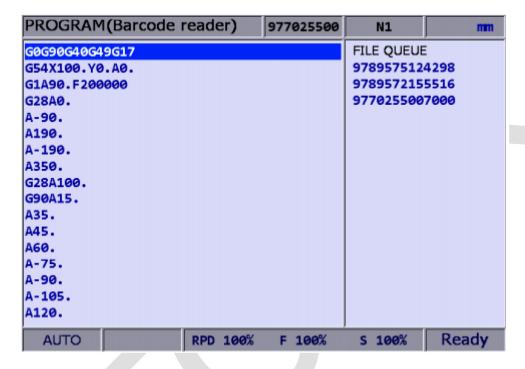


Рисунок 5.15.5

Для использования этой функции:

- 1. В автоматическом режиме **Auto mode** нажмите клавишу **PRG**, чтобы открыть окно выполняемой программы [PROGRAM].
- 2. Нажмите клавишу **F3** (SCAN), чтобы переключить экран на показанный на Рис. 5.15.5.
- 3. Используйте штрих-код считыватель для отображения имени загружаемого файла.
- 4. Нажмите клавишу **F1** (LOAD), чтобы загрузить содержание файла.
- 5. Или нажмите клавишу **F2** (CLR), чтобы удалить самый верхний файл в списке.
- 6. Или нажмите клавишу **F3** (CLR ALL) для удаления всех файлов из списка.

Примечание:

Загружаемый в систему файл через считывание его штрих-кода должен быть заранее создан на CF -карте памяти. Т.е. имя файла на карте памяти должно совпадать с именем загружаемого файла.

Режим JOG и режим управления с внешнего штурвала MPG:

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

Задайте параметры SF функции как показано ниже:

- 1. В режиме **JOG** или режиме **MPG** нажмите клавишу **PRG**, чтобы открыть окно для запуска программы.
- 2. Нажмите клавишу **F1** (SF set). Диалоговое окно для ввода значений команд S и F появится на экране.
- 3. Введите новые значения для S и F. Затем нажмите **ENTER** и текущие значения скоростей изменятся.

Создание программ в режиме обучения: Если инструмент перемещается вручную, используя функциональные клавиши режима обучения, можно автоматически конвертировать координаты текущей позиции инструмента по каждой оси в команду перемещения одного программного блока. Эта функция должна выполняться в режимах **JOG** или **MPG**.

Функция создания программы в режиме обучения находится в группе PRG, которая применяется к уже существующим или новым файлам. В режиме обучения поддерживаются следующие команды: быстрое перемещение, линейная резка, дуговая резка, создание, удаление и сохранение файлов, а также выбор между абсолютными и механическими координатами. Координаты конвертируются в файл автоматически в соответствии с форматом выбранной команды. Правила конвертации для каждой функции сведены в следующую таблицу.

Функция	Формат автоматически генерируемой команды
Создать новый файл, при	G90 G40 G49 G98 G50 G64 G80 G17 G69 G21
активном режиме обучения	G54 G15 G3000 M03 F1000
	• Конвертирование в G20 или G21 в зависимости
	от значения параметра (единица длины)
Быстрое перемещение	G00 + X_Y_Z_
Линейная резка	G01 + X_Y_Z_
Дуговая резка	G02 or G03 + X_Y_Z_ + I_J_
	• В зависимости от плоскости X-Y, Z-X или Y-Z
	конвертирование в G17+I_J_, G18+K_I_, G19+J_K_
Абсолютные координаты	G90 G00 (or G01/G02/G03) + X_Y_Z_
Механические координаты	G53 G00 (or G01/G02/G03) + X_Y_Z_

Чтобы применить данную функцию:

- 1. В режиме **JOG** или режиме **MPG** нажмите клавишу **PRG**, чтобы открыть окно с кодом текущей программы.
- 2. Нажмите клавишу **F2** (TEACH), чтобы открыть окно создания программы в режиме обучения.
- 3. Выберите файл из уже существующих или создайте новый. Если программирование будет происходить в существующем файле, необходимо открыть его в режиме редактирования **Edit mode**. В случае если создается новый файл, нажмите **F6** (NEW FILE),

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

чтобы ввести имя нового файла в появившемся диалоговом окне. После этого нажмите **ENTER**. Можно создать и другие файлы в текущем каталоге.

- 4. Выберите тип координат. Например, чтобы выбрать абсолютные координаты, нажмите сначала вторую панель инструментов и затем клавишу F1 (ABS). Или нажмите еще раз F1 (MECH), чтобы переключить тип координат на механические.
- 5. Переместите инструмент в определенную позицию в **JOG** или **MPG** режиме. Затем нажмите **F1** (RAPID) или **F2** (LINEAR), в зависимости от требуемого типа перемещения. После чего в коде файла, в позиции курсора, будет сгенерирована соответствующая команда с текущими координатами.
- 6. Чтобы продолжить с шага 5, например, для перемещения по типу дуговой резки, нажмите **F3** (ARC), чтобы отобразить панель инструментов дуговой резки.
- 7. Нажмите **F4** (PLANE SEL), чтобы выбрать плоскость дуговой резки: X-Y, Y-Z или Z-X.
- 8. Задайте начальную, среднюю и конечную точки дуговой резки, последовательно нажимая клавиши **F1**, **F2** и **F3** (соответствуют точкам P1, P2 и P3). Когда задание точки P3 завершено, будет автоматически сгенерирована команда дуговой резки. Система сама определит, используется G02 или G03 в данном контексте, вычислит значение радиуса и направление дуги, исходя из порядка следования между P1 и P3.
- 9. Если команда оказалась некорректной, переместите курсор в данный программный блок. Нажмите **F4** (DEL) на первом уровне панели инструмента в режиме обучения, чтобы удалить весь программный блок.
- 10. Когда операция создания программы в режиме обучения завершена, вдобавок к автосохранению файла (нажатие клавиши RESET, переключение режима работы, открытие другого файла), можно сохранить изменения в файле нажатием клавиши **F5** (SAVE).

Примечания:

- (1) Программирование в режиме обучения возможно только в режиме **JOG** или режиме **MPG**. В других режимах данная функция недоступна.
- (2) Максимальный размер файла, создаваемого в режиме обучения, не должен превышать 3 Мб (такой же, как в режиме редактирования).
- (3) Имя файла должно быть в соответствии с правилами написания имен (см п. 5.2).
- (4) При введении двух точек с одинаковыми координатами, вторая точка будет отброшена во избежание неэффективного использования блока перемещения.
- (5) Точки P1, P2 и P3 команды дуговой резки должны вводиться последовательно, для того чтобы были правильно определены направление движения и радиус дуги.
- (6) Если функция программирования в режиме обучения активирована и при этом ни один файл не открыт, система сгенерирует пустой файл с именем "TEACH.NC" в каталоге, где находится курсор (По умолчанию, файл создается в корневом каталоге карты памяти СF). После этого, можно непосредственно начать использовать функцию программирования в режиме обучения.
- (7) В параметрах SF функции возможность задания значения команде F активируется с помощью параметра «Разрешить задание скорости подачи» (параметр № 10017).

Режим ручного ввода MDI:

Группа функций PRG предлагает также простой способ ввода текста программы, сохранения, удаления и выполнения команд в ручном режиме. На рисунке ниже представлен экран редактирования программы. Он используется исключительно в ручном режиме. До того как вручную отредактированная программа загружена в систему, форма курсора имеет обычный вид. Это означает, что программа не выполняется. Пользователь может ввести до 17 строк программного кода. Необходимо сначала загрузить программу еще раз, перед тем как запускать ее. Иначе, программа не будет выполняться.

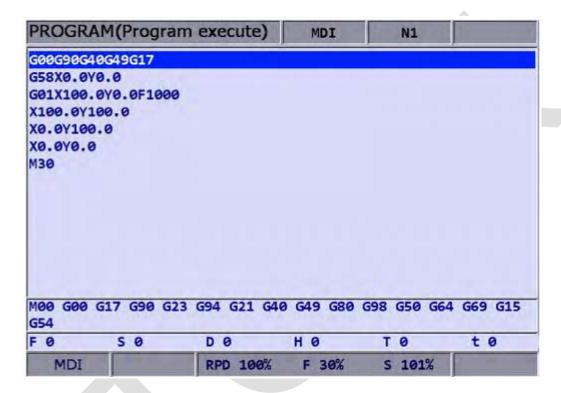


Рисунок 5.15.6

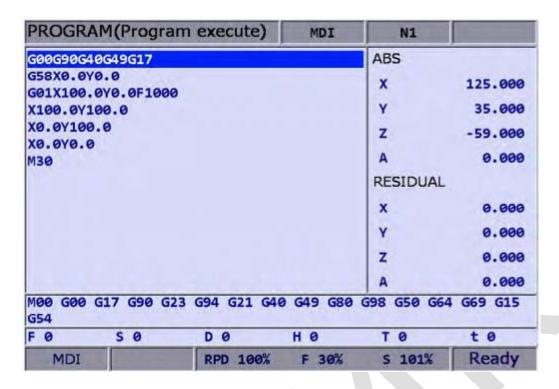


Рисунок 5.15.7

Функция **сохранить** сохраняет вручную отредактированный файл в текущем каталоге, следуя тем же правилам написания имен, что и описанные в **п. 5.2 Создание нового файла**. Имя должно быть уникально для текущего каталога. Функция **удалить** стирает все содержание страницы программирования в ручном режиме. Аналогичного результата можно достичь нажав и удерживая в течение 3 сек. клавишу RESET.

Примечание:

Клавиша RESET имеет две функции в режиме ручного ввода. Первая — такая же, как в автоматическом режиме, прерывание выполнения программы и возврат к первой строке программы. Вторая — удаление всех строк программного кода нажатием и удержанием в нажатом положении в течение 3 сек.

6. Группа функций смещения (OFS)

Функции группы OFS предназначены для задания координат заготовки (рабочей детали), компенсации длины/радиуса режущего инструмента, макросов и переменных.

6.1 Задание координат

- 6.1.1 Автонастройка
- 6.1.2 Ввод абсолютного значения
- 6.1.3 Ввод инкрементального значения
- 6.1.4 Определение центра прямоугольника
- 6.1.5 Определение центра окружности
- 6.2 Регистр инструмента
- 6.3 Регистр магазина инструментов
- 6.4 Переменные макросов
 - 6.4.1 Локальные переменные
 - 6.4.2 Глобальные переменные
 - 6.4.3 Энергонезависимые переменные
 - 6.4.4 Расширенные переменные

6.1 Задание координат

NC300 предоставляет возможность использования сразу нескольких систем координат (G54...G59) заготовки. Это позволяет задавать координаты в G-коде, используя любую систему координат, как показано на Рис. 6.1.1.

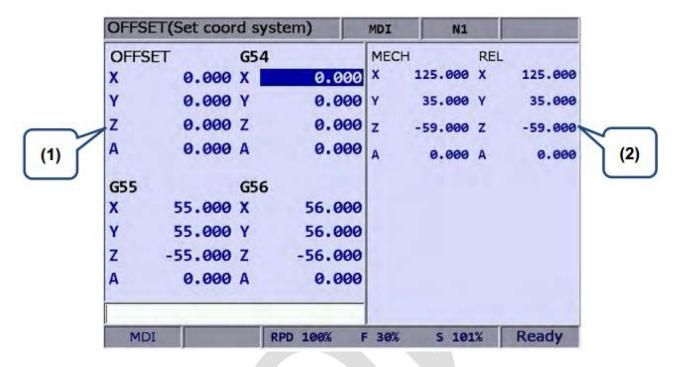


Рисунок 6.1.1

- (1) Задание системы координат: Координаты смещения / G54...G59
- (2) Значения координат: Механические координаты / Относительные координаты

Для установки координат выполните следующие инструкции:

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.

Примечания:

- (1) Установка системы координат доступна только, если программа не выполняется. Иначе, все введенные данные будут отклонены системой.
- (2) Окончание выполнения одного блока переводит программу в состояние «Не выполняется». В то время как остановленная с помощью функции паузы программа считается находящейся в состоянии «Выполняется».

6.1.1 Автонастройка

Функция автонастройки считывает координаты текущей позиции по каждой оси в выбранную систему координат (G54...G59). Имеется три метода считывания значений координат: по одной оси, по нескольким осям и L/2. Метод L/2 применяется вместе функцией обнуления относительной оси.

Обнуление всех координат: Обнуляет все значения координат в текущей системе координат. Значения координат в других системах координат остаются неизмененными:

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.
- 3. Нажмите **F1** (Auto), чтобы перейти на экран с функциональной панелью автонастройки системы координат.
- 4. Используйте клавиши $\mathbf{1}$, $\mathbf{1}$, $\mathbf{4}$, $\mathbf{4}$, $\mathbf{4}$, чтобы переместить курсор в необходимую систему координат.
- 5. Нажмите **F2** (CLR ALL), чтобы обнулить все значения координат в выбранной системе координат.

Обнуление координат в позиции курсора: Обнуляет те координаты, которые находятся в позиции курсора. Типы осей определяются по позиции курсора. Эта функция обнуляет значения координат на дисплее, а не актуальные значения системы координат заготовки.

Метод L/2: Определяя центр объекта как начало системы координат, эта функция позволяет автоматически вычислить координаты и выполнить настройку.

Выполните следующие шаги (пример приведен для оси X):

- 1. В режиме **JOG** или режиме **MPG** переместите инструмент к оси X заготовки и коснитесь одной из ее сторон. Данная точка касания принимается за начало оси X.
- 2. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 3. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.
- 4. Нажмите **F1** (Auto), чтобы перейти на экран с функциональной панелью автонастройки системы координат.
- 5. Используя клавиши **1**, **√**, **←**и **→** переместите курсор в позицию координат оси X в выбранной системе координат.
- 6. Нажмите **F4** (SET L/2), чтобы открыть экран для ввода координат по методу L/2.
- 7. Нажмите **F1** (Point1). Процесс ввода (записи) первой механической координаты завершен, о чем свидетельствует красный кружок слева от прямоугольника (Рис. 6.1.2).

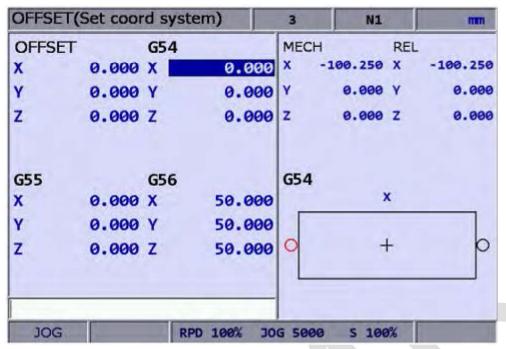
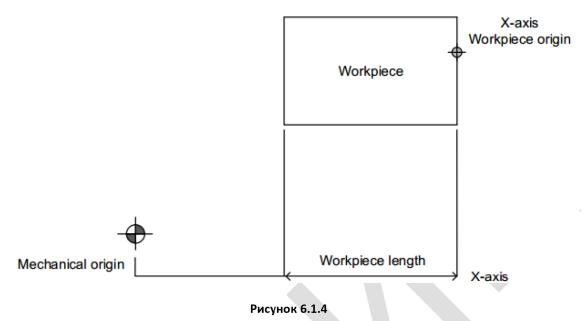


Рисунок 6.1.2


- 8. Переместите инструмент по оси X на другую сторону заготовки и коснитесь ее, получив таким образом вторую точку касания с заготовкой.
- 9. Нажмите клавишу **F2** (Point2). Вторая механическая координата будет считана системой, когда второй кружок справа от прямоугольника станет красным.
- 10. Нажмите клавишу **F3** (SET). Система рассчитает значение начала оси X системы координат заготовки. Сначала она измерит расстояние от начала механической системы координат до конца оси X заготовки и затем разделит его пополам.

Метод L: Этот способ позволяет автоматически вводить текущие механические координаты в поле, соответствующее положение курсора. Таким методом возможно считывать значение только для одной оси:

- 1. В режиме **JOG** или режиме **MPG** переместите инструмент к оси X заготовки и коснитесь одной из ее сторон.
- 2. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 3. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.
- 4. Нажмите **F1** (Auto), чтобы перейти на экран с функциональной панелью автонастройки системы координат.
- 5. Используя клавиши ♠, ♣, ←и → переместите курсор в позицию координат оси X, Y или Z в выбранной системе координат.
- 6. Нажмите **F3** (SET L). Выделенное на экране значение координаты по выбранной оси будет записано в систему.

Пример использования (для оси X):

Переместите инструмент в определенную позицию систему координат, например в начало оси X заготовки, как показано на Рис. 6.1.4.

Пояснения к рисунку:

Workpiece - заготовка, X-axis Workpiece origin — начало оси X заготовки, Mechanical origin — начало механической системы координат, Workpiece length — длина заготовки, X-axis — ось X.

Значения механических координат отображаются в соответствующих полях экрана (см рис. ниже). Переместите курсор в какую-либо группу систему координат (например, G54 как на Рис. 6.1.5). Затем нажмите **F3** (SET L). Значение механической координаты X будет автоматически введено в поле оси X системы координат G54. Ввод значения одной координаты на этом завершен.

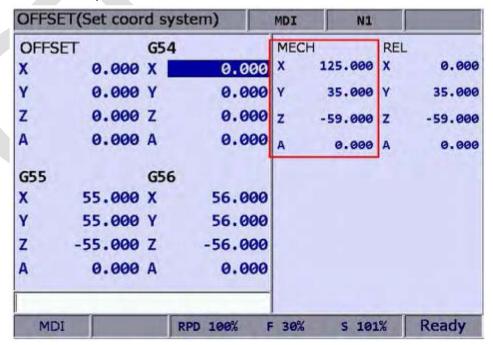


Рисунок 6.1.5

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Метод Р: Этот способ позволяет ввести начало координат сразу по нескольким осям, после того как начальная точка заготовки выставлена (откалибрована).

Для этого выполните следующее:

- 1. В режиме **JOG** или режиме **MPG** переместите инструмент к оси X заготовки и коснитесь одной из ее сторон.
- 2. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 3. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.
- 4. Нажмите **F1** (Auto), чтобы перейти на экран с функциональной панелью автонастройки системы координат.
- 5. Используя клавиши **1**, **4**, **←**и **→** переместите курсор в одно из полей координат в выбранной системе координат.
- 6. Нажмите **F5** (SET P). Текущие координаты сразу по нескольким осям будут автоматически введены в поля выделенной на экране курсором системы координат.

Примечание:

Не используйте функциональную клавишу **All Clear** для сброса значения координаты, так как при этом будут обнулены значения координат и по всем остальным осям.

Пример использования:

Переместите инструмент в определенную позицию, например в начальную точку заготовки как показано на рис. 6.1.6 (Рис. 6.1.6 показывает относительное положение осей X и Y, но не Z).

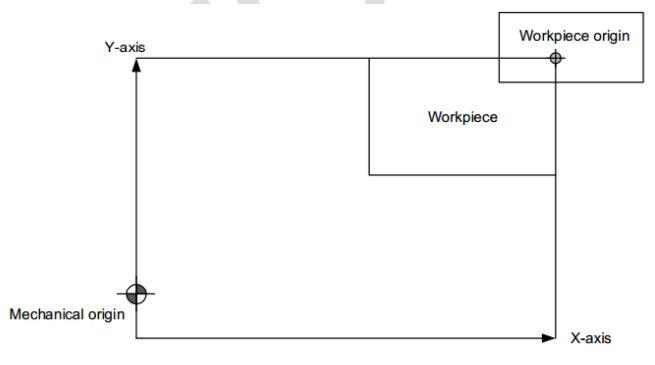


Рисунок 6.1.6

Пояснения к рисунку:

Workpiece - заготовка, Workpiece origin — начальная точка заготовки, Mechanical origin — начало механической системы координат, X-axis — ось X.

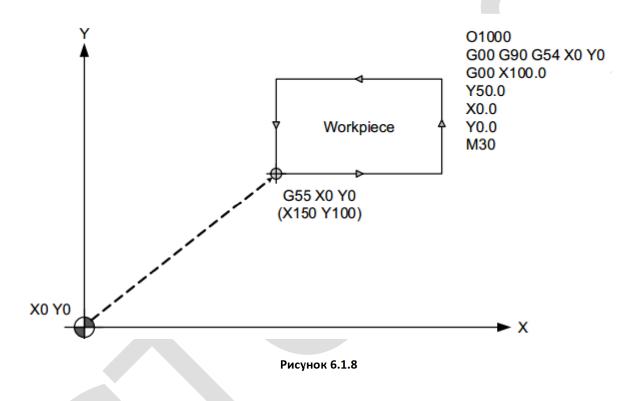
После того как начальная точка заготовки выставлена (откалибрована), значения механических координат показаны в соответствующих полях экрана (см рис. 6.1.7). Переместите курсор в требуемую систему координат (например, G54 на рис. 6.1.7). Нажмите клавишу **F5** (SET P), после чего значения механических координат будут записаны в соответствующие координатные поля осей X, Y, Z выбранной системы координат G54. На этом процедура ввода значений координат сразу по нескольким осям завершена.

Рисунок 6.1.7

6.1.2 Ввод абсолютного значения

Значения координат могут быть заданы в ручном режиме либо как абсолютные, либо как относительные значения.

Для задания абсолютных значений:


- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.
- 3. Используя клавиши **1**, **↓**, **←**и **→** переместите курсор в позицию координат оси X, Y или Z в выбранной системе координат.
- 4. Используя цифровые клавиши 0...9, введите положительное или отрицательное значение. Для ввода отрицательного значения нажмите клавишу для подтверждения выбора единиц измерения координаты.
- 5. Нажмите **F2** (ABS) для ввода значения координаты.

Примечания:

- (1) Единица измерения по умолчанию миллиметр. При отсутствии десятичной точки единица измерения микрометр. Т.е., например, значение 123456 означает 123.456 мм.
- (2) В описанном выше шаге 5 вместо нажатия клавиши F2 можно нажать клавишу ENTER.

Пример ввода абсолютного значения:

Переместите инструмент из начала механической системы координат в начальную точку координат заготовки. Затем введите координаты этой точки (X и Y) в одну из систем координат группы OFS контроллера G54...G59. Выполните соответствующую команду в G-коде программы, после чего задание начала системы координат заготовки будет завершено.

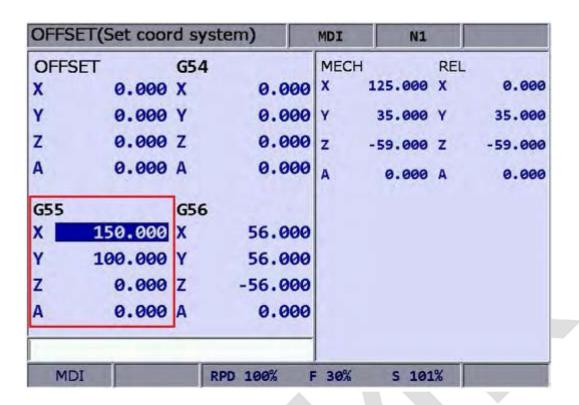


Рисунок 6.1.9

6.1.3 Ввод инкрементального значения

Альтернативный метод задания координат — инкрементальный ввод. Обычно, инкрементальные значения используются для точного задания координат, т.к. задаваемое значение прибавляется к предыдущему. Например, если изначально значение координаты равно 150.000, при вводе инкремента равного 5.000, итоговое значение координаты получается равным 155.000.

Чтобы использовать инкрементальный ввод:

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.
- 3. Используя клавиши **1**, **4**, **4** и **1** переместите курсор в позицию координат оси X, Y или Z в выбранной системе координат.
- 4. Используя цифровые клавиши 0...9, введите положительное или отрицательное значение. Для ввода отрицательного значения нажмите клавишу для подтверждения выбора единиц измерения координаты.
- 5. Нажмите **F3** (INC), чтобы ввести значение инкремента и, таким образом, увеличить или уменьшить текущую координату.

Примечание:

При вводе координат в ручном режиме особое внимание обращайте на соответствие типа вводимого значения и текущей координаты, чтобы избежать непредвиденных движений механизма.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

6.1.4 Определение центра прямоугольника

Данная функция помогает определить координаты центра нарисованного прямоугольника, как показано на рис. 6.1.10. Контроллер преобразует данные четырех угловых точек в координаты центра фигуры.

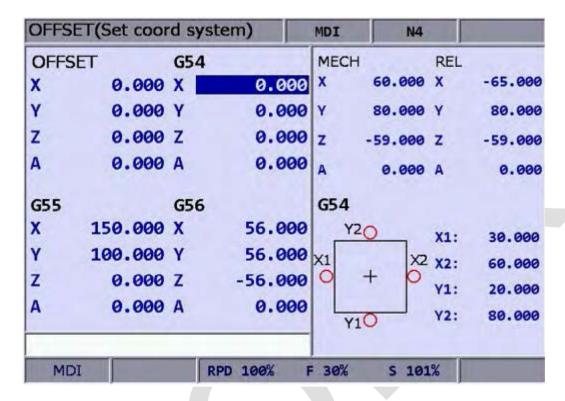


Рисунок 6.1.10

Для использования этой функции:

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.
- 3. Используя клавиши 🚺, 🖣, ←и → переместите курсор в поля для ввода значений координат в выбранной системе координат.
- 4. Нажмите **F4** (SQUARE), чтобы открыть экран для определения центра прямоугольника.
- 5. Пользуясь показанным на экране прямоугольником, перемещайте последовательно центр шпинделя в позиции точек X1, X2, Y1 и Y2 и нажимайте при этом соответственно клавиши **F1**, **F2**, **F3** и **F4**, чтобы задать координаты для каждой точки.
- 6. После того как координаты всех четырех точек прямоугольника определены, нажмите **F5** (Set). Контроллер вычислит координаты центра прямоугольника и введет полученные данные в систему координат.
- 7. Задайте координату по оси Z в выбранной системе координат, переместив шпиндель в необходимую позицию по оси Z и нажав после этого **F6** (SET Z).

6.1.5 Определение центра окружности

Данная функция определяет координаты центра любого шаровидного объекта. Достаточно выбрать любые 3 точки шара и задать их координаты. После чего эта функция вычислит координаты центра объекта (см рис. 6.1.13).

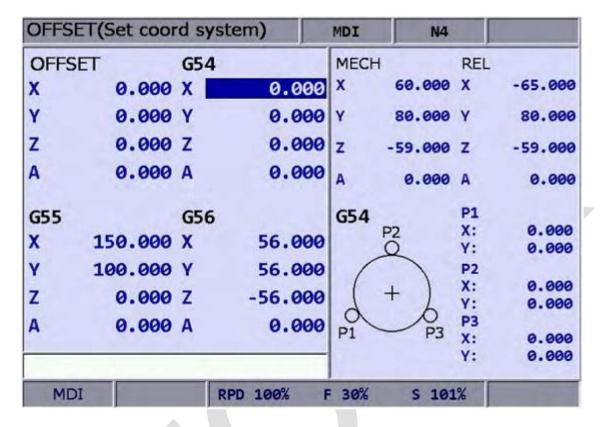


Рисунок 6.1.13

Чтобы применить данную функцию:

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F1** (Coord), чтобы отобразить функциональную панель задания системы координат.
- 3. Используя клавиши 🐧, 🖣, ←и → переместите курсор в поля для ввода значений координат в выбранной системе координат.
- 4. Нажмите **F5** (SQUARE), чтобы открыть экран для определения центра окружности.
- 5. Как изображено на экране, перемещайте инструмент последовательно в позиции точек P1, P2, и P3 и нажимайте при этом соответственно клавиши **F1**, **F2**, и **F3**, чтобы задать координаты для каждой точки.
- 6. После того как координаты всех трех точек окружности определены, нажмите **F4** (Set). Контроллер вычислит координаты центра окружности и введет полученные данные в систему координат.
- 7. Задайте координату по оси Z в выбранной системе координат, переместив инструмент в необходимую позицию по оси Z и нажав после этого **F6** (SET Z).

6.2 Регистр инструмента

Данная функция имеет разные параметры для компенсации длины инструмента (G43 или G44, или команда отмены G48) и компенсации радиуса (G41 или G42, или команда отмены G40). Регистр инструмента используется с функциями компенсации длины инструмента, компенсации радиуса, компенсации износа по длине, компенсации износа по радиусу.

Значения, соответствующие H-кодам (компенсация длины инструмента) и D-кодам (компенсация радиуса инструмента), определяются станочной программой. На рис. 6.2.1 для примера показан экран для компенсирующих функций инструмента.

41	OFF	SET(Cutter	register)	037	N1		15
(1)	Num	Length	Radius	Len wear	Rad wear	LIFE	(2
	1	-50.000	20.000	0.000	0.000	1	
	2	-100.000	5.000	-1.000	-0.500	0	
	3	-100.000	3.000	0.000	0.000	0	
	4	-100.000	4.000	0.000	0.000	0	
	5	0.000	5.000	0.000	0.000	0	
	6	-60.000	6.000	0.000	0.000	0	
	7	-70.000	7.000	0.000	0.000	0	
	8	-80.000	8.000	0.000	0.000	0	
	9	-90.000	9.000	0.000	0.000	0	
	10	-100.000	10.000	0.000	0.000	0	
	11	-110.000	11.000	0.000	0.000	0	
	12	-120.000	12.000	0.000	0.000	0	
	13	0.000	13.000	0.000	0.000	0	
	14	-140.000	14.000	0.000	0.000	0	
3)	15	-150.000	15.000	0.000	0.000	0	(4
_				MECH	Z	-59.000	_
	70	OG	RPD 1	.00% JOG 50	0 S 101%	STOP	

Рисунок 6.2.1

- (1) Код компенсации (H/D)
- (2) Данные компенсации: Длина инструмента; Радиус инструмента; Компенсация длины; Компенсация радиуса
- (3) Поле ввода данных компенсации
- (4) Дополнительный дисплей: Механические координаты и текущая координата по оси Z

Допустимый диапазон значений регистра инструмента				
Длина инструмента	-2000.02000.0 mm			
Радиус инструмента	-150.0150.0 mm			
Компенсация износа по длине	-2000.02000.0 мм			
Компенсация износа по радиусу	-150.0150.0 mm			
Срок службы инструмента	09999999 раз			

Абсолютный ввод: Это один из методов ввода данных в ручном режиме. Используйте его для задания значений длины инструмента, радиуса инструмента, компенсации износа или срока службы инструмента в абсолютных единицах. Ввод абсолютных значений может быть также осуществлен посредством нажатия клавиши ENTER.

Чтобы использовать данный метод:

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F2** (CUTTER), чтобы отобразить функциональную панель регистра инструментов.
- 3. Используя клавиши 🐧, 🦣, ← и → переместите курсор в поле для ввода данных длины инструмента, радиуса или износа.
- 4. Используя цифровые клавиши 0...9, введите положительное или отрицательное значение. Для ввода отрицательного значения нажмите клавишу для подтверждения выбора единиц измерения. Для срока службы можно вводить только положительные значения.
- 5. Нажмите **F1** (ABS), чтобы завершить ввод.

Примечание:

Для каждого значения компенсации имеется свое поле данных инструмента. Например, если на экране выделены поля длины, то вводимые данные относятся именно для компенсации длины инструмента.

Инкрементальный ввод: Это еще один метод ввода данных в ручном режиме. Используйте его для задания значений длины инструмента, радиуса инструмента, компенсации износа или срока службы инструмента.

Для этого:

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F2** (CUTTER), чтобы отобразить функциональную панель регистра инструментов.
- 4. Используя цифровые клавиши 0...9, введите положительное или отрицательное значение. Для ввода отрицательного значения нажмите клавишу для подтверждения выбора единиц измерения. Для срока службы можно вводить только положительные значения.
- 5. Нажмите **F2** (INC), чтобы завершить инкрементальный ввод.

Задание Н: Данная функция автоматически прописывает значение высоты по оси Z текущих механических координат в поле компенсации длины инструмента (H):

1. В режиме JOG или режиме MPG переместите инструмент в определенную координату по оси Z (на определенную высоту).

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

- 2. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 3. Нажмите **F2** (CUTTER), чтобы отобразить функциональную панель регистра инструментов.
- 4. Используя клавиши **1**, **↓**, **←**и **→** переместите курсор в поле ввода данных длины инструмента для звданного кода инструмента.
- 5. Нажмите **F3** (SET H), чтобы записать текущее значение координаты по оси Z в выбранное поле ввода.

Примечания:

- (1) Данная функция применима только к полям ввода длины инструмента.
- (2) Не изменяйте данные в группе OFS во время выполнения программы. Вводите новые значения только, когда программа остановлена. Программа остановлена, т.е. не выполняется, если выполнение текущего программного блока завершено (при включенном разрешении на останов одного блока) или после нажатия клавиши RESET.
- (3) Данная функция автоматически обнуляет значение износа по длине инструмента.

Обнулить: Данная функция производит обнуление следующих групп данных:

Геометрия – обнуляет все значения длины и радиуса инструмента.

Износ – обнуляет все значения компенсации длины и компенсации радиуса инструмента.

Срок службы – обнуляет все значения срока службы инструмента.

Все данные – обнуление всех данных регистра инструмента.

Для применения функции выполните следующее:

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F2** (CUTTER), чтобы отобразить функциональную панель регистра инструментов.
- 3. Нажмите **F4** (Clear), чтобы отобразить функциональную панель для обнуления данных.
- 4. Нажмите **F1** (H/D) для обнуления значений длины и радиуса инструмента. Нажмите **F2** (Wear), чтобы сбросить значения компенсации длины и компенсации радиуса, **F3** (Life) чтобы обнулить сроки службы или **F4** (All) для обнуления всех данных регистра инструмента.

6.3 Регистр магазина инструментов

Эта функция предназначена для управления позициями инструментов в магазине инструментов. Регистр магазина инструментов представляет собой таблицу, в которую записываются текущая ячейка инструмента в магазине и идентификатор инструмента в системе. Регистр не только отображает позиции инструментов, но и дает возможность изменять порядок их следования в магазине (при наличии прав доступа). Данная функция работает только в режиме JOG.

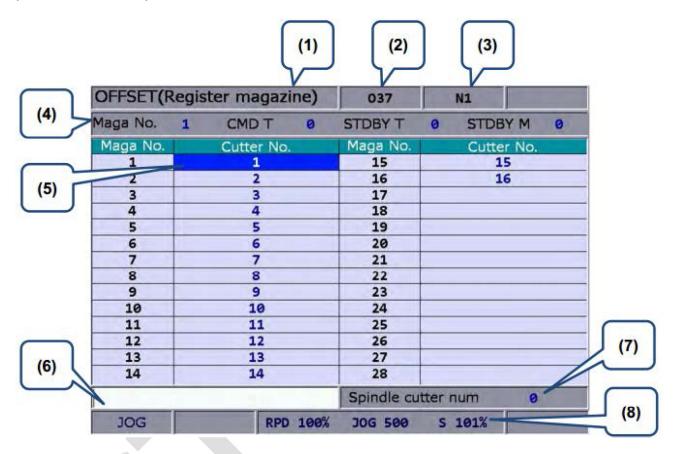


Рисунок 6.3.1

- (1) Название текущего экрана
- (2) Имя файла/программы
- (3) Текущая строка кода
- (4) Maga No.: номер ячейки в магазине

CMD Т: идентификатор текущего инструмента

STDBY T: идентификатор следующего инструмента

STDBY M: идентификатор следующей ячейки

- (5) Идентификатор инструмента
- (6) Поле ввода идентификатора инструмента
- (7) Идентификатор шпинделя
- (8) Уровень скорости текущего перемещения

Выполните следующие шаги для настройки магазина инструментов:

- 1. Переключите контроллер в режим JOG.
- 2. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 3. Нажмите **F3** (MAGA), чтобы перейти на экран магазина инструментов.
- 4. Используя клавиши 1, √, ←и → переместите курсор в нужную строку таблицы регистра.
- 5. В поле ввода введите идентификатор активного инструмента. Нажмите **F1** (SET) (или нажмите клавишу ENTER), чтобы завершить ввод.

Сбросить все: регистр магазина инструментов также предоставляет функцию сброса позиций инструментов в магазине. Позиции инструментов при этом сбрасываются в значения по умолчанию. Эта функция полезна при решении проблем ошибочного расположения инструментов.

Для применения этой функции:

- 1. Переключите контроллер в режим JOG.
- 2. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 3. Нажмите **F3** (MAGA), чтобы перейти на экран магазина инструментов.
- 4. Нажмите **F2** (RST ALL), чтобы сбросить все записи позиций в магазине инструментов.

Блокирование позиции в магазине инструментов: данная функция позволяет блокировать определенную позицию инструмента в магазине, которая не используется программой. Инструменты, блокированные таким образом в магазине, не могут быть вызваны программой. Если по ошибке программа обратится к такому инструменту, система блокирует вызов, выдаст сообщение об ошибке и немедленно остановит выполнение программы. Блокированная позиция в регистре магазина инструментов будет выделена другим цветом.

Для использования этой функции:

- 1. Переведите контроллер в режим JOG.
- 2. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 3. Нажмите **F3** (MAGA), чтобы перейти на экран магазина инструментов.
- 4. Используя клавиши 1, √, ←и → переместите курсор в нужную строку таблицы регистра.
- 5. Нажмите **F3** (LOCK), чтобы заблокировать выбранную позицию магазина инструментов (см рис. 6.3.5).

Рисунок 6.3.5

Разблокирование позиции в магазине инструментов: данная функция позволяет разблокировать заблокированную позицию инструмента в магазине.

Для этого:

- 1. Переведите контроллер в режим JOG.
- 2. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 3. Нажмите **F3** (MAGA), чтобы перейти на экран магазина инструментов.
- 4. Используя клавиши \mathbf{I} , \mathbf{I} , \mathbf{I} переместите курсор в нужную строку таблицы регистра (с заблокированной позицией).
- 5. Нажмите **F4** (UNLOCK), чтобы разблокировать выбранную позицию магазина инструментов.
- 6. Можно также ввести идентификатор инструмента непосредственно в поле ввода и нажать клавишу **ENTER**, чтобы разблокировать позицию.

Примечания:

- (1) Идентификатор инструмента может быть задан только в режиме JOG. Функции магазина инструментов недоступны в других режимах.
- (2) Необходимо наличие специальных прав доступа для внесения изменений в магазин инструментов.
- (3) Каждый инструмент должен иметь свой уникальный идентификатор в одном магазине. При попытке использовать уже существующий идентификатор для нового инструмента, контроллер автоматически перенумерует идентификаторы, чтобы избежать некорректных вызовов инструментов.
- (4) Если идентификатор первого инструмента шпинделя задан как Т0 и Т0 помещен в один из магазинов инструментов, этот магазин является позицией Т0 и не может быт

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

заблокирован. Если выбранное поле магазина инструментов - ТО, блокирование запрещено. При попытке заблокировать появится сообщение **«Блокирование позиции в магазине инструментов невозможно»**.

6.4 Переменные макросов

Используйте эту функцию задания переменных макросов наряду с командами переменных для различных вычислительных операций, при работе с входами/выходами MLC. Переменные могут быть как глобальные, так и локальные, а также храниться в энергонезависимой памяти. Значения переменных задаются в формате double.

FFSET(Macro var-local)		037 N1			
No.	Value	No.	Value		
1	0.000	16	0.000	.000	
2	0.000	17	0.000)	
3	0.000	18	0.000		
4	0.000	19	0.000		
5	0.000	20	0.000		
6	0.000	21	0.000		
7	0.000	22	0.000)	
8	0.000	23	0.000		
9	0.000	24			
10	0.000	25	0.000		
11	0.000	26	0.000		
12	0.000	27	0.000		
13	0.000	28	0.000		
14	0.000	29	0.000		
15 0.000		30	0.000)	
JOG	RPD 100	% JOG 500	S 101%	STOP	

Рисунок 6.4.1

6.4.1 Локальные переменные

Областью видимости локальных переменных являются макросы, в которых они определены. Локальные переменные имеют в качестве идентификаторов **номера с 1 по 50**.

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F4** (Macro), чтобы перейти на экран задания переменных.
- 3. Нажмите **F1** (Local). Появится экран для ввода значений локальных переменных. Идентификация начинается с номера 1.
- 4. Используя клавиши 1, 1,

 переместите курсор в строку с нужным идентификатором переменной.
- 5. Введите значение для выбранной переменной и нажмите **ENTER**.

6.4.2 Глобальные переменные

Глобальные переменные являются общими для основной программы, подпрограмм и макросов. Идентификаторы глобальных переменных задаются **номерами с 51 по 250**.

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите F4 (Масго), чтобы перейти на экран задания переменных.
- 3. Нажмите **F2** (Global). Появится экран для ввода значений глобальных переменных. Идентификация начинается с номера 51.
- 4. Используя клавиши **1**, **1**, **4**, **4** и **3** переместите курсор в строку с нужным идентификатором переменной.
- 5. Введите значение для выбранной переменной и нажмите ENTER.

6.4.3 Энергонезависимые переменные

Энергонезависимые переменные сохраняют свои значения в случае пропадания напряжения питания. Идентификаторы этих переменных задаются номерами с 1601 по 1800.

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите F4 (Масго), чтобы перейти на экран задания переменных.
- 3. Нажмите **F3** (Hold). Появится экран для ввода значений энергонезависимых переменных. Идентификация начинается с номера 1601.
- 4. Используя клавиши 🚺, 🖣, ← и → переместите курсор в строку с нужным идентификатором переменной.
- 5. Введите значение для выбранной переменной и нажмите **ENTER**.

6.4.4 Расширенные переменные

В распоряжении пользователя дополнительно имеются 500 расширенных переменных. Идентификаторы этих переменных задаются **номерами с 10001 по 10500**.

- 1. Нажмите клавишу **OFS** для перехода на экран [Offset].
- 2. Нажмите **F4** (Macro), чтобы перейти на экран задания переменных.
- 3. Нажмите **F4** (EXPAND). Появится экран для ввода значений энергонезависимых переменных. Идентификация начинается с номера 10001.
- 4. Используя клавиши **1**, **↓**, **←**и **→** переместите курсор в строку с нужным идентификатором переменной.
- 5. Введите значение для выбранной переменной и нажмите **ENTER**.

7 Группа функций диагностики (DGN)

Функции группы DGN предоставляют информацию о технологическом процессе, пользовательских переменных, внешних устройств, а также функции импорта/экспорта для оптимизации системы.

- 7.1 Текущая информация процесса (PROCESS)
- 7.2 Пользовательские переменные
- 7.3 Мониторинг внешних устройств
 - 7.3.1 Мониторинг входов/выходов
 - 7.3.2 Мониторинг сервоприводов
- 7.4 Установка пароля
 - 7.4.1 Права пользователя
- **7.5** Импорт
- 7.6 Экспорт

7.1 Текущая информация процесса (PROCESS)

На экране [PROCESS] возможно задать количество заготовок, которые необходимо обработать, а также количество уже обработанных заготовок. Здесь же можно сбросить значения счетчика заготовок и времена обработки.

Рисунок 7.1.1

Пояснения к рисунку:

Total time — общее время обработки, Single time — время обработки одной заготовки, Target stocks — заданное количество заготовок, Completed stocks — количество обработанных заготовок, Date — текущая дата, Time — текущее время.

Выполните следующие инструкции:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите F1 (PROCESS) для перехода на экран [PROCESS].
- 3. Нажмите **F1** (Set NR). Окно для ввода значений счетчиков появится на экране (см рис. 7.1.2).

Рисунок 7.1.2

- 4. Используя клавиши **1**, **1** переместите курсор в нужное поле для ввода значения счетчика.
- 5. Введите значение в диапазоне от 0 до 9999 и нажмите **ENTER**.

Для сброса значений времен (Total/Single) обработки заготовок:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите **F1** (PROCESS) для перехода на экран [PROCESS].
- 3. Нажмите **F2** (CLR TIME). На экране появится диалоговое окно для подтверждения операции.
- 4. Нажмите "Y" (Yes) и затем **ENTER** для сброса времени обработки одной заготовки.

Для сброса значения счетчика обработанных заготовок:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите **F1** (PROCESS) для перехода на экран [PROCESS].
- 3. Нажмите **F3** (CLR NR). На экране появится диалоговое окно для подтверждения операции.
- 4. Нажмите "Y" (Yes) и затем **ENTER** для сброса значения счетчика обработанных заготовок.

7.2 Пользовательские переменные

Эта функция позволяет отображать и изменять значения специальных внутренних регистров контроллера (D512...D1023). Для удобства можно изменить формат отображаемого значения регистра.

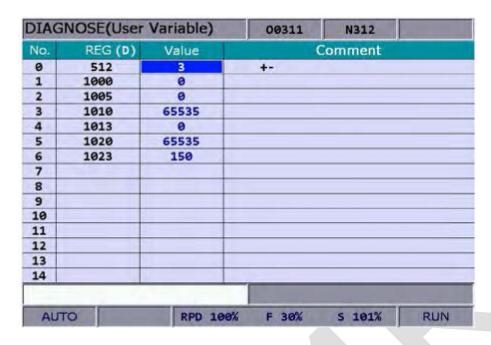


Рисунок 7.2.1

Выполните следующие шаги:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите **F2** (User VAR) для перехода на экран пользовательских переменных.
- 3. Нажмите **F1** (USER VAR) для перехода на экран настройки. Или нажмите клавишу **F3** (M VAR) для перехода на экран переменных оборудования.
- 4. Используя клавиши **1**, **↓**, **PAGE UP** или **PAGE DN** для перемещения курсора в нужную строку.
- 5. Введите номер регистра (D512...D1023) и нажмите **ENTER**, чтобы отобразить текущее значение регистра.
- 6. Переместите курсор в поле ввода значения регистра и введите необходимое значение, после чего нажмите **ENTER**.
- 7. Выберите формат отображаемого значения, используя клавиши **F2** (US DEC), **F3** (HEX), **F4** (S DEC) и **F5** (FLOAT).
- 8. Если требуется удалить данные из регистра, используйте клавишу **F1** (DEL).

7.3 Мониторинг внешних устройств

С помощью этой функции можно получать информацию о состоянии внешних подключенных устройств в режиме реального времени.

7.3.1 Мониторинг входов/выходов

NC300 позволяет подключить внешние сигналы управления через модули расширения входов/выходов. С помощью данной функции можно отслеживать состояние этих сигналов:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите **F4** (SYS MON) чтобы открыть экран мониторинга внешних устройств.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

3. Нажмите **F2** (I/O MON) для перехода на экран монитора входов/выходов модуля расширения.

7.3.2 Мониторинг сервоприводов

Эта функция позволяет отслеживать информацию о ключевых параметрах сервопривода по каждой оси. Текущий статус сервопривода представлен в формате, показанном на рис. 7.3.2.1. В данном примере сервоприводы на осях Y, Z и A, а также шпиндель выключены, и только сервопривод оси X активен.

Рисунок 7.3.2.1

Чтобы открыть монитор сервоприводов:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите **F4** (SYS MON), чтобы открыть экран мониторинга внешних устройств.
- 3. Нажмите **F3** (SERVO) для перехода на экран монитора сервоприводов.

7.4 Установка пароля

Данная функция позволяет установить разные уровни доступа для системы (поддержка системы), оборудования (механическое оборудование) и пользователей (управление). Это предотвращает изменение системных параметров и настроек неавторизованным пользователем.

7.4.1 Права пользователя

Можно установить два уровня прав пользователя: права доступа 1 и права доступа 2. Пользователю можно установить пароль (PWD CHG), заблокировать (LOCK) или

разблокировать (UNLOCK) учетную запись. Пароль должен состоять максимум из четырех цифробуквенных символов (специальные символы не допустимы).

Чтобы изменить пароль пользователя (права доступа 1):

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите **F6** (PWD), чтобы отобразить функциональную панель установки пароля.
- 3. **Если [User permission 1] заблокирован**, нажмите клавишу **F3** (U1 SCP). Появится диалоговое окно для разблокировки прав доступа 1 [User permission 1].
- 4. Введите действующий пароль и нажмите **ENTER**, чтобы разблокировать [User permission 1] и доступные опции.
- 5. Нажмите **F1** (PWD CHG). На экране появится диалоговое окно для ввода старого (действующего) пароля (один раз) и нового пароля (дважды).
- 6. Введите требуемые пароли и нажмите **ENTER** для завершения операции.

Для разблокировки учетной записи пользователя:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите **F6** (PWD), чтобы отобразить функциональную панель установки пароля.
- 3. **Если [User permission 1] заблокирован**, нажмите клавишу **F3** (U1 SCP). Появится диалоговое окно для разблокировки прав доступа 1 [User permission 1].
- 4. Введите действующий пароль для [User permission 1] и нажмите **ENTER**, чтобы разблокировать учетную запись и доступные опции.

Чтобы заблокировать учетную запись пользователя:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите **F6** (PWD), чтобы отобразить функциональную панель установки пароля.
- 3. **Если [User permission 1] не заблокирован**, нажмите клавишу **F3** (U1 SCP), чтобы отобразить доступные опции.
- 4. Нажмите **F2** (LOCK), чтобы заблокировать учетную запись с правами доступа 1.

Примечание:

Уровни доступа пользователей работают по тому же принципу, что и уровни доступа для оборудования. Пароль по умолчанию: 0000, обеспечивает доступ ко всем функциям, т.е. полный доступ. Смена пароля приведет к активации уровня доступа для пользователя.

7.5 Импорт

Контроллер предоставляет возможность импорта/экспорта системных параметров. К примеру, импорт ранее сохраненных корректного набора системных параметров может помочь восстановить систему, а с помощью экспорта параметров можно делать резервное копирование. Данная функция используется только при наличии соответствующих прав доступа и весьма эффективна в решении проблем, связанных с использованием некорректных параметров.

Для импорта параметров:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите клавишу Рдля перехода к следующей странице функциональной панели.
- 3. Нажмите клавишу **F2** (IMPORT) появится окно [FILE] (см рис. 7.5.1). Используйте

клавиши **Up** и **Down** для выбора нужного файла в каталоге и нажмите **ENTER**.

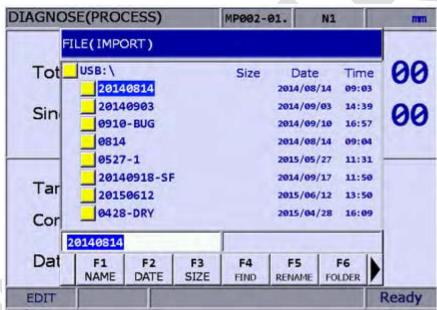


Рисунок 7.5.1

- 4. Используя клавиши **1**, **1**, **4**, **4**, перемещайте курсор , а нажатием клавиши **ENTER** отмечайте необходимые для импорта параметры.
- 5. Нажмите **F2** (SEL ALL) для выбоа сразу всех параметров или клавишу **F3** (CLR ALL) для отмены всех выбранных параметров для импортирования.

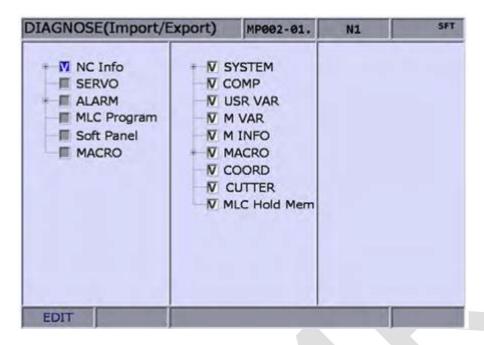


Рисунок 7.5.2

6. Нажмите F1 (IMPORT) и в появившемся диалоговом окне подтверждения операции сначала введите "Y" (yes), а затем нажмите клавишу **ENTER**. Выбранные в файле параметры будут импортированы в систему (на экране отображается индикатор процесса импортирования).

Рисунок 7.5.3

7.6 Экспорт

Системные параметры могут быть изменены в зависимости от выполняемой задачи. После того как система настроена и оптимизирована, с помощью функции экспорта параметров можно сделать их резервную копию. Данная функция может быть применена только при наличии соответствующих прав доступа.

Для экспорта параметров:

- 1. Нажмите клавишу **DGN**, чтобы открыть экран [DIAGNOSE].
- 2. Нажмите клавишу 🕨 для перехода к следующей странице функциональной панели.
- 3. Нажмите клавишу **F4** (EXPORT), чтобы открыть экран выбора экспортируемых параметров.
- 4. Используя клавиши , , , и , перемещайте курсор , а нажатием клавиши **ENTER** отмечайте необходимые для экспорта параметры. Клавишей F2 (SEL ALL) можно выбрать сразу все параметры, а клавишей F3 (CLR ALL) отменить выбор всех отмеченных параметров.

Рисунок 7.6.1

5. Нажмите клавишу **F1** (EXPORT) — появится окно [FILE] (см рис. 7.6.2). Используйте клавиши и

правите и

правите клавиши и

правите путь к файлу непосредственно в специальное поле ввода в нижней части экрана. После этого нажмите **ENTER**. Данные будут сохранены в выбранном файле.

Рисунок 7.6.2

- 6. После подтверждения на экране появится индикатор прогресса экспортирования данных до завершения процесса.
- 7. Чтобы создать новый файл для сохранения параметров (см рис. 7.6.2), введите имя файла и нажмите **F6** (FOLDER).
- 8. Если выбранный каталог уже содержит файл с экспортированными параметрами, на экране появится окно для подтверждения замены существующего файла. Введите "Y" (yes), а затем нажмите **ENTER**, чтобы подтвердить операцию.

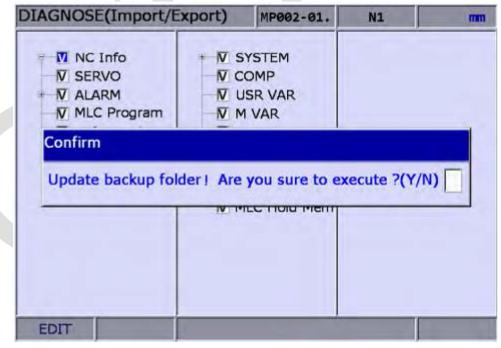


Рисунок 7.6.3

9. Вдобавок, можно использовать функции файлового менеджера [FILE] с помощью клавиш F1...F6.

8 Группа функций тревог (ALM)

Операционная система контроллера генерирует сообщения об ошибках (тревоги) в случае возникновения ошибок при выполнении программы или неправильного формата команды. Данная функциональная группа предназначена для таких сообщений.

- 8.1 Тревоги
- 8.2 Журнал тревог

8.1 Тревоги

При возникновении ошибки, прежде всего, необходимо выяснить причину ее возникновения. Нажмите клавишу **RESET**, чтобы привести систему в исходное состояние. На рис. 8.1.1 показан пример экрана тревог.

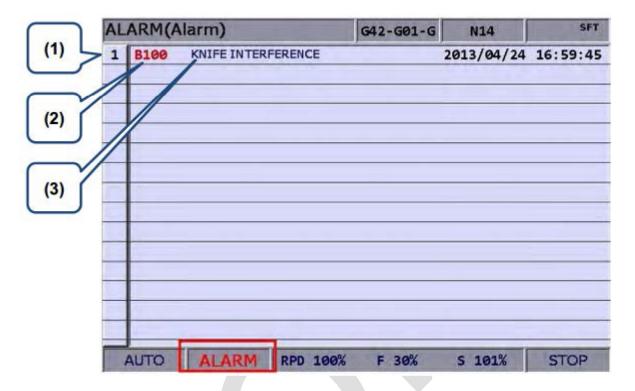


Рисунок 8.1.1

- (1) Порядковый номер тревоги.
- (2) Код тревоги.
- (3) Описание тревоги.

Выполните следующие шаги, для того чтобы открыть экран тревог и сбросить ошибку:

- 1. Нажмите клавишу **ALM**, чтобы открыть экран тревог [Alarm].
- 2. Нажмите **F1** (Alarm) чтобы открыть окно текущей тревоги.
- 3. Нажмите **RESET**, чтобы сбросить ошибку, отображаемую в данный момент на экране.

8.2 Журнал тревог

Данная функция регистрирует тревоги и соответствующую информацию, генерируемую операционной системой. Можно просмотреть все ошибки, возникающие в течение выполнения программы, отсортировав их либо по времени возникновения, либо по типу ошибки, для последующего анализа. Каждая запись в истории тревог содержит время возникновения и название ошибки. Экран может отобразить до 512 записей (строк). Вдобавок, существует возможность очистки всего журнала тревог.

AL	ARM(H	listory)	00311	N452	
31	B103	ARC INTERF		2013/04/15	19:45:17
32	B103	ARC INTERF		2013/04/15	19:45:09
33	B103	ARC INTERF		2013/04/15	19:10:24
34	B103	ARC INTERF		2013/04/15	19:09:49
35	B103	ARC INTERF		2013/04/15	19:08:55
36	B103	ARC INTERF		2013/04/15	18:14:06
37	B600	PPI TOKEN ERROR (0, Lin	e: 364)	2013/04/11	10:42:47
38	B604	PPI NONEXIST (0, Line:	2)	2013/04/10	14:25:18
39	B604	PPI NONEXIST (0, Line:	2)	2013/04/10	14:24:51
40	B604	PPI NONEXIST (0, Line:	2)	2013/04/10	14:24:25
41	BØ17	INVALID TOOL ASSIGMENT	1.11	2013/04/10	13:37:31
42	B017	INVALID TOOL ASSIGMENT		2013/04/10	13:37:11
43	BØ17	INVALID TOOL ASSIGMENT		2013/04/10	13:36:43
44	BØ17	INVALID TOOL ASSIGMENT		2013/04/10	13:36:11
45	1E00	X Axis : AL009 Excess	sive deviation	n2013/04/10	10:23:29
-	AUTO	RPD 100%	F 30%	S 101%	RUN

Рисунок 8.2.1

Выполните следующие шаги, чтобы очистить журнал тревог:

- 1. Нажмите клавишу **ALM**, чтобы открыть экран тревог [Alarm].
- 2. Нажмите **F2** (History) чтобы открыть экран журнала тревог.
- 3. Нажмите **F1** (CLR ALL). На экране появится диалоговое окно подтверждения.
- 4. Введите "Y" (yes) и нажмите **ENTER**, после чего все записи журнала тревог будут удалены.

Примечание:

Операционная система открывает экран тревог автоматически при возникновении ошибок. С помощью параметра 10016 можно запретить автоматическое появление экрана тревог.

9 Группа функций графического отображения (GRA)

На экране этой функциональной группы вычерчивается траектория движения инструмента для программы, по которой выполняется обработка. Таким образом, можно проверять правильность выполнения программы.

- 9.1 Траектория обработки (РАТН)
- 9.2 Предварительный просмотр траектории обработки (Preview)

Функции графического отображения позволяют вычерчивать траекторию движения инструмента для программы, по которой выполняется обработка, предоставляя возможность контролирования правильности выполнения программы. Оператор может предварительно просмотреть траекторию движения и выполнить симуляцию текущей операции обработки. Данная функция обеспечивает также проверку правильности формата G-кода и предварительной просмотр траектории.

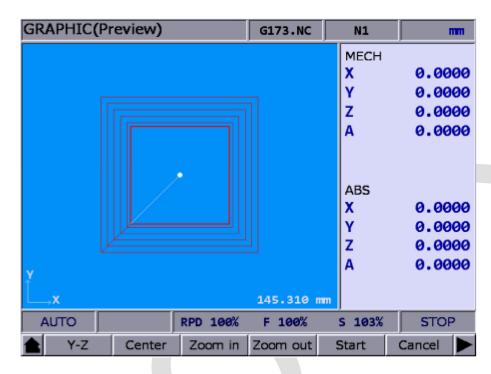


Рисунок 9.0.1

9.1 Траектория обработки (РАТН)

Во время выполнения программы, если экран переключен на функциональную группу GRA, операционная система контроллера вычерчивает на экране траекторию перемещения инструмента согласно текущей программе. Если данная функция используется вовремя обработки заготовки, можно сверяться, соответствует ли траектория заданной. Траектории доступны во всех плоскостях X-Y, Y-Z, X-Z, а также в X-Y-Z. Можно увеличивать, уменьшать или перемещать изображение на экране. Для настройки режима отображения используется параметр 14003. Функция предварительного просмотра (PREVIEW) отключена во время вычерчивания траектории обработки (PATH).

Выполните следующие инструкции:

- 1. Нажмите клавишу **GRA**, чтобы сделать экран [GRAPHIC] активным.
- 2. Нажмите **F1** (CUTTING PATH) для перехода на графический дисплей.
- 3. Нажмите **F1** (X--Y), чтобы отобразить траектории в плоскости X-Y, или нажмите **F1** еще раз, чтобы показать траекторию в плоскости Y-Z, и еще раз для плоскости X-Z, и еще раз для плоскости X-Y-Z.
- 4. Когда программа обработки выполняется, переход на экран [GRAPHIC] запустит процесс вычерчивания траектории. Нажмите клавишу **F6** (STOP DRAW), чтобы остановить

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

www.deltronics.ru

вычерчивание траектории. Нажмите **F5** (DRAW),чтобы продолжить вычерчивание траектории.

- 5. Нажмите клавишу **F2** (CENTER) для центрирования экрана, **F3** (ZOOM IN) для увеличения изображения, **F4** (ZOOM OUT) для уменьшения изображения.
- 6. Используйте клавиши **F1** (UP), **F2** (DOWN), **F3** (LEFT), **F4** (RIGHT) функциональной панели на следующей странице экрана для перемещения чертежа.

9.2 Предварительный просмотр траектории обработки (Preview)

Эта функция предназначена для предварительного просмотра траектории обработки. Она позволяет проверить правильность формата G-кода и увидеть траекторию инструмента еще до запуска процесса обработки. Предварительный просмотр доступен во всех плоскостях X-Y, Y-Z, X-Z и X-Y-Z. Можно увеличивать, уменьшать или перемещать изображение на экране. Соответствующие параметры такие же, как в п. 9.1. При использовании функции предварительного просмотра, выполнение программы обработки не возможно. Функции отслеживания траектории (п. 9.1) и предварительного просмотра нельзя использовать одновременно. Перед использованием функции отслеживания траектории, сначала отмените функцию предварительного просмотра или нажмите RESET.

Выполните следующие инструкции:

- 1. Нажмите клавишу **GRA**, чтобы сделать экран [GRAPHIC] активным.
- 2. Нажмите **F2** (PREVIEW) для перехода на экран предварительного просмотра.
- 3. Нажмите **F1** (X--Y), чтобы отобразить траектории в плоскости X-Y, или нажмите **F1** еще раз, чтобы показать траекторию в плоскости Y-Z, и еще раз для плоскости X-Z, и еще раз для плоскости X-Y-Z.
- 4. Нажмите **F5** (PREVIEW), чтобы увидеть траекторию перемещения, определенную в G-код файле. Нажмите **F6** (CANCEL PREVIEW) для отмены предварительного просмотра.
- 5. Нажмите клавишу **F2** (CENTER) для центрирования экрана предварительного просмотра, **F3** (ZOOM IN) для увеличения изображения, **F4** (ZOOM OUT) для уменьшения изображения.
- 6. Используйте клавиши **F1** (UP), **F2** (DOWN), **F3** (LEFT), **F4** (RIGHT) функциональной панели на следующей странице экрана для перемещения чертежа.

Примечания:

- (1) При открытии экрана отслеживания траектории обработки (РАТН), функция предварительного просмотра становится недоступной.
- (2) При использовании предварительного просмотра, операции обработки на станке не возможны. Функции отслеживания траектории и предварительного просмотра нельзя использовать одновременно. Перед использованием функции отслеживания траектории, сначала отмените функцию предварительного просмотра или нажмите RESET.
- (3) Если во время предварительного просмотра будет переключен режим работы, функция предварительного просмотра будет отменена.

- (4) После отмены предварительного просмотра, последующий предварительный просмотр начнется с первого программного блока.
- (5) Траектория обработки может выйти за пределы экрана из-за настроек системы координат заготовки. Если при старте функции отслеживания траектории или предварительного просмотра, на экране не будет траектории, то нажмите CENTER, чтобы переместить текущую точку траектории в центр экрана.

10 Группа функций параметризации (PAR)

Данная группа включает в себя полный список системных параметров и функций управления для простой и удобной настройки.

10.1	Основной метод ввода параметров
10.2	Альтернативный метод ввода параметров
10.3	Настройка канала управления (Канал/Ось
10.4	Настройки RIO
10.5	Поиск
10.6	Группа параметров

Группа PAR предоставляет функции для настройки параметров операций, магазина инструментов, рабочего процесса, шпинделя, механической системы, начала координат, компенсации и операционной системы.

По завершению ввода параметра, удостоверьтесь в пригодности значения в зависимости от типа параметра. Существует три разных типа: S: Выключить сервопривод; P: Выключить систему; R: Нажать RESET.

10.1 Основной метод ввода параметров

Как правило, после ввода нового значения для параметра, необходимо подтвердить его пригодность, исходя из типа параметра (S, P или R). Группы параметров, которые задаются данным методом: операции, магазин инструментов, рабочий процесс, шпиндель, механическая система, начало координат, компенсация и операционная система.

- 1. Нажмите клавишу **PAR** для перехода на экран [PARAMETER].
- 2. Нажмите **F1** (Process), чтобы перейти на экран параметров рабочего процесса.
- 3. Используя клавиши и преместите курсор в требуемое поле ввода значения параметра. Введите значение, не выходящее за пределы допустимого диапазона (допустимый диапазон значений для выбранного параметра отображается в правом нижнем углу экрана). Затем нажмите ENTER, чтобы завершить ввод параметра (см рис. 10.1.1).

PARA	AMETER(Process)	00311	N1	SF
No.	Parameter	Name		Value
307	Channel utility		P	197
	Skip signal channel set	ection		0
	Break point return			1
	EMG stop mode			0
309	Nominal arc feed rate		R	1500
310	Minimal arc feed rate		R	500
311	Overlapped speed reduction	on ratio	R	50
315	F0 Speed		P	10
316	G00 Rapid speed			30000
317	G00 Rapid ACC/DEC time			200
318	Maximum moving speed			
319	ACC/DEC time		R	200
320	S curve time constant		R	20
321	ACC/DEC time		R	15
322	S curve time constant		R	5
		Range: 0 ~	2	2 4 1
30	OG Ch Ø		1/3	

Рисунок 10.1.1

10.2 Альтернативный метод ввода параметров

Вдобавок к инструкциям, описанным в п. 10.1, на странице параметров компенсации требуется дополнительно нажать клавишу ENTER для сохранения значений. Помните об этой дополнительной детали при задании параметров компенсации.

- 1. Нажмите клавишу **PAR** для перехода на экран [PARAMETER].
- 2. Нажмите клавишу Рдля отображения функциональной панели.
- 3. Нажмите клавишу **F2** (Comp), чтобы открыть экран параметров компенсации.
- 4. Используя клавиши и , переместите курсор в требуемое поле ввода значения параметра. Введите значение, не выходящее за пределы допустимого диапазона (допустимый диапазон значений для выбранного параметра отображается в правом нижнем углу экрана).

PARA	AMETER(Compensation)	C	0311	N1	
No.	Parameter Name		X	Υ	Z
1000	Backlash amount	R	0.00000	0.00000	0.00000
1001	Compensation time	R	0	0	0
1002	Compensation delay time	R	0	0	0
1003	Friction comp amount	R	0.00000	0.00000	0.00000
1004	Friction comp time	R	0	0	0
1005	Friction comp delay time	R	ø	0	0
1006	Compensation utility	R	0	0	0
	Absolute or Relative		ø	0	0
	 Friction positive direction 	0	0	0	
	 Friction negative direction 		0	0	0
	 Friction compensation mod 	de	0	0	0
	LSC direction		ø	0	0
1007	LSC point number	R	ø	0	0
1008	LSC Space	R	0.00000	0.00000	0.00000
1009	LSC Offset	R	0.00000	0.00000	0.00000
		Ran	ge: -2 ~	2 (mm, in	ch)
JC	G Ch Ø			1/10	

Рисунок 10.2.1

- 5. Нажмите **ENTER**, чтобы завершить ввод параметра.
- 6. Нажмите клавишу **F5** (um), чтобы завершить задание параметра компенсации длины в абсолютных значениях (единица измерения um). Или нажмите **F6** (um+), чтобы завершить задание параметра компенсации длины в относительных значениях (единица измерения um).
- 7. Данные компенсации, генерируемые устройствами для калибровки, могут быть конвертированы в программе CNC SOFT. Нажмите F1 (import), чтобы импортировать данные компенсации в абсолютных значениях или F2 (import+), чтобы импортировать данные компенсации в относительных значениях.
- 8. После того как все необходимое значения параметров компенсации введены, нажмите **F1** (ОК) для подтверждения сделанных изменений.

10.3 Настройка канала управления (Канал/Ось)

Эта функция устанавливает номер и назначение оси, используемой контроллером (см рис. 10.3.1). Использование функции невозможно в режимах Auto и Manual.

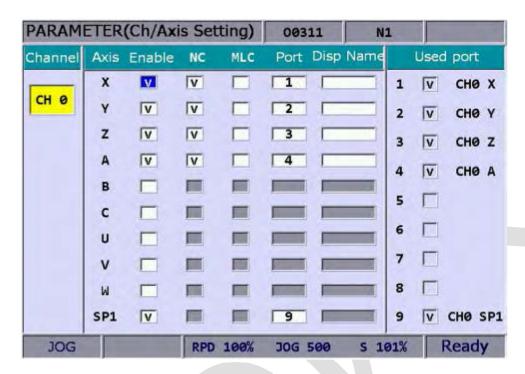


Рисунок 10.3.1

Выполните следующие шаги:

- 1. Нажмите клавишу **PAR** для перехода на экран [PARAMETER].
- 2. Нажмите клавишу для отображения функциональной панели.
- 3. Нажмите клавишу **F2** (config), чтобы открыть экран настройки канала.
- 4. Клавишами и , переместите курсор в строку с названием требуемой оси и нажмите ENTER, чтобы разрешить использование данной оси и активировать ее атрибуты (можно выбрать либо NC, либо MLC атрибут).
- 5. Используя клавиши ♠, ♣, ←и →, перемещайте курсор , а нажатием клавиши ENTER отмечайте необходимые для использования атрибуты.
- 6. После определения атрибутов, клавишами , , , ← и → переместите курсор в поле для ввода номера порта и нажмите **ENTER**. Появится окно для ввода номера. С помощью цифровых клавиш 1...9 введите уникальный номер для порта и нажмите **ENTER**. Номер порта, таким образом, установлен.
- 7. Нажмите F1 (ОК), после того как все оси настроены.
- 8. Перегрузите контроллер, для того чтобы новые настройки вступили в силу.

Примечания:

- (1) Перед тем как разрешить использование оси, сделайте активным ее имя. Иначе настройки оси будут недоступны. Выберите или NC, или MLC атрибут (не оба сразу) и назначьте номер порта (отличающийся от всех уже используемых).
- (2) Для запрета (отмены) использования оси, поместите курсор в соответствующую строку с названием оси и нажмите **ENTER**, чтобы убрать галочку.

10.4 Настройка RIO

Контроллер NC300 позволяет иметь внешние сигналы управления через подключение дополнительных модулей расширения входов/выходов (I/O). Разрешение на использование модулей I/O устанавливается на странице настроек RIO (см рис. 10.4.1).

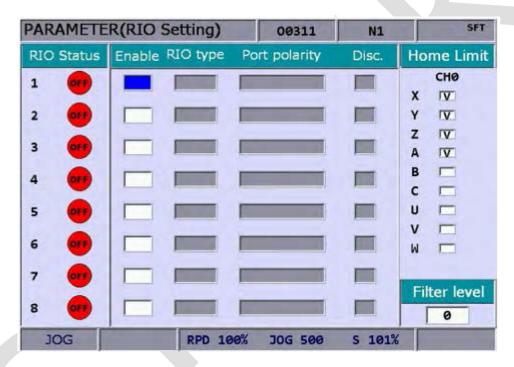


Рисунок 10.4.1

- 1. Нажмите клавишу **PAR** для перехода на экран [PARAMETER].
- 2. Нажимайте клавишу , чтобы перевести курсор на третий ряд функциональной панели на данной странице.
- 3. Нажмите клавишу **F3** (Set RIO), чтобы открыть экран настройки модуля расширения входов/выходов.
- 4. Клавишами и , переместите курсор в поле, соответствующее нужному порту RIO, и нажмите ENTER, чтобы разрешить использование выбранного порта (отметить галочкой) и активировать поля его параметров.
- 5. Используя клавиши и , переместите курсор в поле настройки полярности. Нажмите **ENTER**. Появится окно для ввода значений. После того как данные введены и выбрана полярность, нажмите **ENTER**.

- 6. Клавишами ←и → переместите курсор в поле [Disc.] (Использовать выходы, когда отсоединен). Нажмите **ENTER**, чтобы разрешить/запретить данную функцию.
- 7. Нажмите F1 (ОК), после того как все модули входов/выходов настроены.

10.5 Поиск

Функция поиска позволяет быстро находить нужные параметры по их номеру, показывая на экране страницу, содержащую искомый параметр. Для применения функции поиска:

- 1. Нажмите клавишу **PAR** для перехода на экран [PARAMETER].
- 2. Нажимайте клавишу , чтобы перевести курсор на третий ряд функциональной панели на данной странице.
- 3. Нажмите **F1** (Search), чтобы начать поиск.

Примечание:

Кроме использования функциональной клавиши для поиска параметров, на экране [PARAMETER] можно ввести поисковую строку в следующем формате: **S + номер параметра** и нажать **ENTER**.

10.6 Группа параметров

NC300 предлагает разные типы параметров. Пользователи могут объединять параметры в различные группы в зависимости от задач и ситуаций (см рис. 10.6.1).

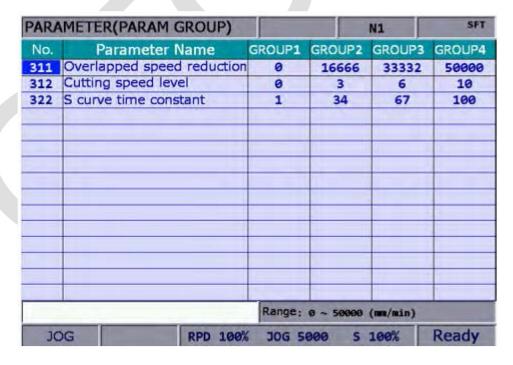


Рисунок 10.6.1

Выполните следующие шаги:

- 1. Нажмите клавишу **PAR** для перехода на экран [PARAMETER].
- 2. Нажимайте клавишу , чтобы перевести курсор на третий ряд функциональной панели на данной странице.
- 3. Нажмите **F4** (PAR GROUP), чтобы открыть страницу настройки группы параметров.
- 4. Введите номер необходимого параметра в поле [Number] и нажмите **ENTER**. Имя параметра появится на экране.
- 5. Нажмите клавишу **F5** (PAR SEQUENCE), чтобы отсортировать параметры по номеру. Последующие нажатия **F5** (PAR SEQUENCE) будут изменять направление сортировки: от меньшего номера к большему или наоборот.
- 6. Клавишами и переместите курсор в поле требуемой группы параметров и нажмите ENTER, чтобы завершить настройку группы параметров. Или нажмите клавишу F4 (READ PAR), когда курсор находится в поле [GROUP]. Диалоговое окно для подтверждения считывания параметра появится на экране. Введите "Y" (Yes) и нажмите ENTER для считывания значения параметра.
- 7. Для удаления группы параметров клавишами и переместите курсор в нужную группу и нажмите **F2** (DEL GROUP). В появившемся диалоговом окне подтвержления выполняемой операции введите "Y" и нажмите **ENTER**, чтобы удалить выбранную группу.
- 8. Если параметр необходимо добавить сразу в несколько групп, нажмите F6 (ALLOCATE), а затем в появившемся диалоговом окне подтвержления выполняемой операции введите "Y" и нажмите ENTER. Диапазон значений параметра будет поделен на количество групп, после чего соответствующее значение параметра будет добавлено в каждую группу.
- 9. После завершения настройки группы параметров нажмите **F1** (Save), чтобы сохранить внесенные изменения. В появившемся диалоговом окне подтвержления выполняемой операции введите "Y" и нажмите **ENTER**.
- 10. Используя клавиши и , переместите курсор в нужную группу и нажмите **F3** (WRITE PAR), чтобы записать значение в выбранный параметр. В появившемся диалоговом окне подтвержления выполняемой операции введите "Y" и нажмите **ENTER**.

Примечания:

- (1) Запись нового значения параметра одновременно стирает исходное значение в системе. Поэтому перед вводом, убедитесь в правильности нового значения.
- (2) Максимально поддерживается до 20 групп параметров по 20 параметров в каждой группе.

11 Таблица G-кодов

Этот раздел представляет собой полный список используемых в NC контроллере G-кодов.

11.1 Таблица поддерживаемых G-кодов для фрезерных станков

11.1 Таблица поддерживаемых G-кодов для фрезерных станков

G-код	Группа	Функция			
G00	01	Быстрое позиционирование			
G01	01	Линейная резка			
G02	01	Дуговая резка по часовой стрелке			
G03	01	Дуговая резка против часовой стрелки			
G04	00	Пауза			
G09	00	Точный останов			
G10	00	Ввод программируемых данных			
G11	00	Отмена режима ввода программируемых данных			
G15	16	Выключение режима полярных координат			
G16	16	Включение режима полярных координат			
G17	02	Выбор плоскости Х-Ү			
G18	02	Выбор плоскости Z-X			
G19	02	Выбор плоскости Ү-Z			
G20	06	Ввод данных в дюймах			
G21	06	Ввод данных в миллиметрах			
G24	17	Включение зеркалирования			
G25	17	Выключение зеркалирования			
G28	00	Возврат через первую заданную точку			
G29	00	Возврат к начальной точке			
G30	00	Автовозврат через вторую, третью и четвертую			
		заданные точки			
G31	00	Функция пропуска			
G40	07	Отмена коррекции радиуса инструмента			
G41	07	Коррекция радиуса инструмента влево			
G42	07	Коррекция радиуса инструмента вправо			
G43	08	Положительная компенсация длины инструмента			
G44	08	Отрицательная компенсация длины инструмента			
G49	08	Отмена компенсации длины инструмента			
G50	11	Отмена масштабирования			
G51	11	Масштабирование			
G52	00	Установка локальной системы координат			
G53	00	Установка системы координат станка			
G54	12	Выбор системы координат заготовки 1			
G55	12	Выбор системы координат заготовки 2			
G56	12	Выбор системы координат заготовки 3			
G57	12	Выбор системы координат заготовки 4			
G58	12	Выбор системы координат заготовки 5			
G59	12	Выбор системы координат заготовки 6			

G-код	Группа	Функция		
G61	13	режим точного останова		
G64	13	режим обработки резанием		
G65	00	одноразовый вызов макроса		
G66	14	модальный вызов макроса		
G67	14	отмена модального вызова макроса		
G68	15	режим вращения системы координат		
G69	15	отмена режима вращения системы координат		
G73	09	цикл прерывистого сверления		
G74	09	цикл нарезания левой резьбы		
G76	09	цикл растачивания с бесконтактным		
		извлечением инструмента		
G80	09	отмена постоянного цикла		
G81	09	стандартный цикл сверления		
G82	09	цикл сверления с временной задержкой		
G83	09	цикл прерывистого сверления глубоких		
		отверстий		
G84	09	цикл нарезания правой резьбы		
G85	09	стандартный цикл растачивания протяжкой		
G86	09	стандартный цикл растачивания		
G87	09	цикл растачивания детали с обратной стороны		
G88	09	цикл растачивания с временной задержкой		
G89	09	цикл растачивания протяжкой с временной		
		задержкой		
G90	03	режим абсолютного позиционирования		
G91	03	режим относительного позиционирования		
G92	00	установка текущей позиции нулевой точкой		
		абсолютной системы координат		
G94	05	скорость подачи в мм/мин		
G98	10	возврат к исходной точке в цикле		
G99	10	возврат к заданной точке в цикле		

12 Описание G-кодов

Этот раздел содержит информацию о формате G-кодов, детальное описание команд и примеры их использования.

G00: быстрое позиционирование

G01: линейная резка G02/G03: дуговая резка

G04: пауза

G09: точный останов

G10/G11: включение и выключение режима ввода программируемых данных

G15: выключение режима полярных координат

G16: включение режима полярных координат

G17/G18/G19: выбор рабочей плоскости XY, XZ или YZ

G21/G20: выбор системы измерения (метрическая или дюймовая)

G24/G25: включение и выключение зеркалирования

G28: возврат через первую заданную точку

G29: возврат к начальной точке

G30: автовозврат через вторую, третью и четвертую заданные точки

G31: функция пропуска

G40: отмена коррекции радиуса инструмента

G41/G42: коррекция радиуса инструмента влево/вправо

G43/G44: компенсация длины инструмента

G49: отмена компенсации длины инструмента

G50/G51: включение и выключение масштабирования

G52: локальная система координат

G53: система координат станка

G54...G59: стандартные рабочие системы координат

G61: режим точного останова

G64: режим резки

G65: вызов макроса

G66/G67: модальный вызов макроса и отмена модального вызова

G68/G69: вращение системы координат и его отмена

G73: цикл прерывистого сверления

G74: цикл нарезания левой резьбы

G76: цикл растачивания с бесконтактным извлечением инструмента

G80: отмена постоянного цикла

G81: стандартный цикл сверления

G82: цикл сверления с временной задержкой

G83: цикл прерывистого сверления

G84: цикл нарезания правой резьбы

G85: стандартный цикл растачивания протяжкой

G86: стандартный цикл растачивания

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

G87: цикл растачивания детали с обратной стороны

G88: цикл растачивания с временной задержкой

G89: цикл растачивания протяжкой с временной задержкой

G90: режим абсолютного позиционирования

G91: режим относительного позиционирования

G92: установка текущей позиции нулевой точкой абсолютной системы координат

G94: скорость подачи в мм/мин

G95: скорость подачи в мм/оборот

G98: возврат к исходной точке в цикле

G99: возврат к заданной точке в цикле

G00: быстрое позиционирование

Формат: G00 X_Y_Z_ (Эта команда выполняет перемещение инструмента во всех трех осях одновременно, либо в любых двух или только по одной оси.)

Х_Ү_Z_: Координаты конечной точки.

Описание: Команда G00 быстро перемещает центр инструмента в определенную координату (X, Y, Z). Скорость перемещения настраивается с помощью клавиши Fast Feed % на станочном пульте.

G01: линейная резка

Формат: G01 X_Y_Z_F_

Х_Ү_Z_: Координаты конечной точки.

F_: Скорость подачи в мм/мин.

Описание: Эта команда позволяет режущему инструменту произвести резку из исходной позиции до заданной координаты (X, Y, Z) со скоростью подачи F. Скорость подачи F задается соответствующим параметром, а также может быть введена с помощью клавиши F ast F eed % на станочном пульте.

G02/G03: дуговая резка

Формат: Дуги в плоскости X-Y G17 G02 (или G03) X_Y_R_F_ или G17 G02 (или G03) X_Y_I_J_F_

Также в команду можно добавить параметр $Z_для$ выполнения винтовой резки в плоскости X_n .

Дуги в плоскости Z-X

G18 G02 (или G03) Z_X_R_F_ или

G18 G02 (или G03) Z_X_K_I_F_

Также в команду можно добавить параметр Y_{-} для выполнения винтовой резки в плоскости Z_{-} X_{-}

Дуги в плоскости Ү-Х

G19 G02 (или G03) Y_Z_R_F_ или

G19 G02 (или G03) Y_Z_J_K_F_

Также в команду можно добавить параметр X_{-} для выполнения винтовой резки в плоскости Y- Z.

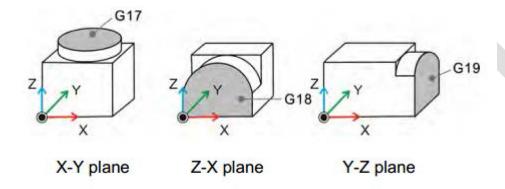
G02: Дуговая резка по часовой стрелке.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

G03: Дуговая резка против часовой стрелки.

X, Y и Z: координаты конечной точки в абсолютных или относительных значениях в зависимости от команд G90 и G91.

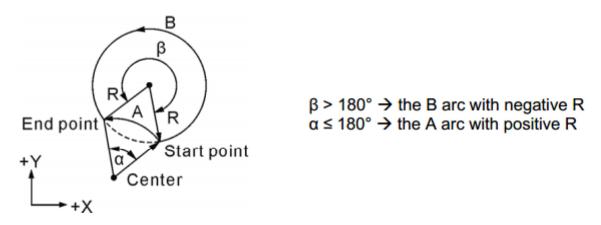
R: радиус дуги (см формат для радиуса).


I: Расстоянии по оси X между центром дуги и начальной точкой.

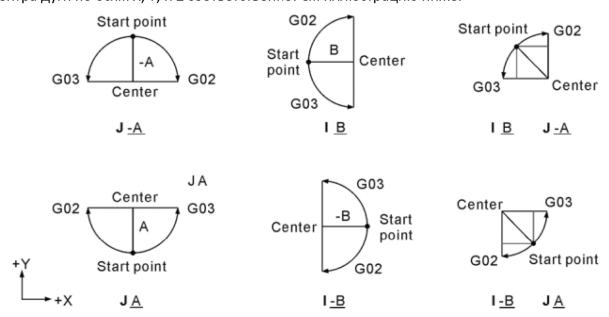
J: Расстоянии по оси Y между центром дуги и начальной точкой.

К: Расстоянии по оси Z между центром дуги и начальной точкой.

F: Скорость подачи в мм/мин.


Описание: Команды G02 и G03 предназначены для дуговой резки. Направления дуговой резки (G02 или G03) для трехмерной заготовки изображены на представленном ниже рисунке, отдельно для каждой плоскости. Направление резки определено в правосторонней системе координат (если смотреть навстречу положительному направлению вертикальной оси плоскости). G02 — для направления по часовой стрелке, а G03 — против часовой стрелки.

Пояснения к рисунку: plane - плоскость.


Понятия радиуса и центра дуги объяснены ниже:

1. Радиус: R — радиус дуги. Для положительного значения R угол дуги ≤ 180° . Если же угол дуги > 180° , то значение R отрицательное (см рис. ниже).

Пояснения к рисунку: Start point — начальная точка, End point — конечная точка, Center — центр дуги, the B arc with negative $R - \Delta r$ B c отрицательным радиусом, the A arc with negative $R - \Delta r$ B c положительным радиусом.

2. Центр дуги: Параметры I, J и K определяют относительное расстояние от начальной точки дуги до центра дуги (или до конечной точки), т.е. инкременты от начальной точки до центра дуги по осям X, Y, и Z соответственно. См иллюстрацию ниже.

Пояснения к рисунку: Start point – начальная точка, Center – центр дуги.

Примечания по G02/G03 дуговой резке:

- (1) Если в одной команде используются одновременно I, J, и R параметры, то только параметр R обрабатывается программой, а I и J игнорируются.
- (2) Параметры 10, ЈО и КО могут не указываться в команде.
- (3) Если конечная точка X, Y и Z не указана, то это будет означать, что начальная и конечная точки совпадают, поэтому команда не будет выполнена.
- (4) Система выдаст сообщение об ошибке, если дуга с заданным радиусом не будет иметь пересечения с конечной точкой.
- (5) Если дуговая резка следует за линейной резкой, G-команда должна конвертироваться в G02/G03.

G04: пауза

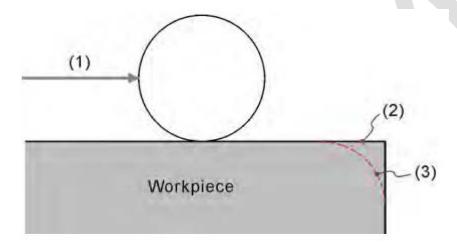
Формат: G04 X_ или

G04 P_

Описание: Эта команда устанавливает паузу для текущего узла. Оба параметра, X и P, определяют продолжительность паузы. Разница только в единицах измерения.

Допустимые значения параметров:

Допустимые значения для параметра X					
Диапазон значений	Единица измерения				
0.001 ~ 99999.999	Секунды				
Допустимые значения для параметра Р					


Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Диапазон значений	Единица измерения		
1 ~ 9999999	0,001 секунды		

G09: точный останов

Формат: G09 G01 X_Y_

Описание: При использовании этой команды каждый раз, по окончании выполнения перемещения инструмента в соответствии с программой текущего блока, производится дополнительная проверка точности перемещения. Убедившись, что инструмент находится точно в заданных координатах, начинает выполняться следующий блок программы. Таким образом, увеличивается точность отработки перемещений, за счет скорости работы (заметны незначительные прерывания между программными блоками при работе программы). Данная команда может использоваться только вместе с командами резки (G01...G03) для одного блока.

Пояснения к рисунку: Workpiece – заготовка

- (1) Направление движения инструмента
- (2) G09 используется
- (3) G09 не используется

G10/G11: включение/выключение режима ввода программируемых данных

Формат: G10 L2 P_X_Y_Z_

G10 L10 P R : Компенсация длины инструмента.

G10 L11 P_R_: Компенсация износа длины инструмента.

G10 L12 P_R_: Компенсация радиуса инструмента.

G10 L13 P_R_: Компенсация износа радиуса инструмента.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

G10 L20 P_X_Y_Z_: Установка величины смещения начала системы координат заготовки в дополнительных системах координат.

Описание: Команда G10 в формате G10 L2 P_X_Y_Z_ предназначена для ввода данных в системе координат заготовки. Если используется P0, начало координат заготовки смещается на величину внешней коррекции. Значения P1...P6 соответствуют системам координат G54...G59, а X, Y, Z являются координатами начала выбранной системы координат. Параметр P в команде с синтаксисом L20 может принимать значения P1...P64, которые соответствуют дополнительной системе координат. Формат команды G10 L10 P_R_ устанавливает значение компенсации длины инструмента. Параметр P здесь означает тип компенсации, а R — значение компенсации для радиуса или длины инструмента. Используя команды G90 и G91, можно вводить значения для команды G10 в абсолютных или относительных единицах соответственно.

Примечания:

- (1) Команда G10 является командой однократного исполнения, т.е. она действительна только внутри текущего блока. Значения компенсации координат смещения и рабочая система координат задаются относительно начала механической системы координат. Для отмены режима ввода данных выполните команду G11.
- (2) Во время выполнения программы координаты, изменяемые командами L2 или L20, оказывают действие, начиная со следующего перемещения. Данные компенсации инструмента, изменяемые командами L10...L13, производят эффект, только после еще одного выполнения команд компенсации (G41/G42 или G43/G44) вместе с количество данных компенсации (D или H).

G15: выключение режима полярных координат

Формат: G15

Описание: Команда G15 отменяет действие режима использования полярных координат.

G16: включение режима полярных координат

Формат: G17 G16 X_Y_ или; G18 G16 Z_X_ или; G19 G16 Y_Z_

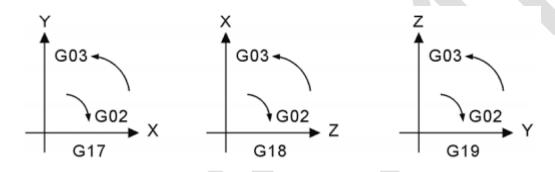
 $X_Y_:$ В плоскости G17 параметр $X_$ определяет радиус, а Y_- - угол в полярной системе координат.

Z_X_: В плоскости G18 параметр Z_ определяет радиус, а X_ - угол в полярной системе координат.

Y_Z_: В плоскости G19 параметр Y_ определяет радиус, а Z_ - угол в полярной системе координат.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Описание: Команда задания полярных координат использует значения радиуса и угла в качестве своих параметров. Если первая ось (например, X) плоскости выбрана для радиуса, то вторая (Y) — будет использоваться для задания угла. Значения угла — положительные в направлении против часовой стрелки, отрицательные — по часовой стрелке.


G17/G18/G19: выбор рабочей плоскости XY, XZ или YZ

Формат: X - Y плоскость G17 {G01 ~ G03} X_Y_{I_J_ или R_}F_

Z - X плоскость G18 $\{G01 \sim G03\} Z_X_{K_I}$ или $R_F_$

Y - Z плоскость G19 {G01 ~ G03} Y_Z_{J_K_ или R_}F_

Описание: Данная функция позволяет выбрать плоскость для резки. Команды G17...G19 устанавливают активную плоскость для линейной или дуговой резки, а также для компенсации инструмента. По умолчанию, после включения контроллера, активной устанавливается плоскость G17.

G21/ G20: выбор системы измерения (метрическая или дюймовая)

Формат: G21 или G20

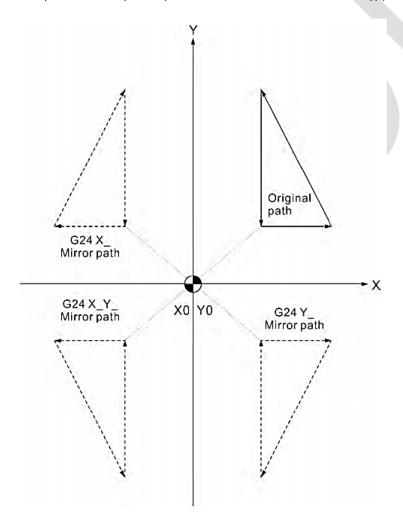
G21: Метрическая. G20: Дюймовая.

Описание: Эти команды устанавливают в системе в качестве единиц измерения либо метры, либо дюймы. Они применимы только к линейным осям, но не для осей вращения. Команды G20/G21 должны быть выполнены в программе до команды установки системы координат. Во время выполнения программы единицы измерения не могут быть изменены. Эти команды влияют непосредственно на значения скорости подачи, координат перемещений, смещения системы координат заготовки, компенсаций инструмента, расстояний перемещений. Команды G20/G21 являются командами постоянного действия, т.е. установленная однажды в системе единица измерения (либо метр, либо дюйм) используется во всей программе. Команды G20 и G21 — взаимоисключающие, т.е. не могут использоваться одновременно в одной программе.

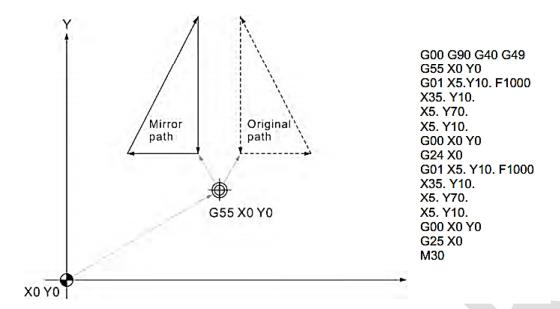
G24/G25: включение/выключение зеркалирования

Формат: G24 X_Y_Z_

G24: Команда включения режима зеркального отображения


Х_Y_Z_: Определяет осевое направление и центр зеркального отображения.

G25 X Y Z


G25: Команда выключения режима зеркального отображения

Х_Ү_Z_: Отменяет функцию зеркального отображения.

Описание: В качестве центра, относительного которого производится зеркальное отображение, может выступать целая ось (например, X или Y) или какая-нибудь точка в координатной плоскости (например, X-Y). Система преобразует исходную траекторию в программном коде в зеркальную. Данная функция применима при условии, что левая и правая траектории (или верхняя и нижняя траектории) — симметричны. Можно создать, таким образом, зеркальную траекторию на одной стороне посредством конвертирования траектории в программе на другой стороне. Это сэкономит время при программировании траектории перемещения. При выключении режима зеркалирования, в команде G25 нужно указать ось. Например, команда G25_Y означает отмену зеркалирования относительно оси Y, в то время как зеркалирования по остальным осям будет продолжать работать.

Пояснения к рисунку: Mirror path – зеркальная траектория, Original path – исходная траектория.

Исходная траектория на рисунке выше изображена пунктирной линией. После применения функции зеркалирования система отобразит траекторию, изображенную сплошной линией. В этом примере осью зеркалирования определена ось Х.

Применение команды G25 с заданной осью означает выключение режима зеркального отображения по данной оси. После этого, траектория перемещения изменится на исходную.

G28: возврат через первую заданную точку

Формат: G90 G28 X_Y_Z_ или, G91 G28 X_Y_Z_

Х_Ү_Z_: Координаты заданной точки.

Описание: Эта команда задает быстрое перемещение инструмента (G00) через заданную точку, определенную в команде координатами X, Y и Z, в начало механической системы координат. Позиционирование в заданную точку выполняется со скоростью ускоренного подвода. Поэтому, в целях безопасности, функция компенсации радиуса (G41 или G42) будет заранее отключена системой. Не забывайте включить ее снова при выполнении следующего блока.

G29: возврат к начальной точке

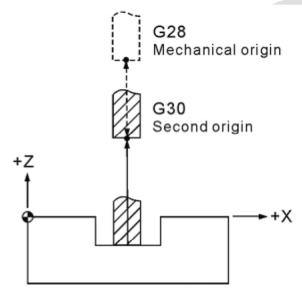
Формат: G90 G29 X_Y_Z_ или, G91 G29 X_Y_Z_

Х_Y_Z_: Координаты конечной точки перемещения текущего блока.

Описание: Команда G29 перемещает инструмента из начала механической системы в точку, определенную в команде координатами X, Y и Z, через заданную (промежуточную) точку.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Команды G29 и G28 должны выполняться в паре. Если команда G29 используется без предшествующей ей команды G28, определяющей заданную точку, то программа будет остановлена с сообщением об ошибке.


G30: автовозврат через вторую, третью и четвертую заданные точки

Формат: G30 P2 X_Y_Z_ или, G30 P3 X_Y_Z_ или, G30 P4 X_Y_Z

Р_: задает заданную точку (вторую, третью или четвертую)

Х_Ү_Z_: Координаты промежуточной точки

Описание: Параметры P2, P3 и P4 задают координаты заданных точек 2, 3 и 4 соответственно. Если используется вторая заданная точка, параметр P2 может быть опущен. Координаты второй, третьей и четвертой заданных точек задаются системными параметрами. Чаще всего, эта команда используется при замене инструмента. Функции компенсации радиуса и длины инструмента отключаются автоматически при выполнении команд G28 и G30. Блокировка работы функций компенсации снимается, начиная с блока, следующего за блоком, содержащим команду G28 или G30.

The example of command G30

Пояснения к рисунку: Mechanical origin – начало механической системы координат, Second origin – вторая исходная точка, The example of command G30 – пример использования команды G30.

G31: функция пропуска

Формат: G31 X_Y_Z_F_

Описание: Во время линейного перемещения, G31 прерывает (через внешний сигнал) выполнение текущей траектории и переходит к выполнению следующего программного

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

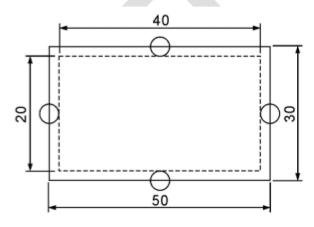
блока. Эта команда активна только в одном программном блоке. G31 не может быть выполнена, если включены функции компенсации инструмента. Поэтому их необходимо отключить до применения команды пропуска.

G40: отмена коррекции радиуса инструмента

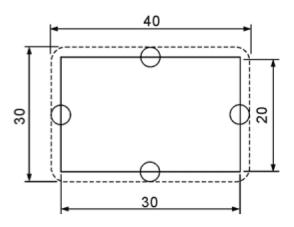
Формат: G40 или G40 X_Y_

Описание: Эта команды отменяет функцию коррекции (компенсации) радиуса инструмента, если она не требуется на траектории инструмента.

G41/G42: коррекция радиуса инструмента влево/вправо


Формат: G00 G90 G41 D_ или G00 G90 G42 D_

G41: Коррекция радиуса инструмента влево.

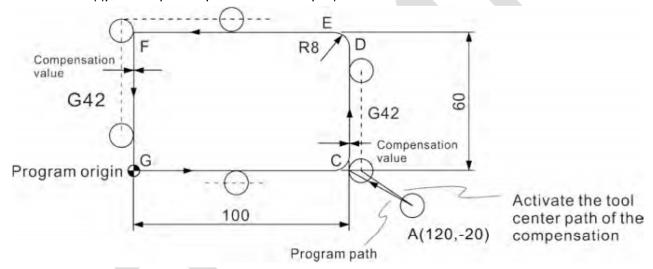

G42: Коррекция радиуса инструмента вправо.

D_: Код компенсации в регистре инструментов.

Описание: Для траектории, заданной в программе без коррекции инструмента, резка заготовки происходит центром инструмента. Т.е. воздействие радиуса инструмента на траекторию в этом случае не принимается в расчет. Это приводит к тому, что заготовка обрабатывается инструментом с диаметром на один размер меньше, чем требуется. См рис. ниже.

Tool radius: 10 mm contour cutting without compensation

Tool radius: 10 mm contour cutting without compensation


Пояснения к рисунку: Tool radius – радиус инструмента, contour cutting without/with compensation – резка контура без коррекции/с коррекцией

Тип коррекции (влево или вправо) определяется, как показано далее. По направлению резки радиус инструмента должен быть скорректирован (скомпенсирован) вправо, если инструмент движется вправо от заготовки (команда G42). Когда же инструмент движется влево от заготовки, радиус инструмента компенсируется влево (команда G41).

D_: это код радиуса инструмента. По сути, это номер записи данных компенсации инструмента в регистре группы OFS. Например, D11 означает, что номер записи 11. Если в этой записи значение равно 4.0, то радиус инструмента будет равен 4.0 мм.

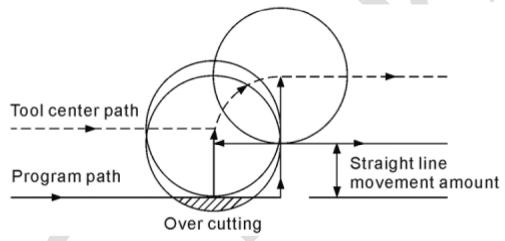
Примечания по коррекции радиуса инструмента:

(1) Эта команда может использоваться вместе с G00 или G01 в одном блоке. Коррекция инструмента активируется только при движении инструмента. В тоже время, команда коррекции радиуса инструмента не может использоваться вместе с G02 и G03. Коррекция радиуса для дуговой траектории должна быть задана перед соответствующей коррекцией для линейной траектории. Когда функция коррекции радиуса активна, она не может быть отменена на дуговой траектории. См иллюстрацию ниже.

Пояснения к рисунку: Compensation value — значение коррекции, Program origin — начало программы, Program path - заданная программой траектория, Activate the tool center path of the compensation — включить функцию коррекции инструмента.

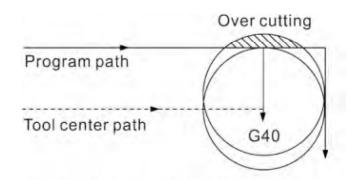
Ниже представлен код программы для перемещения инструмента из точки A в точку C и активации команды коррекции радиуса инструмента вправо:

G90 G00 X120.0 Y-20.0	> fast positioning to point A
G01 G42 X100.0 Y0 D20 F80	$> A \rightarrow C$
Y52.0	$> C \rightarrow D$
G03 X92.0 Y60.0 R8.0	$> D \rightarrow E$
G01 X0	> E → F
Y0	$> F \rightarrow G$
X100.0	$> G \rightarrow C$


Пояснения к рисунку: fast positioning to point A – быстрое позиционирование в точку A.

(2) Код радиуса инструмента, используемый в программе, например D11 или D12, должен соответствовать номеру, содержащемуся в регистре инструментов (таблице коррекции).

Перевод и адаптация компании «СТОИК» +7(495)661-24-61


Значения коррекции радиуса инструментов вводятся заранее в таблицу с помощью функций группы OFS.

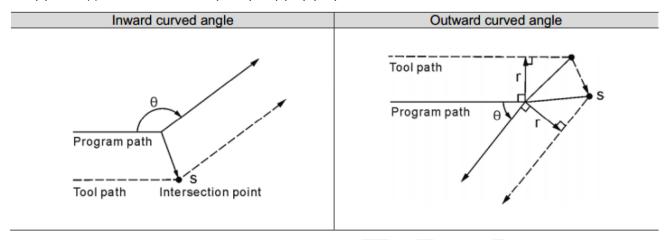
- (3) Если значение коррекции изменяется с положительного на отрицательное, или наоборот, направление команд G41 и G42 также меняется. Другими словами, при положительных значениях коррекции, команда G41 компенсирует влево, а G42 вправо. Если же значение коррекции отрицательное, G41 компенсирует вправо, а G42 влево. Т.е. направление действия функции зависит от знака значения коррекции радиуса инструмента.
- (4) Функция коррекции радиуса временно деактивируется при активном статусе команд G28 или G29. Система управления обеспечит возврат функция коррекции к своему исходному состоянию, начиная со следующего блока, выполняющего перемещение.
- (5) После того как заданная программой траектория с использованием коррекции радиуса инструмента завершена, должна быть применена команда G40 для отмены режима коррекции и возврата центра инструмента в его нормальную (нескорректированную) позицию. Т.е. после выполнения в программе команды G40, инструмент сдвигается в сторону, обратную направлению коррекции, на величину значения коррекции. Команда G40 должна выполняться тогда, когда инструмент сдвинут в сторону от заготовки.
- (6) При включенном режиме коррекции длина линейного перемещения и внутренний радиус дуги резки должны быть больше или равны радиусу инструмента. Иначе произойдет пере изза наложения векторов коррекции. Иллюстрация ниже поясняет суть явления пере

Пояснения к рисунку: Tool center path – траектория оси инструмента, Program path – заданная программой траектория, Straight line movement amount – длина линейного перемещения, Over cutting - .

(7) Длина перемещения после отмена режима коррекции должна быть больше или равна радиусу инструмента. Иначе, траектория резки будет изменена и может произойти пере. В этом случае, контроллер остановит выполнения программы и выдаст сообщение об ошибке.

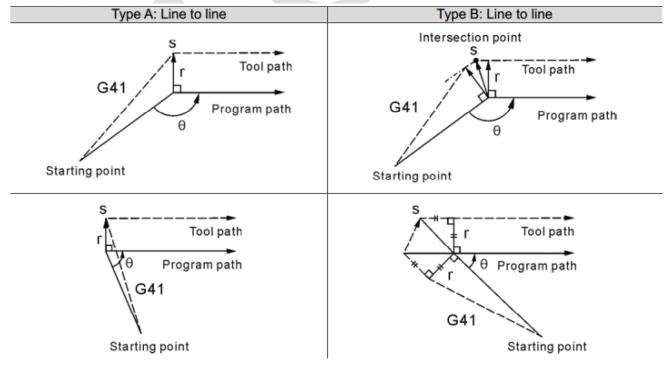
Moving distance after canceling the compensation is smaller than cutter radius

(D1 = 32.0)
G00 G90 G40 G49
G54 X-50.0 Y-50.0
G01 G42 D1 X0.0 Y0.0 F1000 > Start to do tool radius compensation
X100.0
Y100.0
X0.0
Y0.0
X50.0
Y-1.0 > Tool radius compensation is complete. Over cutting occurs.
M30

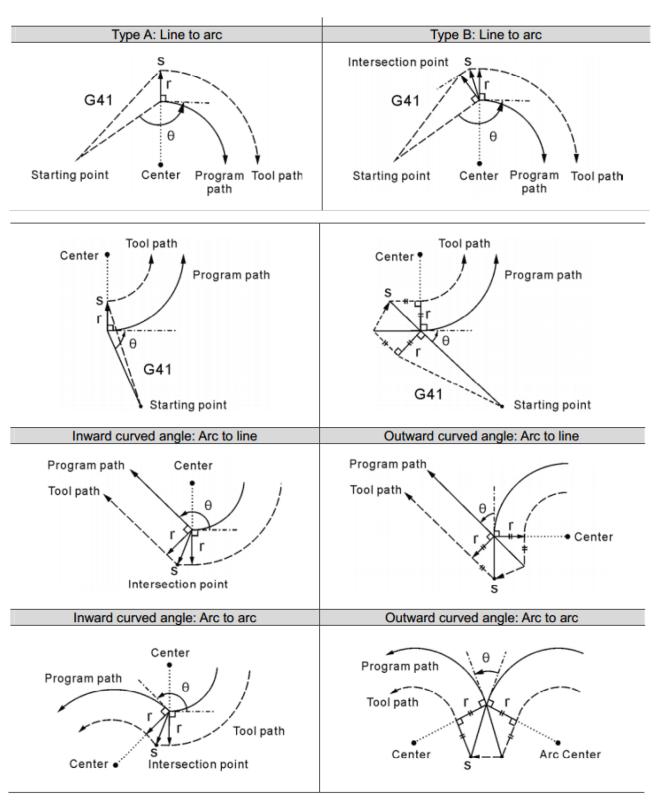

Пояснения к рисунку: Tool center path — траектория оси инструмента, Program path — заданная программой траектория, Moving distance after cancelling the compensation is smaller than cutter radius — длина перемещения после отмены коррекции больше чем радиус режущего инструмента, Over cutting - , Start to do tool radius compensation — Включение режима коррекции радиуса инструмента, Tool radius compensation is complete. Over cutting оссигя — коррекция радиуса завершена. Произошло пере.

- (8) При следующих условиях функция коррекции радиуса инструмента не будет выполняться:
- если она используется в том же блоке после команды G40.
- если она используется в предпоследнем блоке, где после нее нет перемещений. Тогда в последнем блоке перемещения не будут иметь коррекцию радиуса инструмента.

Тип траектории коррекции радиуса инструмента:

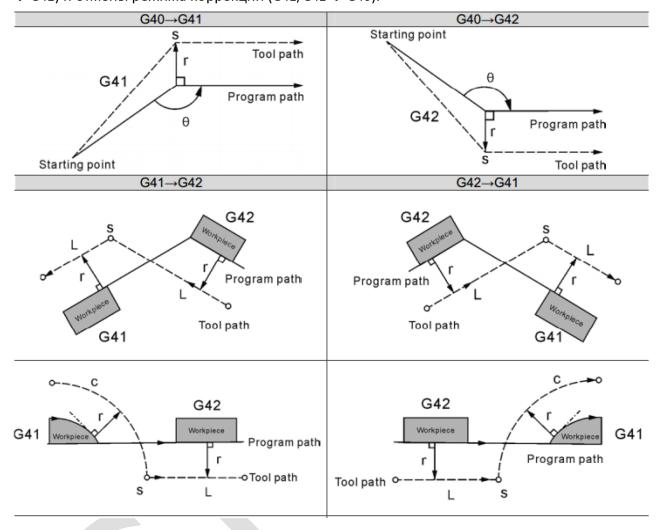

Коррекция радиуса инструмента G41/G42 бывает двух типов. Тип А не корректирует начальную и конечную точки траектории, в то время как тип В корректирует обе точки.

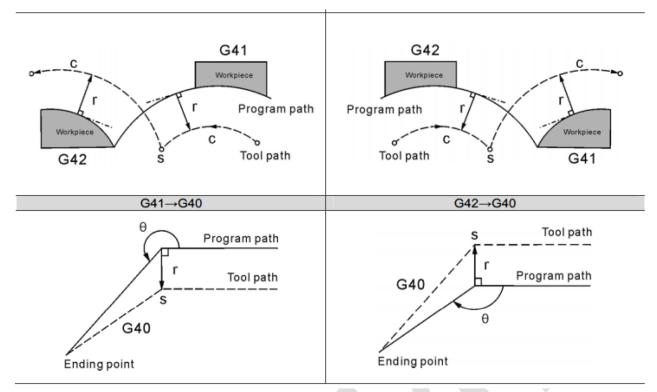
Траектория коррекции должна учитывать углы $(180^{\circ} > \theta > 90^{\circ}, 0 < \theta < 90^{\circ})$, формируемые траекториями программных блоков. Если угол находится в промежутке между 90 и 180 градусами (тупой угол), то инструмент перемещается по углу, изогнутому внутрь. Если же угол сочленения траекторий программных блоков — острый (между 0 и 90 градусами), то инструмент движется по изогнутому наружу углу.



Пояснения к рисунку: Inward curved angle — изогнутый внутрь угол, Outward curved angle — изогнутый наружу угол, Tool path — траектория инструмента, Program path — заданная программой траектория, Intersection point - точка сочленения.

Существует два типа коррекции: А и В. Тип А не корректирует начальную и конечную точки траектории, в то время как тип В корректирует обе точки.




Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Пояснения к рисунку: Type A: Line to line — тип A: линия с линией, Type B: Line to line — тип B: линия с линией, Type A: Line to arc — тип A: линия с дугой, Type B: Line to arc — тип B: линия с дугой, Inward curved angle: Arc to line — изогнутый внутрь угол: дуга с линией, Outward curved angle: Arc to line — изогнутый наружу угол: дуга с линией, Inward curved angle: Arc to arc — изогнутый внутрь угол: дуга с дугой, Outward curved angle: Arc to arc — изогнутый наружу угол: дуга с дугой, Tool path — траектория инструмента, Program path — заданная программой траектория, Intersection point - точка сочленения траекторий, Starting point — начальная точка, Center — центр, Arc center — центр дуги.

Переключение траектории коррекции: Когда траектория перемещения без коррекции переходит на траекторию с коррекцией, траектория оси (центра) инструмента будет иметь вид, показанный на рис. ниже ($G40 \rightarrow G41/G42$). Там же показаны результирующие траектории инструмента при непосредственном переключении направлений коррекции ($G41 \rightarrow G42$, $G42 \rightarrow G41$) и отмены режима коррекции ($G41/G42 \rightarrow G40$).

Пояснения к рисунку: Tool path — траектория инструмента, Program path — заданная программой траектория, Intersection point - точка сочленения траекторий, Starting point — начальная точка, Ending point — конечная точка, Workpiece — заготовка.

G43/G44: компенсация длины инструмента

Формат: G43 Z_H_ или G44 Z H

G43: Положительная компенсация инструмента. При положительном значении длины ось инструмента перемещается в положительном направлении.

G44: Отрицательная компенсация инструмента. При отрицательном значении длины ось инструмента перемещается в отрицательном направлении.

Описание: Эта команда позволяет определить значения компенсации длины через идентификаторы регистра инструмента, что облегчает разработку программы и гарантирует обработку в соответствии с требованиями задачи.

Z: Значение координаты. Нулевая точка + компенсация длины инструмента. Нулевая точка является референтной к оси Z инструмента.

Н: Идентификатор данных для компенсации длины (представлен двоичным числом). Компенсация длины инструмента, представленная данным идентификатором, будет использоваться как компенсация высоты в программе. Н0 означает отмену режима компенсации.

G43 Z_H_: если значение, представленное идентификатором – положительное, то компенсация инструмента будет вверх, иначе – вниз.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

G44 Z_H_: если значение, представленное идентификатором – положительное, то компенсация инструмента будет вниз, иначе – вверх.

Примечания:

- (1) Значение компенсации длины инструмента будет отклонено системой автоматически при выполнении команд G53, G28 и G30, если режим компенсации длины инструмента включен. После чего программа будет выполняться без компенсации длины, если только другое значение Н не будет назначено командой G43/G44.
- (2) Параметр 307 определяет, каким образом осуществляется компенсация длины инструмента командами G43/G44 и G49, если параметр Z не задан. Если значение параметра 307 равно 0 параметр Z не используется. Если параметр 307 равен 1 компенсация выполняется системой управления контроллера.
- (3) Режим компенсации длины (G43/G44) остается включенным при достижении заданной точки (G28/G30) и выключается после возврата к началу механической системы координат. После этого автоматического включения режима компенсации в последующих блоках не происходит.
- (4) Режим компенсации длины отключается автоматически системой и переходит в статус, определенный командой G49 после успешного выполнения команд М30 и М02.
- (5) Режим компенсации длины отключается автоматически системой и переходит в статус, определенный командой G49 после получения системой сигнала RESET.

G49: отмена компенсации длины инструмента

Формат: G49

Описание: Функция компенсации длины инструмента является режимной. Т.е. после того как она выполнена, требуется выключение режима компенсации длины. Для это применяется команда G49.

G50/G51: включение и выключение масштабирования

Формат: G51 X_Y_Z_P

Х_Ү_Z_: Координаты центра масштабирования

Р_0: коэффициент масштабирования

Описание: Параметр X_Y_Z_ определяет соответствующие координаты X, Y и Z центра масштабирования, а параметр P — коэффициент масштабирования. В результате траектория обработки увеличивается или уменьшается. Минимальное возможное значение P равно 1. При этом единица измерения равна 0,001. Таким образом, диапазон значений коэффициента масштабирования от 0,001 до 999,999. Например, P100 означает уменьшение в масштабе до 10 % от исходного размера. Значения P могут быть и негативными для масштабирования в зеркальном отображении. Например, G51 X0 Y0 P-1000 является зеркальным отображением траектории с центром в X0Y0.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Пояснения к рисунку: Scaled up path – увеличенная в масштабе траектория, Original path – исходная траектория.

При выполнении команд M02 и M30 или при перезагрузке контроллера, режим масштабирования отключается. Нажатие клавиши Reset также отключает режим масштабирования. Чтобы вернуться к исходному масштабу и нормальной траектории, следует выполнить команду G50.

G52: локальная система координат

Формат: G52 X_Y_

Х_Ү_: Начало локальной системы координат.

Описание: До использования команды G52 необходимо задействовать одну из систем координат G54...G59. Значение в абсолютных единицах должно быть добавлено после команды G52, после чего локальная система координат может быть задана. Команда G52 заданная нулем отменяет локальную систему координат.

G53: система координат станка (механическая система координат)

Формат: G53 X_Y_Z_

Х_Ү_Z_: Координаты нулевой точки станка.

Описание: Координаты X, Y и Z определяют начало отсчета для станка, т.н. нулевую точку станка. Производители станков используют данную команду для установки позиции смены инструмента через заданную точку, определенную в системе координат станка. Команда принимает только абсолютные значения. G53 с относительными значениями не будет выполняться. Команда G53 является командой однократного исполнения (не режимного типа), т.е. она действительна только в том блоке, в котором задана. После выполнения команды G53, включается режим быстрого позиционирования G00, режим коррекции

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

радиуса инструмента приостанавливается, а режим компенсации длины инструмента выключается автоматически. Режим коррекции радиуса активируется в следующем блоке, содержащего перемещение инструмента, в то время как для активации режима компенсации длины, необходимо снова его явное включение.

Примечания:

- (1) Команда G53 работает при условии активного статуса команды G90 и будет игнорироваться, если активен статус команды G91.
- (2) Если в блоке, содержащем команду G53, имеется также команда осевого перемещения, то инструмент перемещается по данной оси в заданную точку. В противном случае, перемещения не произойдет.
- (3) Если в одном блоке находятся и G53, и G28, активной становится та из них, которая в коде последняя. Если активна G53, перемещение происходит в механических координатах, если же активна G28 в абсолютных координатах.

G54 ~ G59: стандартные рабочие системы координат

Формат: G90 G54 X_Y_Z_ или; G90 G55~G59 X Y Z

Описание: Команды G54 ~ G59 устанавливают одну из шести стандартных систем координат в качестве системы координат заготовки. Система координат заготовки задается посредством перемещения инструмента из нулевой точки станка в определяемую программой начальную точку (с соответствующими координатами X и Y), регистрацией данной позиции при настройке выбранной системы координат (G54 ~ G59) в группе OFS и наконец, выполнением системного кода в координатах заготовки. После этого, можно задавать начало системы координат заготовки. Имеется также возможность задания до 64 дополнительных систем координат заготовки. Для этого в команде G54 параметру P_ устанавливается значение в диапазоне от 1 до 64. Например, G54 P10 X_Y_Z_ - означает использование десятой дополнительной системы координат заготовки.

G61: режим точного останова

Формат: G61

Описание: Команда G61 работает также, как и G09, за исключением того, что G61 — команда постоянного (режимного) типа, а G09 — команда однократного действия. После того как G61 выполнена, команды G01, G02 и G03 выполняются с дополнительной проверкой точности останова. Этот режим остается активным до его отмены командой G64 (режим резки).

Пояснения к рисунку: Tool path in G61 mode – траектория инструмента в режиме G61, Tool path in G64 mode – траектория инструмента в режиме G64.

G64: режим резки

Формат: G64

Описание: После выполнения команды G64 текущее перемещение завершается не полным остановом, а плавным переходом на определенной скорости в перемещение следующего блока. Как правило, изначально система находится в режиме резки (G64). В этом режиме траектория инструмента станка при обработке более сглаженная. Основное отличие от команды G61 в том, что резка происходит на постоянной скорости подачи и отсутствует останов между программными блоками перемещений.

G65: вызов макроса

Формат: G65 P_L_I_

Р_: Номер программы

L_: Количество повторений

I_: Значение независимой переменной

Описание: Команда G65 вызывает программу макроса. Макрос представляет собой подпрограмму для выполнения различных операций. В главной программе макрос становится активным только тогда, когда он вызывается. Команда G65 аналогична команде M98 за исключением того, что она является командой однократного исполнения.

NC position	Local variable	NC position	Local variable	NC position	Local variable
Α	#1	I	#9	Т	#20
В	#2	J	#10	U	#21
С	#3	К	#11	V	#22
D	#4	М	#13	W	#23
E	#5	Q	#17	Х	#24
F	#6	R	#18	Y	#25
Н	#8	s	#19	Z	#26

Пояснения к таблице: NC position – NC позиция, Local variable – локальная переменная.

Команды G65/G66 могут вызывать до восьми вложенных макросов. При использовании этих команд в сочетании с командой вызова подпрограммы M98, суммарное количество вложенных подпрограмм/макросов не должно превышать восьми.

G66/G67: модальный вызов макроса и отмена вызова

Формат: G66 P_L_I_ или

G67

Р_: Номер программы

L_: Количество повторений

І_: Значение независимой переменной

Описание: Команда G66 работает, также как и команда G65, но в отличие от нее является командой модального (режимного) типа. После того как команда G66 выполнена, макрос будет вызываться постоянно, пока вызов не будет отменен командой G67.

G68/G69: вращение системы координат и его отмена

Формат: G68 X_Y_R_

Х_Ү_: Координаты центра вращения

R_: Угол поворота; положительное значение — вращение против часовой стрелки, отрицательное значение — вращение по часовой стрелке Вращение происходит с точностью до 0,001 градуса в диапазоне от 0 до 360 градусов.

Описание: Команда G68 принимает заданную нулевую точку, как центр вращения координат. С помощью этой команды можно повернуть координаты траектории обработки на заданный угол. G68 может быть задана как в абсолютных (G90), так и в относительных значениях (G91).

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

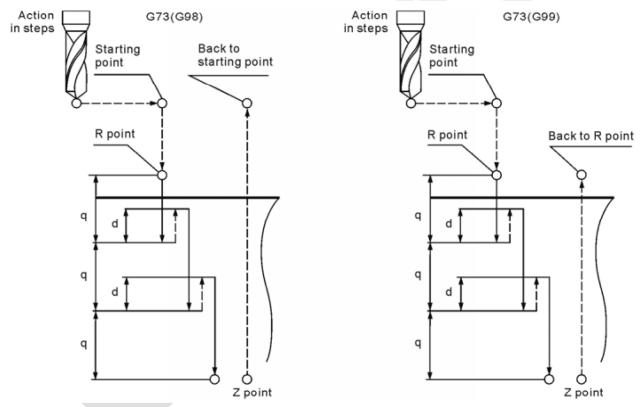
G73: цикл прерывистого сверления

Формат: G73 X_Y_Z_R_Q_F_K_D_

Х_Ү_: Конечная позиция в блоке

Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота


Q_: глубина каждого промежуточного сверления

F_: скорость подачи

К_: количество повторов

D_: величина отступа в каждом промежуточном сверлении

Описание: Эта команда позволяет просверливать отверстие глубиной Z за некоторое количество промежуточных сверлений. Для этого определяется величина отступа D от поверхности после каждого промежуточного сверления на глубину Q. Значение Q задается как абсолютная величина. Данная операция проиллюстрирована ниже.

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

Примечания:

- (1) При выполнении цикла прерывистого сверления функция коррекции радиуса инструмента игнорируется.
- (2) Необходимо использовать команду G80 для отмены цикла сверления.
- (3) Значение Q берется по модулю, т.е. не может быть отрицательным.
- (4) Значение К будет округлено до ближайшего меньшего целого значения, т.е. К2.6 округляется до К2, К0.6 до К0.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

(5) Если К задано абсолютным значением, то команда выполняет определенное количество повторов, возвращаясь к начальной точке. Если же значение К задано относительным значением — выполнение заданного количества повторов происходит с возвратом инструмента в точку R (см рис. выше)

G74: цикл нарезания левой резьбы

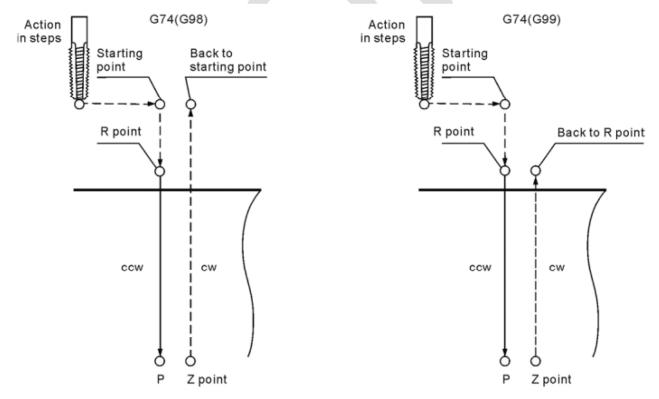
Формат: G74 X_Y_R_Q_Z_P_F_K_

Х_Ү_: Конечная позиция в блоке

Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота

Q_: глубина каждого сверления


Р_: длительность паузы (Задается целым числом, измеряется в 0,001 с)

F_: винтовая скорость подачи

К_: количество повторов

Скорость нарезания резьбы (мм/мин) = шаг резьбы (мм/оборот) x скорость шпинделя (оборотов/мин). $F = P \times S$.

Описание: Эта команда используется для нарезания левой резьбы. Для этого потребуется левосторонний резец (метчик) и вращающийся в обратную сторону шпиндель.

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка, ccw — против часовой стрелки, cw — по часовой стрелке.

Нарезание резьбы осуществляется со скоростью задаваемой параметром F (100% - значение заданное программой); функции задания скорости подачи и коэффициента скорости шпинделя с пульта управления отключены.

G76: цикл растачивания с бесконтактным извлечением инструмента

Формат: G76 X_Y_R_P_Z_Q_F_K_

Х_Ү_: Конечная позиция в блоке

R_: начальная безопасная высота

Р_: длительность паузы (Задается целым числом, измеряется в 0,001 с)

Z_: глубина обрабатываемого отверстия

Q_: смещение

F_: скорость подачи

К_: количество повторов

Описание: Эта команда используется для точного сверления. После достижения заданной глубины сверления, шпиндель останавливается, и после паузы, определенной параметром P_, смещается в сторону внутри отверстия на расстояние Q_. Таким образом, инструмент не касается более внутренних стенок отверстия и может вернуться на высоту R_, не царапая заготовку.

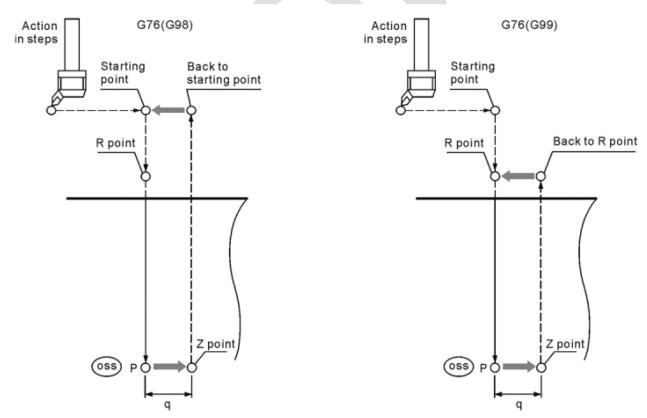
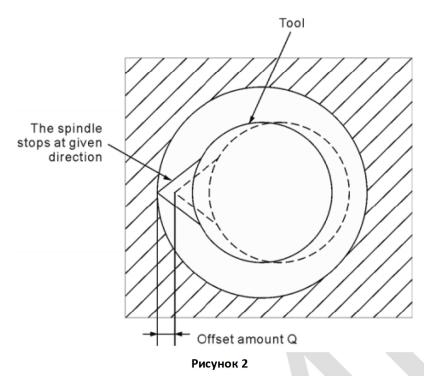



Рисунок 1

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

Пояснения к рисунку: The spindle stops at given direction — шпиндель останавливается в данном направлении, Tool — инструмент, Offset amount Q — величина смещения.

Далее приведено описание использования данной команды согласно рис. 1. Сначала инструмент быстро перемещается в начальную точку X, Y и затем на высоту R. После чего происходит сверление на глубину Z со скоростью подачи F, и шпиндель останавливается; наконечник сверла при этом направлен в сторону от направления последующего смещения. Далее инструмент смещается на расстояние Q от стенки отверстия (см рис. 2). Теперь инструмент может быть возвращен в исходную позицию на высоту R, не царапая поверхности

стенок заготовки. Наконец, шпиндель снова включается для повторной операции.

Величина смещения на рис. 2 задана параметром Q. Его значение может быть только положительным, поэтому принимается по модулю. Чтобы применить смещение, равное 1 мм, необходимо задать параметр как Q1.0. Направление смещения может быть задано с помощью координат (+X, +Y) или (-X, -Y). Значение Q не должно быть слишком большим во избежание столкновения с заготовкой.

G80: отмена постоянного цикла

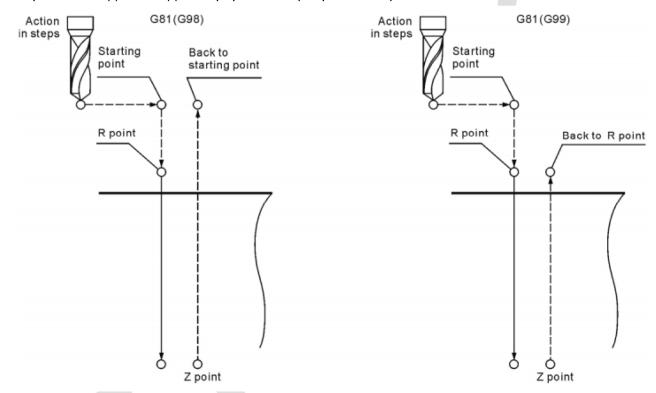
Формат: G80

Описание: Все циклические команды являются модальными (режимными). Активный режим такой команды должен быть выключен перед тем, как обычные операции на станке могут быть продолжены. Команда G80 отменяет действие команд G73, G74, G76 и G81 $^{\sim}$ G89.

G81: стандартный цикл сверления

Формат: G81 X_Y_Z_R_F_K_

Х_Ү_: Конечная позиция в блоке


Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота

F_: скорость подачи

К_: количество повторов

Описание: Команда G81 используется для сверления отверстий общего назначения. Отверстие сверлится за один заход без прерываний (см рис. ниже).

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка

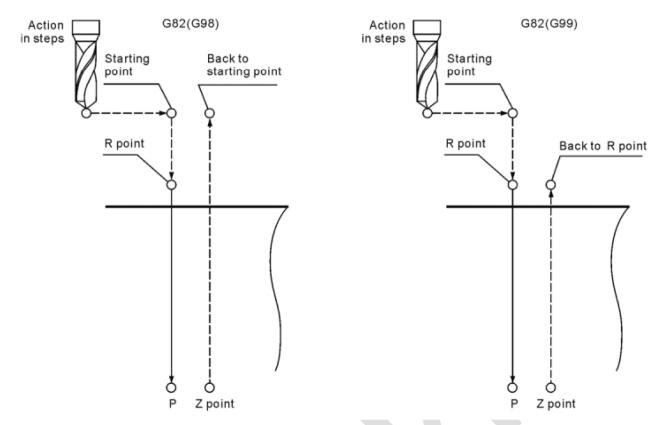
G82: цикл сверления с временной задержкой

Формат: G81 X_Y_R_Z_P_F_K_

Х_Ү_: Конечная позиция в блоке

Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота


Р: длительность паузы (Задается целым числом, измеряется в 0,001 с)

F_: скорость подачи

К_: количество повторов

Описание: Команда G82 аналогична команде G81, но вдобавок, позволяет задать временную задержку P_, после того как заданная глубина отверстия достигнута.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

G83: цикл прерывистого сверления

Формат: G83 X_Y_Z_R_Q_F_K_D_

Х_Ү_: Конечная позиция в блоке

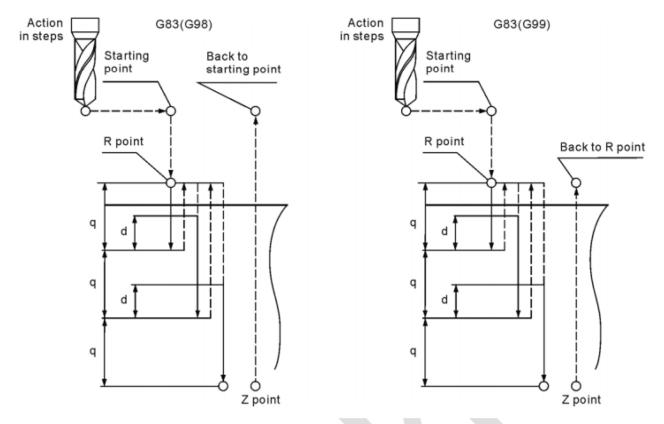
Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота

Q_: глубина каждого промежуточного сверления

F_: скорость подачи

К_: количество повторов


D_: величина отступа в каждом промежуточном сверлении

Описание: Команда G83 работает, также как и G73, за исключением, что возвращает инструмент на высоту R после каждого глубокого сверления, давая, таким образом, возможность для удаления стружки и добавления в отверстие охлаждающей жидкости.

Процесс выполнения операции описан в следующем примере:

Инструмент возвращается на высоту R после сверления на глубину Q. Затем он перемещается в точку, отстоящую на расстояние d от конечной точки предыдущего сверления. После чего начинается следующее сверление на глубину q+d. Описанная операция повторяется, пока не будет достигнута заданная конечная глубина отверстия Z. Инструмент возвращается в исходное положение на высоту R.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

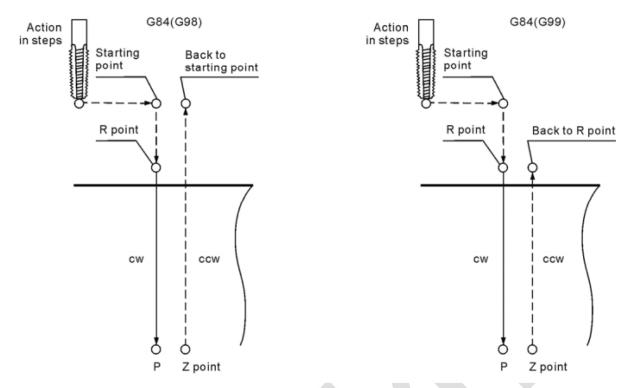
G84: цикл нарезания правой резьбы

Формат: G84 X_Y_R_Q_Z_P_F_K_

Х_Ү_: Конечная позиция в блоке

Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота


Q_: глубина каждого сверления

Р_: длительность паузы (Задается целым числом, измеряется в 0,001 с)

F_: винтовая скорость подачи

К_: количество повторов

Описание: Команда G84 используется для нарезания правой резьбы. Ее отличие от команды G74 только в задаваемом направлении вращения. В остальном описание G84 соответствует описанию команды G74.

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка, ccw — против часовой стрелки, cw — по часовой стрелке.

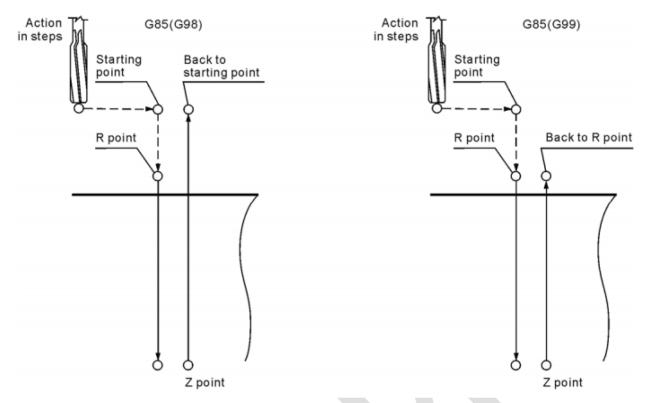
G85: стандартный цикл растачивания протяжкой

Формат: G85 X_Y_R_Z_F_K_

Х_Ү_: Конечная позиция в блоке

Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота


F_: скорость подачи

К_: количество повторов

Описание: Команда G85 значительно повышает точность сверления. Обычно используется со специальными инструментами типа протяжки или развертки для высокоточной обработки отверстий.

Процедура выполнения команды:

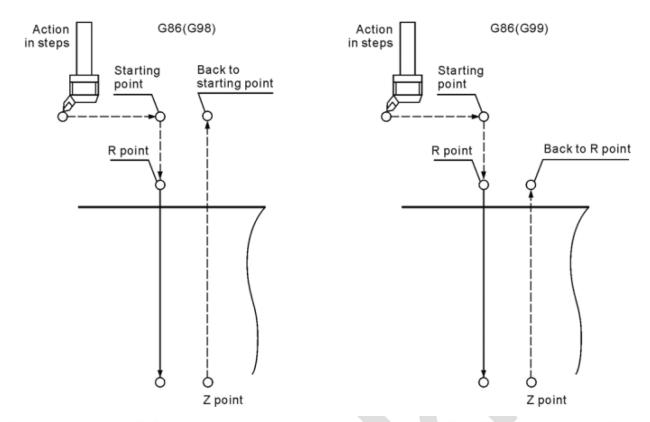
Инструмент просверливает отверстие до заданной глубины Z со скоростью F, после чего поднимается на той же скорости до высоты начальной точки или точки R, в зависимости от выбранного режима (G98 или G99).

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

G86: стандартный цикл растачивания

Формат: G86 X_Y_R_Z_F_K_

Х_Ү_: Конечная позиция в блоке


Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота

F_: скорость подачи

К : количество повторов

Описание: Работа команды G86 проиллюстрирована на рис. ниже. После того как достигнута заданная глубина отверстия Z, шпиндель прекращает вращение и быстро поднимается (на ускоренной подаче) в исходную позицию. На этом цикл завершается. Принцип работы аналогичен описанному для команды G81. Так как инструмент находится в постоянном контакте с рабочей поверхностью и не смещается в сторону перед возвратом в исходную позицию, на стенках отверстия могут оставаться небольшие царапины.

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

G87: цикл растачивания детали с обратной стороны

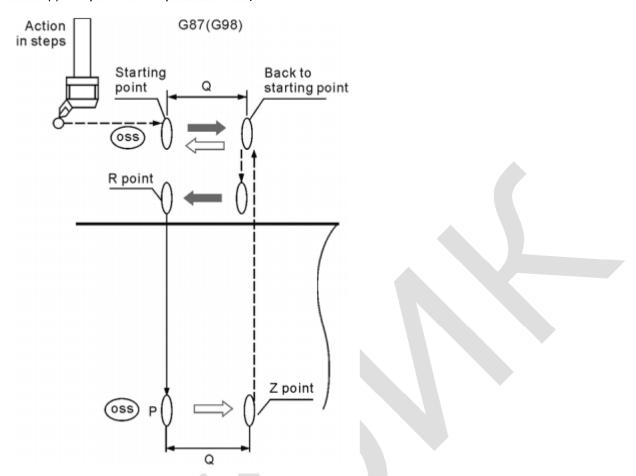
Формат: G87 X_Y_R_Z_Q_P_F_K_

Х_Ү_: Конечная позиция в блоке

Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота

Q : смещение


Р_: длительность паузы (Задается целым числом, измеряется в 0,001 с)

F_: скорость подачи

К_: количество повторов

Описание: Инструмент быстро позиционируется в точку с координатами (X, Y). Шпиндель остановлен в определенном для наконечника резца направлении. После этого инструмент смещается на расстояние Q в направлении, противоположном направлению наконечника резца. Таким образом, резец не касается внутренней стенки отверстия при последующем опускании инструмента на высоту R. Затем инструмент возвращается в точку (X, Y) на высоте R. Теперь включается шпиндель и начинается сверление отверстия до заданной глубины Z, после чего шпиндель останавливается в определенном положении, резец снова смещается в сторону на расстояние Q и инструмент возвращается в исходное положение по оси Z. Наконец, происходит возврат инструмента в начальную точку (X, Y). Значение смещения Q

равно значению установленному командой G76. Следует обратить внимание на то, что данная команда не работает в режиме G99/

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

G88: цикл растачивания с временной задержкой

Формат: G88 X_Y_R_Z_P_F_K_

Х_Ү_: Конечная позиция в блоке

Z_: глубина обрабатываемого отверстия

R_: начальная безопасная высота

Р_: длительность паузы (Задается целым числом, измеряется в 0,001 с)

F_: скорость подачи

К_: количество повторов

Описание: Команда G88 выполняет сверление из точки R на заданную глубину Z, после чего делается пауза, длительность которой задана параметром P. После завершения паузы, шпиндель останавливается (то же, что и при выполнении команды M00). Возврат инструмента в точку R или начальную точку (X, Y) происходит только после нажатия клавиши Cycle start.

Вдобавок, у оператора есть возможность, переключив контроллер в режим **MPG**, вернуть инструмент в исходное положение вручную, подняв его вверх по оси Z. Не забудьте после этого переключить режим работы обратно в **Auto** и нажать клавишу **Run**, чтобы вернуть

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

управление программе. Когда инструмент возвращен по оси Z в точку R (G99) или начальную точку (G98), полный цикл команды G88 завершен. Эта команда используется для сверления «глухих» отверстий.

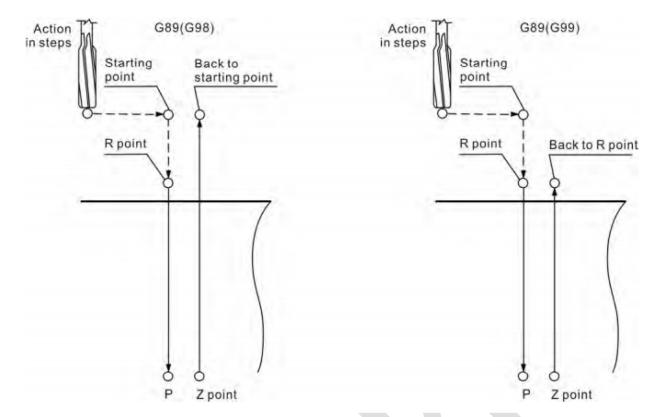
Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

G89: цикл растачивания протяжкой с временной задержкой

Формат: G89 X_Y_R_Z_P_F_K_

Х_Ү_: Конечная позиция в блоке

Z_: глубина обрабатываемого отверстия


R : начальная безопасная высота

Р_: длительность паузы (Задается целым числом, измеряется в 0,001 с)

F_: скорость подачи

К_: количество повторов

Описание: Команда G89 используется для растачивания «глухих» отверстий протяжкой. Функционирует она также как и команда G85, но дополнительно имеет временную задержку в точке Z при достижении заданной глубины сверления. Наличие такой паузы обеспечивает гораздо более точные значения глубины и диаметра отверстия.

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

G90: режим абсолютного позиционирования

Формат: G90 X_Y_Z_

Описание: Команда G90 является модальной, т.е. командой постоянного действия. После того как она выполнена, все команды осевых перемещений работают с координатами в абсолютных значениях. Т.е. позиционирование инструмента происходит относительно начала координат системы координат заготовки.

G91: режим относительного позиционирования

Формат: G91 X_Y_Z_

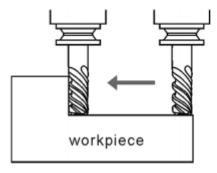
Описание: Команда G91 включает режим позиционирования в относительных единицах. После ее выполнения, все осевые перемещения, а также вращение инструмента, задаются относительно текущей позиции. Команда G91 также является модальной: активный статус G91 одновременной отменяет действие команды G90 и наоборот.

G92: установка текущей позиции нулевой точкой абсолютной системы координат

Формат: G92 X_Y_Z_

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Описание: Команда G92 X0 Y0 Z0 устанавливает текущую позицию инструмента в качестве нулевой точки абсолютной системы координат. Последующие команды позиционирования в абсолютных значениях будут выполняться относительно этой точки. Все значения абсолютных координат и текущих позиций будут обновлены в соответствии с новой нулевой точкой, заданной командой G92 X Y Z .

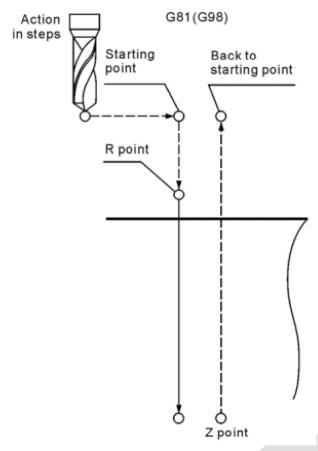

Примечания:

- (1) Если команда G92 применена, то ее статус остается активным вплоть до конца программы (команды M02/M30).
- (2) Функция команды G92 деактивируется также нажатием клавиши RESET.

G94: скорость подачи в мм/мин

Формат: G94 G01 X_Y_Z_F_

Описание: Команда G94 устанавливает скорость подачи в мм/мин. Параметр F определяет значение скорости. Он используется обычно во фрезерных станках для вычисления скорости подачи.


Feed rate unit: mm/min or inch/mm

Пояснения к рисунку: Workpiece — заготовка, Feed rate unit: mm/min or inch/min — скорость подачи в единицах измерения: мм/мин или дюймы/мин.

G98: возврат к исходной точке в цикле

Формат: G98 G8_ X_Y_Z_R_F_

Описание: Команды G98/G99 являются модальными командами для возвращения инструмента на определенную высоту после выполнения цикловых команд. Команда G98 возвращает инструмент в исходную (начальную) точку. Вместо команды G98 может использоваться команда G99 (см далее).

Пояснения к рисунку: Action in steps — пошаговое выполнение команды, Starting point — начальная точка, Back to starting point — назад к начальной точке, point — точка.

G99: возврат к заданной точке в цикле

Формат: G99 G8_ X_Y_Z_R_F_

Описание: Команда G99 возвращает инструмент в заданную (референтную) точку R, после того как цикловая команда выполнена. Если необходимо вернуть инструмент в исходную позицию, используйте команду G98 вместо G99.

13 <u>М-коды</u>

Этот раздел описывает функции вспомогательных М-кодов.

13.1	М00 – остановка выполнения программы
13.2	М01 — опциональная остановка выполнения программы
13.3	М02 — конец программы
13.4	М30 – конец программы, возврат курсора в начало программы
13.5	М98 — вызов подпрограммы
13.6	М99 – возврат из подпрограммы
13 7	Таблица часто используемых М-колов

Вспомогательные функции (М-коды) используются для включения/отключения основных функций станка. Формат команды определяется начальной буквой М с последующими двумя цифрами. Некоторые системные М-коды могут быть использованы для управления программой без какого-либо программирования.

13.1 М00 Остановка выполнения программы

Формат: М00

Описание: Программа приостанавливает работу немедленно, после того как в коде будет выполнена строка, содержащая команду М00. Чтобы продолжить работу программы, следует снова нажать клавишу **Run**. Данная команда применяется обычно в ситуациях, когда необходимо дополнительно проконтролировать процесс обработки.

13.2 М01 Опциональная остановка выполнения программы

Формат: М01

Описание: Действие команды M01 аналогично описанному для команды M00 за исключением, что останов программы произойдет только при нажатии клавиши **Optional** s**top** на станочном пульте. Если клавиша не нажата, программа проигнорирует команду M01 и продолжит выполнение либо до команды M00, либо до команды окончания программы.

13.3 М02 конец программы

Формат: М02

Описание: Команда M02 обычно расположена в конце программного кода, чтобы сообщить контроллеру о необходимости завершения программы. Если M02 находится в середине программы, то весь код, следующий после строки с командой M02, игнорируется, так как программа всегда считается завершенной после применения команды M02. Курсор находится в блоке, содержащем M02.

13.4 М30 конец программы, возврат курсора в начало программы

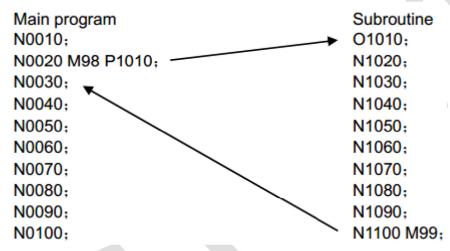
Формат: М30

Описание: Команда M30 обычно расположена в конце программного кода, чтобы сообщить контроллеру о необходимости завершения программы. Если M30 находится в середине программного кода, то программа останавливается после выполнения M30 и курсор возвращается в начало программы.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Разница в работе команд M30 и M02 заключается в положении курсора после выполнения команды. В случае с M02 курсор остается в блоке, содержащем команду M02, а M30 возвращает курсор в начало программного кода.

13.5 М98 вызов подпрограммы

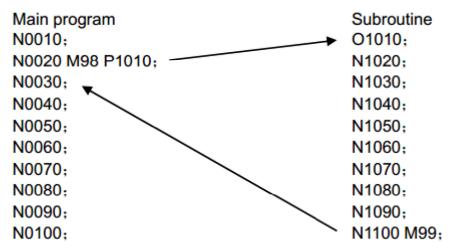

Формат: M98 P_L_

Описание: Для упрощения структуры программы и уменьшения размера программного кода, существует возможность группирования одинаковых и повторяющихся действий и процедур в подпрограммы. Основная программа вызывает подпрограмму для выполнения определенных действий. Та, в свою очередь, может вызвать другую подпрограмму и т.д., вплоть до восьми вложенных подпрограмм. Команда М98 передает управление подпрограмме, которая выполняется заданное количество раз.

Р: номер подпрограммы.

L_: количество повторений для подпрограммы.

Пример:


Пояснения к примеру: Main program – основная программа, Subroutine – подпрограмма.

13.6 М99 возврат из подпрограммы

Формат: М99

Описание: Команда M99 возвращает управление из подпрограммы в то место программного кода, откуда была вызвана данная подпрограмма. Возврат происходит в строку, следующую за строкой, содержащей вызов подпрограммы M98. С этого места продолжается выполнение вызывающего программного кода (см иллюстрацию ниже).

Пример:

Пояснения к примеру: Main program – основная программа, Subroutine – подпрограмма.

13.7 Таблица часто используемых М-кодов

Часто используемые М-коды представлены ниже в таблице. Функции М-кода определяются в станочном контроллере, за исключением преопределенных системой. В действительности функции М-кодов зависят от конкретных станков.

М-код	Функция	Примечания	
M00	остановка выполнения программы	системный	
M01	опциональная остановка выполнения программы	системный	
M02	конец программы	системный	
M03	вращение шпинделя по часовой стрелке		
M04	вращение шпинделя против часовой стрелки		
M05	остановка шпинделя		
M06	смена инструмента		
M08	подача охлаждающей жидкости		
M09	отключение подачи охлаждающей жидкости		
M19	позиционирование шпинделя		
M20	отключение позиционирования шпинделя		
M28	отключение жесткой нарезки резьбы		
M29	жесткая нарезка резьбы		
M30	конец программы, возврат курсора в начало программы	системный	
M98	вызов подпрограммы системный		
M99	возврат из подпрограммы	системный	

14 Макросы и переменные

Макросы и переменные являются важными составляющими программы. В этом разделе будут даны инструкции по их применению с примерами.

- 14.1 Переменные
- 14.2 Синтаксис переменных
- 14.3 Математические операции
- 14.4 Изменение пути выполнения программы
 - 14.4.1 Операторы циклов
 - 14.4.2 Операторы условий

14.1 Переменные

Контроллер позволяет определить в программе переменные и задать им значения. Можно заранее определить набор значений для переменной, чтобы адаптировать поведение программы к различным условиям. Формат задания переменной определяется символом # с последующим номером переменной.

Типы переменных

Тип	Номер	Функция	Чтение	Запись
Локальная	Локальная #1 ~ #50 Локальные переменные используются в		Да	Да
		подпрограммах или макросах для хранения		
		данных и вычислений. К ним можно		
		обращаться по ссылке через аргументы.		
		Вызывающая подпрограмма может		
		вызывать до восьми вложенных		
		подпрограмм с определенными для		
		каждой подпрограммы аргументами,		
		ссылающимися на соответствующие		
		локальные переменные.		
Глобальная	#51 ~ #250	Для хранения данных и вычислений в	Да	Да
		подпрограммах и макросах.		
Энергонезависимая	#1601~#1800	Системные переменные используются для	Да	Да
		чтения и записи внутренних данных		
		системы во время работы контроллера ЧПУ.		
		Эти переменные находятся в		
		энергонезависимой памяти контроллера.		
выходной бит	#1801 ~ #1832	(MIC NC)	Да	
контроллера		Чтение данных (MLC > NC) с помощью		
выходное слово	#1833 ~ #1848	номера переменной (#1801 ~ #1832 - для	Да	
контроллера		битов, #1833 ~ #1848 – для слов)		
выходной бит	#1864 ~ #1895	2		Да
контроллера		Запись данных (NC > MLC) с помощью		
выходное слово	#1896 ~ #1911	номера переменной (#1864 ~ #1895 - для		Да
контроллера		битов, #1896 ~ #1911 — для слов)		

14.2 Синтаксис переменных

Числовые значения, необходимые программе, могут быть заданы с помощью переменных. Это придает программному коду дополнительную гибкость и универсальность, так как переменные также используются в математических операциях.

- (1) Задание диапазона значений переменной:
 - #i: i-я переменная (для 1 <= i <= 50)
- (2) Задание номера переменной с помощью выражений:

Для переменной #[A] значение должно быть в диапазоне между A и верхним пределом номера переменной системы. Т.е. 1 <= A <= верхний предел номера переменной системы. Значение A не может быть отрицательным.

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

#[<выражение>]	Описание
#[#20]	(правильно)
#[#20∆3]	(правильно). Здесь Δ представляет оператор
	=, +, -, * или /.
##20	(неправильно). Не допускается двух
	последовательных символов переменной (#).
#[#20] =	(правильно)
#20 =	(правильно)
#[#20 - #10] =	(правильно). Никакой оператор не может
	быть указан до знака равенства (=)
#[- #20] =	(правильно)

14.3 Математические операции

Переменные можно использовать в самых разных математических операциях, а результат вычисления назначить другой переменной, или использовать его как комбинацию переменных, или как альтернативу другим переменным.

#і, #ј и #к могут быть заменены на константы.

Команда	Символ	Пример использования	Определение
	+	#i = #j + #k	Сложение
	-	#i = #j - #k	Вычитание
Элементарная	*	#i = #j * #k	Умножение
арифметика	/	#i = #j / #k	Деление
	=	#i = #j	Равенство
	[]	#i = #j * [#p + #q]	Скобки
	SIN	#i = SIN [#k]	Синус
	ASIN	#i = ASIN [#k]	Арксинус
	cos	#i = COS [#k]	Косинус
	ACOS	#i = ACOS [#k]	Арккосинус
	TAN	#i = TAN [#k]	Тангенс
	ATAN	#i = ATAN [#k]	Арктангенс
	ATAN2	#i = ATAN2 [#m, #n]	Арктангенс: угол между осью
			и линией, проведенной из
			начала координат (0, 0) в
Функция			точку с координатами (m, n)
Функция	ABS	#i = ABS [#k]	Модуль
	FIX	#i = FIX [#k]	Округление до меньшего
			значения
	FUP	#i = FUP [#k]	Округление до большего
			значения
	ROUND	#i = ROUND [#k]	Округление
	SQRT	#i = SQRT [#k]	Квадратный корень
	POW	#i = POW [#m, #n]	Возведение числа m в степень
			n
	BIT	#i = BIT [#m, #n]	Значение n бит двоичного

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

			числа m
	&	#i = #j & #k	Логическое И
Логические		#i = #j #k	Логическое ИЛИ
операторы	۸	#i = #j ^ #k	Исключительное ИЛИ
	!	#i = !#j	Отрицание
	PI	ΡΙ = π	Pi
	TRUE	TRUE = 1	возвращает 1, если
Константы			выражение IF истинно
	FALSE	FALSE = 0	возвращает 0, если
			выражение IF истинно

14.4 Изменение пути выполнения программы

Путь выполнения программного кода может быть изменен с помощью операторов WHILE~ENDW и IF~GOTO.

14.4.1 Операторы циклов

Если выражение в операторе WHILE истинно, то программа выполняет код, заключенный между операторами WHILE и ENDW до тех пор, пока выражение в операторе WHILE не станет ложным, после чего код переходит на строку, следующую за оператором ENDW.

WHILE

ş

ENDW

Пример использования:

WHILE[#80<=360.] (программа входит в повторяющийся цикл, если #80 меньше или равняется 360.)

WHILE[#60>=20.] (программа входит в другой повторяющийся цикл, если #60 больше или равняется 20.)

#60=#60-2.

ENDW (Второй повторяющийся цикл заканчивается здесь)

#80=#80+15. #50=#50-0.05

ENDW (Первый повторяющийся цикл заканчивается здесь)

14.4.2 Операторы условий

Если выражение в операторе IF истинно, программа переходит (GOTO) на строку с номером N и продолжает выполнение с этой строки. Иначе, выполняется строка, следующая за оператором IF. Использование символа [] необязательно при переходе на строку N. GOTON (означает безусловный переход к строке N. если этот оператор используется

GOTON (означает безусловный переход к строке N, если этот оператор используется отдельно).

Типы условных выражений:

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Условное	Описание	Примеры	
выражение			
#j > #k	#j больше чем #k	#i=#j>#k TRUE, возвращает #i=1;	
		FALSE, возвращает #i=0	
#j < #k	#j меньше чем #k	#i=#j<#k TRUE, возвращает #i=1;	
		FALSE, возвращает #i=0	
#j == #k	#j равен #k	#i=#j==#k TRUE, возвращает #i=1;	
		FALSE, возвращает #i=0	
#j >= #k	#j больше или равен #k	#i=#j>=#k TRUE, возвращает #i=1;	
		FALSE, возвращает #i=0	
#j <= #k	#j меньше или равен #k	#i=#j<=#k TRUE, возвращает #i=1;	
		FALSE, возвращает #i=0	
#j != #k	#j не равен #k	#i=#j!=#k TRUE, возвращает #i=1;	
		FALSE, возвращает #i=0	

Примеры:

#100 = 1.234; (Переменная #100 принимает значение 1.234)

#100 = #101; (Переменная #100 получает значение переменной #101)

#100 = [[#101+#102]/2.0]; (Переменная #100 принимает значение среднего из переменных #101 и #102)

#100 = #102+2; (Значение переменной #100 является суммой переменной #102 и 2)

#100 = SIN[#102]; (Переменная #100 равна синусу значения переменной #102)

Х-#100; (Координата X получает отрицательное значение переменной #100)

G1X#100Y#101; (Значение переменной #100 назначается координате X, а #101 – координате Y)

G1X[#100]; (Координата X получает значение переменной #100)

G1X[#100+#101]; (Координата X принимает значение суммы переменных #100 и #101)

G2X[#100*SIN[#102]]; (Координата X получает значение произведения переменной #100 и синуса переменной #102)

G1Z#100F#102S#103; (Координата Z принимает значение переменной #100, F — переменной #102, S — переменной #103)

15 Подключение

Этот раздел посвящен подключению контроллера NC к различным интерфейсам и разъемам.

15.1	Обзор интерфейсов
15.2	Разъемы контроллера NC300
15.3	Подключение разъема RS-485
15.4	Подключение разъема AXIS 14
15.5	Подключение шпинделя
15.6	Подключение внешнего штурвала MPG
15.7	Подключение удаленных модулей входов/выходов
15.8	Назначение входов/выходов станочного пульта NC300
15.9	Назначение входов/выходов станочного пульта NC311

15.1 Обзор интерфейсов

Пояснения к рисунку: MPG Handwheel — штурвал MPG, Spindle — разъем шпинделя, REMOTE I/O — внешние высокоскоростные входы/выходы, AXIS 1~4 — разъем конечных датчиков, Battery Holder — держатель батареи, DC24V Power — разъем питания, Cycle Start/Feed Hold — разъем для подключения внешних управляющих сигналов, Power ON/OFF (24VDC) — выключатель питания, Local I/O — встроенные входы/выходы, CF Card — карта памяти CF, DMCNET — разъем DMCNET, ETHERNET — разъем ETHERNET, Emergency Stop — разъем аварийного останова.

Разъем	Описание		
Внешние высокоскоростные	Каждый модуль содержит 32 пары входов/выходов.		
входы/выходы	Максимальная длина кабеля - до 20м между станциями и		
	до 160м (20х8) - общая длина		
Штурвал MPG	Внешний пульт (штурвал) с встроенным питанием 5В пост.		
	тока и 6 входами.		
	Один вход для сигнала энкодера		
Шампар	Один выход для аналогового сигнала		
Шпиндель	Один вход для внешнего EMG сигнала		
	Два высокоскоростных входа		
Конечные датчики	Дискретные входы для концевиков и нулевой точки для 4		
	осей		
RS-485	Для подключения внешних устройств по RS-485 интерфейсу		
Встроенные входы/выходы	1: 16 пар дискретных входов/выходов		
	2: 12 пар дискретных входов/выходов		
Карта памяти СБ	Для хранения программ с G-кодом		
DMCNET	Для коммуникации по протоколу DMCNET		
ETHERNET	Управление DNC и мониторинг системы		
Аварийный останов	Триггеры немедленного останова при открытии цепи		
Питание 24 VDC	Напряжение питания 24В пост. тока		

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Примечания:

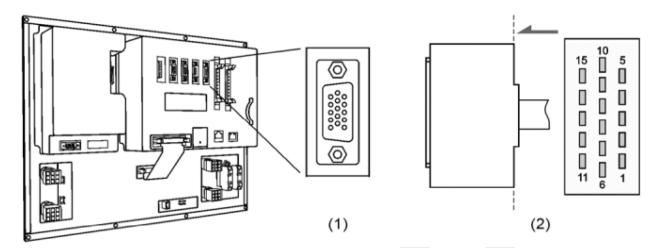
- (1) Убедитесь в правильности подключения напряжения питания к разъему 24В пост. тока.
- (2) Встроенные и внешние входы/выходы (Х/Ү) требуют дополнительного питания 24В пост. тока
- (3) Замкните клеммы на разъеме аварийного останова (EMG) перед запуском контроллера.
- (4) В аварийной ситуации отключите сервопривод размыканием контактора через выход Ү.

15.2 Разъемы контроллера NC300

Маркировка	Наименование	Описание			
0V, +24V	Питание	Подсоедините 24 В пост. тока (15 Вт при 0,6 А)			
\(\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	контроллера	Клемма	Провод	Описание	
		+24V	Красный	Положительный	
		0V	Белый	Отрицательный	
		(4)	Зеленый	Заземление	
I/O 1	Встроенные	Диапазон (ХС	~X15, Y0~Y15	5)	
	дискретные	PIN		Описание	
	входы/выходы 1	P1~ P16	Входы Х0~Х	15, до16 точек (8~25 мА)	
		P19~P34	Выходы Ү0^	Ү15 до16 точек (<120 мА)	
		P18	Вход порта	COM2 для +24 В или 24 В	
			заземления (GND)		
		P17	Выход порт	а OUT-COM для заземления	
		Спецификаци	кация дискретных выходов: напряжение: < 2		
		пост. тока; то	к <60 мА		
1/0 2	Встроенные	Диапазон (Х1	.6~X27, Y16~\	/27), см. раздел 3.3	
	дискретные	PIN	Описание		
	входы/выходы 2	P1~ P12	Входы X16~X27 до12 точек (8~25 мА)		
			(8~25mA)		
		P19~P30	Выходы Ү16~Ү27 до16 точек (<120 мА)		
		P18	Вход порта СОМЗ, для +24 В или 24 В		
			заземления	(GND)	
		P17	Выход порт	а OUT-COM для заземления	
		Спецификаци	ıх выходов: напряжение: < 24 B		
		пост. тока; то	к <60 мА		

Маркировка	Наименование	Описание		
AXIS 1~4	Конечные датчики	оси 1~4, положительный/отрицательный пределы и		
	по 4 осям и датчик	нулевая точка, всего до 12 точек (рабочий ток: 8~25 мА)		
	нулевой точки			
		PIN	Описание	
		P1~P3	Положительный, отрицательный пределы,	
			нулевая точка для оси 1	
			(Регистры М [М2144], [М2145], [М2146])	
		P4~P6	Положительный, отрицательный пределы,	
			нулевая точка для оси 2	
			(Регистры М [М2148], [М2149], [М2150])	
		P7~P9	Положительный, отрицательный пределы,	
			нулевая точка для оси 3	
			(Регистры М [M2152], [M2153], [M2154])	
		P10~P12	Положительный, отрицательный пределы,	
			нулевая точка для оси 4	
			(Регистры M [M2156], [M2157], [M2158])	
		P13~P15	Вход порт СОМ1, для +24 В или 24 В	
			заземление	
SPINDLE	Специальный		обратную связь по скорости вращения	
	шпиндельный шпинделя, аналоговый выход и 2 вь			
	разъем	входа		
		PIN	Описание	
		P1	HIS_COM, для +24 В или 0 В	
		P2	HIS_1 счетчик С78, Вход [M2142]	
		P3	HIS_2 счетчик С79, Вход [M2143]	
		P4	SP_OUT	
		P5	SP_GND	
		P6	EMG_GND	
		P7	EMG_IN	
		P8	SP_A+	
		P9	SP_A-	
		P10	DC +5V_OUT	
		P11	SP_B+	
		P12	SP_B+	
		P13	SP_Z+	
		P14	SP_Z+	
		P15	OV_OUT	
	L		_	

Маркировка	Наименование		Опис	ание
MPG	Импульсный вход	6 дискретных входов и входной разъем штурвала, А,		
	внешнего пульта	/A, B, /B		
	(штурвала)	PIN		Описание
		P1	Внешнее питан	ние 24 В или ОВ (DI_COM)
		P2~P7	Дискретные вх	коды (X28~X33)
		P8	резерв	
		P9	резерв	
		P10	DC +5V_OUT (<	300 mA)
		P11	XA+	
		P12	XA-	
		P13	XB+	
		P14	XB-	
		P15	0V_OUT	
REMOTE I/O	Клеммы внешних	Клеммы дл	я подключения	внешних входов/выходов в
	входов/выходов	диапазоне	X256~X511, Y25	6~Y511.
		Каждый вн	ешний модуль и	имеет до 32 входов и 32
		выходов и к каждому модулю может быть		
		подключен	ю до 8 других м	одулей.
				_
		PIN		Описание
		P1	TX+	
		P2	TX-	
		P3	RX-	
		P4	RX+	
		P5	GND	
		P6	SHIELD	
ETHERNET	Разъем Ethernet	1		њем RJ45 по обычной витой
			айку разъема см	
		PIN цвет дл		PIN цвет для типа В
		1. Бело-ора	анжевый	1. Бело-оранжевый
		2. Оранжевый		2. Оранжевый
		3. Зелено-б	белый	3. Зелено-белый
		4. Голубой		4. Голубой
	5. Бело-голубой 6. Зеленый			5. Бело-голубой
				6. Зеленый
		·		7. Бело-коричневый
				8. Коричневый

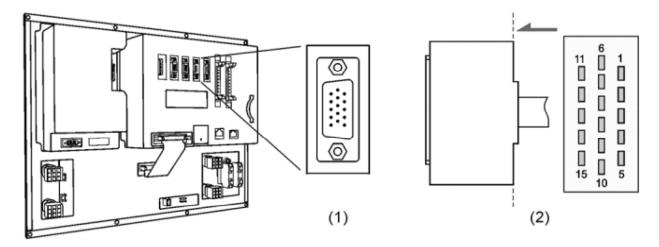

Маркировка	Наименование	Описание
DMCNET	Разъем	Соединение с сервоприводом Delta,
	коммуникации по	поддерживающему DMCNET, по стандартному
	DMCNET	разъему RJ45. Распайка разъема такая же, как для
		Ethernet.
EMG	Переключатель аварийного останова	Нажать для размыкания соответствующей цепи
Power On	Сигнал наличия питания	Контакт для индикации наличия питания
Power Off	Сигнал отсутствия питания	Контакт для индикации отсутствия питания
IES	Контакт аварийного останова (EMG)	Контакт аварийного останова. При разрыве цепи аварийного останова активируется флаг аварийного останова (Кнопка аварийного останова подсоединяется к клеммам IES)
RS-485	RS-485 последовательный коммуникационный порт	Для подключения внешних устройств по RS-485 интерфейсу

Примечания:

- (1) Кнопка аварийного останова подсоединяется к клеммам разъема IES. Необходимо использовать флаг аварийного останова EMG при размыкании цепи аварийного останова.
- (2) Световые индикаторы сигналов наличия/отсутствия питания (Power On/ Power Off) требуют напряжения 24 В пост. тока.

15.3 Подключение разъема RS-485

У контроллера NC300 имеется один последовательный коммуникационный порт RS-485 для связи с внешними устройствами. Ниже приведена схема расположения выводов разъема.


- (1) RS-485 разъем на контроллере NC («мама»)
- (2) RS-485 разъем («папа»)

Номер вывода	Функция
PIN 1	D+
PIN 6	D-

15.4 Подключение разъема AXIS 1~4

Контроллер серии NC300 предоставляет возможность контролировать положительный и отрицательный пределы, а также нулевую точку по каждой из 4 осей через разъем AXIS $1^{\sim}4$. Всего, таким образом, в распоряжении имеются 12 входов. Пользователь может установить уровень входного сигнала 0В или 24В, в зависимости от того, к чему подключен COM1: +24В или 0В.

Ниже приведена схема расположения выводов разъема:

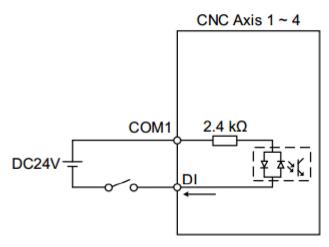
- (1) разъем AXIS 1~4 на контроллере NC («мама»)
- (2) разъем AXIS 1~4 («папа»)

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

AXIS 1~4					
Pin No.	Функция	Pin No.	Функция	Pin No.	Функция
PIN 1	Положительный предел оси 1 ОТО+	PIN 6	Нулевая точка оси 2 DOG1	PIN 11	Отрицательный предел оси 4 ОТ3-
PIN 2	Отрицательный предел оси 1 ОТО-	PIN 7	Положительный предел оси 3 ОТ2+	PIN 12	Нулевая точка оси 4 DOG3
PIN 3	Нулевая точка оси 1 DOG0	PIN 8	Отрицательный предел оси 3 ОТ2-	PIN 13	СОМ
PIN 4	Положительный предел оси 2 ОТ1+	PIN 9	Нулевая точка оси 3 DOG2	PIN 14	СОМ
PIN 5	Отрицательный предел оси 2 ОТ1-	PIN 10	Положительный предел оси 4 ОТ3+	PIN 15	СОМ

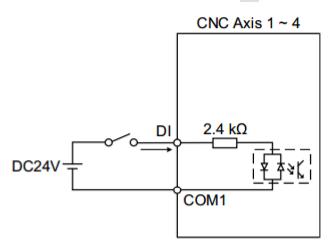
Для задач с использованием сервоприводов в 6 осях, установите параметр 49 равный 1. В этом случае, PIN10 будет нулевой точкой (DOG3) оси 4, PIN11 - нулевой точкой (DOG4) оси 5, а PIN12 - нулевой точкой (DOG5) оси 6.

Описание специальных регистров М:

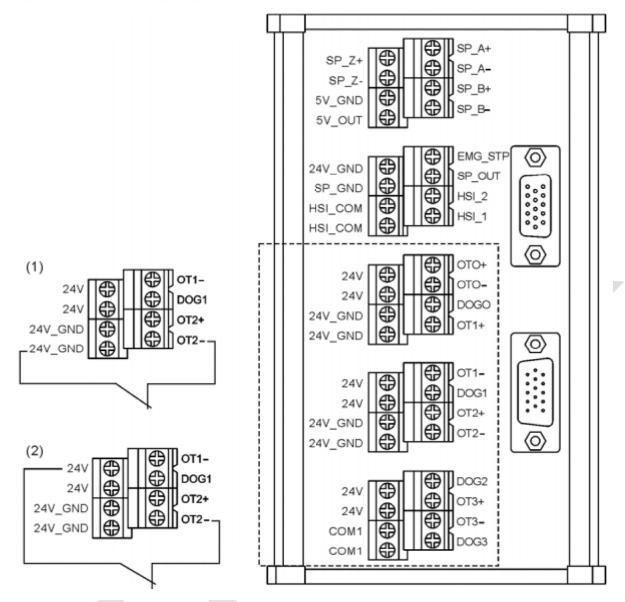

Pin P1~P3	Дискретные входы для положительного и отрицательного пределов, а также нулевой точки оси 1 ([M2144], [M2145], [M2146])
Pin P4~P6	Дискретные входы для положительного и отрицательного пределов, а также нулевой точки оси 2 ([M2148], [M2149], [M2150])
Pin P7~P9	Дискретные входы для положительного и отрицательного пределов, а также нулевой точки оси 3 ([M2152], [M2153], [M2154])

Pin P10~P12	Дискретные входы для положительного и отрицательного пределов,
	а также нулевой точки оси 4
	([M2156], [M2157], [M2158])

Подключение дискретных входов с использованием внешнего источника питания

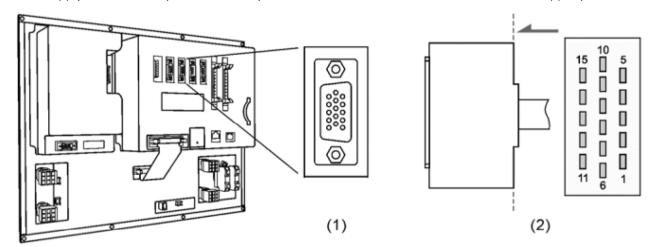

(Допустимое напряжение: $17^{\sim}32$ В пост. тока; максимальный ток: меньше 50 мА):

NPN транзистор (режим SINK)


Пояснения к рисунку: CNC Axis 1 ~ 4 – оси 1 ~ 4 контроллера CNC

PNP транзистор (режим SOURCE)

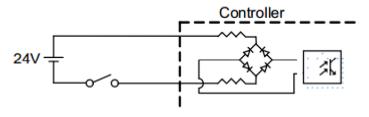
Пояснения к рисунку: CNC Axis $1 \sim 4$ – оси $1 \sim 4$ контроллера CNC


Подключение платы преобразователя (NC-EXM-S01) к разъему AXIS 1~4

- (1) дискретный вход, если СОМ1 подключен к 0 В.
- (2) дискретный вход, если СОМ1 подключен к +24 В.

15.5 Подключение шпинделя

Контроллер NC300 обеспечивает возможность использования обратной связи со шпинделем, а также двух высокоскоростных аппаратных счетчиков. См ниже описание выводов разъема.

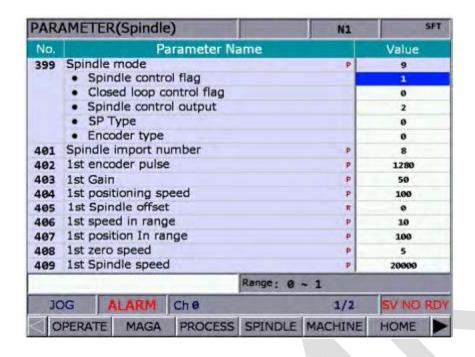

- (1) SPINDLE разъем («мама») на контроллере
- (2) SPINDLE разъем («папа»)

Разъем SPINDLE (Шпиндель)		
Pin No	Сигнал	Описание
PIN 1	HIS_COM	Высокоскоростной счетчик COM, подключаемый к +24 В или 0 В
PIN 2	HIS_1	Вход высокоскоростного счетчика 1 (10 мА)
PIN 3	HIS_2	Вход высокоскоростного счетчика 2 (10 мА)
PIN 4	SP_OUT	Аналоговый шпиндельный выход
PIN 5	SP_GND	Земля шпиндельного аналогового выхода
PIN 6	EMG_GND	Вход аварийного останова 0 В
PIN 7	EMG_IN	Вход аварийного останова +24 В пост. тока
PIN 8	SP_A+	Положительный энкодерный сигнал шпинделя А фаза
PIN 9	SP_A-	Отрицательный энкодерный сигнал шпинделя А фаза
PIN 10	DC +5V_OUT	Выход питания энкодера шпинделя
PIN 11	SP_B+	Положительный энкодерный сигнал шпинделя В фаза

PIN 12	SP_B-	Отрицательный энкодерный сигнал шпинделя В фаза
PIN 13	SP_Z+	Положительный энкодерный сигнал шпинделя Z фаза
PIN 14	SP_Z-	Отрицательный энкодерный сигнал шпинделя Z фаза
PIN 15	0V_OUT	Земля питания энкодера шпинделя

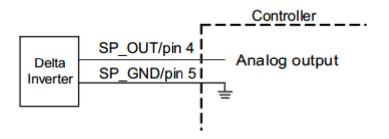
Ниже приведена схема подключения высокоскоростного счетчика. Максимальная частота импульсов - до 5 МГц. Вход может быть использован для прерывания G31 с внешним питанием (напряжение 24 В, ток в диапазоне 8^2 0 мА с пиковым током менее 50 мА). Задание входа HIS_1 для прерывания G31:

Параметр 46Bit5=1; параметр 307Bit4=1; параметр предела входа 25Bit0=1 и специальный регистр M=M2142.

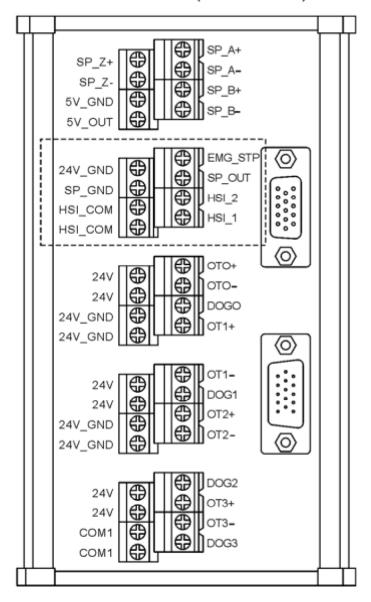

Пояснения к рисунку: Controller – контроллер.

Настройка аналогового сигнала шпинделя

1. Установка параметра 399

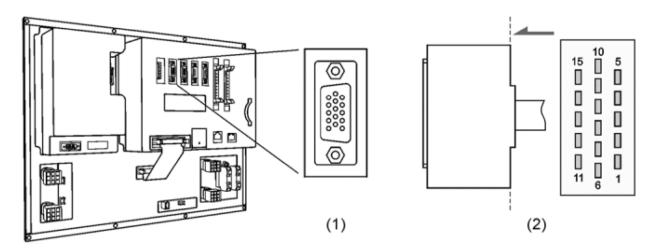

Шпиндель-сервопривод: значение 1101.

Аналоговый сигнал: значение 1020.



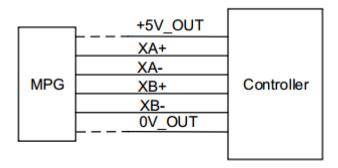
Бит	Описание	Диапазон значений
0	Функция шпинделя:	при 0~1
	0 – ОТКЛ	
	1 - ВКЛ	
1	Флаг управления замкнутым	0~1
	контуром:	
	0 – ОТКЛ	
	1 — ВКЛ (для обратной связи	
	требуется энкодер)	
2~3	Тип выхода шпинделя:	0~2
	0 – DMCNET (Шпиндель-	
	сервопривод)	
	2: EDAC (аналоговый выход)	
4	Режим управления	0~1
	скоростью:	
	0: об/мин 1: PUU	
5	Формат обратной связи:	0~1
	0 — высокое разрешение	
	(x1000)	
	1 — нормальное разрешение	
	(x4)	

- 2. Активируйте SP1 и задайте номер порта равным 10 в настройках каналов.
- 3. При использовании шпинделя с аналоговым выходом подключение производится к выводам 4 и 5 разъема (Pin 4 и Pin 5). Диапазон 0...10 В пост. тока аналогового выхода соответствует S0...S (макс. скорость). Разрешение канала в диапазоне -10...+10 В равно 14-бит.

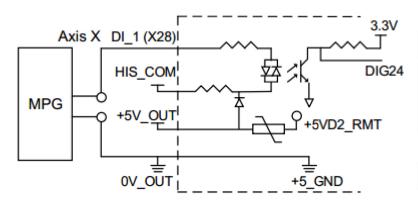

Conversion Card (NC-EXM-S01)

Пояснения к рисунку: Controller – контроллер, Analog output – аналоговый выход, Conversion Card – платапреобразователь.

15.6 Подключение внешнего штурвала MPG


В контроллере NC300 имеется один разъем MPG для подключения внешнего пульта или станочного штурвала. Через этот разъем на штурвал подается питание 5 В пост. тока. Выводы разъема описаны ниже.

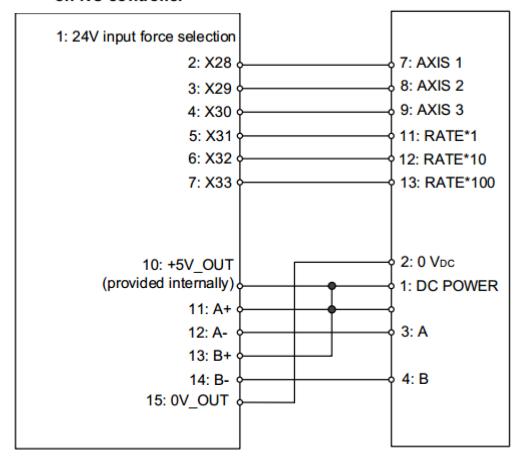
- (1) MPG разъем («мама») на контроллере NC
- (2) MPG разъем («папа»)


Pin No	Описание		
PIN 1	Дискретный вход COM (24 В или 0 В)		
PIN 2	DI_1 (X28) ось X		
PIN 3	DI_2 (X29) ось Y		
PIN 4	DI_3 (X30) ось Z		
PIN 5	DI_4 (X31) усиление x1		
PIN 6	DI_5 (X32) усиление x10		
PIN 7	DI_6 (X33) усиление x100		
PIN 8	не используется		
PIN 9	не используется		
PIN 10	+5V_OUT		
PIN 11	XA+		
PIN 12	XA-		
PIN 13	XB+		
PIN 14	XB-		
PIN 15	0V_OUT		

Подключение импульсного входа MPG штурвала, используя внутренний источник питания 5 В пост. тока

Пояснения к рисунку: Controller – контроллер.

Подключение дискретного входа

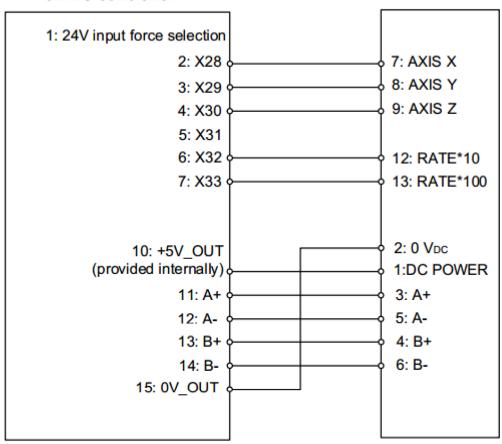

Пояснения к рисунку: Axis X – ось X.

Подключение зависит от типа сигналов штурвала MPG (поддерживается только тип с 100 имп/об), включая штурвал с несимметричными входами (EHDW-BA6SI) и штурвал с дифференцированными входами (EHDW-BE6SI).

Схема подключения штурвала с несимметричными входами (EHDW-BA6SI):

MPG connector (Female) on NC controller

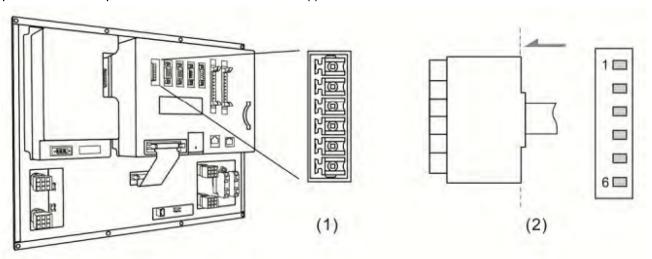
MPG connector (Male)



Пояснения к рисунку: MPG connector (Female) on NC controller— Разъем MPG («мама») на контроллере NC, MPG connector (Male) - Разъем MPG («папа»), 24V input force selection — выбор типа питания 24 В (Sink или Source), provided internally — внутренний источник питания.

Схема подключения штурвала с дифференцированными входами (EHDW-BE6SI):

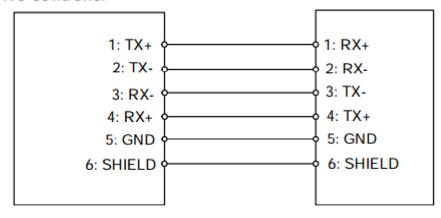
MPG connector (Female) on NC controller


MPG connector (Male)

Пояснения к рисунку: MPG connector (Female) on NC controller— Разъем MPG («мама») на контроллере NC, MPG connector (Male) - Разъем MPG («папа»), 24V input force selection — выбор типа питания 24 В (Sink или Source), provided internally — внутренний источник питания.

15.7 Подключение удаленных модулей входов/выходов

Контроллер NC300 оснащен разъемом REMOTE I/O для подключения до 8 модулей расширения с общим количеством до 256 входов и 256 выходов. Ниже приведены схема расположения разъема и описание его выводов.


- (1) Разъем REMOTE I/O («мама») на контроллере NC
- (2) Разъем REMOTE I/O («папа»)

Pin	Функция
PIN 1	TX+
PIN 2	TX-
PIN 3	RX-
PIN 4	RX+
PIN 5	GND
PIN 6	SHIELD

Схема подключения:

REMOTE I/O connector (Female) on NC controller

REMOTE I/O connector (Male)

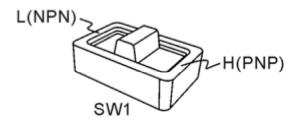
Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Пояснения к рисунку: REMOTE I/O connector (Female) on NC controller— Разъем REMOTE I/O («мама») на контроллере NC, REMOTE I/O connector (Male) - Разъем REMOTE I/O («папа»).

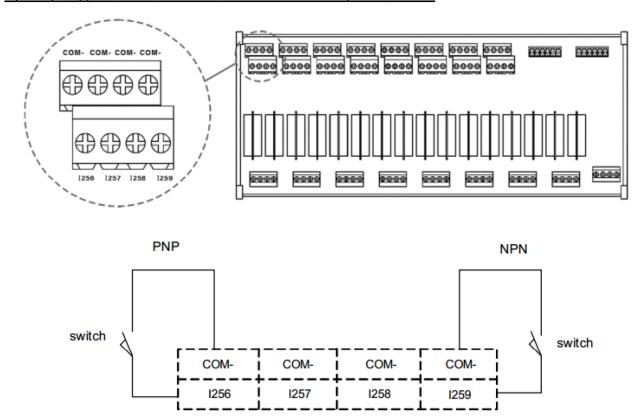
Типы удаленных модулей:

NC-EIO-T3232 Module (Optical coupler)

Модуль оптически развязанных входов/выходов подключается к контроллеру NC300 в качестве удаленного модуля. Используемый коммуникационный протокол — RS-422. Адресация модулей задается следующим образом: первый модуль получает адреса, начиная с X256/Y256. Второй модуль - с X288/Y288 и т.д. Каждый новый модуль добавляет 32 точки входа/выхода. Можно подключить до 8 модулей с общим количеством входов/выходов 256.

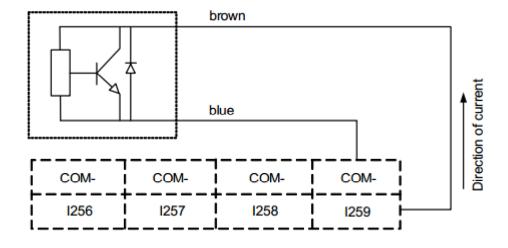

NC-EIO-R3216 Module (Relay)

Модуль релейного типа подключается к контроллеру NC300 в качестве удаленного модуля. Используемый коммуникационный протокол — RS-422. Адресация модулей задается следующим образом: первый модуль получает адреса, начиная с X256/Y256. Второй модуль с X288/Y288 и т.д. Каждый новый модуль добавляет 32 точки входа/выхода. Данный модуль поддерживает 32 дискретных входов и 16 дискретных выходов. Оставшиеся 16 адресов в этом случае (для выходов Y) не используются. Начало адресного пространства следующего модуля смещается на 32 точки.


Подключение удаленного модуля входов/выходов:

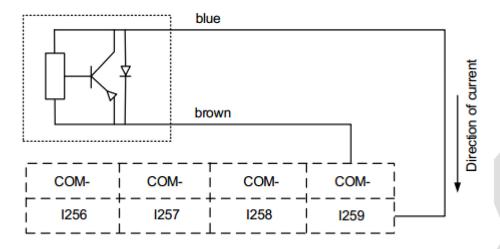
COM- клемма предназначена для сигнальных цепей. Подключать к ней напряжение питания 24 В пост. тока или 0 В запрещено. Тип подключения внешнего входа (PNP или NPN, т.е. Source или Sink) может быть выбран с помощью переключателя SW1 (см рис. ниже).

Переключение в NPN или PNP.

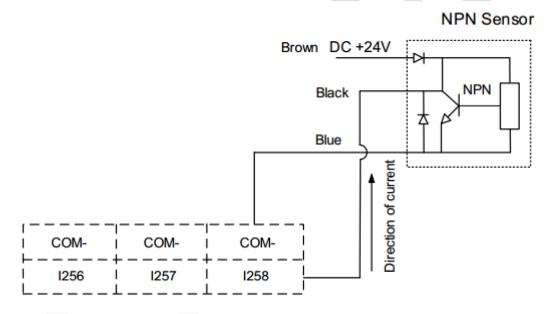


Пример подключения кнопки и механического переключателя

Пояснения к рисунку: switch – переключатель.


Пример подключения бесконтактного датчика положения типа NPN по двухпроводной схеме NPN 2 wire system proximity switch

Пояснения к рисунку: NPN 2-wire system proximity switch — бесконтактный датчик положения типа NPN с двухпроводной схемой подключения, Direction of current — направление тока, brown - коричневый, blue - синий.

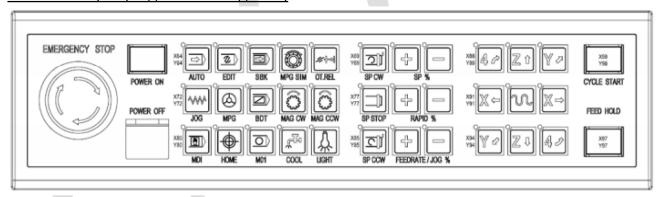

Пример подключения бесконтактного датчика положения типа PNP по двухпроводной схеме

PNP 2 wire system proximity switch

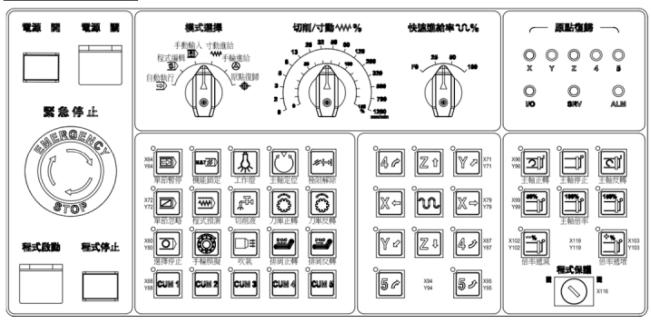
Пояснения к рисунку: PNP 2-wire system proximity switch — бесконтактный датчик положения типа PNP с двухпроводной схемой подключения, Direction of current — направление тока, brown - коричневый, blue - синий

Пример подключения бесконтактного датчика положения типа NPN по трехпроводной схеме

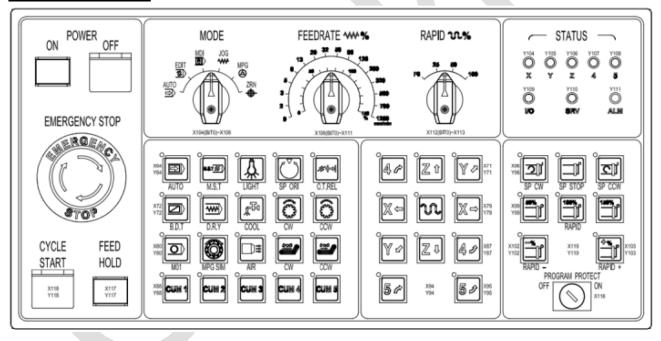
Пояснения к рисунку: NPN Sensor — датчик типа NPN, Direction of current — направление тока, brown - коричневый, blue — синий, black — черный.

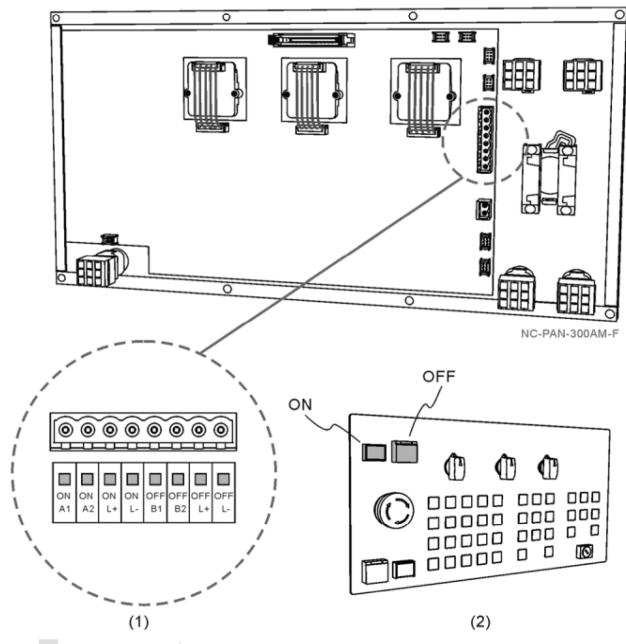

Пример подключения бесконтактного датчика положения типа PNP по трехпроводной схеме

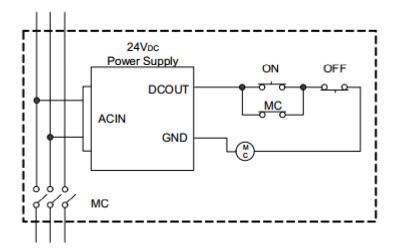
PNP Sensor OV Blue Brown COM- | COM- | COM- | I256 | I257 | I258 |


Пояснения к рисунку: PNP Sensor — датчик типа PNP, Direction of current — направление тока, brown - коричневый, blue — синий, black — черный.

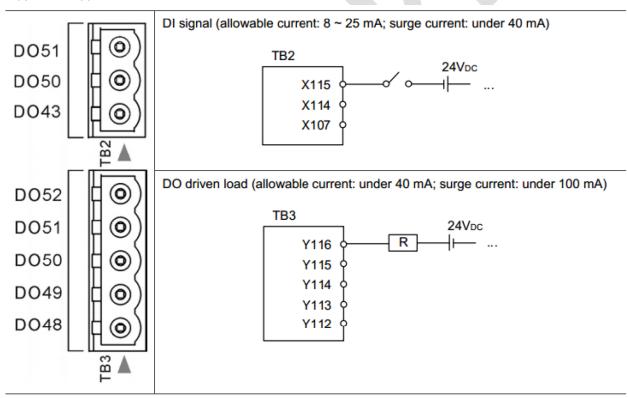
15.8 Назначение входов/выходов станочного пульта NC300


NC300A-MI-A/AE (модель «все в одном»)


NC-PAN-300AM-F(P)

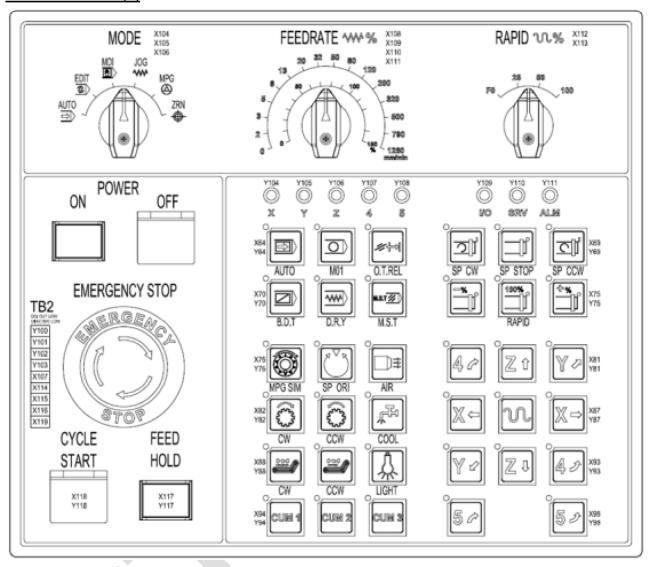

NC-PAN-300AM-F(P)E

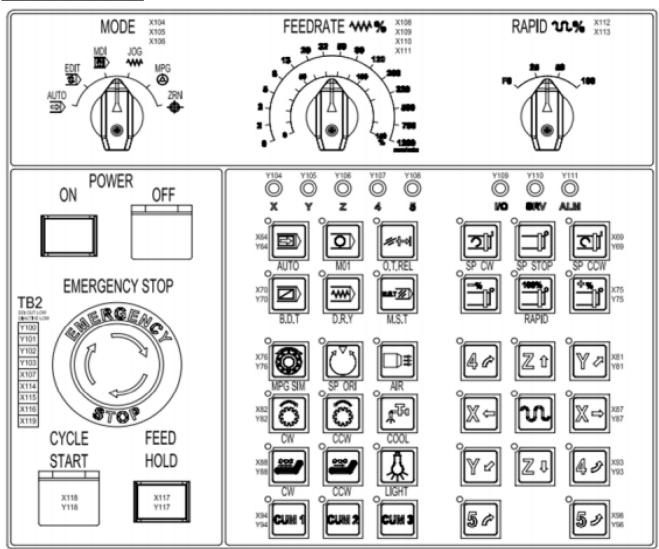
Подключение разъема Power ON/OFF:


(1) Описание клеммного блока: Индикатор состояния требует для работы напряжения 24 В пост. тока. Чтобы включить Power ON индикатор, подайте напряжение +24 В пост. тока на клемму PIN ONL+, а клемму ONL- подключите к 0 В питания. Чтобы включить Power OFF индикатор, подайте напряжение +24 В пост. тока на клемму PIN OFFL+, а клемму OFFL- подключите к 0 В питания.

Пояснения к рисунку: Power Supply – источник питания, ON - ВКЛ, OFF – ВЫКЛ, MC – доп. контакт силового контактора.

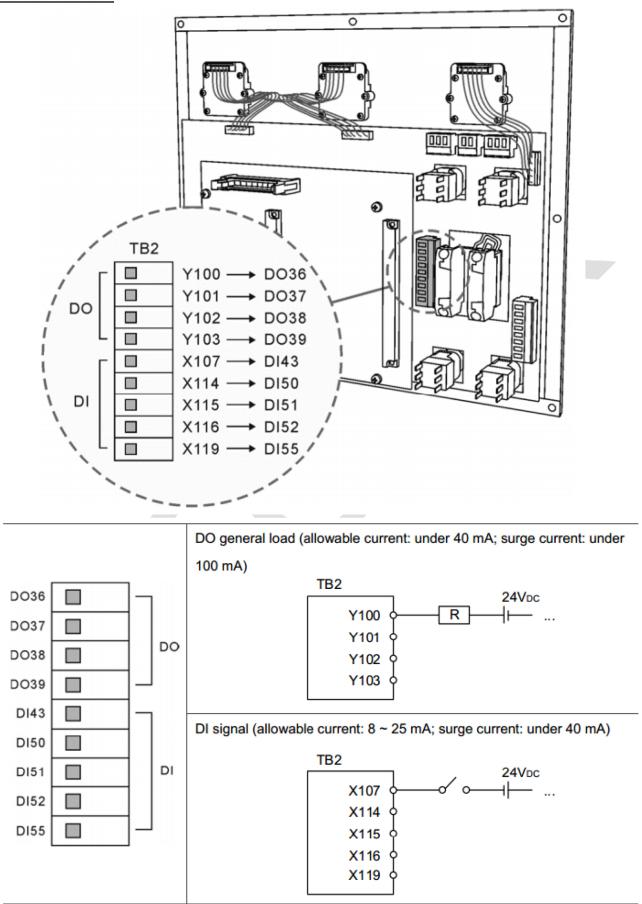
Если кнопка Power ON нажата, то контур между PIN **ONA1** и **ONA2** замкнут. Если кнопка Power OFF нажата, то контур между PIN **OFFB1** и **OFFB2** разомкнут. (2) Вид спереди кнопок Power ON/OFF


Входы/выходы в NC-PAN-300AM-P


Пояснения к рисунку: DI signal (allowable current: 8~25 mA; surge current: under 40 mA) — дискретный вход (допустимый ток: 8~25 мА, пиковый ток: меньше 40 мА), DO driven load (allowable current: under 40 mA; surge current: under 100 mA) — дискретный выход (допустимый ток: меньше 40 мА, пиковый ток: меньше 100 мА).

15.9 Назначение входов/выходов станочного пульта NC311

NC-PAN-311AM-F(P)



NC-PAN-311AM-F(P)E

Подключение клеммных блоков

NC-PAN-311AM-P

Пояснения к рисунку: DI signal (allowable current: 8~25 mA; surge current: under 40 mA) — дискретный вход (допустимый ток: 8~25 мА, пиковый ток: меньше 40 мА), DO driven load (allowable current: under 40 mA; surge current: under 100 mA) — дискретный выход (допустимый ток: меньше 40 мА, пиковый ток: меньше 100 мА).

16 Параметры

Этот раздел включает всю основную информацию по параметрам.

16.1	Обзор
16.2	Параметры процесса
16.3	Операционные параметры
16.4	Магазин инструментов
16.5	Шпиндель
16.6	Механика
16.7	Операция возврата в исходную точку
16.8	Сеть
16.9	Компенсация
16.10	Система
16.11	MLC
16.12	Графика
16.13	Сервопривод
16.14	Описание и настройка RIO
16.15	Абсолютный энкодер

16.1 Обзор

Данный документ обобщает всю информацию по параметрам, доступным пользователям, включая идентификационный номер параметра, название параметра, описание, значения по умолчанию, допустимый диапазон значений и дополнительные замечания. Пожалуйста, используйте данную информацию при настройке параметров.

- (Р) Значения параметра вступают в силу после перезапуска контроллера
- Значения по умолчанию не устанавливаются. Только ручное задание
- (R) Значения параметра вступают в силу только после нажатия кнопки Reset

16.2 Параметры процесса

Nº	Имя	Описание	По умолчанию	Диапазон	Примечания
309	Дуговая скорость подачи	Настройка скорости подачи дуги диаметром 2 мм	1000	10 ~ 50000	
310	Минимальная дуговая скорость подачи	Настройка минимальной дуговой скорости подачи при выполнении дуговых перемещений G02 и G03	500	10 ~ 50000	Р мм/мин
311	Коэффициент уменьшения скорости с перекрытием (угол ограничения скорости)	Задание коэффициента уменьшения скорости для включения или отключения перекрытия (пока не имеет переключения) Скорость подачи Вкл. Откл.	100	0~50000	1
315	Скорость F0	Настройка скорости быстрой подачи F0	100	10 ~ 10000	1
316	Быстрая скорость (скорость подачи G00)	Настройка быстрой скорости	5000	1~60000	1
317	Время разгона/торможения Постоянная времени разгона/торможения G00	Задание времени разгона для скорости движения с одинаковым временем S кривой пункта 319	200	1~2000	1
318	Максимальная скорость движения	Задание максимальной скорости резания	5000	1~60000	1
319	Время разгона/торможения Постоянная времени разгона/торможения	Задание времени разгона скорости резания (до интерполяции разгона/торможения)	200	1~2000	1

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

	скорости резания						
320	Постоянная времени	Зада	ние постоянной	времени Ѕ			
	S кривой		ой (до интерпол	•	20	1 ~ 2000	1
	· · · · · · · · · · · · · · · · · ·	1	она/торможения				_
321	Время			•			
	разгона/торможения		е интерполяции				
			она/торможения			4 500	
		I .	больше значени		50	1 ~ 500	1
		боль	ше ошибка	•			
		проф	илирования.				
322	Постоянная времени	Наст	ройка времени р	разгона S			
	S кривой	крив	юй		10	1~100	1
		посл	е интерполяции		10	1 100	1
		разг	она/торможения	l			
324	Величина отступа	Зада	ние величины от	гступа для			
	при прерывистом	цикл	іических операці	100	1 ~ 50000		
	цикле	прер	ываниями. Ед. и	зм.: um			
		Бит	Описание	Диапазон			
		0	Направление				
			отступа:	0~3			
			0: +X 1: -X				
			2: +Y 3: -Y				
		2~3	Метод ввода				
			инструмента:				
226	_		0: обычный			0 0 0 5555	
326	Параметр цикла		1: глубокое		0	0 ~ 0xFFFF	
			погружение				
			(подача Q,	0~2			
			возврат к R)				
			2:				
			нормальное				
			погружение				
			(подача Q, возврат на D)				
327	Постоянная времени	Зэлэ	ние времени ост	- SHUBKN			
327	аварийного останова		одвигателя посл		50	5 ~ 500	0,001 c
			ийной кнопки.	C Hamainn		3 300	0,0010
328	Время задержки	_	ройка времени з	адержки			
	аварийного останова		нова серводвига				
	,	l	атия аварийной н		35	0 ~ 200	0,001 c
		1	г M2224включен				
418	Усиление мастер-оси		ние компенсаци	_	0 0 000		
	при прямой подаче		лой подаче для м	•	0	0 ~ 200	
635	Усиление при		ние компенсаци	-	0	0 ~ 200	
	прямой подаче	прял	лой подаче для в	сех осей	0	0 ~ 200	

16.3 Операционные параметры

Nº	Наименование	Описание	По умолч анию	Диапаз он	Примеча ния
3 ~ 12	GO9010 ~ GO9019	Задание кода G вызывает макрос O9010, т.е. если параметр GO9010 задается как 1, то указание G01 в программе вводит макрос O9010. 0: отключение функции вызова макроса Аналогично GO9011 ~ GO9019	0	0~1000	
13 ~ 22	MO9020 ~ MO9029	Задание кода М вызывает макрос О9020, т.е., если МО9020 задан как 3, то указание М03 в программе вводит макрос О9020. 0: отключение функции вызова макроса Аналогично GO9021 ~ GO9029	0	0~1000	
23	TO9000	Задание Т вызывает макрос О9000, т.е. если ТО9000 задан как 1, указание Тхх в программе запускает макрос О9000 0: отключение функции вызова макроса 1: Любой Т код вызывает макрос	0	0~1	
24	RO9030	Поиск точки прерывания: Запуск О9030 после нахождения соответствующей точки 0 (выкл): Продолжить обработку после нахождения точки прерывания 1 (вкл): Выполнить макрос О9030 после нахождения точки прерывания и продолжить обработку	0	0~1	
25	Задание полярности сигнала дискретных входов/выходов	Задание системного HIS 0/1 — полярности дискретных входов Бит Имя Диап. 0~1 Настройки HIS 0 0~3 (прерыватель G31) и HIS 1 Віt0: HIS 0 в вход Віt1: HIS 1 а іприт 0: в открытый контакт->H, закрытый->L 1: а открытый контакт ->L, закрытый->H	0	0~1	
46	Настройка системной утилиты	Процедура настройки системной утилиты Бит Имя Диап. 5 Высокоскоростной 0~1 вход (G31) 1: Включить G31 0: Выключить 10 Игнорировать 0~1 плавающую запятую	1100	0~0xFFF F	

			в ком	ланде д	движен	ния						
			0: не ⁻	т, т.e. <mark>1</mark>	. = 1mk	M						
			1: да	, 1 = 1 _N	ΛM							
		12	Функ				0′	~1				
			-	просм	отра			_				
			макр	-	отра							
			-									
				ключи								
				лючить								
	Усиление сигнала	Усилен										
47	штурвала (MPG)		еакции системы, чем больше значение,					100	1 ~			
''	штургала (тт с)	тем бы	ем быстрее реагирует система и больше				e	100	60000			
		вибрир	ует.									
		Настро	йки фи	ільтра	штурва	ла:						
		0: Нет										
48	Фильтр сигнала	Степ	1	2	3	4		5	6	0	0~6	
.0	штурвала (MPG)	ень	-	_								
		l 	312	10	5	2.5	= +	1.6	1.2			
		кГц				-		1.0	1.2			
		Конфиі			а для с	ocei	1					
		сервопривода:										
	Настройки входов	0: Четыре оси, включая сигналы пределов					лов					
49	осей сервопривода	и нача	льной	точки						0	0~1	
49	осеи сервопривода	1: Сигн	алы п	редело	ов и на	чал	ьно	й точк	и	U	0 1	
		четвер	той ос	и порт	a AXIS	1~4						
		исполь						ки осе	ей			
		4,5и6										
		Бит	. Имя				Диа	эп				
50	Вид макроса	0					0~1			0	0~3	
50			Макр		•					0	0 5	
		1		oc G/N			0~1	L				
		Устана	влива	ет разр	ешени	1e						
	Единица	коорди	инатно	го дис	плея, н	коли	ичес	тво ци	ифр			
301		после з	запято	й. Т.е. <i>,</i>	если р	оавн	ю 3	, то на		3	0~4	
	разрешения экрана	отобра	жаемі	ый диа	пазон	зна	чен	ий на				
									.			
		Устана										
		измере			., -,-		7					
306	Настройка функции	0: метр		ag: 1: <i>i</i>	тюймо	Rag				0	0~1	
	G-кода	G21 за,			•			PI (520	,_		5 1	
		задает	-	-			тиц	ы, G20	, —			
		задает	дюим	овые 6	:дини⊔	ĻDI						
			1.6					I _				
		Бит	Имя					Дν	1ап.			
			Выбо	р типа	входа	G 3:	1					
	Hoome Survey	4~5	0: вв	од чер	ез ПЛК			0~	2			
307	Настройка утилиты			51 (вхс								
	канала	2: HIS 2 (вход 2)										
				олжен								
				лнени:								
		6	БВПТО	лпени	Л			0~	1			
			O. D.=	B10 C								
	1	1 1	. u: B0	время	выпол	тнен	чия	1				i l

		,		1	
		одиночного блока: сдвиг,			
		перемещение остальных			
		координат,			
		восстановление позиции			
		в следующем блоке при			
		новом запуске			
		программы; см. рис.			
		1: Во время выполнения			
		одиночного блока:			
		сдвиг, при перезапуске			
		программы,			
		восстановление сдвига			
		и перемещение			
		остальных координат;			
		см. рис.			
		Civi. pric.			
		Режим аварийного			
		останова		Ť	
		0: аварийный стоп и			
		останов сервопривода			
		8~9 1: аварийный стоп и 0~2			
		останов сервопривода с			
		задержкой			
		2: аварийный стоп без			
		останова сервопривода			
350					_
~	Стоп M код 1 ~ 10	Стоп М код 1 ~ 10 (0: не настроено)	0	0 ~ 1000	P
359	Commence	F. =0×F. 2000 -			
260	Синхронное	Бит0~5: синхронное управление Х~С		0~5	
360	управление	0: прямое направление	0	0.5	
	направлением	1: обратное направление			
361	Синхронное управление X ~ C	Slave ось X следует за master осью 0: закрыто	0	0~6	P
~366	управление х С	1~6: X~C			F
		Переходное управление направлением			
	Переходное	Бит0~5: синхронное управление Х~С			
370	управление	0: прямое направление	0		P
	направлением	1: обратное направление			
		Ось X принимает команду master оси и			
		master ось не движется в этот момент.			
371	Управление	0: нет 1~6: Х~С			
~	передачей Х ~ С	Ось Y принимает команду master оси.	0	1~6	Р
376	1 13	Ось Z принимает команду master оси.			
		Ось A принимает команду master оси.			
		Ось В принимает команду master оси.			
	1	1 11/	1	1	

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

		Ось С пр	оинимает команду m	aster оси.			
2010	Настройки переключения высокоскоростного входа	фронт и 1 – для	0 HSI 0 0~1			0 ~ 65535	Р
621	Максимально допустимая скорость	1	е максимально допуч и по оси в мм/мин и	5000	0 ~ 60000	мм/мин дюйм/ми н об/мин	
622	Постоянная времени разгона / торможения	для руч	в времени разгона/то ного режима и режи о позицию	50	0 ~ 10000	0.001 сек	
623	Постоянная времени S кривой	ручного	Задание постоянной времени для ручного режима и режима возврата в нулевую позицию			0 ~ 10000	0.001 сек
624	Время аварийного останова		іная времени осевог ения при аварии (в р		100	1 ~ 2000	0,001 сек
643	Сообщение об ошибке	превыш единица	При любом перемещении, если будет превышено установленное значение в единицах СU (СU: командная единица), то появится сообщение об ошибке			1 ~ 32767	KE

16.4 Магазин инструментов

Nº	Наименование		Описание		По умолчанию	Диапазон	Примеча ния
304	Задание	Выбор м	иагазина инструме	нтов	0	0	Р
	параметров	Бит	Имя	Диап.			
	магазина		Запуск АТС				
	инструментов		(автоматическая				
		14	смена	0~1			
		14	инструмента)	0~1			
			0: ВЫКЛ				
			1: ВКЛ				
			Задание номера	0~1			
		9	ATC				
		9	0: магазин 0				
			1: магазин 1				
			Тип АТС				
		11	0: перекл.	0~1			
			1: не перекл.				
			Задание режима				
		12~13	поиска АТС	0~2			
			0: короткий путь				

			1:по часовой стрелке 2:против часовой стрелки				
		15	Тип управления 0: MLC	0~1			
			1: NC	0 1			
336	Управление	Бит	Имя	Диап.	0x0800	0 ~ 65535	Р
	данными магазина	11	Тип АТС	0~1			
	инструментов		0: Сменный				
			(переключение)				
			1: Несменный				
			(лоток)				
337	Настройка данных	Бит	Имя	Диап.	1	0~3	
	магазина	0	Запуск АТС 1	0~1			
	инструментов		0: Откл.				
			1: Вкл.				
		1	Запуск АТС 2	0~1			
			0: Откл.				
			1: Вкл.			Ť	
338	АТС 1: станция	Задані	ие номера станции маг	азина	10	2 ~ 255	
			иментов 1				
339	АТС 1: номер		ие номера после сброс	a	1	1 ~ 100	
	инициализации	магази	ина инструментов 1				
340	АТС 1: стартовый	Задані	ие стартового номера		1	1 ~ 100	
	номер	магази	ина инструментов 1				
341	АТС 2: станция	Задані	ие номера станции маг	азина	10	2 ~ 255	
			иментов 2				
342	АТС 2: номер		ие номера после сброс	a	1	1 ~ 100	
	инициализации	магази	ина инструментов 2				
343	АТС 2: стартовый		ие стартового номера		1	1 ~ 100	
	номер	магази	ина инструментов 2				

16.5 Шпиндель

Nº	Наименование	Описание			По умолчанию	Диапазон	Примеча ния
		Бит	Имя	Диап.			
		0	Вкл/выкл	0~1			
			функции				
			шпинделя				
399	Режим шпинделя		0: ВЫКЛ				
333			1: ВКЛ				
		1	Управление	0~1			
			замкнутым				
			контуром				
			0: ВЫКЛ				

					T	1	
		· ·	гребуется				
		обратна	я связь от				
		энкодер					
		2~3 Выходн	ой режим	0~2			
		шпинде	ля				
		0: DMCI	NET				
		(сервоп	ривод)				
		2: EDAC					
		(аналог	овый				
		выход)					
		4 Режим		0~1			
		управле	ния				
		скорост	ью				
		0: об/мі	ин				
		1: имп./	мин				
		5 Выбор т	ипа	0~1			
		шпинде		1			
		энкодер	oa	1			
		0: высон					
		разреш	ение				
		(x1000)					
		1: норм	альное				
		1	ение (х4)				
	Номер входного	Задание канал		вязи			
401	порта шпинделя	 для шпинделы			8	0~8	
		(пока не перек					
	Число импульсов						
402	шпиндельного	Задание числа	импульсов		1280	2 ~ 10000	имп/об
	энкодера						-
		Настройка усил	ения регуля	тора			
400	Коэф. усиления	скорости (мень					
403	ипинделя	соответствует более быстрой			50	1~5000	
		реакции системы).					
	Скорость						
404	позиционирования	Задание скоро			100	1 ~ 20000	об/мин
	шпинделя	позиционирова	ВНИЯ				'
	Смещение						0.51
405	позиционирования	Задание смеще	ения		О	0 ~ 36000	0,01
	шпинделя						градуса
	Ошибка		жного расхо	ждения			
	достижения	 между номина		• •			
406	заданной скорости	фактической сн			10	0 ~ 100	
	шпинделя	шпинделя	•				
	Ошибка	1-1					
407	позиционирования	Задание возмо	жной ошибк	КИ	100	0~36000	0,01
	шпинделя			-			градуса
			 и скорости		1		
408	Диапазон нулевой	шпинделя при			5	0 ~ 1000	об/мин
700	скорости шпинделя	шпинделя при диапазоне (NC		57).		1000	00/10/01/1
		aaconc (140		· · · ·	1	i	

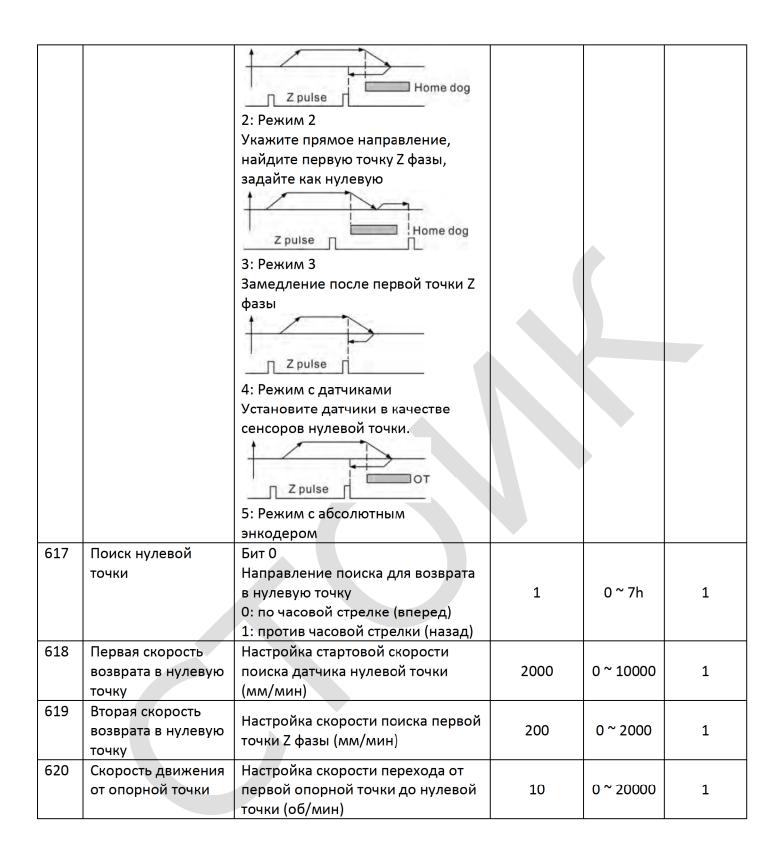
Перевод и адаптация компании «СТОИК» +7(495)661-24-61

409	Максимальная	Задание максимальной скорости	20000	0 ~ 50000	1
	скорость шпинделя Минимальная				
410	скорость шпинделя	Задание минимальной скорости	10	0 ~ 10000	1
411	Постоянная времени разгона/торможен ия шпинделя	Задание постоянной времени	20	1~2000	1
412	Постоянная времени S кривой шпинделя	Задание постоянной времени	10	1 ~ 2000	1
416	Постоянная времени разгона/торможен ия резания	Задание постоянной времени разгона/торможения шпинделя для резания	2000	1~20000	0,001 сек
417	Постоянная времени S кривой шпинделя для резания	Задание постоянной времени S кривой шпинделя для резания	100	1~2000	0,001 сек
420	1я низкая скорость позиционирования шпинделя	Низкая скорость позиционирования для master оси	100	1 ~ 20000	об/мин
421	1е передаточное отношение шпинделя	Заданная скорость максимальна, т.е., если скорость резки S1000, и если параметр имеет значение 20, скорость будет S2000.	10	10 ~ 50000	1
422	Числитель передаточного отношения 1	Задание числителя передаточного отношения шпинделя (скорость на первой передаче)	1	0 ~ 60000	1
423	Знаменатель передаточного отношения 1	Задание знаменателя передаточного отношения шпинделя (скорость на первой передаче)	1	0 ~ 60000	1
424	Числитель передаточного отношения 2	Задание числителя передаточного отношения шпинделя (скорость на второй передаче)	1	0 ~ 60000	1
425	Знаменатель передаточного отношения 2	Задание знаменателя передаточного отношения шпинделя (скорость на второй передаче)	1	0 ~ 60000	1
426	Числитель передаточного отношения 3	Задание числителя передаточного отношения шпинделя (скорость на третьей передаче)	1	0 ~ 60000	1
427	Знаменатель передаточного отношения З	Задание знаменателя передаточного отношения шпинделя (скорость на третьей передаче)	1	0 ~ 60000	1
428	Числитель передаточного	Задание числителя передаточного отношения шпинделя (скорость на	1	0 ~ 60000	1

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

	отношения 4	четвертой передаче)			
	Знаменатель	Знаменатель Задание знаменателя			
429	передаточного	передаточного отношения	1	0 ~ 60000	1
123	отношения 4	шпинделя (скорость на й	_	0 00000	_
		передаче)			

16.6 Механика


Nº	Наименование	Описание	По умолчанию	Диапазон	Длина (слово)
602	Первый	0 = ВЫКЛ			
	программный	1. Срабатывает при превышении	1000	-10^8	
	положительный	значения первого программного	10^8	~	2
	предел	положительного предела		+10^8	
		2. Управляется специальным М			
603	Первый	0 = ВЫКЛ 1. Срабатывает при			
	программный	превышении значения первого		1000 ~.	
	отрицательный	программного отрицательного	-10^8	-10^8 ~+ 10^8	2
	предел	предела 2. Управляется		108	
		специальным М			
604	Второй	0 = ВЫКЛ			
	программный	1. Срабатывает при превышении	10^8	-10^8	
	положительный	значения второго программного	10.08	~	2
	предел	положительного предела		+10^8	
		2. Управляется специальным М			
605	Второй	0 = ВЫКЛ			
	программный	1. Срабатывает при превышении	-10^8	-10^8	
	отрицательный	значения второго программного	-10,0	~	2
	предел	отрицательного предела		+10^8	
		2. Управляется специальным М			
628	Настройка	Задание полярности			
	полярности	положительного/отрицательного			
	аппаратных	аппаратных пределов и нулевой			
	пределов	точки			
		0 = Вход по высокому уровню			
		сигнала вкл/выкл на разъеме А.			
		1 = Вход по низкому уровню	0		
		сигнала вкл/выкл на разъеме В.	0		
		Бит Имя Диап.			
		0 Положительный 0~1			
		предел			
		1 Отрицательный 0~1			
		предел			
		2 Нулевая точка 0~1			
630	Число импульсов	Число импульсов на оборот при		10 ~	
	•	применении ASD-A2 (по	1280	50000	
	энкодера	умолчанию)		30000	

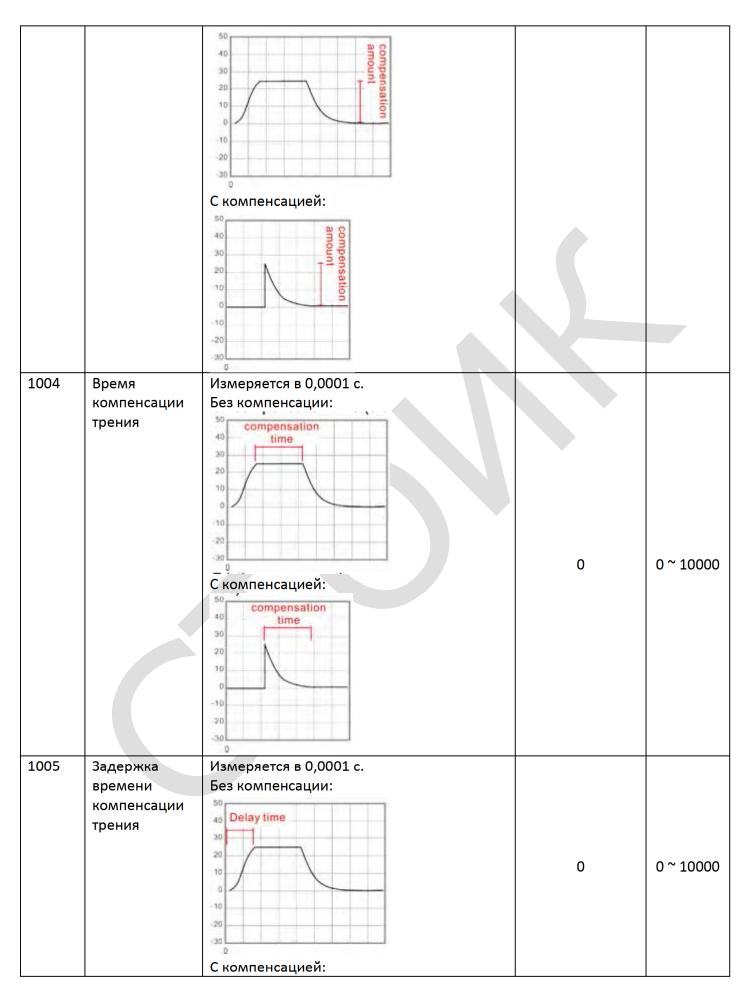
Перевод и адаптация компании «СТОИК» +7(495)661-24-61

631	Число зубьев шпинделя	Количе	ество зубьев на валу		1	1 ~ 65535	
632	Число зубьев двигателя	Количе	ество зубьев на валу		1	1 ~ 65535	
633	Шаг ведущего винта	Шаг пр	риводного винта на вал	ıy	10	2 ~ 100	мм
634	Переменное управление осями	1~ 2	Имя Режим вращения Вращение применяется только по осям А, В и С. Оси Х, Y и Z не используются. 0: не кратчайший путь 1: кратчайший путь	Диап. 0~5	55	0 ~ 65535	2
			2: прямолинейно 3~4: резерв 5: линейная ось				

16.7 Операция возврата в исходную точку

Nº	Наименование	Описание	По умолчанию	Диапазон	Длина (слово)
606	Начальные механические координаты (смещение)	Задание смещения механических начальных координат. Во время первой подачи питания, система возвращается в начало, получает Z импульс, добавляет смещение и устанавливает текущую начальную точку для механических начальных координат	0	-10^8 ~10^8	
607	Вторые опорные координаты	Вторые опорные координаты (задание позиции G30)	0	-10^8 ~10^8	
608	Третьи опорные координаты	Третьи опорные координаты	0	-10^8 ~10^8	
609	Четвертые опорные координаты	Четвертые опорные координаты	0	-10^8 ~10^8	
610	Погрешность вторых опорных координат	Задание погрешности. Например, значение 0.2 означает +-0.2мм смещения начальной точки	0	-10^8 ~10^8	
616	Режим возврата в нулевую точку	0: Откл. 1: Режим 1 Укажите обратное направление, найдите первую точку Z фазы, задайте как нулевую	1	0~5	1

16.8 Сеть


Номер	Наименование	Описание	По умолчанию	Диапазон
10030	Host имя	Идентификационное имя в компьютерной сети	CNC000	1~8
10031	IP адрес	Системный IP адрес	0.0.0.0	0 ~ 255

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

10032	Маска подсети	Системная маска подсети	0.0.0.0	0 ~ 255
10033	Шлюз по умолчанию	Системный шлюз по умолчанию	0.0.0.0	0 ~ 255
10034	Включение функции Ethernet	Включение сетевой функции 0: ВЫКЛ 1: ВКЛ	0	0~1
10035	Включение функции DHCP	Включение функции DHCP 0: ВЫКЛ 1: ВКЛ	0	0~1
10036 ~ 10040	IP адреса удаленных ПК (с 1 по 5)	IP адрес 1 IP адрес 2 IP адрес 3 IP адрес 4 IP адрес 5	0	0 ~ 255
10041	IP адрес 1 для обмена с удаленным каталогом	Измените IP адрес компьютера, определенный сетью в каталоге 0: ВЫКЛ	0	0~5

16.9 Компенсация

Номер	Наименование	Описание	По умолчанию	Диапазон
1000	Значение компенсации люфта	Значение задается для большинства винтов механических систем. Разницы между режимами G00 и G01 нет. Установите положительное значение для переднего люфта и отрицательное для заднего. Компенсация при нулевом значении параметра отключена (мм, дюйм) Пример контура	0	0~10.0
1001	Время компенсации люфта	Направление компенсации люфта. Постоянная времени применяется тогда, когда задан ненулевой люфт (0,0001 с)	0	0 ~ 10000
1002	Время задержки компенсации люфта	Время задержки до срабатывания компенсации (0,0001 c)	0	0~10000
1003	Компенсация трения	Измеряется в мм. Без компенсации:	0	0~10.0

	T	12-17			T	T
		40 Dela	u tiene			
		30	y time			
		20				
		10				
		0				
		-10				
		-20				
		-30				
		0				
1006	Установка	Бит	Имя	Диап.		
	шага	0	Абсолютный или	0~1		
	компенсации		инкрементальный			
			входной сигнал			
			0: Абсолютный:			
			разница с первой			
			измеренной			
			точкой			
			1: разница между			
			1			
			текущей и			
			последней			
			измеренной			
			точкой			
		2	Включение режима	0~1		
			компенсации трения			
			при движении			
			инструмента в			
			положительном			
			направлении			
		3	Включение режима	0~1		
			компенсации трения			
			при движении			
		1	инструмента в			
			положительном			
			направлении	0014		
		4	Выбор режима для	0~1		
			компенсации трения			
		15	Направление	0~1		
			измерения от стартовой			
			точки;			
			Направление			
			механических			
			координат			
			0: Измерение в			
			направлении			
			движения вперед			
			1: Измерение в			
			направлении			
1007			движения назад		_	
1007	Измерение	Задані	ие значения коррекции в та	аблице	0	0 ~ 128

	точек	винтовой компенсации. Если значение		
		равно нулю, компенсация отключена		
1008	Измерение интервалов	Задание интервалов винтовой компенсации (мм)	неопределенное	1~300
1009	Измерение смещений	Задайте смещение от нулевой точки до измеряемой. Согласуйте с направлением бит15 параметра 1006	неопределенное	-1000~ 1000
1010 ~ 1137	Данные 1 ~ 128	1~128 значения винтовой компенсации, первая точка устанавливается равной нулевой. Ед.изм.: мм (линейная ось), градусы (ось вращения)	неопределенное	-20 ~ 20

16.10 Система

Номер	Наименование	Описание			По умолча нию	Диапазон
10000	Системная дата		овка даты ат: гггг/мм/дд		0	
10001	Системное время		овка времени ат: чч:мм:cc		0	
10002	Язык		лийский тайский	*	0	0~1
10003	Яркость экрана	Задан	ие яркости		0	0 ~ 60
10004	Выбор пользовательского языка	Выбр	анный пользователем я	0	0 ~ 10	
10009	Синхронное отображение координат	Мето, коорд	д синхронного отображ цинат	0	0~2	
10010	Заставка включена	Запус 0: ВЫ 1: ВК <i>J</i>			0	0~1
10011	Время первой части заставки	-	ключенной заставке, за ени первой части	дание	0	0 ~ 60
10012	Яркость первой части заставки		ключенной заставке, за ти первой части	30	0 ~ 60	
10013	Время второй части заставки	-	ключенной заставке, за ени второй части	30	1 ~ 60	
10014	Яркость второй части заставки	При включенной заставке, задание яркости второй части			10	0 ~ 60
10016	Системные настройки	Бит 0	Описание Перезапуск системы	Диапазон 0 ~ 1	0	0~10.0

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

	1					I
			после отжатия			
			кнопки EMG авар.			
			останова.			
			Автоматически			
			генерирует сигнал			
			Reset после отжатия			
			кнопки EMG.			
			0: Выкл			
			1: Вкл			
			Показывает при			
			запуске панель по			
		1	умолчанию	0~1		
			0: Выкл			
			1: Вкл			
			Всплывание окон с			
		2	ошибками	0~1		
			0: Выкл	0 1		
			1: Вкл			
			Блокировка			
			групповых клавиш на			
			панели			
		3	0: Не блокировать	0~1		
			1: Блокировать			
			(тоько, когда Бит1			
			(см выше) равен 1)			
10017	Редактор G-кодов					
		Бит	Описание	Диапазон	1	
			Редактирование G-			
			кодов	0.014		
		0	0: Выкл	0~1		
			1: Вкл			
			Источник файлов		1	
			макросов			
		1	0: СF-карта	0~1		
			1: память INTER		0	0 ~ 10000
			Настройка скорости			
			подачи	_		
		2	0: Выкл	0~1		
			1: Вкл			
			Перезапуск			
			программы после			
		3	редактирования	0~1		
			0: Выкл			
			1: Вкл			
10018	Цвет фона	Цвет		1	Светло	
10010	755, 45114		T		серый	0 ~ 65535
10019	Цвет полосы текста	Цвет	полосы текста заголовка			
	заголовка				Черный	0 ~ 65535
10020	Цвет полосы в	Цвет	полосы в текстовом реж	име	Темно-	0 ~ 65535
	<u> </u>	<u> </u>	'		1	1

	текстовом режиме		синий	
10021	Цвет полосы функции	Цвет полосы функции	Черный	0 ~ 65535
10022	Цвет шрифта текста лейбла	Цвет шрифта текста лейбла	Черный	0 ~ 65535
10023	Цвет цифр	Цвет цифр	Синий	0 ~ 65535
10024	Цвет линий сетки	Цвет линий сетки	Черный	0 ~ 65535
10025	Цвет курсора системы	Цвет курсора системы	Цветной	0 ~ 65535
10026	Цвет выделения текста	Цвет выделения текста	Белый	0 ~ 65535
10027	Цвет курсора в программной панели	Цвет курсора в программной панели	Желтый	0 ~ 65535
10028	Цвет тревоги системный	Цвет тревоги системный	Красны й	0 ~ 65535
10029	Цвет тревоги пользовательский	Цвет тревоги пользовательский	Синий	0 ~ 65535
10042	Цвет для выделения текста на панели	Цвет выделенного текста на панели	Цвет_S0 7	0 ~ 65535

16.11 MLC

Номер	Наименование	Описание	По умолчанию	Диапазон
12000	Название программы	Название программы		
12001	Наименование компании	Наименование компании	0	
12002	Имя разработчика	Имя разработчика	0	
12003	Отображение заметок	Отображение заметок 0: ВЫКЛ 1: ВКЛ	0	0~1
12004	Отображение символов	Отображение символов 0: ВЫКЛ 1: ВКЛ	0	0 ~ 60
12005	Цвет лестничной диаграммы	Цвет лестничной диаграммы	Черный	0 ~ 65535
12006	Цвет текста лестничной диаграммы	Цвет текста лестничной диаграммы	Черный	0 ~ 65535
12007	Цвет символа лестничной диаграммы	Цвет символа лестничной диаграммы	Черный	0 ~ 65535
12008	Цвет курсора лестничной диаграммы	Цвет курсора лестничной диаграммы	Голубой	0 ~ 65535

12009	Цвет фона	Цвет фона лестничной		
	лестничной	диаграммы	Салатовый	0 ~ 65535
	диаграммы			
12010	Цвет ремарок	Цвет ремарок устройств		
	устройств	лестничной диаграммы	V	0 ~ 65535
	лестничной		Коричневый	0 ~ 65535
	диаграммы			
12011	Цвет ремарок	Цвет ремарок секций		
	секций лестничной	лестничной диаграммы	Коричневый	0 ~ 65535
	диаграммы			
12012	Цвет ремарок	Цвет ремарок строк лестничной		
	строк лестничной	диаграммы	Коричневый	0 ~ 65535
	диаграммы			
12013	Цвет значений	Цвет значений мониторинга		
	мониторинга	лестничной диаграммы	Розовый	0 ~ 65535
	лестничной		1 03000171	0 03333
	диаграммы			
12014	Цвет специальных	Цвет специальных устройств NC	Цвет_S2B	0 ~ 65535
	устройств NC		450.702	
12015	Цвет специальных	Цвет специальных устройств	Пурпурный	0 ~ 65535
	устройств MLC	MLC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
12016	Защита от	Защита от редактирования МСС		
	редактирования	0: ВЫКЛ	1	0~1
	MLC	1: ВКЛ		

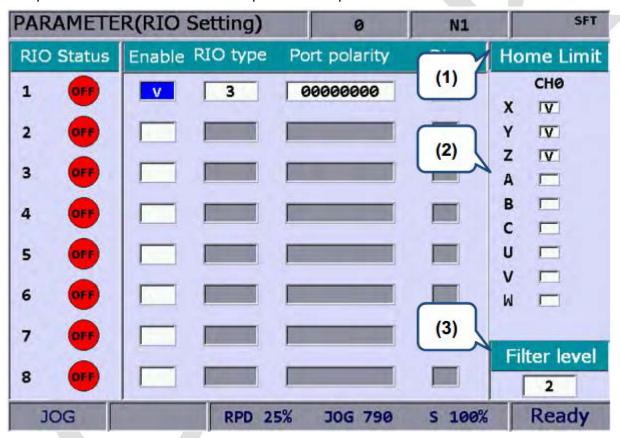
16.12 Графика

Номер	Наименование	Описание	По умолчанию	Диапазон
14000	Цвет линий	Цвет линий программы обработки, перемещения и пр.	Черный	0 ~ 65535
14001	Фоновый цвет	Фоновый цвет	Морская волна	0 ~ 65535
14002	Толщина	Толщина линий	1	0 ~ 4
14003	Ширина заготовки	Ширина заготовки на диаграмме	200	0 ~ 10000
14004	Высота заготовки	Высота заготовки на диаграмме	200	0 ~ 10000
14005	Длина заготовки	Длина заготовки на диаграмме	200	0 ~ 10000
14006	X смещение заготовки	X смещение заготовки на диаграмме	100	-10000 ~ 10000
14007	Y смещение заготовки	Y смещение заготовки на диаграмме	100	-10000 ~ 10000
14008	Z смещение заготовки	Z смещение заготовки на диаграмме	100	-10000 ~ 10000

16.13 Сервопривод

Группа	Номер	Наименование	Описание	Ед.изм.	По умолч.	Диапазон
P1	1	Задание режима управления и управляющей команды на входе	Настройки различных режимов		В	0x00 ~ 0x110F (HEX)
P1	8	Постоянная времени сглаживания команды позиционирования	Постоянная времени сглаживания команды позиционирования	10 мсек	0	0~1000
P1	36	Постоянная времени разгона/торможения для S кривой	Постоянная времени разгона/торможения для S кривой	мсек	0	0 ~ 65500
P1	44	Электронное передаточное отношение - числитель (N1)	Многошаговое передаточное отношение - числитель	Имп.	1	1 ~ (2^29- 1)
P1	45	Электронное передаточное отношение - знаменатель (М1)	Многошаговое передаточное отношение - знаменатель	Имп.	1	1 ~ (2^31- 1)
P1	55	Ограничение максимальной скорости	Максимальная скорость двигателя. Показатель для установки скорости.	рад/мин	0	0 ~ 65535
P1	62	Компенсация трения (%)	Уровень компенсации трения	%	0	0 ~ 100
P1	63	Компенсация трения (ms)	Постоянная времени сглаживания компенсации трения	мсек	0	0~1000
P1	68	Фильтр движения команды позиционирования	Фильтр движения команды позиционирования	мсек	4	0~100
P2	0	Пропорциональное усиление команды позиционирования (Крр)	Пропорциональное усиление команды позиционирования	Рад/сек	35	0 ~2047
P2	1	Усиление скорости при управлении позиционированием	Усиление скорости при управлении позиционированием	%	100	10 ~ 500
P2	2	Усиление при движении вперед при управлении позиционированием (Kpf)	Усиление при движении вперед при управлении позиционированием	%	50	0~100
P2	3	Постоянная сглаживания прямого усиления при управлении позиционированием	Постоянная сглаживания прямого усиления при управлении позиционированием	Мсек	5	2~100
P2	4	Усиление при управлении скоростью (Kvp)	Усиление при управлении скоростью (Kvp)	Рад/сек	500	0~8191
P2	5	Усиление скорости при управлении скоростью	Усиление скорости при управлении скоростью	%	100	10 ~ 500

Перевод и адаптация компании «СТОИК» +7(495)661-24-61


P2	6	Интегральная	Интегральная		100	0.014000
		компенсация скорости (Kvi)	компенсация скорости	Рад/сек	100	0 ~ 1023
P2	7	Усиление скорости при движении вперед (Kvf)	Усиление скорости при движении вперед	%	0	0~100
P2	9	Время фильтрации отклика дискретного входа	Время фильтрации отклика дискретного входа	2мсек	2	0~20
P2	23	Фильтр подавления резонансной частоты (Notch фильтр) (1)	Настройка механической резонансной частоты 1	Гц	1000	50 ~ 1000
P2	24	Скорость затухания резонанса (1)	Подавление резонанса 1. Задание 0 отключает Notch фильтр	дБ	0	0~32
P2	25	Низкочастотный фильтр подавления резонанса	Постоянная времени низкочастотного резонансного фильтра. Задание значения 0 отключает фильтр	0,1 мсек	2	0~1000
P2	26	Противоинтерференсное усиление	Противоинтерференсное усиление	0,001	0	0~1023
P2	27	Усиление переключения и выбор метода	Усиление переключения и выбор метода		0	0 ~ 4 (HEX)
P2	28	Постоянная времени усиления переключения	Постоянная времени усиления	10 мсек	10	0~1000
P2	43	Фильтр подавления резонансной частоты (Notch фильтр) (2)	Настройка механической резонансной частоты 2	Гц	1000	50 ~ 2000
P2	44	Скорость затухания резонанса (2)	Подавление резонанса 2. Задание 0 отключает Notch фильтр	дБ	0	0~32
P2	45	Фильтр подавления резонансной частоты (Notch фильтр) (3)	Настройка механической резонансной частоты 3	Гц	1000	50 ~ 2000
P2	46	Скорость затухания резонанса (3)	Подавление резонанса 3. Задание 0 отключает Notch фильтр	дБ	0	0~32
P2	47	Режим подавления авторезонанса	0: фиксированный 1: автофиксация после подавления 2: непрерывное подавление		1	0~2
P2	49	Фильтр определения скорости и подавления дрожания	Задание фильтра определения скорости	сек	0	0~1F
P4	0	Запись ошибки (N)	Запись последней ошибки		0	
P4	1	Запись ошибки (N-1)	Запись предпоследней		0	

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

			ошибки	
P4	2	Запись ошибки (N-2)	Запись предыдущей ошибки (3)	0
P4	3	Запись ошибки (N-3)	Запись предыдущей ошибки (4)	0
P4	4	Запись ошибки (N-4)	Запись предыдущей ошибки (5)	0
P5	00	Версия прошивки	Версия прошивки	
			сервопривода	

16.14 Описание и настройка RIO

Настройка RIO: Нажмите **ОК** по завершении настроек.

- (1) Задайте дискретные входы для положительного и отрицательного пределов, а также нулевой точки в системе релейных входов/выходов RIO. Это применимо только к станции RIO с номером 0.
- (2) Выбор оси. Если ни одна из осей не выбрана, то дискретные входы пределов и нулевой точки определяются через порт AXIS1~4 контроллера. В соответствии с выбранными номером оси и именем, начиная с X256, каждая ось занимает 3 дискретных входа в следующем порядке: положительный предел, отрицательный предел и нулевая точка. Например, если оси Y и Z выбраны, то:

Ось Ү: полож. предел (Х256), отриц. предел (Х257), нулевая точка (Х258).

Ось Z: полож. предел (X259), отриц. предел (X260), нулевая точка (X261).

Перевод и адаптация компании «СТОИК» +7(495)661-24-61

Когда дискретный вход активен, специальный регистр М не изменяется.

Х полож. предел М2144	Х отриц. предел М2145	Х нулевая точка М2146
Ү полож. предел М2148	Ү отриц. предел М2149	Ү нулевая точка М2150
Z полож. предел M2152	Z отриц. предел M2153	Z нулевая точка M2154

(3) Настройте фильтр дискретного входа, установив требуемый уровень фильтра RIO. Каждый уровень = 40 микросекундам. Всего 5 уровней. Все дискретный входы в RIO можно использовать.

16.15 Абсолютный энкодер

- 1. Для контроллера ЧПУ с применением абсолютного энкодера на двигателе, параметр 616 (режим возврата в нулевую точку) соответствующей оси должен быть равен 5 (Инкрементальные и абсолютные энкодеры можно использоваться вместе. Если двигатель с абсолютным энкодером настраивается впервые, перегрузите сервопривод и контроллер по окончании настроек).
- 2. После настройки параметров выполните процедуру возврата к нулевой точке для абсолютного энкодера DGN > System Monitoring > Servo Monitoring.
- 3. Процедура возврата к нулевой точке выполняется исключительно в режимах **JOG** или **MPG**. Переместив механически ось в режимах JOG или MPG в нужное положение, нажмите клавишу [1] и затем **Enter** для завершения операции возврата к нулевой точке. Загорается индикатор нулевой точки, механические координаты сбрасываются в 0 и ось возвращается в исходное положение.

Примечание:

При настройке в режиме MPG ось необходимо выбирать с MPG. Если выбрана ось X в MPG, введите [1] и нажмите [Enter] для реализации процедуры возврата к нулевой точке.

Если появляется сообщение об ошибке после возврата к нулевой точке, обнулите флаг абсолютного сброса. Ниже приведены подобные сообщения об ошибках:

AL 060: Позиция потеряна, невозможно провести возврат к нулевой точке.

AL 061: Низкий заряд батареи, замените батарею.

AL 069: Неправильный тип двигателя. Убедитесь, что абсолютный энкодер подключен.

17 Возможные проблемы и их решение

Этот раздел включает всю основную информацию по параметрам.

1/.1	Системные ошибки ПЛК (Коды 0х1200 ~ 0х1300)
17.2	Ошибки ЧПУ (Коды 0x4200 ~ 0x4300)
17.3	Ошибки каналов управления (Коды 0хA000 ~ 0хD000)

- 17.4 Ошибки конфигурации макросов
- 17.5 Ошибки панели оператора (Коды 0x3010 ~ 0x3FFF)
- 17.6 Ошибки сервопривода

17.1 Системные ошибки ПЛК (Коды: 0x1200 ~ 0x1300)

Код	Наименование	Описание и возможное решение
0x1200	Ошибка доступа к памяти	 Ошибка возникает при обращении MLC к памяти NC. Перезапустите систему или обратитесь в сервисную службу.
0x1201	Система не готова	1. Не выполнена стартовая загрузка системы NC 2. Перезапустите систему или обратитесь в сервисную службу.
0x1202	Ошибка буфера памяти	1. Буфер памяти NC не готов. 2. Перезапустите систему или обратитесь в сервисную службу.
0x1203	Не найден выходной порт	1. Не найден выходной порт NC. 2. Измените настройки параметров осей.
0x1204	Ошибка сброса кода MLC	1. Код программы MLC не сбрасывается. 2. Обратитесь в сервисную службу.
0x1205	Ошибка флеш-памяти MLC	1. Не удается записать программный код MLC. 2. Перезапустите систему или обратитесь в сервисную службу.
0x1206	Ошибка SRAM	1. Ошибка записи SRAM. 2. Обратитесь в сервисную службу.
0x1207	Ошибка приемных каналов входов/выходов	1. Ошибка приема каналов входов/выходов. 2. Перезапустите систему или обратитесь в сервисную службу.
0x1208	Ошибка каналов внешних входов/выходов	1. Ошибка приема каналов внешних входов/выходов. 2. Перезапустите систему или обратитесь в сервисную службу.
0x1209	Ошибка каналов внешних входов/выходов	1. Ошибка приема каналов внешних входов/выходов. 2. Перезапустите систему или обратитесь в сервисную службу.
0x120A	Ошибка параметров NC	 Параметры NC не настроены или не инициализированы. Снова инициализируйте параметры.
0x120B	Ошибка параметров компенсации	1. Ошибка записи параметров компенсации. 2. Перезапишите параметры компенсации.
0x120C	Ошибка сброса параметров компенсации	 Ошибка сброса параметров компенсации в память. Перезапишите параметры компенсации.
0x120D	Ошибка записи параметров компенсации	 Параметры компенсации не записываются в память. Перезапишите параметры компенсации.

Код	Наименование	Описание и возможное решение
0x120E	Ошибка параметров инициализации	1. Ошибка параметров инициализации. 2. Снова инициализируйте параметры.
0x120F	Ошибка очистки памяти	1. Память не очищается. 2. Перезапустите систему или обратитесь в сервисную службу.
0x1210	Ошибка записи в память	1. Ошибка очистки или инициализации памяти. 2. Перезапустите систему или обратитесь в сервисную службу.
0x1211	Оси сервопривода не найдены	 Ошибка задания параметров. Измените настройки параметров.
0x1212	Ошибка параметров осей сервопривода	 Ошибка задания параметров. Измените настройки параметров.
0x1213	Ошибка инициализации DMCNET	1. Ошибка инициализации DMCNET. 2. Убедитесь, что DMCNET надежно подключен.
0x1214	Ошибка энергонезависимой памяти	1. Ошибка энергонезависимой памяти. 2. Перезапустите систему или обратитесь в сервисную службу.
0x1216	Ошибка MLC PRG	Проверьте MLC программу; перезагрузите MLC программу.
0x1217	Ошибка в настройках MLC PAR	Измените настройки параметра MLC.
0x1300	Ошибка сетевой коммуникации	1. Проверьте соединения в сети. 2. Перезапустите систему или обратитесь в сервисную службу.
0x1E00	Ошибка сервопривода	1. Ошибка сервопривода. 2. Измените состояние servo или переустановите servo.
0x1F00	Ошибка внешних входов/выходов	1. Ошибка внешних входов/выходов. 2. Измените подключение внешних входов/выходов или переставьте плату.

17.2 Ошибки ЧПУ (Коды: 0х4200 ~ 0х4300)

Код	Наименование	Описание и возможное решение
0x4200	Требуется возврат в начальную точку	1. Возврат в начальную точку еще не выполнен. 2. Выполните возврат в начальную точку; проверьте подключение или измените параметры.
0x4201	Абсолютная нулевая точка не установлена или потеряна	Установите нулевую точку; проверьте заряд батареи.

Код	Наименование	Описание и возможное решение
0x4300	Ошибка MLC при обращении к данным NC	1. MLC не готов или нет доступа к памяти. 2. Перезапустите систему или обратитесь в сервисную службу.
0x4301	MLC не готов	1. MLC не готов или нет доступа к памяти. 2. Перезапустите систему или обратитесь в сервисную службу.
0x4302	Ошибка очистки программного модуля входов/выходов	 Ошибка очистки программного модуля входов/выходов. Переустановите программу.
0x4303	Ошибка записи в программный модуль входов/выходов	1. Ошибка записи в программный модуль входов/выходов. 2. Переустановите программу.
0x4304	Ошибка очистки программы NC	1. Ошибка очистки программы NC 2. Переустановите программу.
0x4305	Ошибка инсталляции программы NC	1. Ошибка инсталляции программы NC. 2. Переустановите программу.
0x4308	Ошибка загрузки G кода	1. Ошибка загрузки G кода. 2. Проверьте программный код.
0x4310	Ошибка инициализации программного модуля входов/выходов	1. Программный модуль входов/выходов не инициализируется. 2. Переустановите данный модуль.
0x4311	Ошибка длины данных инициализации модуля входов/выходов	1. Ошибка памяти модуля входов/выходов. 2. Перезапустите систему или обратитесь в сервисную службу.
0x4312	Ошибка в данных модуля входов/выходов	1. Ошибка памяти модуля входов/выходов. 2. Перезапустите систему или обратитесь в сервисную службу.
0x4313	Ошибка состояния модуля входов/выходов	1. Ошибка записи состояния модуля входов/выходов. 2. Убедитесь, что плата входов/выходов установлена правильно.
0x4314	Ошибка конфигурации программы модуля входов/выходов	1. Ошибка конфигурации программы модуля входов/выходов. 2. Убедитесь, что плата входов/выходов установлена правильно.
0x4315	Ошибка аппаратного интерфейса модуля входов/выходов	 Ошибка аппаратного интерфейса модуля входов/выходов. Убедитесь, что плата входов/выходов установлена правильно.
0x4316	Ошибка доступа к аппаратному интерфейсу модуля входов/выходов	1. Ошибка чтения аппаратного интерфейса модуля входов/выходов. 2. Обратитесь в сервисную службу.

Код	Наименование	Описание и возможное решение
0x4317	Ошибка команды системы NC	1. Ошибка команды системы NC. 2. Обратитесь в сервисную службу.
0x4318	Ошибка параметров системы NC	1. Ошибка параметров NC или MLC не готова. 2. Перезапустите систему или обратитесь в сервисную службу.
0x4319	Ошибка параметров системы NC	1. Ошибка параметров NC или MLC не готова. 2. Перезапустите систему или обратитесь в сервисную службу.
0x431A	Ошибка магазина инструментов оси	 Магазин инструментов оси не определен или определен несколько раз. Проверьте настройки параметров.
0x431B	Ошибка NC PAR	1. Ошибка в параметре NC или MLC не готов. 2. Перезапустите систему или обратитесь в сервисную службу.

17.3 Ошибки каналов управления (Коды: 0xA000 ~ 0xD000)

Некорректные G-кода и сообщения об ошибках.

Код	Наименование	Описание и возможное решение
0xB003	Некорректное имя загруженного файла	 Некорректное имя загруженного файла. Снова загрузите файл.
0xB005	Ошибка вычисления координат заготовки	 Ошибка вычисления координат заготовки. Нажмите Reset для сброса настроек.
0xB006	Ошибка вычисления координат заготовки	 Ошибка при чтении координат заготовки. Нажмите Reset для перезагрузки.
0xB007	Конфликт настроек порта сервопривода	 Конфликт настроек порта сервопривода. Измените настройки.
0xB009	Ошибка буферной зоны G кода	 Ошибка буферной зоны G кода. Снова загрузите программу обработки.
0xB00A	Некорректный индекс команды интерполяции	Нажмите Reset для перезагрузки программы.
0xB00B	Ошибка доступа к буферной зоне интерполяции	1. Ошибка доступа к буферной зоне интерполяции. 2. Нажмите Reset для перезагрузки программы.
0xB00C	Подача не определена	1. Ошибка G кода. 2. Проверьте G код и исправьте программу.

Код	Наименование	Описание и возможное решение
0xB00D	Некорректный диаметр дуговой интерполяции	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB00E	Некорректный выбор ID номера	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB00F	Число осей сервопривода не соответствует параметрам	1. Измените настройки.
0xB010	Точка прерывания подпрограммы не найдена	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB014	R_COMP_CONFLICT Некорректная компенсация резки	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB015	EMG_STOP_MSG Аварийный останов	1. Запустите EMG.
0xB100	Интерференция резки	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB101	Отмена компенсации диаметра дуговой интерполяции	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB102	Запуск компенсации диаметра дуговой интерполяции	 Ошибка G кода. Проверьте G код и исправьте программу
0xB103	ARC_INTERF Некорректный радиус отреза	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB104	SHORT_COMP_LEN Компенсация инструмента слишком мала	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB600	Некорректный ID номер G кода	1. Ошибка G кода. 2. Проверьте G код и исправьте программу
0xB601	Превышения числа подпрограмм	 Подпрограмма содержит много программ. Переделайте программу.
0xB603	Неверный символ переменной	 Неверный символ переменной. Проверьте G код и исправьте программу.
0xB604	Некорректный символ G кода	1. Некорректный символ G кода. 2. Проверьте G код и исправьте программу.

Код	Наименование	Описание и возможное решение
0xB605	Отсутствие символа G кода	 Отсутствие символа G кода. Проверьте G код и исправьте программу.
0xB606	Ошибка вызова подпрограммы	 Ошибка вызова подпрограммы. Исправьте программу.
0xB607	Ошибка имени файла подпрограммы	 Ошибка имени файла подпрограммы. Исправьте программу.
0xB608	Ошибка размера подпрограммы	1. Ошибка размера подпрограммы. 2. Исправьте программу.
0xB609	G код выполняется перед возвратом в начальную точку	1. G код выполняется перед возвратом в начальную точку. 2. Выполните возврат для каждой оси.
0xB60A	Синтаксическая ошибка G04	1. Синтаксическая ошибка G04. 2. Проверьте G код и исправьте программу.
0xB60B	Некорректная величина смещения заготовки	1. Некорректная величина смещения заготовки. 2. Перезапустите систему или обратитесь в сервисную службу.
0xB60D	Некорректная промежуточная точка при возврате в начальную	1. Некорректная промежуточная точка при возврате в начальную. 2. Исправьте программу.

17.4 Ошибки конфигурации макросов

Код	Наименование	Описание и возможное решение
0xB610		 Некорректная форма переменной макроса. Проверьте макрос и исправьте программу.
0xB611	Макрос не найден	 Макрос не найден. Проверьте макрос и исправьте программу.
0xB612	Неверный номер макроса в командной сроке	1. Заданная строка N команды GO TO не найдена 2. Исправьте программу.
0xB613	Некорректное задание бита в макросе	 Некорректное задание бита в макросе. Проверьте макрос и исправьте программу.
0xB614	Ошибка деления на ноль в макросе	 Ошибка деления на ноль в макросе. Проверьте макрос и исправьте программу.
0xB615	Макрос слишком длинный	1. Макрос слишком длинный. 2. Проверьте макрос и исправьте программу.

Код	Наименование	Описание и возможное решение
0xB616	Операция макроса не найдена	 Операция макроса не найдена. Проверьте макрос и исправьте программу.
0xB617	Ошибка макроса	 Ошибка макроса. Проверьте макрос и исправьте программу.
0xB619	Синтаксическая ошибка операнда макроса	 Синтаксическая ошибка операнда макроса. Проверьте макрос и исправьте программу.
0xB61A	Некорректная макрокоманда	 Некорректная макрокоманда. Проверьте макрос и исправьте программу.
0xB61B	Goto tag не найден	1. Исправьте программу.
0xB61C	Номер в командной строке Goto tag is не найден	1. Исправьте программу.
0xB630	FOLLOW_ERR_ALRM Чрезмерное отклонение позиции	1. Переподключите сервопривод.
0xB631	HW_LIMIT_ERR Ошибка аппаратного предела	1. Исправьте программу.
0xB632	SW_LIMIT_ERR Ошибка первого программного предела	1. Исправьте программу.
0xB633	SW_LIMIT_CLR Очистка первого программного предела	1. Исправьте программу.
0xB634	SW_LIMIT_EXT_ERR Ошибка второго программного предела	1. Исправьте программу.
0xB635	SW_LIMIT_EXT_CLR Очистка второго программного предела	1. Исправьте программу.

17.5 Ошибки панели оператора (Коды: 0x3010 ~ 0x3FFF)

Описание сообщений об ошибках панели оператора.

Код	Наименование	Описание и возможное решение
-----	--------------	------------------------------

Код	Наименование	Описание и возможное решение
	Ouus 612 622 721117	1. Ошибка создания интерфейса связи панели.
0x3010	Ошибка создания интерфейса связи панели	2. Перезапустите систему или обратитесь в сервисную службу.
	Ошибка создания зоны	1. Ошибка создания зона памяти связи панели.
0x3011	памяти для связи панели	2. Перезапустите систему или обратитесь в сервисную службу.
0x3012	Ошибка создания зоны команд панели	 Ошибка создания зоны команд панели. Перезапустите систему или обратитесь в сервисную службу.
0x3013	Ошибка создания зоны интерфейсной памяти	1. Ошибка создания зоны интерфейсной памяти для связи панели.
0,3013	для связи панели	2. Перезапустите систему или обратитесь в сервисную службу.
	Ошибка порта связи	1. Ошибка порта связи панели.
0x3014	панели	2. Перезапустите систему или обратитесь в сервисную службу.
	Ошибка зоны памяти	1. Ошибка зоны памяти MLC.
0x3015	MLC	2. Перезапустите систему или обратитесь в сервисную службу.
	Ошибка передачи файлов панели	1. Ошибка передачи файлов панели.
0x3016		2. Перезапустите систему или обратитесь в сервисную службу.
	Ошибка передачи	1. Ошибка передачи данных панели.
0x3017	данных панели	2. Перезапустите систему или обратитесь в сервисную службу.
0x3100	Некорректное имя файла	1. Некорректное имя файла.
0,0100	Пекорректное ими файла	2. Исправьте имя файла.
0x3101	Слишком большой объем подпрограммы	1. Уменьшите объем.
0x3102	Havanayaanu M.C. yaa	1. Нехарактерный G код.
0X3102	Нехарактерный G код	2. Проверьте G код и исправьте программу.
0x3200	PAR_CRC_ERR Ошибка внутреннего параметра	Неверный внутренний параметр зоны памяти. Выполните восстановление системы или обратитесь в сервисную службу.
0x3201	MLC_CRC_ERR MLC программная	Неверный внутренний параметр зоны памяти MLC. Передайте программу MLC снова или обратитесь в
	ошибка	сервисную службу.
0x3202	CF_READ_ERR Не видна CF карта	СF карта не установлена или повреждена
0x3203	PAR_BK_FILE_ERR Сбой резервного	Убедитесь, что СF карта установлена правильно и на ней достаточно свободного места.

Код	Наименование	Описание и возможное решение
	копирования	
0x3204	MLC_BK_FILE_ERR Сбой резервного копирования MLC	Убедитесь, что СF карта установлена правильно и на ней достаточно свободного места.
0x3205	MACHINE_LOCK Машинная блокировка	Убедитесь в истечении срока действия. Обратитесь к поставщику за продлением или удалением.

17.6 Ошибки сервопривода

Код	Наименование	Описание
AL001	Перегрузка по току	Ток в силовом контуре превышает более чем в 1,5 раза мгновенное значение тока двигателя.
AL002	Перенапряжение	Напряжение в силовом контуре выше допустимого предела номинального напряжения.
AL003	Низкое напряжение	Напряжение в силовом контуре ниже допустимого предела номинального напряжения.
AL004	Ошибка совместимости	Сервопривод не соответствует типу двигателя.
AL005	Ошибка рекуперации	Ошибка в режиме рекуперации.
AL006	Перегрузка по моменту	Перегрузка двигателя и сервопривода.
AL007	Превышение допустимой скорости	Допустимая скорость двигателя превышена.
AL008	Некорректная импульсная команда	Частота импульсов, заданная командой, превышает аппаратные возможности интерфейса.
AL009	Превышение допустимого отклонения при позиционировании	Отклонение при позиционировании превысило допустимое значение.
AL010	Резерв	Резерв
AL011	Ошибка энкодера	Энкодер генерирует некорректные импульсы.

Код	Наименование	Описание
AL012	Ошибка при настройке	При выполнении настройки значение настраиваемого параметра вышло за допустимые пределы.
AL013	Аварийный останов	Контур аварийного останова разомкнут.
AL014	Сработал датчик конечного положения (при движении назад)	Сработал датчик конечного положения (при движении назад).
AL015	Сработал датчик конечного положения (при движении вперед)	Сработал датчик конечного положения (при движении вперед).
AL030	Поломка оборудования	Достигнуто критическое значение момента (параметр P1-57) с временем воздействия превышающим допустимое (параметр P1-58). Возможна поломка оборудования.
AL031	Некорректное подключение силовой цепи двигателя U, V, W, GND	Некорректное подключение силовой цепи двигателя U, V, W, GND.
AL040	Превышение допустимого отклонения в замкнутом контуре управления	Превышение допустимого отклонения в замкнутом контуре управления.
AL099	DSP ошибка прошивки	Память EEPROM не была обнулена после обновления прошивки. Ошибка может быть исправлена следующим образом: 1. Установите параметр P2-08 равным 30. 2. После этого установите параметр P2-08 равным 28. 3. Перезапустите сервопривод.
AL185	Ошибка CAN интерфейса	Связь по шине CAN не работает либо Error Rx/Tx Counter больше 128.
AL302	Частота синхронизирующего сигнала CANopen слишком высокая	Частота синхронизирующего сигнала SYNC слишком высокая.
AL303	Частота синхронизирующего сигнала CANopen слишком низкая	Частота синхронизирующего сигнала SYNC слишком низкая.
AL304	Ошибка CANopen IP команды	Команда не может быть выполнена в режиме CANopen IP.