

Industrial Automation Headquarters

Taiwan: Delta Electronics, Inc.Taoyuan Technology Center

No.18, Xinglong Rd., Taoyuan District, Taoyuan City 330477, Taiwan TEL: +886-3-362-6301 / FAX: +886-3-371-6301

Asia

China: Delta Electronics (Shanghai) Co., Ltd. No.182 Minyu Rd., Pudong Shanghai, P.R.C.

Post code: 201209

TEL: +86-21-6872-3988 / FAX: +86-21-6872-3996 Customer Service: 400-820-9595

Japan: Delta Electronics (Japan), Inc.

Industrial Automation Sales Departme 2-1-14 Shibadaimon, Minato-ku Tokyo, Japan 105-0012

TEL: +81-3-5733-1155 / FAX: +81-3-5733-1255

Korea: Delta Electronics (Korea), Inc.

1511, 219, Gasan Digital 1-Ro., Geumcheon-gu, Seoul, 08501 South Korea

TEL: +82-2-515-5305 / FAX: +82-2-515-5302

Singapore: Delta Energy Systems (Singapore) Pte Ltd.

4 Kaki Bukit Avenue 1, #05-04, Singapore 417939 TEL: +65-6747-5155 / FAX: +65-6744-9228

India: Delta Electronics (India) Pvt. Ltd.

Plot No.43, Sector 35, HSIIDC Gurga

PIN 122001, Haryana, India

TEL: +91-124-4874900 / FAX: +91-124-4874945

Thailand: Delta Electronics (Thailand) PCL.

909 Soi 9, Moo 4, Bangpoo Industrial Estate (E.P.Z), Pattana 1 Rd., T.Phraksa, A.Muang, Samutprakarn 10280, Thailand

TEL: +66-2709-2800 / FAX: +66-2709-2827

Australia: Delta Electronics (Australia) Pty Ltd.

Unit 2, Building A, 18-24 Ricketts Road, Mount Waverley, Victoria 3149 Australia

Mount Waverley, Victoria 3149 Austra Mail: IA.au@deltaww.com

TEL: +61-1300-335-823 / +61-3-9543-3720

Americas

USA: Delta Electronics (Americas) Ltd.

5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: +1-919-767-3813 / FAX: +1-919-767-3969

Brazil: Delta Electronics Brazil Ltd.

Estrada Velha Rio-São Paulo, 5300 Eugênio de Melo - São José dos Campos CEP: 12247-004 - SP - Brazil TEL: +55-12-3932-2300 / FAX: +55-12-3932-237

Mexico: Delta Electronics International Mexico S.A. de C.V.

Gustavo Baz No. 309 Edificio E PB 103 Colonia La Loma, CP 54060 Tlalnepantla, Estado de México

Tlainepantia, Estado de México TEL: +52-55-3603-9200

EMEA

EMEA Headquarters: Delta Electronics (Netherlands) B.V.

Sales: Sales.IA.EMEA@deltaww.com

Marketing: Marketing.IA.EMEA@deltaww.com

Technical Support: iatechnicalsupport@deltaww.com

 ${\tt Customer\,Support@deltaww.com}$

Service: Service.IA.emea@deltaww.com

TEL: +31(0)40 800 3900

BENELUX: Delta Electronics (Netherlands) B.V.

Automotive Campus 260, 5708 JZ Helmond, The Netherlands

Mail: Sales.IA.Benelux@deltaww.com

TEL: +31(0)40 800 3900

DACH: Delta Electronics (Netherlands) B.V.

Coesterweg 45, D-59494 Soest, Germany

Mail: Sales.IA.DACH@deltaww.com

TEL: +49(0)2921 987 0

France: Delta Electronics (France) S.A.

ZI du bois Challand 2,15 rue des Pyrénées, Lisses, 91090 Evry Cedex, France

Mail: Sales.IA.FR@deltaww.com TEL: +33(0)1 69 77 82 60

Iberia: Delta Electronics Solutions (Spain) S.L.U

Ctra. De Villaverde a Vallecas, 265 1º Dcha Ed.

Hormigueras – P.I. de Vallecas 28031 Madrid

TEL: +34(0)91 223 74 20

Carrer Llacuna 166, 08018 Barcelona, Spain

Mail: Sales.IA.Iberia@deltaww.com

Italy: Delta Electronics (Italy) S.r.l.

Via Meda 2–22060 Novedrate(CO) Piazza Grazioli 18 00186 Roma Italy

Mail: Sales.IA.Italy@deltaww.com

TEL: +39 039 8900365

Russia: Delta Energy System LLC

Vereyskaya Plaza II, office 112 Vereyskaya str.

17 121357 Moscow Russia

Mail: Sales.IA.RU@deltaww.com

TEL: +7 495 644 3240

Turkey: Delta Greentech Elektronik San. Ltd. Sti. (Turkey) Serifali Mah. Hendem Cad. Kule Sok. No:16-A

34775 Ümraniye – İstanbul

Mail: Sales.IA.Turkey@deltaww.com

TEL: + 90 216 499 9910

MEA: Eltek Dubai (Eltek MEA DMCC)

OFFICE 2504, 25th Floor, Saba Tower 1.

Jumeirah Lakes Towers, Dubai, UAE

Mail: Sales.IA.MEA@deltaww.com

TEL: +971(0)4 2690148

Delta ASDA-E3 Series Basic Type AC Servo Drive User Manual

www.deltaww.com

Preface

Thank you for purchasing this product. This manual provides information about the ASDA-E3 series servo drives (E3) and the ECM-E3 series servo motors.

This manual includes:

- Installation and inspection of servo drive and servo motor
- Servo structure and wiring diagram
- Instructions for test operation
- Instructions for servo tuning
- Description of motion control
- Description of parameters
- Description of communication protocol
- Troubleshooting
- Inspection and maintenance

Product features:

- New control algorithm: overcomes the problems of a lack of stiffness or flexibility in the machine structure.
- Auto tuning function: user-friendly and allows you to complete tuning easily.
- Gain adjustment function: automatically detects changes in the inertia and improves the control precision.

How to use this manual:

Use this manual as a reference when installing, setting up, using, and maintaining the servo drive. Before initiating the tuning or setup process, read Chapters 1 to 5.

Delta technical services:

Consult your Delta equipment distributor or Delta Customer Service Center if you encounter any problems.

Safety precautions

This product is a high-resolution open type servo drive. It should be installed in a shielded control cabinet during operation. This servo drive uses precise feedback control and a digital signal processor (DSP) with high-speed calculation functions to control the current output generated by IGBT to operate the three-phase permanent magnet synchronous motors (PMSM) and to achieve precise positioning.

This product is used in industrial applications and should be installed in the control cabinet. Servo drives, wires, and motors should all be installed in an environment which complies with the minimum enclosure rating of UL Type 1.

Pay special attention to the following safety precautions at all times during inspection, installation, wiring, operation, maintenance, and examination of the servo drive.

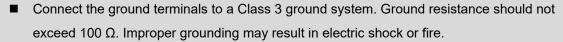
The symbols of "DANGER", "WARNING", and "STOP" indicate:

Danger. May cause severe or fatal injuries to personnel if the instructions are not followed.

Warning. May cause moderate injury to personnel, or lead to several damage or even malfunction of the product if the instructions are not followed.

Absolutely prohibited activities. May cause serious damage or even malfunction of the product if the instructions are not followed.

Inspection


Follow the instructions when using the servo drive and servo motor, or it may cause fire or malfunction.

Installation

Do not expose the product to an environment containing water vapor, corrosive gas, inflammable gas, or other foreign matter to reduce the risk of electric shock or fire.

Wiring

- Do not connect the three-phase power source to the motor output terminals U, V, and W, or it may cause personnel injury or fire.
- Tighten the screws of the power and motor output terminals, or it may cause fire.
- When wiring, refer to the description of wire selection in Chapter 3 to prevent any danger.

Operation

- Before operating the machine, change the servo parameter setting according to the application. If the parameters are not adjusted to the correct values, it may lead to malfunction of the machine or the operation might be out of control.
- Ensure you can activate the emergency stop before operating the machine.
- When applying power, make sure the motor is not rotating because of inertia of the machine or other causes.

During motor operation, do not touch any rotating motor parts, or it may cause personnel injury.

■ To avoid accidents, remove all units during the first test run, so that the motor is operating without any load.

- If you fail to operate the servo motor properly after it is connected to the machine, it may damage the machine and lead to personnel injury.
- In order to reduce the danger, make sure the servo motor can operate normally without load. Then try operating the motor with load.
- Do not touch the heat sink of the servo drive when it is operating to avoid scalding.

Maintenance and Inspection

- Do not touch the internal parts of the servo drive and servo motor, or it may cause electric shock.
- Do not disassemble the servo drive panel when the power is on, or it may cause electric shock.

- After turning off the power, do not touch the wiring terminals until the "CHARGE" indicator is off, or the residual voltage may cause electric shock.
- Do not disassemble the servo motor, or it may cause electric shock or personnel injury.
- Do not change the wiring when the power is on, or it may cause electric shock or personnel injury.
- Only qualified electricians can install, wire, repair, and maintain the servo drive and servo motor.

Main Circuit Wiring

■ Do not put the power cable and signal cable in the same channel or bond them together.

Separate the power cable and signal cable by at least 30 centimeters (11.8 inches).

- Use stranded wires and multi-core shielded-pair wires for signal cables and encoder feedback cables. The maximum length of the signal input cable is 3 meters (9.84 feet) and the maximum length of the encoder feedback cable is 20 meters (65.62 feet).
- High voltage may remain in the servo drive after the power is turned off. Wait until the "CHARGE" indicator is off before performing inspection.

Do not repeatedly turn the power on and off. If continuous power on and off is needed, wait one minute between intervals.

Terminal Wiring of the Main Circuit

- When wiring, securely tighten the screws of the terminal block.
- When wiring, do not short-circuit the wire with adjacent wires.
- Before applying power, inspect and ensure that the wiring is correct.

Leakage Current

- The leakage current of the servo drive is greater than 3.5 mA.
- According to the IEC 61800-5-1 standard, the wires must comply with either one of the following specifications to ensure proper grounding:

- 1. Copper wire cross-sectional area is at least 10 mm².
- 2. Aluminum wire cross-sectional area is at least 16 mm².
- Failure to comply with the specifications may result in personnel injury.
- Before applying power, inspect and ensure that the wiring is correct.

Inspection and maintenance

Operating conditions:

■ Average annual ambient temperature: 30°C (86°F)

■ Average load rate: 80% or less

Average operating time: 20 hours per day

Inspection frequency	Inspection item
	Check if the ambient temperature and humidity are normal.
	Check if the input voltage is normal.
	Check if there is abnormal vibration and noise.
Delle les estes	Check if there is any abnormal smell.
Daily inspection	Check if the servo drive has any visible damage.
	Check if the ventilation holes are kept clear of dust and other foreign objects. *1
	Check if the wirings are damaged or disconnected.
	Check if any cable is loose or damaged.
	Check if any screw is loose or damaged.
Annual inspection	Check if the servo drive, motor, and control cabinet are properly grounded.
, unida inspection	Check if the color and temperature of the power input, power output, and regenerative terminals are normal. *2

Note:

- 1. Install dust filters on the control cabinet openings, where there are fans or ventilation holes, and clean the filters regularly. Install door seals on cabinet doors and rubber grommets on cable openings for better seal.
- 2. Check if the servo drive is properly wired. If the color of any terminal turns black or is abnormal, it is suggested that you replace the terminal.

Replacing the parts

Operating conditions:

■ Average annual ambient temperature: 30°C (86°F)

■ Average load rate: 80% or less

Average operating time: 20 hours per day

Product	Product Part name Suggested replacement cycle		Note
	Electrolytic capacitor	Approx. 5 years	
Servo drive	Cooling fan	2 to 3 years (10,000 to 30,000 hours)	The replacement cycle varies
	Relay	Approx. 100,000 times	depending on the ambient
	Soft start resistor	Approx. 20,000 times	conditions and usage. Replace the part immediately when any
Battery box	Battery	Refer to Section 10.1.1.	error occurs.
Motor	Bearing	20,000 hours	
IVIOLOI	Oil seal	5,000 hours	

- When the part reaches the suggested replacement cycle, consult the distributor or Delta for replacement suggestions.
- Do not attempt to disassemble or repair the product yourself.

Note: the content of this manual may be revised without prior notice. Refer to the latest information from <u>Delta's website</u>.

Table of Contents

Before Operation

Proc	luct Overview
1.1 (Components of the servo set ······1-2
1.2 N	Model overview1-3
1.2.1	Nameplate information ······1-3
1.2.2	Model explanation······1-5
1.3	ASDA-E3 servo drive and motor······1-9
1.4 [Description of the drive interface······1-10
1.4.1	-L models
1.4.2	2 -E models
Insta	allation
	Ambient storage conditions ······2-2
	Ambient installation conditions ······2-3
	Mounting direction and space ······2-4
2.4	Safety precautions for using motors ······2-6
2.4.1	Troubleshooting for the motor operation and status2-8
2.4.2	Mounting directions and precautions for the servo motor2-9
2.4.3	Precautions for using servo motor with oil seal ·······2-10
2.4.4	Precautions for installing servo motor accessories 2-11
2.4.5	Oil and water prevention measures for the servo motor2-13
2.4.6	Measures to suppress temperature increase of the servo motor2-14
2.5	Specifications for the circuit breaker, magnetic contactor and fuse2-15
2.6 I	nstallation requirements for EMC ·······2-16
2.6.1	EMI filters 2-17
2.7	Selecting the regenerative resistor
2.8	The use of braking······2-24
2.9	Fhe use of cable2-26

3 Wiring

3.1 S	Syste	m connection ·····	3-3
3.1.1	Со	onnecting to peripheral devices (connecting to Delta communication type	
	se	rvo motor)	3-3
3.1.2	Сс	onnectors and terminals of the servo drive	3-5
3.1.3	Wi	ring for power supply	3-6
3.1.4	U١	/W power connector specifications	3-8
3.1.	4.1	F40 - F80 motors – Power connectors	3-9
3.1.	4.2	F100 - F130 motors – Power connectors ·····	3-10
3.1.	4.3	F180 motors – Power connectors · · · · · · · · · · · · · · · · · · ·	3-12
3.1.5	Sp	pecification for encoder cable and connector	3-14
3.1.	5.1	F40 - F80 motors – Encoder connectors ·····	3-14
3.1.	5.2	F100 - F180 motors – Encoder connectors	3-17
3.1.6	Wi	ire selection ·····	3-21
3.1.	6.1	Wire size / screw terminal block dimensions / screw and tightening torque	
		specifications ·····	3-21
3.1.	6.2	Encoder cable specifications ·····	3-22
3.1.	6.3	Power cable specifications	3-23
3.1.	6.4	Flexible cable specifications	3-25
3.1.7	Wi	ring for IP67 waterproof connectors······	3-26
3.1.	7.1	F130 - F180 motors – Waterproof connector installation and wiring	3-26
3.1.	7.2	IP67 waterproof connector installation and wiring specifications	3-27
3.2 V	Viring	g diagrams for the servo system ······	3-28
3.3 V	Viring	g for the CN1 I/O connector ·····	3-30
3.3.1	CN	N1 I/O connector (-L models)	3-30
3.3.2	CN	N1 I/O connector signal description (-L models)	3-32
3.3.3	Wi	ring with CN1 quick connector (-L models) ······	3-35
3.3.4	CN	N1 I/O connector pin assignment (-E models) ······	3-38
3.3.5	CN	N1 I/O connector signal description (-E models) ······	3-39
3.3.6	CN	N1 wiring diagrams ·····	3-41
3.4 V	Viring	g for the CN2 encoder connector ······	3-48
3.5 V	Viring	g for the CN3 connector (-L models) ······	3-51
3.6 C	CN4 c	connector (Mini USB) (-E models)	3-53
3.7 V	Viring	g for the CN6 connector (-E models)	3-54
3.8	Stand	lard wiring example ·····	3-57
3.8.1	Po	sition (PT) control mode - differential line driver input	3-57
3.8.2	Po	sition (PT) control mode - open collector input	3-58
3.8.3	Po	osition (PR) control mode – internal position commands·····	3-59

	3.8.4	Speed (S) control mode·······3-60
	3.8.5	Torque (T) control mode
	3.8.6	Communication mode – EtherCAT 3-64
4	Test (Operation and Panel Display
•	4.1 Pa	anel description ······4-2
	4.2 Pa	arameter setting procedure4-3
	4.3 St	tatus display4-6
	4.3.1	Data save status4-6
	4.3.2	Decimal points4-6
	4.3.3	Alarm messages·····4-7
	4.3.4	Positive and negative value setting4-7
	4.3.5	Monitoring display4-7
	4.3.6	Display when power is off4-9
	4.4 G	eneral functions ·······4-10
	4.4.1	Operation of fault record display4-10
	4.4.2	Force DO on
	4.4.3	Digital input diagnosis
	4.4.4	Digital output diagnosis
	4.5 Te	esting4-13
	4.5.1	Initial testing4-13
	4.5.2	Apply power to the servo drive
	4.5.3	JOG trial run without load ······4-18
	4.5.4	Trial run without load (Speed mode)4-20
	4.5.5	Trial run without load (Position mode)4-22
_	_	
Tur	ing	
5	Tunin	ıg
J	E 4 T.	uning presenting and modes
		uning procedure and modes5-2 Flowchart of the tuning procedure5-2
	5.1.1	
	5.1.2	,
		uto tuning
	5.2.1	Flowchart of auto tuning
	5.2.2	
	5.2.3	Auto tuning with ASDA-Soft5-7 Alarms related to auto tuning5-14
	5.2.4	Alarms related to auto tuning5-14 ain adjustment modes5-15
	5.3 G	aiii aujustineiti muues

5.3.4	Gain adjustment mode 3	5-17
5.3.5	Parameters related to gain adjustment modes	5-18
5.3.	5.1 Bandwidth response level (P2.031) - stiffness adjustment·····	5-18
5.3.	5.2 Command response gain (P2.089) - response adjustment·····	5-19
5.4 Ma	anual tuning of gain parameters······	5-20
5.6 Me	echanical resonance suppression······	5-22
atio	n and Mation Control	
aliu	n and Motion Control	
Contr	ol Mode	
6.1 Se	electing the control mode·····	-6-3
6.2 Pc	osition mode ·····	-6-4
6.2.1	Position command in PT mode ·····	-6-4
6.2.2	Position command in PR mode ·····	-6-5
6.2.3	Control structure of Position mode ······	-6-6
6.2.4	S-curve filter for Position commands ·····	-6-7
6.2.5	Electronic gear ratio (E-Gear ratio)	-6-8
6.2.6	Low-pass filter	-6-9
6.2.7	Timing diagram of PR mode ······	-6-9
6.2.8	Gain adjustment of the position loop	6-10
6.2.9	Low-frequency vibration suppression in Position mode·····	6-12
6.3 Sp	peed mode ······	6-15
6.3.1	Selecting the Speed command source·····	6-15
6.3.2	Control structure of Speed mode	6-16
6.3.3	Smoothing the Speed command ······	6-17
6.3.4	Scaling of the analog command	6-19
6.3.5	Timing diagram of Speed mode·····	6-20
6.3.6	Gain adjustment of the speed loop	6-21
6.3.7	Resonance suppression unit ·····	6-23
6.4 To	rque mode······	6-25
6.4.1	Selecting the Torque command source	6-25
6.4.2	Control structure of Torque mode	6-26
6.4.3	Smoothing the Torque command ······	6-26
6.4.4	Scaling of the analog command	6-27
6.4.5	Timing diagram of Torque mode	6-28
6.5 Du	ual modes and multi-modes·····	6-29

Gain adjustment mode 2------5-16

5.3.1

5.3.2

5.3.3

	6.5.1 Speed / Position dual mode 6-3	30
	6.5.2 Speed / Torque dual mode ······6-3	31
	6.5.3 Torque / Position dual mode	32
	6.6 Others6-3	33
	6.6.1 Applying the speed limit 6-3	33
	6.6.2 Applying the torque limit	33
	6.6.3 Analog monitoring	34
_		
	Motion Control	
	7.1 PR mode description······7	-2
	7.1.1 Shared parameters for PR paths ·······7	
	7.1.2 Monitoring variables of PR mode·······7	
	7.1.3 Motion Control commands ····································	-9
	7.1.3.1 Homing command7	-9
	7.1.3.2 Speed command ········7-2	22
	7.1.3.3 Position command · · · · · · · · · · · · · · · · · · ·	25
	7.1.3.4 Jump command7-2	29
	7.1.3.5 Write command7-3	31
	7.1.3.6 Rotary Axis Position command (Index Position)7-3	33
	7.1.4 Overview of the PR procedure	37
	7.1.5 Trigger methods for the PR command ············7-4	13
	7.1.6 PR procedure execution flow	‡ 7
	7.1.7 Data array	59
Pai	meter Setting	
ı aı	inieter Setting	
0	Parameters	
0		
	8.1 Parameter definitions ······8	
	8.2 List of parameters ······8	
	8.3 Parameter descriptions·····8-1	
	P0.xxx Monitoring parameters 8-1	
	P1.xxx Basic parameters8-3	
	P2.xxx Extension parameters 8-7	
	P3.xxx Communication parameters 8-10	
	P4.xxx Diagnosis parameters 8-11	
	P5.xxx Motion control parameters 8-12	
	P6.xxx PR parameters 8-15	
	P7.xxx PR parameters 8-17	
	Table 8.1 Digital input (DI) descriptions ······ 8-19) 4

	Table 8.2 Digital output (DO) descriptions ······ 8-202
	Table 8.3 Monitoring variables descriptions 8-208
Q	Modbus Communication
	9.1 Modbus communication interface (hardware)9-2
	9.2 Modbus communication parameters9-4
	9.3 Modbus communication protocol9-4
	9.4 Writing and reading communication parameters 9-14
	9.5 RS-485 communication specification
10	Absolute System
	10.1 Battery box and absolute encoder cable ······ 10-3
	10.1.1 Battery specifications
	10.1.2 Battery box dimensions
	10.1.3 Connection cable for the absolute encoder ····································
	10.1.4 Battery box cable
	10.2 Installation
	10.2.1 Installing the battery box in the servo system······························ 10-10
	10.2.2 Installing and replacing a battery ····································
	10.3 System initialization and operating procedures······························· 10-14
	10.3.1 System initialization ····································
	10.3.2 Pulse number
	10.3.3 PUU number 10-16
	10.3.4 Establish the absolute origin position ··································· 10-17
	10.3.4.1 Establishing the absolute origin position with DI/DO·················· 10-17
	10.3.4.2 Establishing the absolute origin position with parameters············· 10-18
	10.3.4.3 Establishing the absolute origin position with the PR homing function······· 10-18
	10.3.5 Read the absolute position ····································
	10.3.5.1 Reading the absolute position with DI/DO······························ 10-18
	10.3.5.2 Reading the absolute position with communication
	10.4 Parameters, DI/DO, and alarms related to absolute function
11	EtherCAT Mode
1 1	
	11.1 Basic configuration 11-3
	11.1.1 Hardware configuration······ 11-3
	11.1.2 ESI file import
	11.1.3 Parameter settings of EtherCAT mode · · · · · 11-7
	11.2 Communication function
	11.2.1 Specifications11-11

	11.2	2.2.1	Synchronization	n modes of the	e servo drive	·····	 	11-13
	11.2	2.2.2	Select Synchro	nization mode	;		 	11-14
	11.2	2.2.3	Distributed clo	cks setting			 	11-14
	11.2.3	Eth	erCAT State Ma	chine			 	11-15
	11.2.4	· PD(O mapping conf	guration			 	11-17
	11.2	2.4.1	Default PDO m	napping configu	uration		 	11-17
	11.2	2.4.2	Set PDO mapp	ing ·····			 	11-19
	11.2	2.4.3	PDO mapping	object ·····			 	11-20
	11.2	2.4.4	SDO abort coo	es			 	11-21
	11.3 E	EtherC	AT operation m	odes ·····			 	11-22
	11.3.1		file Position mo					
	11.3.2	. Pro	file Velocity mod	le			 	11-27
	11.3.3		file Torque mod					
	11.3.4		ning mode ······					
	11.3.5	-	lic Synchronous					
	11.3.6		lic Synchronous					
	11.3.7		lic Synchronous					
	11.3.8		ch Probe function					
	11.4 C	-	dictionary·····					
	11.4.1		cifications for o					
	11.4.2		of objects ······					
	11.4.3	Det	ails of objects…					
	11.4	4.3.1	OD 1XXXh cor					
	11.4	4.3.2	OD 2XXXh ser					
		4.3.3	OD 6XXXh cor					
	11.5 E	_	stics and troubl	_				
	11.5.1		erCAT Diagnosi					
	11.5.2	. Alaı	m list ·····				 	11-95
Tro	uhle	sha	ooting					
110	ubic	, O I I	ooting					
40								
12	Troub	olesh	ooting					
	12.1 <i>A</i>	Alarm	list				 	12-3
			al type ······					
			control type ···					

Communication type · · · · · 12-6

11.2.2 Synchronization mode · · · · · 11-13

Appendix

Spec	ifications	
A.1 A	ASDA-E3 series servo drive······	····· A-2
A.1.1	Specifications of the ASDA-E3 servo drive ······	A-2
A.1.2	Dimensions of the servo drive ·····	A-5
A.2 E	ECM-E3 series servo motor ·····	A-7
A.2.1	ECM-E3 series servo motor ·····	A-9
	Motor frame size: 80 mm and below·····	A-9
	Motor frame size: 130 mm & 180 mm ·····	····· A-11
A.2.2	Torque features (T-N curves) of the E3 motors	·····A-13
	Motor frame size: 80 mm and below·····	·····A-13
	Motor frame size: 130 mm·····	A-14
	Motor frame size: 180 mm·····	A-14
A.2.3	Power derating curves of the E3 motors	·····A-15
A.2.4	Overload features	·····A-16
A.2.5	Dimensions of ECM-E3 series servo motor	·····A-17
	Motor frame size: 80 mm and below·····	·····A-17
	Motor frame size: 130 mm & 180 mm	·····A-18
Acce	essories	
B.1 F	Power connector	B-2
B.1.1	F40 - F80 motors	B-2
B.1.2	F100 - F130 motors	B-3
B.1.3	F180 motors·····	B-4
B.1.4	Brake connector for F100 - F180 motors	B-5
B.2 F	Power cable·····	B-6
B.2.1	F40 - F80 motors·····	В-6
B.2.2	F100 - F130 motors	B-7
B.2.3	F180 motors·····	B-9
B.2.4	Brake cable for F100 - F180 motors·····	B-11
B.3 E	ncoder connector·····	B-12
B.3.1	F40 - F80 motors·····	B-12
B.3.2	F100 - F180 motors	B-13
B.4 E	Encoder cable (incremental type) ·····	B-14
B.4.1	F40 - F80 motors·····	B-14
		D 45

B.5 Encoder cable (absolute type) ------B-16

B.5.	5.1 F40 - F80 motors······	B-16
B.5.	5.2 F100 - F180 motors	B-17
B.6	Battery box cable	B-18
B.7	Battery box	B-19
B.8	CN1 connector ·····	B-20
B.9	CN1 quick connector ·····	B-20
B.10	CN1 terminal block module·····	B-21
B.11	E3 / B2 conversion cable·····	B-22
B.12	CN3 Modbus communication cable ·····	B-23
B.13	CN4 Mini USB communication module·····	B-24
B.14	Optional accessories	B-25
	F40 - F80 motors·····	B-25
	F100 - F130 motors	B-26
	F180 motors·····	B-27

(This page is intentionally left blank.)

Product Overview

Before using the servo drive, pay attention to the description for the components of the servo set, nameplate, and model type. You can find a suitable servo motor for your servo drive in Section 1.3.

1.1	Con	mponents of the servo set·····	1-2
1.2	Mod	del overview ·····	1-3
1	.2.1	Nameplate information	1-3
1	.2.2	Model explanation	1-5
1.3	ASE	DA-E3 servo drive and motor ······	1-9
1.4	Des	scription of the drive interface	1-10
1	.4.1	-L models ·····	1-10
1	.4.2	-E models	1-11

Product Overview ASDA-E3

1.1 Components of the servo set

A complete servo set includes:

- (1) A servo drive and a servo motor.
- (2) A UVW motor power cable: one end (the U, V, and W wires) connects to the servo drive and the other end to the motor (optional purchase).
- (3) A yellow / green ground wire: connects to the ground terminal of the servo drive (optional purchase).
- (4) An encoder cable: one end connects to the encoder and the other end to the CN2 on the servo drive (optional purchase).
- (5) Power supply for the servo drive:

Model	Main circuit	Regenerative resistor
All series	R, S, T terminal block	P⊕, D, C, ⊝ terminal block

(6) An installation instruction sheet.

Model-specific connectors

E3-L models:

- (1) A 44-pin connector for CN1.
- (2) A 6-pin connector for CN2 (optional purchase).
- (3) A 6-pin connector to connect the CN3 of the servo drive for communication (RS-485 and RS-232) or PC connection (RS-232) (optional purchase).

E3-E models:

- (1) A 15-pin connector for CN1.
- (2) A 6-pin connector for CN2 (optional purchase).
- (3) A 4-pin connector for CN4 (Mini USB connector) (optional purchase).
- (4) An RJ45 connector for CN6, which is used for high-speed (EtherCAT) communication (optional purchase).

ASDA-E3 Product Overview

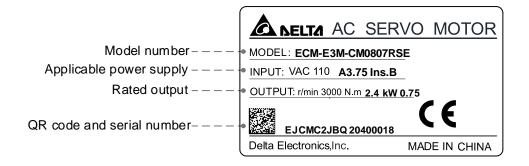
1.2 Model overview

1.2.1 Nameplate information

ASDA-E3 series servo drive

Nameplate information

■ Serial number


E30121L0	W	20	51	0001
(1)	(2)	(3)	(4)	(5)

- (1) Model number
- (2) Manufacturing plant (T: Taoyuan; W: Wujiang)
- (3) Year of production (20: year 2020)
- (4) Week of production (from 1 to 52)
- (5) Production sequence in a week (starting from 0001)

1-3

ECM-E3 series servo motor

■ Nameplate information

Serial number

EJCMC2JB	Q	20	40	0018	(1) Model number
(1)	(2)	(3)	(4)	(5)	(2) Manufacturing plant (T: Taoyuan; W or Q: Wujiang)
					(3) Year of production (20: year 2020)
					(4) Week of production (from 1 to 52)
					(5) Production sequence in a week (starting from 0001)

Note: the servo motor uses the certified voltage as the rated input voltage for operation, so the applicable power supply is 110V.

1.2.2 Model explanation

ASDA-E3 series servo drive

$$\frac{\mathsf{ASD} - \mathsf{E3} - \mathsf{04}}{(1)} \ \frac{\mathsf{21} - \mathsf{L}}{(2)} \ \frac{\mathsf{21}}{(3)} \ \frac{\mathsf{L}}{(4)} \ \frac{\mathsf{L}}{(5)}$$

(1) Product name

ASD: AC Servo Drive

(2) Series

E3: E3 series

(3) Rated power output

Code	Specification	Code	Specification	Code	Specification
01	100 W	07	750 W	20	2.0 kW
02	200 W	10	1.0 kW	30	3.0 kW
04	400 W	15	1.5 kW	-	-

(4) Input voltage and phase

21: 220V, single- / three-phase

23: 220V, three-phase

Product Overview ASDA-E3

(5) Model type

Connector	Function	L	E
	Number of DIs / DOs	9/6	6/3
	Analog voltage input / output	2/2	-
	Pulse input (Pulse / Sign)	✓	-
CN1	Pulse output (OA / OB / OZ)	✓	-
CIVI	OCZ signal	✓	-
	High-speed Capture DI (PR)	-	-
	Touch Probe (EtherCAT)	-	DI1, DI2
	Number of CN1 pins	44	15
CN3	Communication function (to PC)	RS-485 RS-232 (PC)	-
CN4	Communication function (to PC)	-	Mini USB
CN6	Bus communication	-	EtherCAT
-	STO	-	-
-	Dynamic brake	-	-
-	PR mode	-	✓
-	Absolute function	-	✓
-	Two degree of freedom control function	-	✓
-	Vibration elimination	-	✓
-	One Touch tuning	-	-
-	Full-closed loop / Gantry	-	-

Note: the model codes listed here are only for demonstration of the naming convention; some combinations of the model codes are not available. Contact the distributors for the models available for purchase.

ECM-E3 series servo motor

$$\frac{\mathsf{ECM}}{(1)}$$
 - $\frac{\mathsf{E}}{(2)}$ $\frac{3}{(3)}$ $\frac{\mathsf{M}}{(4)}$ - $\frac{\mathsf{C}}{(5)}$ $\frac{2}{(6)}$ $\frac{06}{(7)}$ $\frac{04}{(8)}$ $\frac{\mathsf{R}}{(9)}$ $\frac{\mathsf{S}}{(10)}$ $\frac{\mathsf{E}}{(11)}$

(1) Product name

ECM: electronically commutated motor

(2) Servo type

E: basic type servo motor

(3) Series

3: 3rd series

(4) Inertia

M: medium inertia

L: low inertia

(5) Rated voltage and speed

C: 220V and 3,000 rpm

E: 220V and 2,000 rpm

F: 220V and 1,500 rpm

(6) Encoder type

A: 22-bit absolute optical encoder

(resolution of single turn: 22-bit; number of revolutions: 16-bit)

2: 22-bit incremental optical encoder (single-turn absolute)

P: 17-bit absolute magnetic encoder

(resolution of single turn: 17-bit; number of revolutions: 16-bit)

M: 17-bit incremental magnetic encoder (single-turn absolute)

Note

- The E3-L servo drive does not support the absolute function (including the single-turn absolute function). Therefore, the E3-L servo drive can only operate all motors as incremental type motors.
- 2. Number of revolutions means the maximum number of turns the encoder can record.

(7) Motor frame size

Code	Specification	Code	Specification
04	40 mm	13	130 mm
06	60 mm	18	180 mm
08	80 mm	-	-

(8) Rated power output

Code	Specification	Code	Specification
01	100 W	10	1.0 kW
02	200 W	15	1.5 kW
04	400 W	20	2.0 kW
07	750 W	30	3.0 kW

(9) Shaft type and oil seal

	w/o brake with oil seal	with brake with oil seal
Keyway (with fixed screw holes)	R	S

(10) Shaft diameter and connector type

S: standard shaft diameter and standard connectors

(11) Special code

E: standard products

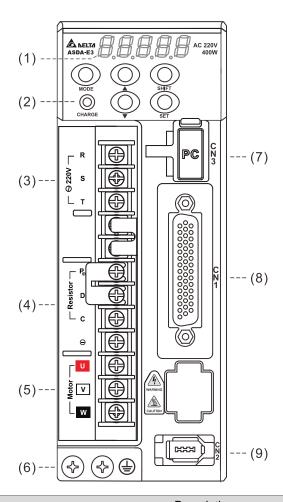
Note: the model codes listed here are only for demonstration of the naming convention; some combinations of the model codes are not available. Contact the distributors for the model numbers available for purchase.

ASDA-E3 Product Overview

1.3 ASDA-E3 servo drive and motor

	Servo motor							
Inertia	Rated / Max. speed	Power	Output (W)	Model number	Rated torque (N-m)	Max. torque (N-m)	Model number	
Low inertia		Single- / three- phase	100	ECM-E3L-C2040134E	0.32	1.12	ASD-E3-0121-□	
	3000 / 6000 rpm		200	ECM-E3M-C2060234E	0.64	2.24	ASD-E3-0221-□	
			400	ECM-E3M-C2060434E	1.27	4.45	ASD-E3-0421-□	
			750	ECM-E3M-C2080734E	2.4	7.61	ASD-E3-0721-□	
					2.4	8.4	ASD-E3-1021-□	
Medium inertia			1000	ECM-E3M-E2131034E	4.77	14.3	ASD-E3-1021-□	
	2000 /		1500	ECM-E3M-E2131534E	7.16	19.93	ASD-E3-1521-□	
	3000 rpm		1500		7.16	21.48	ASD-E3-2023-□	
		Three-	2000	ECM-E3M-E2132034E	9.55	28.65	ASD-E3-2023-□	
	1500 / 3000 rpm	phase	3000	ECM-E3M-F2183034E	19.1	52.3	ASD-E3-3023-□	

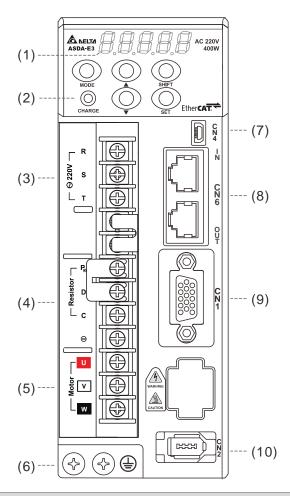
Note:


1-9

^{1.} In the servo motor model number, ② represents the encoder type, ③ represents the brake or keyway / oil seal type, and ④ represents the shaft diameter and connector type.

^{2.} In the servo drive model number, \square represents the model type.

1.4 Description of the drive interface


1.4.1 -L models

No.	Name	Description
(1)	-	7-segment display.
(2)	CHARGE	Power indicator.
(3)	RST	Main circuit power input terminal.
(3)	KOT	Connects to commercial power supply (200 - 230 V _{AC} , 50/60 Hz).
(4)	Regenerative resistor	Connects to an external regenerative resistor, the built-in regenerative resistor, or the external power regenerative unit.
		Servo drive current output: connects to the motor power connector (U, V, W).
(5)	(5) UVW	Do not connect to the main circuit power. Incorrect wiring will cause damage to the servo drive.
(6)	Grounding screws	Connects to the ground wires for the power and servo motor.
(7)	CN3	Modbus communication port: for communication (RS-485 and RS-232) or PC connection (RS-232).
(8)	CN1	I/O signal interface: connects to PLC or controls I/O.
(9)	CN2	Encoder connector: connects to the encoder.

ASDA-E3 Product Overview

1.4.2 -E models

No.	Name	Description
(1)	-	7-segment display.
(2)	CHARGE	Power indicator.
(3)	RST	Main circuit power input terminal. Connects to commercial power supply (200 - 230 V _{AC} , 50/60 Hz).
(4)	Regenerative resistor	Connects to an external regenerative resistor, the built-in regenerative resistor, or the external power regenerative unit.
(5)	UVW	Servo drive current output: connects to the motor power connector (U, V, W). Do not connect to the main circuit power. Incorrect wiring will cause damage to the servo drive.
(6)	Grounding screws	Connects to the ground wires for the power and servo motor.
(7)	CN4	Mini USB connector: connects to PC.
(8)	CN6	EtherCAT high-speed communication ports.
(9)	CN1	I/O signal interface: connects to PLC or controls I/O.
(10)	CN2	Encoder connector: connects to the encoder.

1-11

Product Overview ASDA-E3

(This page is intentionally left blank.)

Installation

Follow the instructions in this chapter during installation. This chapter includes information about the circuit breaker, magnetic contactor, fuse, and the selection for EMI filter and regenerative resistor.

2.1	Am	Ambient storage conditions2-2					
2.2	Ambient installation conditions······2-3						
2.3	Мо	unting direction and space2-4					
2.4	Saf	ety precautions for using motors······2-6					
2	.4.1	Troubleshooting for the motor operation and status 2-8					
2	.4.2	Mounting directions and precautions for the servo motor 2-9					
2	.4.3	Precautions for using servo motor with oil seal 2-10					
2	.4.4	Precautions for installing servo motor accessories2-11					
2	.4.5	Oil and water prevention measures for the servo motor 2-13					
2	.4.6	Measures to suppress temperature increase of the servo motor 2-14					
2.5	Spe	ecifications for the circuit breaker, magnetic contactor and fuse 2-15					
2.6	Inst	allation requirements for EMC ······ 2-16					
2	.6.1	EMI filters 2-17					
2.7	Sele	ecting the regenerative resistor2-19					
2.8	The	use of braking ······ 2-24					
2.9	The	e use of cable 2-26					

Installation ASDA-E3

2.1 Ambient storage conditions

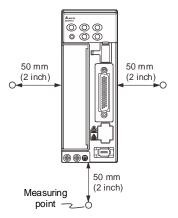
Before installation, this product must be kept in the shipping carton. In order to retain the warranty coverage and for maintenance, follow these instructions for storage. While the product is temporarily not in use:

■ Store the product in an ambient temperature range of -20°C (-4°F) to +65°C (+149°F).

- Store the product in a relative humidity range of 0% to 90% (non-condensing).
- Avoid storing the product in an environment containing corrosive gas.

Installation

2

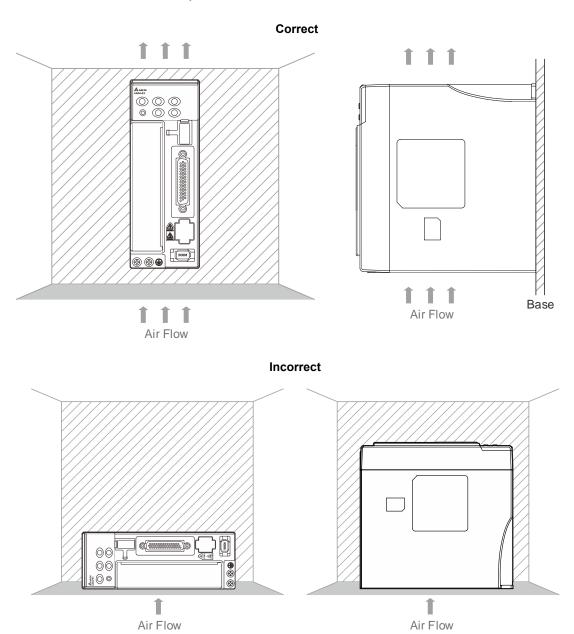

2.2 Ambient installation conditions

Servo drive: the environment should be free of devices that generate excessive heat; no water, water vapor, dust, and oily dust; no corrosive and inflammable gas or liquids; no airborne dust or metal particles; and the environment should be solid without vibration and interference of electromagnetic noise.

Motor: the ambient temperature for the location of the ECM-E3 motors should be between -20°C (-4°F) and +60°C (+140°F)*. The environment should be free of devices that generate excessive heat; no water, water vapor, dust, and oily dust; no corrosive and inflammable gas or liquids; and no airborne dust or metal particles.

Note: if the ambient temperature for the location of the ECM-E3 motors is over 40°C (104°F), refer to Section A.2.3 Power derating curves of the E3 motors.

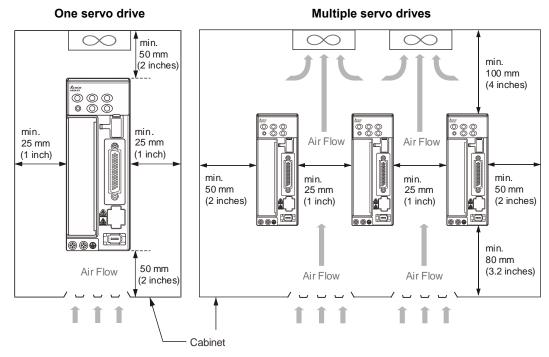
- The temperature of the operating environment for the servo drive is between 0°C (32°F) and 55°C (131°F). During long-term operation, it is advisable to keep the temperature of the operating environment under 45°C (113°F) to ensure the servo drive's performance.
- If the ambient temperature is over 45°C (113°F), place the product in a well-ventilated environment and derate 10% of the average load for every 5°C (41°F) of temperature increase.
- Mount the product vertically in the cabinet (see the illustration of the correct mounting direction in Section 2.3).
- Install a fan on the cabinet for heat dissipation. Make sure the size of the cabinet and its ventilation condition can prevent the internal electrical devices from overheating. Ensure that the temperature at the measuring point, which is the clearance of 50 mm (2 inches) beneath and on both sides of the servo drive, is kept under 55°C (131°F), and the servo drive must be kept clear of heat sources. In addition, check if the vibration of the machine affects the electrical devices in the cabinet.


Installation ASDA-E3

2.3 Mounting direction and space

Important:

Mount the servo drive in the correct direction according to the following illustrations with the base of the heat sink vertically installed on the wall. Incorrect mounting direction may result in malfunction.


- For better ventilation and cooling, allow sufficient clearance space between the AC servo drive and the adjacent objects and the wall, or overheating may result in malfunction.
- Do not block the ventilation holes of the servo drive, and do not mount the servo drive in the incorrect direction, or it may result in malfunction.

2

Heat dissipation requirements

- In order to have adequate air flow for ventilation, follow the suggested clearances when installing one or multiple servo drives.
- Avoid mounting one servo drive above one another. Keep the bottom of the servo drive clear because the generated heat rises and causes higher temperature for the drives mounted above.

Note: the preceding diagrams are not accurately scaled. Refer to the annotations on the diagrams.

Installation ASDA-E3

2.4 Safety precautions for using motors

The Delta AC servo motor is designed for industrial applications. It is necessary that you fully understand the motor specifications and the content of the operation manual. For your safety and correct use, read the precautions carefully before connecting the motor to any equipment.

The safety precautions are as follows:

Handling, mounting, and storage

- When taking out or placing the servo motor, hold the whole motor instead of holding the cable or only the motor shaft.
- Do not hit the motor shaft. Impact force will damage the shaft and the encoder that is attached at the rear end of the shaft.
- Keep the axial or radial load on the shaft within the allowable range listed in the specifications.
- The shaft of the servo motor is not water- or oil-proof. Do not use, install, or store the servo motor in an environment that contains water, oily liquids, corrosive and inflammable gases, or is with high humidity.
- The material of the motor shaft is not rustproof. Although rustproof oil has been applied to the shaft during the manufacturing process, you must check the shaft condition every three months and apply rustproof oil if storing the motor for more than six months.
- Ensure that the environmental conditions for storing the servo motor conform to the specifications in the instruction sheet.
- The encoder attached to the motor is easily damaged; take the necessary measures to avoid electromagnetic interference, vibration, and abnormal temperature changes.
- The magnetic field for placing or installing the motor should be below 10 mT.

Wiring

- If the current exceeds the maximum current in the specifications, the internal parts of the motor may lose their magnetism. Contact the distributor or local Delta sales representative if this problem occurs.
- Check if the motor wiring and the voltage of the motor brake are correct. Also, make sure that the wiring of the encoder power and signal cables is correct. Incorrect wiring will lead to abnormal operation, malfunction, or damage of the motor.
- To avoid capacitive coupling and noise, isolate the motor power cable from the encoder power and signal cables. Do not connect them to the same circuit.
- The AC servo motor must be correctly grounded.
- The encoder connector must not undergo any high voltage test because it will damage the encoder.

ASDA-E3 Installation

When the motor or brake is undergoing high voltage tests, cut off the power supply for the controller. To maintain the product lifespan, do not perform this kind of test unless necessary.

Operation

- AC servo motor operation is controlled by the servo drive. Do not directly connect a commercial power supply (100/200V, 50/60 Hz) to the servo motor circuit; otherwise the motor cannot operate normally and may be permanently damaged.
- Follow the motor specifications when using the product. The motor temperature during operation must not exceed the specified range.
- The material of the motor shaft is not rustproof. To ensure a longer motor life, apply rustproof oil during operation.
- The built-in brake is for clamping, not for stopping the motor. Note that the built-in brake is not a device for safely stopping the machine. Install another safety device for stopping the machine. When the built-in brake is clamping the motor, rotation backlash can still occur and the maximum rotation is 1° to 2°. When a motor with a brake is operating, the brake lining sometimes generates a noise (a swishing or clicking sound) caused by the structure of brake module, which is not a malfunction. It will not affect the motor's function.
- When using a servo motor with a brake, do not use the built-in brake for dynamic braking.
- If any odor, noise, smoke, heat, or abnormal vibration occurs during motor operation, stop the motor and turn off the power immediately.
- If the servo drive is installed in a high-radiation environment, the motor may generate louder noises but the motor performance will not be affected.

Others

- Delta AC servo motors have no user-replaceable parts.
- Do not disassemble the motor or change its parts, or it will void the warranty.
- Do not disassemble the motor by yourself, or it may lead to permanent malfunction or damage.
- Do not splash any water or oil on the product.

2.4.1 Troubleshooting for the motor operation and status

When the servo motor makes abnormal noises:

Possible cause	Checking method	Corrective action
There is a source of vibration in the connecting component.	Check if there is any foreign object, damage, or deformation in the movable parts of the connecting component.	Replace the connecting component (such as the coupling) or contact the manufacturer.
The encoder is subject to excessive vibration or shocks.	 Check if the servo motor has been subject to impact force or vibration which causes damage to the encoder. Remove and shake the motor to see if there are any abnormal noises (disk damage). Visually inspect the encoder's rear cover for dust (encoder damage). 	Replace the servo motor.

When the servo motor is overheating:

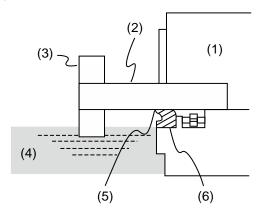
Possible cause	Checking method	Corrective action
Mounting surface of the servo motor has poor thermal conductivity.	Measure the temperatures of the servo motor frame and the mounting surface (metal). The temperature difference should not exceed 20°C (68°F).	Make sure the installation surface is flat. If there is any substance (such as paint or gasket) between the mounting surface and motor surface resulting in poor heat dissipation, remove the substance or use other methods to help heat dissipation (such as forced air cooling for the servo motor).

Installation

2.4.2 Mounting directions and precautions for the servo motor

You can install the servo motor horizontally or vertically.

Mounting direction	Precautions
Horizontal	If you are using a servo motor with an oil seal, refer to Section 2.4.5 for oil and water prevention measures for the servo motor.
Vertical - shaft end up	 When wiring, you need to install an oil trap (marked as (1) in the figure on the left) to prevent water vapor from entering the motor. When installing the servo motor in a machine (such as in a gearbox), you must adhere to the measures in Section 2.4.5 to prevent oil and gas from entering the servo motor.
Vertical - shaft end down	If you are using a servo motor with an oil seal, refer to Section 2.4.5 for oil and water prevention measures for the servo motor.

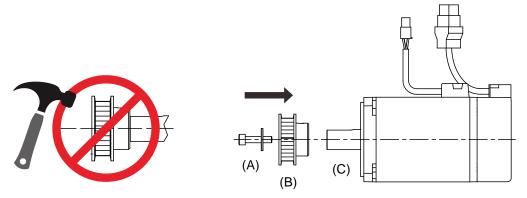

Note: if you desire to install gears on the servo motor, follow the manufacturer's instructions for installation.

2

2.4.3 Precautions for using servo motor with oil seal

This section defines the operating conditions for using the servo motor with an oil seal:

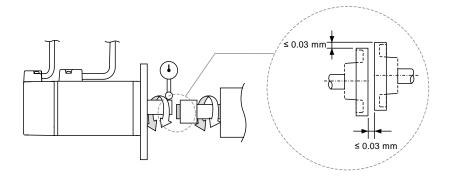
In the operating environment, keep the oil level lower than the oil seal lip. If the oil seal lip is lower than the oil level, the oil will enter the servo motor and cause damage to the motor.



(1) Servo motor; (2) Motor shaft; (3) Gear; (4) Oil; (5) Oil seal lip; (6) Oil seal

- The oil seal cannot be submerged in liquid. It can only withstand splashes of oil.
- The oil seal lip cannot be soaked in oil.

2.4.4 Precautions for installing servo motor accessories

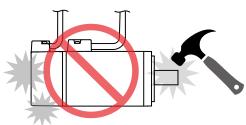

- Wipe off the rustproof coating or oil on the motor shaft.
- If you use a servo motor with a keyway, install the attached key or a key matching the specified dimensions on the motor shaft.
- When you install the key or the motor shaft accessories (such as a belt pulley or gear) to the servo motor, do not apply excessive impact force to the keyway. Use a screwdriver and screws when installing the motor shaft or motor shaft accessories.

(A) Screw and gasket; (B) Belt pulley; (C) Servo motor shaft

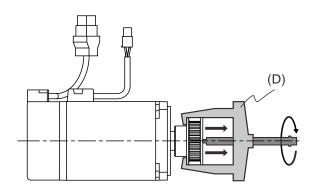
Installation safety precautions for coupling applications

- It is suggested that you use the flexible couplings specifically designed for servo motors, especially the double spring couplings, which provide some buffer tolerance during eccentric motion and deflection of the motor. Select couplings of appropriate size for the operating conditions. Improper use or connection may cause damage to the motor.
- Use the dial gauge or other methods to ensure the centering precision is within the specifications. If you are not allowed to use the dial gauge or other methods in the environment, slide the coupling along both axes and adjust it until it does not get stuck.

As shown in the previous figure, the distance is measured at four different positions on the circumference for the centering precision. The difference between the maximum and minimum measurements should be 0.03 mm or less. Even within this range, you can make adjustments to increase the centering precision.

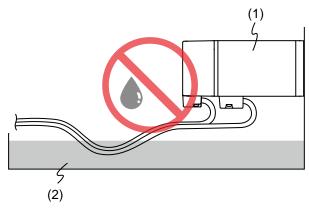

Important: when you are doing the measurements, rotate the coupling and the motor shaft together.

2

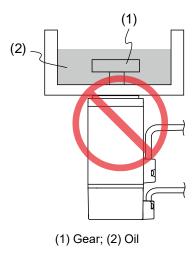

Installation safety precautions for motor shaft accessories

■ When connecting the shaft, make sure that the required centering precision is reached. If the shaft is not correctly centered, vibration may damage the bearings and encoder.

When installing the coupling, do not apply excessive force to the shaft or the area around the encoder, as the impact may damage the encoder.


- If the coupling makes any abnormal noise, realign the shaft until the noise disappears.
- Ensure the axial load and radial load are within the specifications. Refer to the specifications for the maximum axial load (N) and maximum radial load (N) for each servo motor.
- Use a bearing puller (D) to remove the motor shaft accessories (such as a coupling, gear or belt pulley). Do not tug or apply excessive force.

2.4.5 Oil and water prevention measures for the servo motor


Follow these precautions and do not allow water, oil, or other foreign objects to enter the servo motor.

Do not submerge the cable in oil or water.

(1) Servo motor; (2) Oil

- If oil or water is unavoidable, use oil-resistant cables. Delta does not provide oil-resistant cables.
- If the servo motor must be mounted with the shaft end up, do not use it in a machine, gearbox, or other environment where the servo motor may have contact with oil or water.

- Do not use the servo motor in an environment with cutting fluids. Depending on the type of cutting fluids, the sealing materials, coated colloids, cables, or other components may be affected or even deteriorated.
- Do not continuously expose the servo motor to oil mist, water vapor, oil, water, or grease.

If you cannot avoid using the servo motor under the preceding conditions, take prevention measures to avoid dirt and water from entering the machine.

2.4.6 Measures to suppress temperature increase of the servo motor

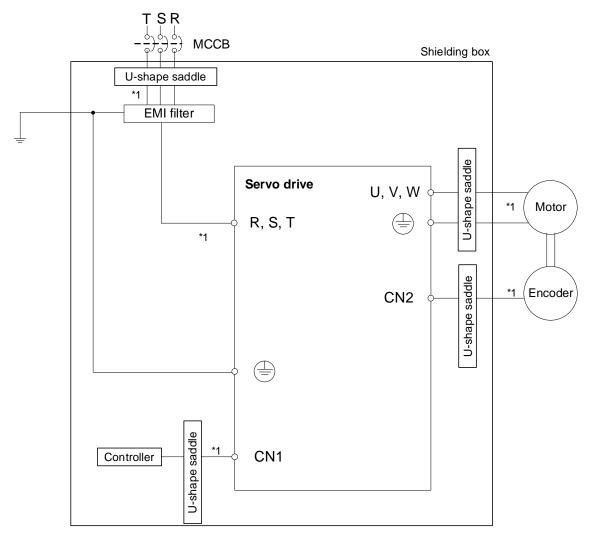
When installing the servo motor, pay attention to the cooling conditions (such as size of the heat sink) provided in the specifications of each servo motor type.

- The heat generated during motor operation is dissipated to the heat sink through the motor mounting surface. Therefore, if the surface area of the heat sink is too small, the temperature of the servo motor may increase abnormally.
- If it is difficult to apply large heat sinks in the operating environment or if the ambient air temperature or altitude exceeds the given specifications, take the following measures:
 - (1) Reduce the full-load rating of the servo motor. For more details, refer to the specifications of each servo motor type. When selecting servo motors, consider motors with the power capacity 1 to 2 levels higher.
 - (2) Reduce the acceleration and deceleration of the work cycle to lower the motor load.
 - (3) Apply external forced air cooling to the servo motor by using cooling fans or other methods.

Important: do not place a gasket or other insulating materials between the servo motor and heat sink, as it may cause motor temperature increase and poor noise immunity, and result in malfunction.

2.5 Specifications for the circuit breaker, magnetic contactor and fuse

Servo drive model	Circuit breaker	Magnetic contactor	Fuse (Class T)
ASD-E3-0121-2	5 A	5 A	10 A
ASD-E3-0221-2	5 A	5 A	10 A
ASD-E3-0421-2	10 A	10 A	10 A
ASD-E3-0721-2	10 A	10 A	20 A
ASD-E3-1021-2	15 A	15 A	30 A
ASD-E3-1521-2	20 A	20 A	30 A
ASD-E3-2023-2	30 A	30 A	50 A
ASD-E3-3023-2	30 A	30 A	50 A


Note:

- 1. In the servo drive model name, 2 represents the model type.
- 2. Operation mode: standard.
- 3. If the servo drive is equipped with a residual-current device (RCD) for electricity leakage protection, select a circuit breaker with sensitivity of at least 200 mA and with minimum 0.1 sec working time to avoid incorrect operation of the RCD.
- 4. Select the Type B residual-current device (RCD) with time delay, as the system ground wire may contain DC electricity.
- 5. Use the fuse and circuit breaker that comply with the UL / CSA standard.

2

2.6 Installation requirements for EMC

This section illustrates the installation requirements for passing the EMC test. Note that the EMC rating varies based on the installation structure or wiring. Delta servo products are designed in accordance with the EMC standards. Refer to the following diagram for the standard installation, through which Delta servo products passed the EMC test.

Note:

1. Use shielded wires.

2.6.1 EMI filters

All electronic equipment (including servo drives) generate high or low frequency noise during operation, which interferes with peripheral equipment through conduction or radiation. With an EMI filter correctly installed and used, you can eliminate much of the interference. For optimized performance, it is recommended that you use Delta's EMI filter for suppressing the interference.

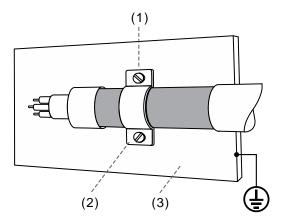
D	Odifference del	Recommended EMI filter		
Power	Servo drive model	1PH	3PH	
100 W	ASD-E3-0121-2	EMF023A21A	EMF10AM23A	
200 W	ASD-E3-0221-2	EMF023A21A	EMF10AM23A	
400 W	ASD-E3-0421-2	EMF023A21A	EMF10AM23A	
750 W	ASD-E3-0721-2	EMF023A21A	EMF10AM23A	
1 kW	ASD-E3-1021-2	EMF023A21A	EMF10AM23A	
1.5 kW	ASD-E3-1521-2	EMF023A21A	EMF10AM23A	
2 kW	ASD-E3-2023-2	-	EMF021A23A	
3 kW	ASD-E3-3023-2	-	EMF021A23A	

Note: in the servo drive model name, 2 represents the model type.

General precautions for installation

To ensure the best performance of the EMI filter, apart from the installation and wiring instructions of the servo drive in the user manual, refer to these precautions:

- 1. The servo drive and EMI filter must be mounted on the same metal plate.
- The wiring should be as short as possible.
- 3. The metal plate must be well grounded.
- 4. It is recommended that you install one servo drive with one EMI filter.

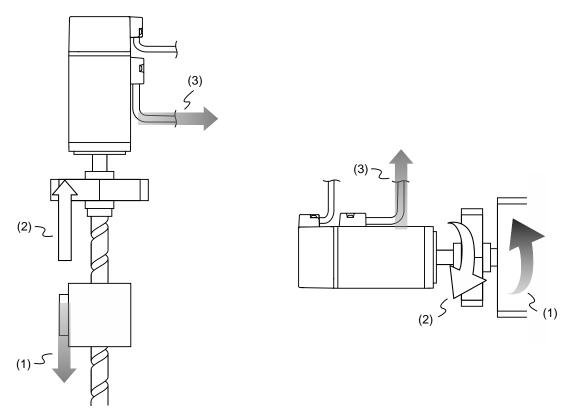

More specifications for mounting the EMI filter are listed as follows:

- 1. EN61000-6-4 (2001)
- 2. EN61800-3 (2004) PDS of category C2
- 3. EN55011+A2 (2007) Class A Group 1

Motor power cable selection and installation precautions

The selection of motor power cable and installation accuracy determine the performance of the EMI filter. Follow these precautions:

- 1. Use a cable that has braided shielding (the effect of double shielding is better).
- 2. The shield on both ends of the power cable should be grounded with the shortest distance and the largest contact area.
- Remove the protective paint on the U-shape saddle and metal plate to ensure good contact.
 See the following figure.
- 4. Correctly connect the braided shielding of the power cable and the metal plate: fix the braided shielding on both ends of the power cable with the U-shape saddle and metal plate. See the following figure.



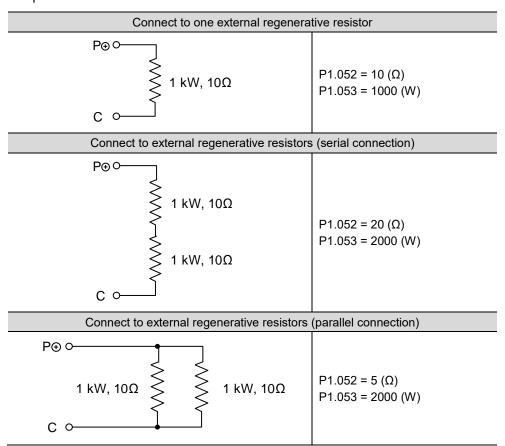
- Remove the protective paint on the U-shape saddle and metal plate to ensure good contact
- (2) U-shape saddle
- (3) Well-grounded metal plate

ASDA-E3 Installation

Selecting the regenerative resistor 2.7

Some of the Delta servo drive models have a built-in regenerative resistor, and you can use an external regenerative resistor if needed. When the direction of torque is opposite to the direction of rotation, the energy generated returns to the servo drive from the load. This energy is turned into electricity in the capacitor of the DC Bus and thus increases the voltage. When the voltage reaches a given value, the excess energy is consumed by a regenerative resistor. Refer to the following table to select the suitable regenerative resistor.

(1) Moving direction of the object; (2) Direction of torque; (3) Regenerative energy

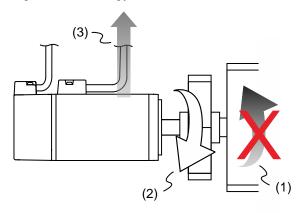

Specifications of the built-in regenerative resistor in the servo drive are as follows:

Servo drive (kW)	Specifications of the built-in regenerative resistor Resistance (Ohm) Capacity (W		Capacity of the built-in regenerative resistor (Watt)	Minimum allowable resistance value (reference for external resistors) (Ohm)
0.1	-	-	-	60
0.2	-	-	-	60
0.4	-	-	-	60
0.75	100	40	20	60
1.0	100	40	20	30
1.5	100	40	20	30
2.0	20	80	40	15
3.0	20	80	40	15

When the regenerative energy exceeds the capacity of the built-in regenerative resistor, use an external regenerative resistor. Pay special attention to the following when using a regenerative resistor:

- Correctly set the resistance value (P1.052) and capacity (P1.053) for the regenerative resistor; otherwise it might affect the performance.
- 2. When using an external regenerative resistor, ensure the total resistance value is greater than the minimum allowable resistance value of the servo drive.
- 3. For general applications, you can connect more than one resistor in series. If the resistance value (from resistors connected in series) exceeds the rated range, you can reduce the value by connecting the resistors in parallel. If you want to connect the resistors in parallel to increase the power of the regenerative resistors, make sure the resistance value meets the requirements.

See the following diagrams and settings for connecting the regenerative resistors in series and in parallel.



4. Normally, if the capacity of the regenerative resistor (the average value) is within the rated capacity, the temperature of the resistor can increase to 120°C (248°F) or even higher under the condition that the regenerative energy continues to function. For safety reasons, apply forced cooling to reduce the temperature of the regenerative resistor. Alternatively, you can use the regenerative resistors equipped with thermal switches. Contact the manufacturer for the load characteristics of the regenerative resistor.

When installing an external regenerative resistor, connect the resistor to $P \oplus$ and C contacts, and leave $P \oplus$ and D contacts open. It is recommended that you choose external regenerative resistors of the resistance values specified in the table on page 19. For easy calculation of the required regenerative resistor capacity, regardless of the energy consumed by IGBT, select the capacity of the external regenerative resistor according to the selected motor.

Selecting the regenerative energy

(a) Calculation of the regenerative energy when there is no external torque.

- (1) Moving direction of the object; (2) Direction of torque;
- (3) Regenerative energy generated when the motor decelerates

If the motor is making a reciprocating motion, the regenerative resistor consumes the excess return energy. Refer to the following table when making calculations and selecting the required regenerative resistor.

Servo drive (kW)		Motor	Rotor inertia (× 10 ⁻⁴ kg.m ²)	Regenerative energy generated when the motor decelerates from the rated speed to a stop without load Eo (joule)	Maximum regenerative energy that can be absorbed by the capacitor Ec (joule)
Low inertia	0.1	ECM-E3L-C2040134E	0.0229	0.15	4.21
	0.2	ECM-E3M-C2060234E	0.141	0.70	5.62
	0.4	ECM-E3M-C2060434E	0.254	1.26	8.42
	0.75	ECM-E3M-C2080734E	1.07	5.29	18.25
Medium inertia	1.0	ECM-E3M-E2131034E	7.79	17.12	26.21
	1.5	ECM-E3M-E2131534E	11.22	24.66	34.94
	2.0	ECM-E3M-E2132034E	14.65	32.20	26.21
	3.0	ECM-E3M-F2183034E	53.63	66.3	31.82

Note: in the servo motor model name, ② represents the encoder type; ③ represents the brake or keyway / oil seal type; and ④ represents the shaft diameter and connector type.

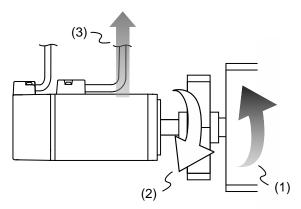
Assuming that the load inertia is N times the motor inertia, when the motor decelerates from 3,000 rpm to a stop, the regenerative energy is $(N + 1) \times Eo$ and the regenerative resistor needs to consume $(N + 1) \times Eo$ - Ec joules. Assuming that the reciprocating motion cycle is T sec, then the required power of regenerative resistor = $2 \times ((N + 1) \times Eo$ - Ec) / T.

The calculation is as follows:

Step	Item	Calculation and setting method
1	Set the capacity of the regenerative resistor to the maximum.	Set P1.053 to the maximum value.
2	Set the motion cycle (T).	Manual input.
3	Set the rotation speed (wr).	Manual input or read the status with P0.002.
4	Set the ratio (N) of the load inertia to the motor inertia.	Manual input or read the status with P0.002.
5	Calculate the maximum regenerative energy (Eo).	Eo = J × wr² / 182
6	Find the regenerative energy that can be absorbed by the capacitor (Ec).	Refer to the preceding table.
7	Calculate the required capacity of the regenerative resistor.	2 × ((N + 1) × Eo - Ec) / T

Take the 400 W motor (ECM-E3M-CA0604RSE) for example. When the reciprocating motion cycle (T) is 0.4 sec, the maximum rotation speed is 3,000 rpm, and the load inertia is 15 times of the motor inertia:

Servo drive (kW)	Motor	Rotor inertia J (× 10 ⁻⁴ kg.m²)	Regenerative energy generated when the motor decelerates from the rated speed to a stop without load Eo (joule)	Maximum regenerative energy that can be absorbed by the capacitor Ec (joule)
0.4	ECM-E3M-CA0604RSE	0.254	1.26	8.42


Find the maximum regenerative energy: Eo = 1.26 joules (from the preceding table).

Find the maximum regenerative energy that can be absorbed by the capacitor: Ec = 8.42 joules (from the preceding table).

The required capacity of the regenerative resistor = $\frac{2 \times ((N+1) \times Eo - Ec)}{T} = \frac{2 \times ((15+1) \times 1.26 - 8.42)}{0.4} = 58.7 \text{ W}.$

From the preceding calculation, the required power of the regenerative resistor is 58.7 W. Since the 400 W servo drive does not have a built-in regenerative resistor, an **external** regenerative resistor of 120 W is needed. In general, the built-in regenerative resistor can meet the requirement when the external load is not too great.

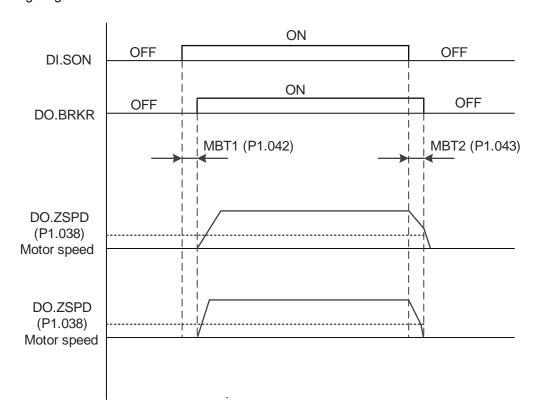
(b) Calculation of the regenerative energy when there is external torque and the motor does negative work.

(1) Moving direction of the object; (2) Direction of torque; (3) Regenerative energy

Usually, when the motor does positive work, the motor's torque direction is identical to the rotation direction. However, in some circumstances, the motor's torque direction is opposite to the rotation direction. This means the motor is doing negative work and the external energy is applied to the servo drive through the motor. For instance, if the external force direction is identical to the rotation direction (such as downward motion of the vertically-mounted machine), the servo system outputs more power to counterbalance the excessive external force (the weight of the vertically-mounted machine) in order to keep up with the specified target speed. In this case, considerable energy returns to the servo drive. When the DC Bus is full and cannot store more energy, the excess energy is consumed by the regenerative resistor.

Example:

For the 400 W motor (ECM-E3M-CA0604RSE), when the torque of the external load is +70% of the rated torque (1.27 N-m) with the rotation speed up to 3,000 rpm, the required external regenerative resistor is: $2 \times (0.7 \times 1.27) \times (\frac{3000 \times 2 \times \pi}{60}) = 558 \text{ W}.$

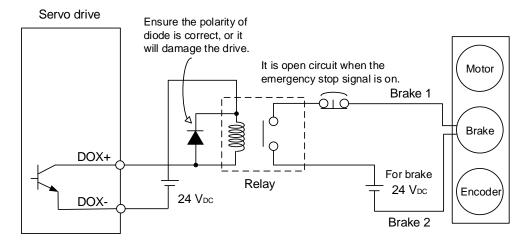

Therefore, a regenerative resistor of 560 W and 60 Ω^* is needed.

Note: the minimum allowable resistance value is 60Ω for the external resistor of the 400 W servo drive.

2.8 The use of braking

A brake is usually used for motions in the Z-axis direction because gravity causes the machine to fall. A brake can prevent the machine from falling and reduce the motor's excessive resistance. The motor lifespan could be reduced due to the excessive heat generated by continuous resistance. To avoid incorrect operation, the brake can be enabled only when the servo is switched off. The drive controls the brake with DO. If DO.BRKR is set to off, it means the brake is not operating and the motor is clamped; if DO.BRKR is set to on, it means the brake is operating and the motor can run freely. You can use MBT1 (P1.042) and MBT2 (P1.043) for the delay time settings.

Timing diagram of brake control:



Output timing of the DO.BRKR signal:

- When the servo drive is off and the time set by P1.043 is exceeded, but the motor speed is still higher than the speed set by P1.038, DO.BRKR is off (the motor is clamped).
- 2. When the servo drive is off and the time set by P1.043 is not yet reached, but the motor speed is already lower than the speed set by P1.038, DO.BRKR is off (the motor is clamped).

Normally, DO.BRKR (0x08) should be on when the servo is in the Servo On state, which means the brake is operating and the motor can run freely. When in an emergency, press the emergency stop button to open the circuit and set DI.EMGS (0x21) to on. Then, AL013 is triggered, and the motor is immediately stopped.

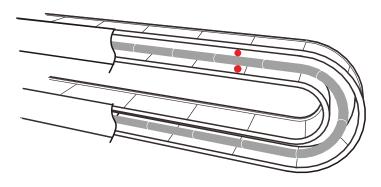
Wiring of the brake:

Note:

- 1. Refer to Chapter 3 Wiring.
- 2. Use a 24 V_{DC} power supply for the brake. Do not share the same power supply with control signals.
- 3. There is no polarity for the brake coil.

Calculate the brake's rated current (ECM-E3M-CA0604RSE is used as an example here). Power consumption of the brake (at 20°C or 68°F) = 7.6 W (refer to Appendix A Specifications), so the brake's rated current = $\frac{7.6 \text{ W}}{24 \text{V}}$ = 0.32 A.

2.9 The use of cable


Precautions for using standard cable:

Do not use the standard cable when the application requires the cable to move or bend. If required, use a flexible cable instead.

Precautions for using flexible cable:

- Inappropriate installation and wrong usage shorten the cable lifetime.
- Do not twist the cable when installing.
- Do not fix the cable on or near the bending part, otherwise the cable may break.
- After cable fixation, make sure the cable can be moved with ease, so that it does not create excessive tension on the bending or fixation part.
- Prevent the connectors of the cable from being subject to stress.
- Excessive cable length causes unnecessary bending, while insufficient cable length leads to breakage due to the excessive tension on the cable fixation part. Estimate the suitable cable length by dragging the cable carrier to the longest and shortest possible.

- When installing the cable carrier, avoid contact between the cables. Do not stack the cables one above the other; use dividers to prevent cable entanglement instead.
- Avoid scraping, crushing, or stepping on the cable. This can damage the inner wires even when the cable seems intact on the outside.
- Do not bend the flexible cable under any normal circumstances. Refer to Section 3.1.6.4 for detailed flexible cable specifications.

Wiring

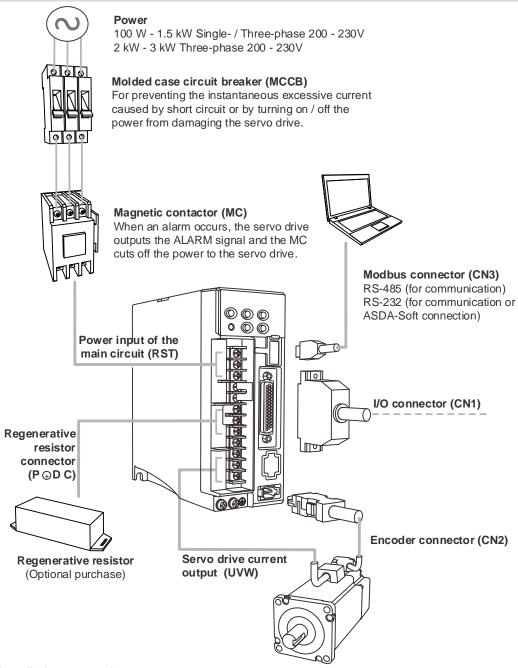
3

This chapter illustrates the power supply circuit, connectors, and wiring for each control mode of the servo drive.

3.1	Sys	tem	connection	3-3
3	.1.1	Cor	nnecting to peripheral devices (connecting to Delta communication	type
		ser	vo motor)·····	3-3
3	.1.2	Cor	nnectors and terminals of the servo drive······	3-5
3	.1.3	Wir	ing for power supply ······	3-6
3	.1.4	UV۱	W power connector specifications ······	3-8
	3.1.	4.1	F40 - F80 motors – Power connectors·····	3-9
	3.1.	4.2	F100 - F130 motors – Power connectors ·····	3-10
	3.1.	4.3	F180 motors – Power connectors	3-12
3	.1.5	Spe	ecification for encoder cable and connector ·····	3-14
	3.1.	5.1	F40 - F80 motors – Encoder connectors ·····	3-14
	3.1.	5.2	F100 - F180 motors – Encoder connectors·····	3-17
3	.1.6	Wir	e selection·····	3-21
	3.1.	6.1	Wire size / screw terminal block dimensions / screw and tightening	g
			torque specifications ·····	3-21
	3.1.	6.2	Encoder cable specifications	3-22
	3.1.	6.3	Power cable specifications ·····	3-23
	3.1.	6.4	Flexible cable specifications	3-25
3	.1.7	Wir	ing for IP67 waterproof connectors·····	3-26
	3.1.	7.1	F130 - F180 motors - Waterproof connector installation and wiring	g 3-26
	3.1.	7.2	IP67 waterproof connector installation and wiring specifications	3-27
3.2	Wir	ing d	iagrams for the servo system ······	3-28
3.3	Wir	ing fo	or the CN1 I/O connector ·····	3-30
3	.3.1	CN	1 I/O connector (-L models)·····	3-30
3	.3.2	CN	1 I/O connector signal description (-L models) ·····	3-32
3	.3.3	Wir	ing with CN1 quick connector (-L models)	3-35
3	.3.4	CN	1 I/O connector pin assignment (-E models)	3-38
3	.3.5	CN	1 I/O connector signal description (-E models)	3-39
3	.3.6	CN	1 wiring diagrams·····	3-41
3.4	Wir	ing fo	or the CN2 encoder connector	3-48
3 5	Wir	ina fa	or the CN3 connector (-L models) ······	3-51

Wiring ASDA-E3

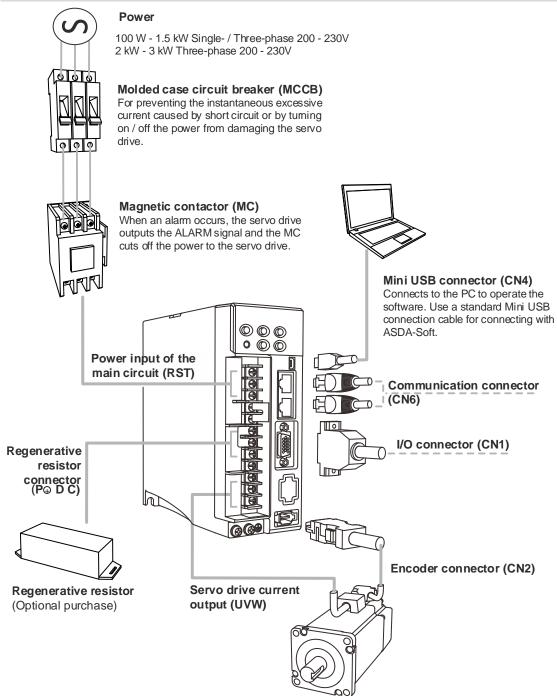
3


3.6	CN4 connector (Mini USB) (-E models)				
3.7	Wiri	ing for the CN6 connector (-E models)	3-54		
3.8	Sta	ndard wiring example······	3-57		
3	.8.1	Position (PT) control mode – differential line driver input 3	3-57		
3	.8.2	Position (PT) control mode – open collector input ······ 3	3-58		
3	.8.3	Position (PR) control mode – internal position commands	3-59		
3	.8.4	Speed (S) control mode ·····	3-60		
3	.8.5	Torque (T) control mode	3-62		
3	.8.6	Communication mode – EtherCAT · · · · · · · · · · · · · · · · · · ·	3-64		

3.1 System connection

3.1.1 Connecting to peripheral devices

(connecting to Delta communication type servo motor)



Installation precautions:

- Make sure the power supply and wiring for the RST terminal block are correct. Refer to the specifications of the servo drives in Appendix A for the correct voltage input to avoid any damage to the servo drive and dangerous operating conditions.
- Make sure the UVW terminal block is correctly wired to avoid abnormal operation of the motor
- 3. When an external regenerative resistor is used, P⊕ and D contacts should be left open, and the external regenerative resistor should connect to P⊕ and C contacts. When the built-in regenerative resistor is used. P⊕ and D contacts should be short-circuited, and P⊕ and C contacts should be left open.
- 4. When an alarm occurs or the system is under emergency stop status, use DO.ALRM or DO.WARN to switch off the magnetic contactor (MC) to cut off the power to the servo drive.

3

E3-E models

Installation precautions:

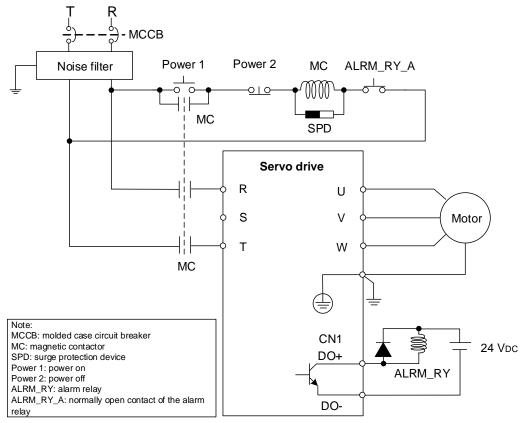
- Make sure the power supply and wiring for the RST terminal block are correct. Refer to the specifications of the servo drives in Appendix A for the correct voltage input to avoid any damage to the servo drive and dangerous operating conditions.
- Make sure the UVW terminal block is correctly wired to avoid abnormal operation of the motor.
- 3. When an external regenerative resistor is used, P⊕ and D contacts should be left open, and the external regenerative resistor should connect to P⊕ and C contacts. When the built-in regenerative resistor is used. P⊕ and D contacts should be short-circuited, and P⊕ and C contacts should be left open.
- 4. When an alarm occurs or the system is under emergency stop status, use DO.ALRM or DO.WARN to switch off the magnetic contactor (MC) to cut off the power to the servo drive.

3.1.2 Connectors and terminals of the servo drive

Terminal	Name	Description			
R, S, T	Power input for the main circuit	Connect to three-phase AC power. (Refer to the model specification for the proper input voltage.)			
		Connect to	the servo	motor.	
		Terminal	Wire color	Description	
		U	Red		
U, V, W, FG	Motor power connector	V	White	A three-phase main power cable for the motor.	
		W	Black	Tor the motor.	
		FG	Yellow / Green	Connect to the ground terminal on the servo drive.	
		Use the built-in resistor		Short-circuit P⊕ and D contacts, and leave P⊕ and C contacts open.	
P⊕, D, C, ⊝	Regenerative resistor terminal or power regenerative unit	Use an external resistor		Connect the resistor to P⊕ and C contacts, and leave P⊕ and D contacts open.	
	regenerative unit	Use an external power regenerative unit		Connect the power regenerative unit to P⊕ and ⊝ contacts, and leave P⊕ & D contacts and P⊕ & C contacts open.	
(b)	Ground terminals	Connect to motor.	o the grour	nd wires for the power and servo	
CN1	I/O connector	Connect to		oller. Refer to Section 3.3 for more	
CN2	Encoder connector	Connect to informatio		der. Refer to Section 3.4 for more	
CN3	Modbus communication connector	on For E3-L models to communicate with Modbus (RS-485 or RS-232) or connect to PC (RS-232) Section 3.5 for more information.		or connect to PC (RS-232). Refer to	
CN4	Mini USB connector	For E3-E models to connect to PC or laptop. Refer to Section 3.6 for more information.			
CN6	EtherCAT communication connector	For E3-E models to communicate with EtherCAT devices. Refer to Section 3.7 for more information.			

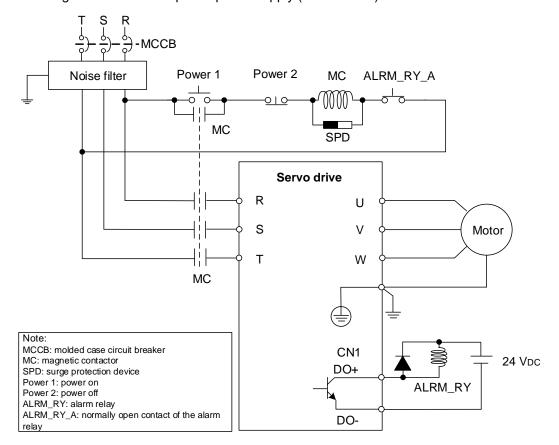
Pay special attention to the following when wiring:

- 1. When the power is off, do not touch R, S, T and U, V, W, and P⊕, D, C, ⊝ wires since the built-in capacitor of the servo drive can still contain a dangerously large amount of electric charge. Wait until the "CHARGE" indicator is off.
- 2. Separate the RST power cable and the UVW power cable from other cables. The separation should be at least 30 cm (11.8 inches).
- For the encoder cable used to connect CN2, use a metal braided shielded twisted-pair cable that conforms to the UL 2464 standard.
- 4. When using RS-485 or RS-232, use the shielded twisted-pair communication cable to ensure the communication quality.
- 5. When selecting the wires, refer to Section 3.1.6.
- 6. Do not use any external capacitors, or it may damage the servo drive.


3.1.3 Wiring for power supply

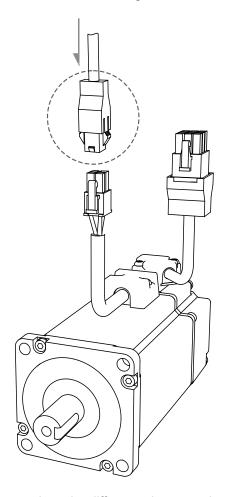
There are two methods for wiring the power supply: single-phase and three-phase.

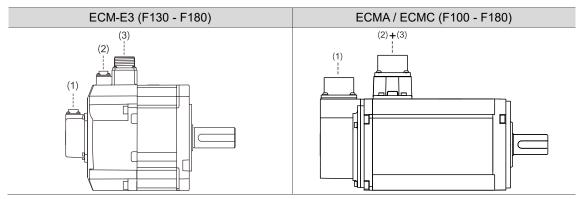
The single-phase wiring is only applicable to models of 1.5 kW or below. In the following diagram, Power 1 and ALRM_RY_A are normally open contacts, and Power 2 is a normally closed contact. MC (magnetic contactor) is the power relay and the contact for the main power circuit.


Important: connecting the single-phase power to R and T terminals is recommended.

■ Wiring method for single-phase power supply (for models of 1.5 kW or below)

Note: wire the CN1 connector with the actual DO parameters of each model.


■ Wiring method for three-phase power supply (for all series)


Note: wire the CN1 connector with the actual DO parameters of each model.

3.1.4 UVW power connector specifications

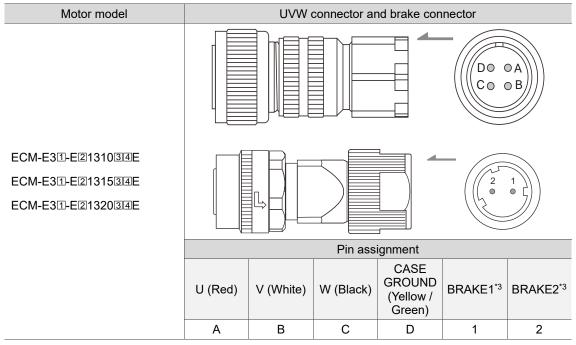
Select the corresponding power connector according to the motor frame size.

(2) and (3) in the following figures show the difference between the military connectors for the ECM-E3 motors and the ECMA / ECMC (old series) motors.

(1) Encoder connector; (2) Brake connector; (3) UVW power connector

3.1.4.1 F40 - F80 motors - Power connectors

Motor model	UVW connector					
		42				
			Pin ass	ignment		
ECM-E311-C20401334E	U (Red)	V (White)	W (Black)	CASE GROUND (Yellow / Green)	BRAKE1	BRAKE2
	1	2	3	4	-	-
ECM-E311-C20602314E ECM-E311-C20604314E ECM-E311-C20807314E					63 52 41	
	Pin assignment					
	U (Red)	V (White)	W (Black)	CASE GROUND (Yellow / Green)	BRAKE1*3	BRAKE2*3
	1	2	4	5	3	6

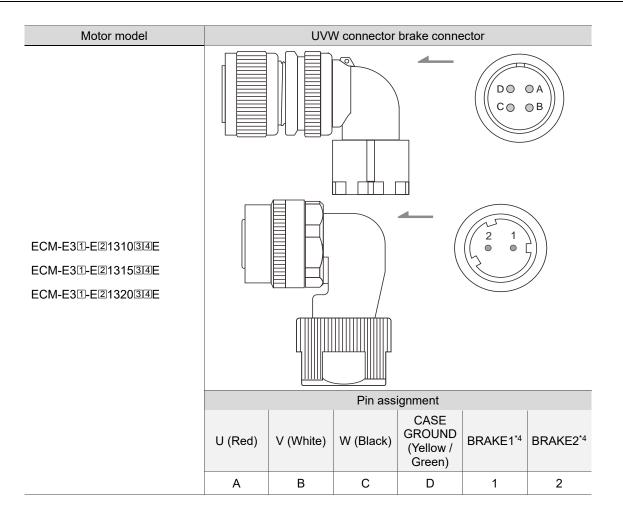

Note:

- In the servo motor model number, represents the motor inertia, represents the encoder type,
 represents the brake or keyway / oil seal type, and represents the shaft diameter and connector type.
- 2. Use a 24 V_{DC} power supply for the brake. Do not share the same power supply with control signals.
- 3. The brake coil has no polarity. Its pin symbols are BRAKE1 and BRAKE2. Color of brake wires for motors with the frame size of 40 80 mm: brown and blue.
- 4. When selecting the wires, refer to Section 3.1.6 for details.

Connector specifications:

Brand		Model number	
UVW	Delta	ACS3-CAPW1000	
OVVV	Molex	39-01-2041 (case)	
IVIOLEX	39-00-0040 (terminal)		
Brand		Model number	
UVW with Delta brake Molex	ACS3-CAPW2000		
	Molov	39-01-2061 (case)	
	Molex	39-00-0040 (terminal)	

3.1.4.2 F100 - F130 motors - Power connectors

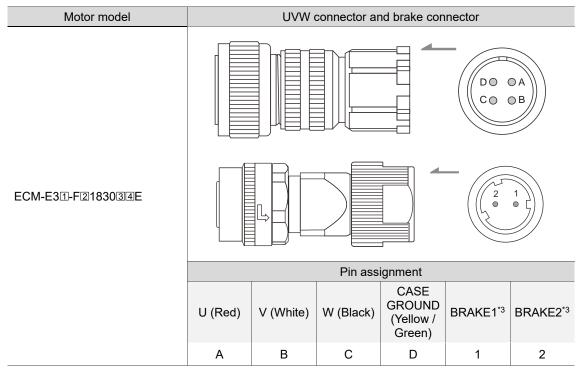

Note:

- In the servo motor model number, represents the motor inertia, represents the encoder type,
 represents the brake or keyway / oil seal type, and represents the shaft diameter and connector type.
- 2. Use a 24 V_{DC} power supply for the brake. Do not share the same power supply with control signals.
- The brake coil has no polarity. Its pin symbols are BRAKE1 and BRAKE2. Color of brake wires for motors with the frame size of 130 mm or above: red and black.
- 4. When selecting the wires, refer to Section 3.1.6 for details.

Connector specifications:

UVW	Brand	Model number	IP rating
MIL 18-10S Delta SUNCHU		ACS3-CAPWA000	IP67
		CMS3106A18-10SBI (connector & compression ring)	IP67
Brake	Brand	Model number	IP rating
	Delta	ACS3-CABRA000	IP67
CMV1-2S	DDK	CM1V1-SP2S-M1	IP67
	SUNCHU	SC-CMV1-SP02C	IP67

ASDA-E3 Wiring

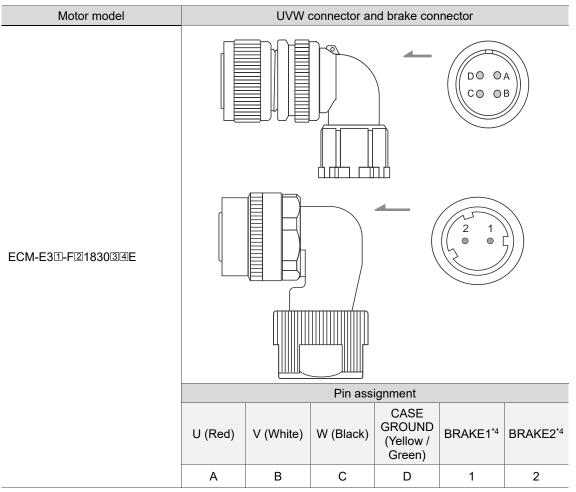

Note:

- In the servo motor model number, represents the motor inertia, represents the encoder type,
 represents the brake or keyway / oil seal type, and represents the shaft diameter and connector type.
- 2. Use a 24 V_{DC} power supply for the brake. Do not share the same power supply with control signals.
- The brake coil has no polarity. Its pin symbols are BRAKE1 and BRAKE2. Color of brake wires for motors with the frame size of 130 mm or above: red and black.
- 4. When selecting the wires, refer to Section 3.1.6 for details.

Connector specifications:

UVW	Brand	Model number	IP rating
MIL 18-10S Delta SUNCHU		ACS3-CRPWA000	IP67
		CMS3108A18-10SBI (connector & compression ring)	IP67
Brake	Brand	Model number	IP rating
	Delta	ACS3-CRBRA000	IP67
CMV1-2S	DDK	CMV1-AP2S-M1	IP67
	SUNCHU	SC-CMV1-AP02C	IP67

3.1.4.3 F180 motors - Power connectors



Note:

- In the servo motor model number, represents the motor inertia, represents the encoder type,
 represents the brake or keyway / oil seal type, and represents the shaft diameter and connector type.
- 2. Use a 24 V_{DC} power supply for the brake. Do not share the same power supply with control signals.
- The brake coil has no polarity. Its pin symbols are BRAKE1 and BRAKE2. Color of brake wires for motors with the frame size of 130 mm or above: red and black.
- 4. When selecting the wires, refer to Section 3.1.6 for details.

Connector specifications:

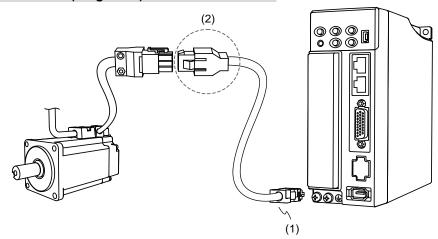
UVW	Brand	Model number	IP rating
MIL 22-22S SUNCHU		ACS3-CAPWC000	IP67
		CMS3106A22-22SBI (connector & compression ring)	IP67
Brake	Brand	Model number	IP rating
	Delta	ACS3-CABRA000	IP67
CMV1-2S	DDK	CM1V1-SP2S-M1	IP67
	SUNCHU	SC-CMV1-SP02C	IP67

Note:

- In the servo motor model number, represents the motor inertia, represents the encoder type,
 represents the brake or keyway / oil seal type, and represents the shaft diameter and connector type.
- 2. Use a 24 V_{DC} power supply for the brake. Do not share the same power supply with control signals.
- The brake coil has no polarity. Its pin symbols are BRAKE1 and BRAKE2. Color of brake wires for motors with the frame size of 130 mm or above: red and black.
- 4. When selecting the wires, refer to Section 3.1.6 for details.

Connector specifications:

UVW	Brand	Model number	IP rating
MIL 22-22S Delta SUNCHU		ACS3-CRPWC000	IP67
		CMS3108A22-22SBI (connector & compression ring)	IP67
Brake	Brand	Model number	IP rating
	Delta	ACS3-CRBRA000	IP67
CMV1-2S	DDK	CMV1-AP2S-M1	IP67
	SUNCHU	SC-CMV1-AP02C	IP67


Wiring ASDA-E3

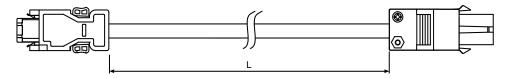
3.1.5 Specification for encoder cable and connector

Select the corresponding encoder connector according to the motor frame size.

3.1.5.1 F40 - F80 motors - Encoder connectors

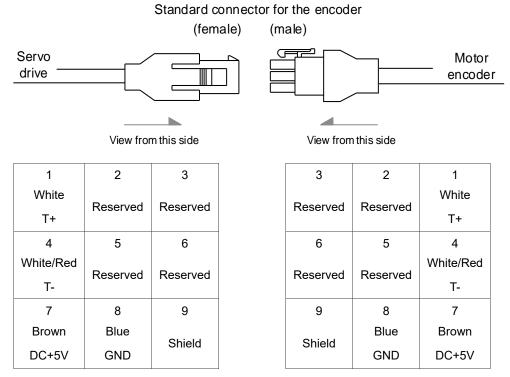
Encoder connection (Diagram 1): standard connector

(1) CN2 connector; (2) Standard connector

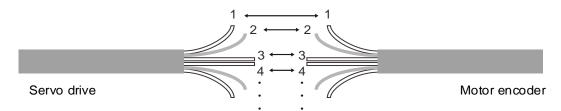

Note: the diagram shows the connection between the servo drive and the encoder, and it is not drawn to scale. The specification is subject to change depending on the selected servo drive and motor models.

Motor model	Standard connector		
ECM-E311-C20401334E ECM-E311-C20602334E		123 456 789	
ECM-E311-C2060434E	Recommended brand	Model number	
ECM-E311-C20807314E	Delta	ACS3-CAEN0000	
	TE Connectivity	1-172161-9 or 172161-1 (case) 170359-1 (tin-plated terminal) 170359-3 (gold-plated terminal)	

Note:


- In the servo motor model number, represents the motor inertia, represents the encoder type,
 represents the brake or keyway / oil seal type, and represents the shaft diameter and connector type.
- 2. We recommend using the connector with tin-plated terminals since the connector of the encoder cable from the servo motor side is also tin-plated.
- 3. When selecting the wires, refer to Section 3.1.6 for details.

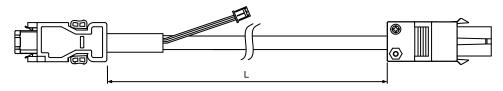
Specifications and pin assignment of the standard connector for the incremental encoder of E3 motors



Model number of incremental encoder cable	L		
	mm	inch	
ACS3-CAE□0103	3000 ± 50	118 ± 2	
ACS3-CAE□0105	5000 ± 50	197 ± 2	
ACS3-CAE□0110	10000 ± 100	394 ± 4	
ACS3-CAE□0120	20000 ± 100	787 ± 4	

Note: select cables according to the \Box in the model number. F represents flexible cables and N represents standard cables.

Note: the wire colors of the encoder cable for the servo drive are for reference only. Refer to the actual product.

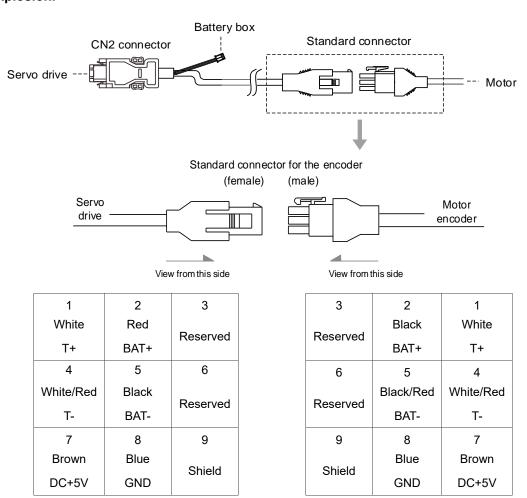


To directly connect the wires without using the connectors, number the wires of the servo drive encoder cable in sequence, and then connect them to the wires of the motor encoder cable. For example, connect wire No. 1 of the servo drive encoder cable to wire No. 1 of the motor encoder cable, and so on.

3

[E3-L does not support the absolute functions]

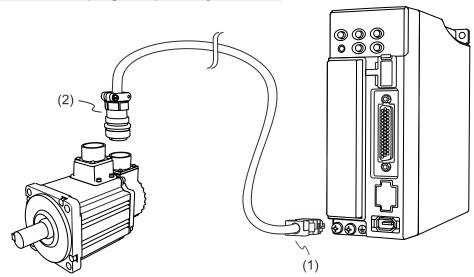
Specifications and pin assignment of the standard connector for the absolute encoder of E3 motors



Model number of absolute encoder cable	L		
	mm	inch	
ACS3-CAE□0103	3000 ± 50	118 ± 2	
ACS3-CAE□0105	5000 ± 50	197 ± 2	
ACS3-CAE□0110	10000 ± 100	394 ± 4	
ACS3-CAE□0120	20000 ± 100	787 ± 4	

Note: select cables according to the \Box in the model number. B represents flexible cables and A represents standard cables.

Connection method:


Caution Follow these instructions when wiring. Incorrect wiring may cause battery explosion.

Note: the wire colors of the encoder cable for the servo drive are for reference only. Refer to the actual product.

3.1.5.2 F100 - F180 motors - Encoder connectors

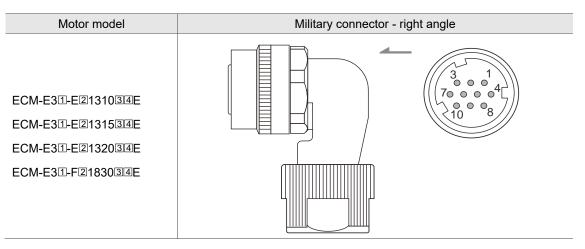
Encoder connection (Diagram 2): Military connector

(1) CN2 connector; (2) Military connector

Note: the diagram shows the connection between the servo drive and the encoder, and it is not drawn to scale. The specification is subject to change depending on the selected servo drive and motor models.

Motor model	Military connector - straight		
ECM-E311-E21310314E ECM-E311-E21315314E ECM-E311-E21320314E ECM-E311-F21830314E			

Note:


- In the servo motor model number, represents the motor inertia, represents the encoder type,
 represents the brake or keyway / oil seal type, and represents the shaft diameter and connector type.
- 2. When selecting the wires, refer to Section 3.1.6 for details.

Connector specifications:

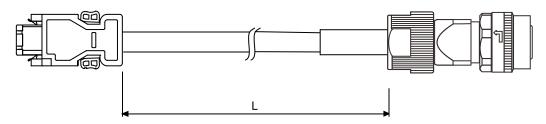
E3 encoder	Brand	Model number	IP rating
	Delta	ACS3-CAENA000	IP67
CMV1-SP10S	DDK	CMV1-SP10S-M1	IP67
	SUNCHU	SC-CMV1-SP10C	IP67

Note: refer to Section 3.1.7 for the wire diameter specification of the IP67 compliant Delta connectors. For connector specification of other brands, contact the manufacturers.

3

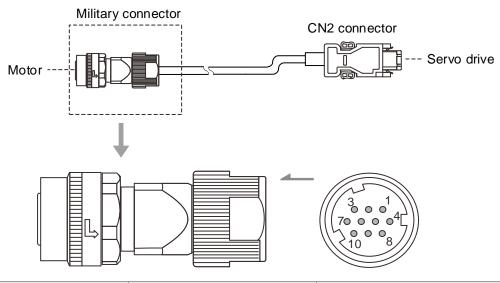
Note:

- In the servo motor model number, represents the motor inertia, represents the encoder type,
 represents the brake or keyway / oil seal type, and represents the shaft diameter and connector type.
- 2. When selecting the wires, refer to Section 3.1.6 for details.


Connector specifications:

E3 encoder	Brand	Model number	IP rating
	Delta	ACS3-CRENA000	IP67
CMV1-AP10S	DDK	CMV1-AP10S-M1	IP67
	SUNCHU	SC-CMV1-AP10C	IP67

Note: refer to Section 3.1.7 for the wire diameter specification of the IP67 compliant Delta connectors. For connector specification of other brands, contact the manufacturers.


Specifications and pin assignment of the straight military connector for the incremental encoder of E3 motors

For the model number of the incremental encoder cable with the right angle connector, refer to Section B.4.2. The pin assignment is the same for both the straight and right angle connectors.

Model number of	Model number of	L		
incremental encoder cable	connector	mm	inch	
ACS3-CAE□A103	CMV1-SP10S	3000 ± 50	118 ± 2	
ACS3-CAE□A105	CMV1-SP10S	5000 ± 50	197 ± 2	
ACS3-CAE□A110	CMV1-SP10S	10000 ± 100	394 ± 4	
ACS3-CAE□A120	CMV1-SP10S	20000 ± 100	787 ± 4	

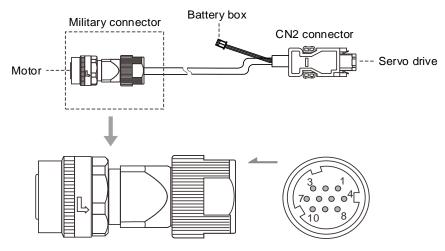
Note: select cables according to the \Box in the model number. F represents flexible cables and N represents standard cables.

Pin No.	Terminal	Color
1	T+	White
2	T-	White/Red
3	_	-
4	DC+5V	Brown
5, 6, 7, 8	_	-
9	GND	Blue
10	Shield	_

[E3-L does not support the absolute functions]

Specifications and pin assignment of the straight military connector for the absolute encoder of E3 motors

For the model number of the absolute encoder cable with the right angle connector, refer to Section B.5.2. The pin assignment is the same for both the straight and right angle connectors.



Model number of	Model number of	L		
absolute encoder cable	connector	mm	inch	
ACS3-CAE□A103	CMV1-SP10S	3000 ± 50	118 ± 2	
ACS3-CAE□A105	CMV1-SP10S	5000 ± 50	197 ± 2	
ACS3-CAE□A110	CMV1-SP10S	10000 ± 100	394 ± 4	
ACS3-CAE□A120	CMV1-SP10S	20000 ± 100	787 ± 4	

Note: select cables according to the \Box in the model number. B represents flexible cables and A represents standard cables.

Connection method:

Caution Follow these instructions when wiring. Incorrect wiring may cause battery explosion.

Pin No.	Terminal	Color
1	T+	White
2	T-	White/Red
3	_	_
4	DC+5V	Brown
5	BAT-	Black
6	BAT+	Red
7, 8	_	_
9	GND	Blue
10	Shield	_

3.1.6 Wire selection

3.1.6.1 Wire size / screw terminal block dimensions / screw and tightening torque specifications

The recommended wires for connectors and signal wiring for the servo drive are listed in the following tables:

- 1. The shield should connect to the ground terminal =.
- 2. When wiring, use the wires suggested in this section to avoid danger.

	Wire size	K.S. Term	ninals Inc.	Kise Terminal		Kss Terminal	
Servo drive model	U, V, W	Fork terminal	Ring terminal	Fork terminal	Ring terminal	Fork terminal	Ring terminal
ASD-E3-0121-2							
ASD-E3-0221-2	18 AWG	SVBL1-3.7	RVBM1-3.7	SVS 1.25-3.5	RVS 1.25-3.5	YF1.25-3	RF1.25-3
ASD-E3-0421-2	0.82 mm ²	SVBL 1-3.7					
ASD-E3-0721-2							
ASD-E3-1021-2	14 AWG	SVBL2-3.7	RVBM2-3.7	SV 3.5-3	RVS 2-3.5	YF3.5-3S	RF2-3
ASD-E3-1521-2	2.1 mm ²	3VBL2-3.7	RVDIVIZ-3.1	3 V 3.5-3	KV3 2-3.3	173.5-33	KF2-3
ASD-E3-2023-2	12 AWG	SVB3-4	RVB3-4	SV 3.5-4	RV 3.5-4	YF3.5-4	RF3.5-4
ASD-E3-3023-2	3.3 mm^2	3763-4	KVD3-4	3 V 3.5-4	KV 3.5-4	173.3-4	KF3.5-4

	Wire size	K.S. Term	ninals Inc.	Kise Terminal		Kss Terminal	
Servo drive model	R, S, T	Fork terminal	Ring terminal	Fork terminal	Ring terminal	Fork terminal	Ring terminal
ASD-E3-0121-2	22 AWG						
ASD-E3-0221-2	0.32 mm^2						
ASD-E3-0421-2	20 AWG 0.52 mm ²	SVBL1-3.7	RVBM1-3.7	SV 1.25-3	RV 1.25-3	YF1.25-3	RF1.25-3
ASD-E3-0721-2	16 AWG 1.3 mm ²						
ASD-E3-1021-2	14 AWG 2.1 mm ²	SVBL2-3.7	RVBM2-3.2	SV 3.5-3	RV 2-3	YF3.5-3S	RF2-3
ASD-E3-1521-2	12 AWG 3.3 mm ²	-	-	3 V 3.5-3	-	173.3-33	-
ASD-E3-2023-2	12 AWG 3.3 mm ²	SVBS5-4	RVBS5-4	SVS 5.5-4	RVS 5.5-4	YF5.5-4	RF5.5-4
ASD-E3-3023-2	10 AWG 5.3 mm ²	37635-4	KVB35-4	3v3 5.5-4	KV3 5.5-4	170.5-4	KF3.5-4

	Wire size	K.S. Term	S. Terminals Inc. Kise To		erminal	Kss Terminal	
Servo drive model	P+, C	Fork terminal	Ring terminal	Fork terminal	Ring terminal	Fork terminal	Ring terminal
ASD-E3-0121-2							
ASD-E3-0221-2							
ASD-E3-0421-2		SVBL2-3.7	BL2-3.7 RVBM2-3.2	SV 3.5-3	RV 2-3	YF3.5-3S	RF2-3
ASD-E3-0721-2	14 AWG						
ASD-E3-1021-2	2.1 mm ²						
ASD-E3-1521-2							
ASD-E3-2023-2		SVBL2-4	RVBL2-4	SV 3.5-4	RV 3.5-4	YF2-4	RF2-4
ASD-E3-3023-2		SVBLZ-4	INVOLZ-4	3 v 3.3-4	IXV 3.3-4	11-2-4	NF 2-4

3

If you choose terminals of other brands, refer to the following terminal block dimensions.

Servo drive model	Screw terminal block dimensions
ASD-E3-0121-2	
ASD-E3-0221-2	
ASD-E3-0421-2	7
ASD-E3-0721-2	7 mm
ASD-E3-1021-2	
ASD-E3-1521-2	
ASD-E3-2023-2	0.5 mm
ASD-E3-3023-2	9.5 mm

Note:

- 1. Choose the corresponding terminals for the servo drive to comply with the wiring specifications.
- 2. Use a crimping tool to properly crimp the terminals and wires.
- 3. Do not use bare wires for wiring, or the loose wires may cause accidents.
- 4. In the servo drive model number, 2 represents the model type.

Refer to the following screws specifications and ensure the tightening torque does not exceed the following specifications.

Screw specification and tightening torque (kgf-cm)										
Servo drive model	R	, S, T	U	, V, W	P±,	D, C, 😑	Ground	screw 🖶	(CN1
ASD-E3-0121-2										
ASD-E3-0221-2										
ASD-E3-0421-2	Ma	6 7	Mo	6 - 7	Mo	6 7				
ASD-E3-0721-2	M3	6 - 7	M3	6-7	M3	6 - 7	M4	12 - 14		2 - 2.5
ASD-E3-1021-2							IVI4	12 - 14	-	2 - 2.5
ASD-E3-1521-2										
ASD-E3-2023-2	N44	10 - 11	M4	10 - 11	M4	10 - 11				
ASD-E3-3023-2	M4	10 - 11	IVI4	10 - 11	IVI4	10 - 11				

3.1.6.2 Encoder cable specifications

Item	Standard cable Flexible cable				
Rom	ACS3-CAEN01XX	ACS3-CAEF01XX			
Model number	ACS3-CAENOTAX ACS3-CAENA1XX	ACS3-CAEFUTAX ACS3-CAEFA1XX			
	1100001=111111				
Cable type	UL2464 (Temp. rating: 80°C / 176°F)	UL2464 (Temp. rating: 80°C / 176°F)			
DC+5V, GND	AWG#22-2C (0.3 mm²)	AWG#22-2C (0.3 mm ²)			
DC+3V, GND	Outer diameter of insulated wire: Φ1.3 mm	Outer diameter of insulated wire: Ф1.3 mm			
т. т	AWG#24-2P (0.2 mm²)	AWG#24-2P (0.2 mm²)			
T+, T-	Outer diameter of insulated wire: Φ1.1 mm	Outer diameter of insulated wire: Φ1.1 mm			
Cable diameter	Ф7 mm	Ф7 mm			
Max. allowable wiring length	20 m				
Standard length provided by Delta	L = 3 m, 5 m, 10 m, 20 m				

Note:

- 1. Use a shielded twisted-pair cable to reduce the noise interference.
- 2. The shield should connect to the ground terminal $\stackrel{\triangle}{=}$.
- 3. When wiring, use the wires suggested in this section to avoid danger.

3.1.6.3 Power cable specifications

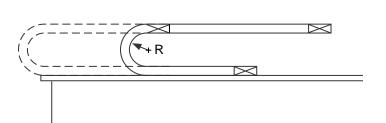
Motor frame: F40 - F80

Item	Standard cable	Flexible cable			
Model number	ACS3-CAPW11XX	ACS3-CAPF11XX			
woder number	ACS3-CAPW21XX	ACS3-CAPF21XX			
Cable type	UL2586 (Temp. rating: 105°C / 221°F)	UL2586 (Temp. rating: 105°C / 221°F)			
	AWG#18-4C (0.82 mm²)	AWG#18-4C (0.82 mm²)			
UVW wire	Outer diameter of insulated wire: Ф2.1 mm	Outer diameter of insulated wire: Φ2.1 mm			
	Voltage rating: 600 V _{AC}	Voltage rating: 600 V _{AC}			
	AWG#22-2C (0.3 mm²)	AWG#22-2C (0.3 mm²)			
Brake wire	Outer diameter of insulated wire: Ф1.6 mm	Outer diameter of insulated wire: Φ1.6 mm			
	Voltage rating: 600 V _{AC}	Voltage rating: 600 V _{AC}			
Cable diameter	Power cable w/o brake: Φ7.7 mm;	power cable with brake: Φ8.6 mm			
Max. allowable wiring length	20 m				
Standard length provided by Delta	L = 3 m, 5 m, 10 m, 20 m				

Motor frame: F130

Item		Standard cable	Flexible cable		
	Model	ACS3-CAPWA2XX	ACS3-CAPFA2XX		
	number	ACS3-CRPWA2XX	ACS3-CRPFA2XX		
		UL2586 (Temp. rating: 105°C / 221°F)	UL2586 (Temp. rating: 105°C / 221°F)		
		AWG#16-4C (1.3 mm ²)	AWG#16-4C (1.3 mm²)		
	Specification	Outer diameter of insulated wire: Φ3.2 mm	Outer diameter of insulated wire: Φ3.2 mm		
		Cable diameter: Φ11 mm	Cable diameter: Ф11 mm		
Power		Voltage rating: 600 V _{AC}	Voltage rating: 600 V _{AC}		
cable	Model	ACS3-CAPWA3XX	ACS3-CAPFA3XX		
	number	ACS3-CRPWA3XX	ACS3-CRPFA3XX		
		UL2586 (Temp. rating: 105°C / 221°F)	UL2586 (Temp. rating: 105°C / 221°F)		
	Specification	AWG#14-4C (2.1 mm²)	AWG#14-4C (2.1 mm²)		
		Outer diameter of insulated wire: Φ2.8 mm	Outer diameter of insulated wire: Φ2.8 mm		
		Cable diameter: Ф9.5 mm	Cable diameter: Ф9.5 mm		
		Voltage rating: 600 V _{AC}	Voltage rating: 600 V _{AC}		
	Model	ACS3-CABRA1XX	ACS3-CABFA1XX		
	number	ACS3-CRBRA1XX	ACS3-CRBFA1XX		
Brake		UL2517 (Temp. rating: 105°C / 221°F)	UL2517 (Temp. rating: 105°C / 221°F)		
cable		AWG#20-2C (0.5 mm²)	AWG#20-2C (0.5 mm²)		
	Specification	Outer diameter of insulated wire: Φ1.8 mm	Outer diameter of insulated wire: Φ1.8 mm		
		Cable diameter: Ф5.5 mm	Cable diameter: Ф5.5 mm		
		Voltage rating: 300 V _{AC}	Voltage rating: 300 V _{AC}		
	. allowable ing length	20 m			
	dard length	1 2 5	10 00		
	ded by Delta	L = 3 m, 5 m,	, 10 m, ∠0 m		

Motor frame: F180


Item		Standard cable	Flexible cable		
	Model	ACS3-CAPWC3XX	ACS3-CAPFC3XX		
	number	ACS3-CRPWC3XX	ACS3-CRPFC3XX		
		UL2586 (Temp. rating: 105°C / 221°F)	UL2586 (Temp. rating: 105°C / 221°F)		
		AWG#14-4C (2.1 mm²)	AWG#14-4C (2.1 mm²)		
	Specification	Outer diameter of insulated wire: Φ2.8 mm	Outer diameter of insulated wire: Φ2.8 mm		
		Cable diameter: Φ9.5 mm	Cable diameter: Φ9.5 mm		
Power		Voltage rating: 600 V _{AC}	Voltage rating: 600 V _{AC}		
cable	Model	ACS3-CAPWC4XX	ACS3-CAPFC4XX		
	number	ACS3-CRPWC4XX	ACS3-CRPFC4XX		
		UL2586 (Temp. rating: 105°C / 221°F)	UL2586 (Temp. rating: 105°C / 221°F)		
	Specification	AWG#12-4C (3.3 mm²)	AWG#12-4C (3.3 mm²)		
		Outer diameter of insulated wire: Φ4.0 mm	Outer diameter of insulated wire: Φ4.0 mm		
		Cable diameter: Φ14.5 mm	Cable diameter: Φ14.5 mm		
		Voltage rating: 600 V _{AC}	Voltage rating: 600 V _{AC}		
	Model	ACS3-CABRA1XX	ACS3-CABFA1XX		
	number	ACS3-CRBRA1XX	ACS3-CRBFA1XX		
Brake		UL2517 (Temp. rating: 105°C / 221°F)	UL2517 (Temp. rating: 105°C / 221°F)		
cable		AWG#20-2C (0.5 mm ²)	AWG#20-2C (0.5 mm ²)		
Cabio	Specification	Outer diameter of insulated wire: Φ1.8 mm	Outer diameter of insulated wire: Φ1.8 mm		
		Cable diameter: Φ5.5 mm	Cable diameter: Ф5.5 mm		
		Voltage rating: 300 V _{AC}	Voltage rating: 300 V _{AC}		
Max. allowable		20 m			
wir	ing length				
Standard length		L = 3 m, 5 m, 10 m, 20 m			
provided by Delta		,	· ·		

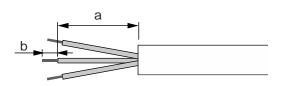
Note:

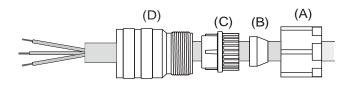
- 1. Refer to Section 3.1.6.1 for detailed specifications for wire size, screw terminal block dimensions, screws, and tightening torque.
- 2. Apart from these specifications, refer to Section 2.6.1 for the motor power cable selection and installation precautions.

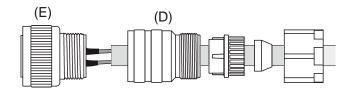
3.1.6.4 Flexible cable specifications

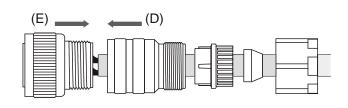
Delta provides two types of power and encoder cables*1: standard cables and flexible cables. Use flexible cable when connecting to a moving machinery. Refer to the following table for flexible cable specifications.

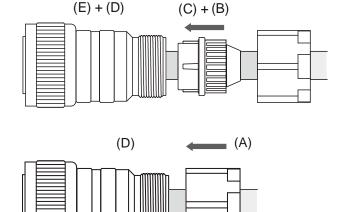
R = bend radius


Item	Specification		
Bend radius	10 times of the cable outer diameter		
Number of bending times	10 million times*2		
Speed	3 m/s		
Acceleration	15 m/s ²		


Note:


- Delta provides both standard and flexible power and encoder cables. Refer to Appendix B for more details.
- 2. Bending the cable into a curve and then straightening it is considered as one time.
- 3. For precautions relevant to the use of cables, refer to Section 2.9.


3.1.7 Wiring for IP67 waterproof connectors


3.1.7.1 F130 - F180 motors - Waterproof connector installation and wiring

Step 1:

Cut and strip the cable. The exposed wire length (a) should be 23 - 27 mm (0.9 - 1.06 inches) for straight connectors and 28 - 32 mm (1.1 - 1.26 inches) for right angle connectors, and the exposed tinned wire length (b) should be 3 - 5 mm (0.12 - 0.2 inches).

Step 2:

Place the (A) seals nut, (B) rubber ring, (C) black compression ring, and (D) straight or angle housing on the cable in sequence.

Important: in order to meet the IP67 standard, select the rubber ring according to the cable diameter.

Step 3:

- For the power connector, refer to Section 3.1.4 for the pin assignment to connect the wires.
- (2) For the encoder connector, refer to Section 3.1.5 for the pin assignment to connect the wires.

Important: it is advisable to use 20 mm (0.79 inches) heat shrink for straight connectors, and 25 mm (0.98 inches) heat shrink for right angle connectors.

Step 4:

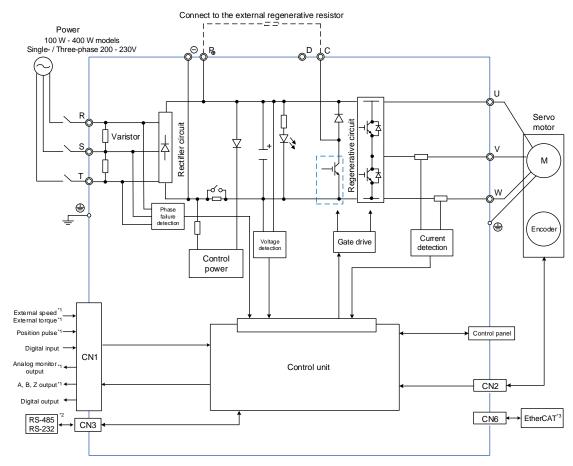
Tighten (D) and (E) with adequate torque. For the torque value, refer to Section 3.1.7.2 for IP67 waterproof connector installation and wiring specifications.

Step 5:

Place (B) in (C), and then place (C) + (B) in (D).

Step 6:

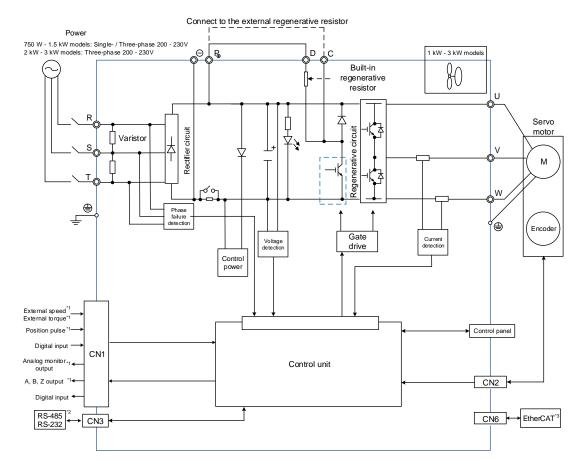
Tighten (A) and (D) at the torque of 10 Nm.


3.1.7.2 IP67 waterproof connector installation and wiring specifications

When mating, ensure the connector is fully locked and the diameter of the wire matches that of the rubber ring. If you choose a wire of smaller diameter and a rubber ring of larger diameter, the combination does not meet the IP67 standard. When selecting the wires, refer to Section 3.1.6.

Model number of connector	Diameter of rubber ring (mm)	Torque for tightening the connector	
ACS3-CAPWA000	Two sets of rubber rings attached	8 - 9 Nm (Ф9 - Ф10)	
ACS3-CRPWA000	Ф9 - Ф10 and Ф11 - Ф12	9 - 10 Nm (Ф11 - Ф12)	
ACS3-CAPWC000	Two sets of rubber rings attached	7.5 - 8.5 Nm (Ф11 - Ф12)	
ACS3-CRPWC000	Ф11 - Ф12 and Ф15 - Ф16	7.5 Nm (Ф15 - Ф16)	
ACS3-CABRA000	Two sets of rubber rings attached	4 No	
ACS3-CRBRA000	Ф4.5 - Ф5.1 and Ф5.5 - Ф6.1	1 Nm	
ACS3-CAENA000	Two sets of rubber rings attached	4 Nine	
ACS3-CRENA000	Ф6.5 - Ф7.1 and Ф8.5 - Ф9.1	1 Nm	

3.2 Wiring diagrams for the servo system

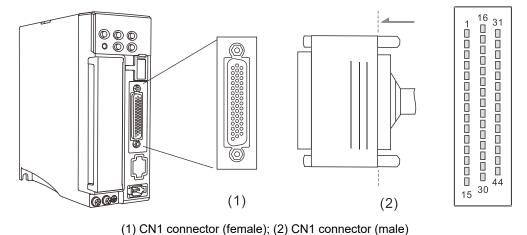

Models of 100 W - 400 W

Note:

- 1. These functions are not available on E3-E models.
- 2. Serial communication (RS-485 and RS-232) is available on E3-L models only.
- 3. EtherCAT is available on E3-E models only.

Models of 750 W - 3 kW

Note:


- 1. These functions are not available on E3-E models.
- 2. Serial communication (RS-485 and RS-232) is available on E3-L models only.
- 3. EtherCAT is available on E3-E models only.

3.3 Wiring for the CN1 I/O connector

Pin assignments of the CN1 terminal differ from model types. Refer to the corresponding wiring information based on the model.

3.3.1 CN1 I/O connector (-L models)

On E3-L models, the CN1 I/O connector includes 9 inputs and 6 outputs for you to define their functions. The differential output signals (OA, /OA, OB, /OB, OZ, and /OZ) for the encoder are provided. Analog torque command input, analog speed / position command input, and position pulse input are also available. The pin assignments are shown as follows.

(1) OIVI connector (ternale), (2) OIVI connector (male)

Note: the tightening torque of the CN1 connector is 2 - 2.5 kgf-cm (1.7 - 2.2 lbf-in).

Pin assignment:

Pin	Signal	Description	Pin	Signal	Description
1	DO4+	Digital output	23	/OB	Differential output for encoder /B pulse
2	DO3-	Digital output	24	/OZ	Differential output for encoder /Z pulse
3	DO3+	Digital output	25	ОВ	Differential output for encoder B pulse
4	DO2-	Digital output	26	DO4-	Digital output
5	DO2+	Digital output	27	DO5-	Digital output
6	DO1-	Digital output	28	DO5+	Digital output
7	DO1+	Digital output	29	GND	Ground for analog and differential output signals
8	DI4-	Digital input	30	DI8-	Digital input
9	DI1-	Digital input	31	DI7-	Digital input
10	DI2-	Digital input	32	DI6-	Digital input
11	COM+	Power input (24V ± 10%)	33	DI5-	Digital input
12	DI9-	Digital input	34	DI3-	Digital input
13	OZ	Differential output for encoder Z pulse	35	PULL HI_S (Sign)	External power for pulse commands input to SIGN pins (24V ± 10%)
14	MON2	Analog monitor output 2	36	PULL HI_P (Pulse)	External power for pulse commands input to PULSE pins (24V ± 10%)
15	DO6-	Digital output	37	SIGN-	Position sign (-)
16	DO6+	Digital output	38	NC	Reserved
17	MON1	Analog monitor output 1	39	SIGN+	Position sign (+)
18	T_REF	Analog torque command input	40	GND	Ground for analog and differential output signals
19	GND	Ground for analog and differential output signals	41	PULSE-	Position pulse (-)
20	V_REF	Analog speed / position command input (+)	42	NC	Reserved
21	OA	Differential output for encoder A pulse	43	PULSE+	Position pulse (+)
22	/OA	Differential output for encoder /A pulse	44	OCZ	Open collector output for encoder Z pulse

Note:

- 1. NC represents "No connection", which is for internal use only. Do not connect to NC, or it may damage the servo drive.
- 2. When the source of the pulse input is open collector NPN or PNP type equipment, you must connect the external power (24V \pm 10%) to the PULL HI pins.
 - Do not connect the 24V power to the SIGN+ and SIGN- pins at the same time, or the circuit elements will be damaged.
 - Do not connect the 24V power to the PULSE+ and PULSE- pins at the same time, or the circuit elements will be damaged.

3.3.2 CN1 I/O connector signal description (-L models)

The following table details the signals listed in the previous page.

General signals:

Signal		Pin No.	Description	Wiring method (refer to Section 3.3.6)
Analog command (input)	V_REF	20	 When the motor speed command is set to -10V to +10V, it means the rotation speed is -3000 rpm to +3000 rpm (default). You can set the parameter to change the corresponding range. When the motor position command is set to -10V to +10V, it means the range of the rotation position is -3 to +3 cycles (default). 	C1
	T_REF	18	When the motor torque command is set to -10V to +10V, it means the rated torque is -100% to +100%.	
Analog monitor (output)	MON1 MON2	17 14	The operation status of motor, such as speed and current, can be displayed in analog voltage. This servo drive provides 2 output channels. You can select the data to be monitored with P0.003. This signal is based on the power ground (GND).	C2
	PULSE+ PULSE-	43 41	Position pulse can be sent by line driver (single-phase max. frequency 4 MHz) or open collector (single-phase max. frequency 200 kHz). Three	
Position pulse (input)	SIGN+ SIGN-	39 37	command types can be selected with P1.000, CW/CCW pulse, pulse train + sign, and A phase + B phase.	C3 / C4
	PULL HI_P PULL HI_S	36 35	If using open collector type when sending position pulses, ensure to use an external power supply (24V ± 10%) for pull high.	
	OA /OA	21 22		
Position pulse	OB /OB	25 23	Differential output (line driver) for the encoder A, B, and Z phase signals.	C9 / C10
(output)	OZ /OZ	13 24		
	OCZ	44	Open collector output for the encoder Z phase signal.	C11
Power	COM+	11	NPN: COM+ is the positive terminal of the voltage source for DI and requires an external power supply (24V ± 10%). PNP: COM+ is the negative terminal of the voltage source for DI and requires an external power supply (24V ± 10%).	
	GND	19 29 40	The ground for analog signals and differential output signals.	-
Others	NC	38 42	No connection. This is for internal use only. Do not connect to NC, or it may damage the servo drive.	

3

There are various control modes available (refer to Section 6.1) and the I/O configuration differs for each mode. This servo drive provides user-defined I/O for you to set functions according to the application requirements. Refer to Chapter 8 for Table 8.1 Digital input (DI) descriptions and Table 8.2 Digital output (DO) descriptions. The default DI/DO signal configuration for each control mode includes the most commonly used functions and meets the requirements for general applications. To reset the DI/DO signals to the default values of each corresponding mode, set P1.001.U to 1 and cycle the power to the servo drive.

See the following tables for the default DI signals of each control mode:

	Control mode								
D .	PT	S / Sz	T / Tz	PT-S	PT-T	S-T			
DI	Default	Default	Default	Default	Default	Default			
	Name	Name	Name	Name	Name	Name			
1	0x01	0x01	0x01	0x01	0x01	0x01			
'	SON	SON	SON	SON	SON	SON			
2	0x04	0x09	0x10	0x04	0x04	0x00			
2	CCLR	TRQLM	SPDLM	CCLR	CCLR	-			
3	0x16	0x14	0x16	0x14	0x16	0x14			
	TCM0	SPD0	TCM0	SPD0	TCM0	SPD0			
4	0x17	0x15	0x17	0x15	0x17	0x15			
4	TCM1	SPD1	TCM1	SPD1	TCM1	SPD1			
5	0x02	0x02	0x02	0x00	0x00	0x16			
5	ARST	ARST	ARST	-	-	ТСМ0			
6	0x22	0x22	0x22	0x00	0x00	0x17			
6	NL	NL	NL	-	-	TCM1			
7	0x23	0x23	0x23	0x18	0x20	0x19			
1	PL	PL	PL	S-P	T-P	S-T			
8	0x21	0x21	0x21	0x21	0x21	0x21			
0	EMGS	EMGS	EMGS	EMGS	EMGS	EMGS			
0	0x00	0x00	0x00	0x00	0x00	0x00			
9	-	_	-	-	-	-			

Note:

1. Description of each DI signal:

DI name	Description	DI name	Description	DI name	Description
SON	Servo On	NL	Negative limit	PL	Positive limit
CCLR	Pulse clear	ARST	Alarm reset	EMGS	Emergency stop
TRQLM	Torque limit	ТСМ0	Torque command 0	TCM1	Torque command 1
SPDLM	Speed limit	SPD0	Speed selection 0	SPD1	Speed selection 1
S-P	Switch between S and P modes (dual / multi-mode)	T-P	Switch between T and P modes (dual / multi-mode)	S-T	Switch between S and T modes (dual / multi-mode)

^{2.} Refer to the C7 and C8 diagrams in Section 3.3.6 for wiring.

See the following tables for the default DO signals of each control mode:

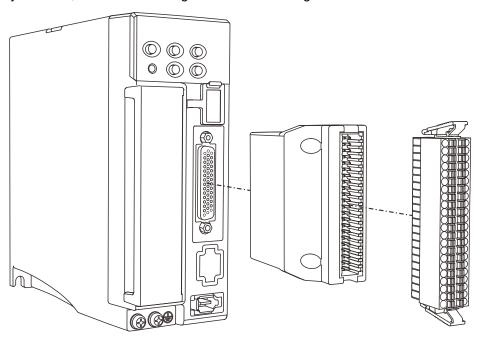
	Control mode								
DO	PT	S / Sz	T / Tz	PT-S	PT-T	S-T			
DO	Default	Default	Default	Default	Default	Default			
	Name	Name	Name	Name	Name	Name			
	0x01	0x01	0x01	0x01	0x01	0x01			
1	SRDY	SRDY	SRDY	SRDY	SRDY	SRDY			
2	0x03	0x03	0x03	0x03	0x03	0x03			
2	ZSPD	ZSPD	ZSPD	ZSPD	ZSPD	ZSPD			
	0x09	0x04	0x04	0x04	0x04	0x04			
3	HOME	TSPD	TSPD	TSPD	TSPD	TSPD			
	0x05	80x0	0x08	0x05	0x05	0x00			
4	TPOS	BRKR	BRKR	TPOS	TPOS	-			
	0x07	0x07	0x07	0x07	0x07	0x07			
5	ALRM	ALRM	ALRM	ALRM	ALRM	ALRM			
6	0x00	0x00	0x00	0x00	0x00	0x00			
6	-	-	-	-	-	-			

Note:

1. Description of each DO signal:

DO name	Description	DO name	Description	DO name	Description
SRDY	Servo ready	HOME	Homing is complete	TSPD	Target speed reached
ZSPD	Zero motor speed	TPOS	Target position reached	ALRM	Servo alarm
BRKR	Magnetic brake	-	-	-	-

2. Refer to the C5 and C6 diagrams in Section 3.3.6 for wiring.


If the default DI/DO functions cannot meet the application requirement, you can refer to the following tables and specify the DI/DO functions by setting the DI and DO codes to the corresponding parameters.

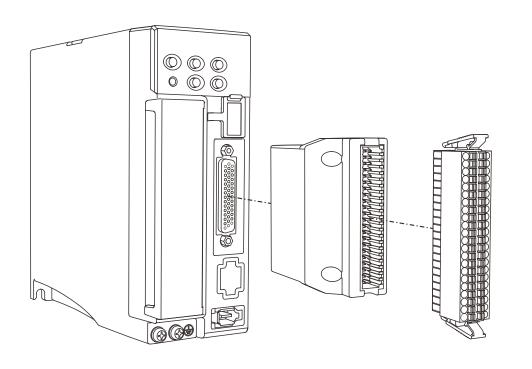
Signal		CN1 Pin No.	Corresponding parameter	Signal		CN1 Pin No.	Corresponding parameter
Standard DI	DI1-	9	P2.010		DI6-	32	P2.015
	DI2-	10	P2.011		DI7-	31	P2.016
	DI3-	34	P2.012	Standard DI	DI8-	30	P2.017
	DI4-	8	P2.013		DI9-	12	P2.036
	DI5-	33	P2.014		-	-	-

Signal		CN1 Pin No.	Corresponding parameter	Signal		CN1 Pin No.	Corresponding parameter
	DO1+	7	P2.018	Standard DO	DO4+	1	P2.021
	DO1-	6	P2.016		DO4-	26	1 2.021
Standard	DO2+	5	P2.019		DO5+	28	P2.022
DO	DO2-	4			DO5-	27	
	DO3+	3	D0 000		DO6+	16	P2.041
	DO3-	2	P2.020		DO6-	15	F2.041

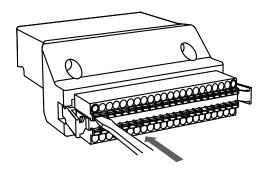
3.3.3 Wiring with CN1 quick connector (-L models)

The CN1 quick connector ACS3-IFSC4444 is applicable to E3-L and B3-L servo drives. You do not need to solder the wires; the spring-loaded terminals prevent the wires from loosening caused by vibration, which makes it a good choice for wiring.

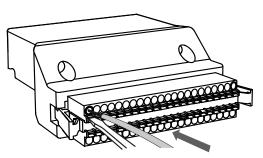
3


The pin assignments of the CN1 quick connector (ACS3-IFSC4444) are as follows:

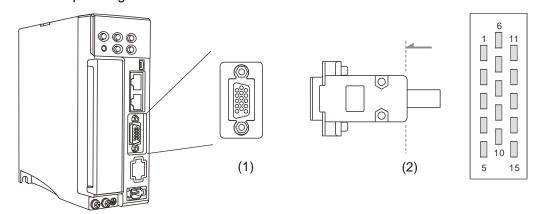
	_		_	
OCZ	44		43	PULSE+
NC	42		41	PULSE-
GND	40		39	SIGN+
NC	38		37	SIGN-
PULL HI_P	36		35	PULL HI_S
DI3-	34		33	DI5-
DI6-	32		31	DI7-
DI8-	30		29	GND
DO5+	28		27	DO5-
DO4-	26		25	ОВ
/OZ	24		23	/OB
/OA	22		21	OA
V_REF	20		19	GND
T_REF	18		17	MON1
DO6+	16		15	DO6-
MON2	14		13	OZ
DI9-	12		11	COM+
DI2-	10		9	DI1-
DI4-	8		7	DO1+
DO1-	6		5	DO2+
DO2-	4		3	DO3+
DO3-	2		1	DO4+


Note: NC represents "No connection".

Installation and wiring for the CN1 quick connector (ACS3-IFSC4444):


Installation

Wiring


(1) The CN1 quick connector (ACS3-IFSC4444) has multiple spring-loaded terminals. Determine which terminal is to be wired in advance. Use a flathead screwdriver to press the spring down to open the pin.

(2) Insert the stripped wire into the pin. Then, withdraw the screwdriver to complete the wiring.

3.3.4 CN1 I/O connector pin assignment (-E models)

On E3-E models, the CN1 I/O connector includes 6 inputs and 3 outputs for you to define their functions. The pin assignments are shown as follows:

(1) CN1 connector (female); (2) CN1 connector (male)

Note: the tightening torque of the CN1 connector is 2 - 2.5 kgf-cm (1.7 - 2.2 lbf-in).

Pin assignment:

Pin	Signal	Description	Pin	Signal	Description
1	COM+	Power input (24V ± 10%)	9	DO1+	Digital output
2	DI1-	Digital input	10	DO2-	Digital output
3	DI2-	Digital input	11	DO2+	Digital output
4	DI3-	Digital input	12	DO3-	Digital output
5	DI4-	Digital input	13	DO3+	Digital output
6	DI5-	Digital input	14	NC	Reserved
7	DI6-	Digital input	15	NC	Reserved
8	DO1-	Digital output	-	-	-

Note: NC represents "No connection", which is for internal use only. Do not connect to NC, or it may damage the servo drive.

3.3.5 CN1 I/O connector signal description (-E models)

The following table details the signals listed in the previous page.

General signals:

S	Signal Pin No.		Description	Wiring method (refer to Section 3.3.6)
Power	COM+	1	NPN: COM+ is the positive terminal of the voltage source for DI and requires an external power supply (24V ± 10%). PNP: COM+ is the negative terminal of the voltage source for DI and requires an external power supply (24V ± 10%).	-
Others	NC	14 15	No connection. This is for internal use only. Do not connect to NC, or it may damage the servo drive.	-

There are various control modes available (refer to Section 6.1) and the I/O configuration differs for each mode. This servo drive provides user-defined I/O for you to set functions according to the application requirements. Refer to Chapter 8 for Table 8.1 Digital input (DI) descriptions and Table 8.2 Digital output (DO) descriptions. The default DI/DO signal configuration for each control mode includes the most commonly used functions and meets the requirements for general applications. To reset the signals to the default values of each corresponding mode, set P1.001.U to 1 and cycle the power to the servo drive.

See the following tables for the default DI signals of each control mode:

	Control mode									
DI	PR	S / Sz	T / Tz	PR-S	PR-T	S-T	Communi- cation			
	Default	Default	Default	Default	Default	Default	Default			
	Name	Name	Name	Name	Name	Name	Name			
	0x01	0x01	0x01	0x01	0x01	0x01	0x00			
1	SON	SON	SON	SON	SON	SON	-			
2	0x22	0x22	0x22	0x22	0x22	0x22	0x22			
2	NL	NL	NL	NL	NL	NL	NL			
	0x23	0x23	0x23	0x23	0x23	0x23	0x23			
3	PL	PL	PL	PL	PL	PL	PL			
	0x21	0x21	0x21	0x21	0x21	0x21	0x21			
4	EMGS	EMGS	EMGS	EMGS	EMGS	EMGS	EMGS			
	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
5	-	-	-	-	-	-	-			
	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
6	-	-	-	-	-	-	-			

Note:

1. Description of each DI signal:

DI name	Description	DI name	Description	DI name	Description
SON	Servo On	NL	Negative limit	PL	Positive limit
EMGS	Emergency stop	-	-	-	-

2. Refer to the C7 and C8 diagrams in Section 3.3.6 for wiring.

See the following tables for the default DO signals of each control mode:

	Control mode
DO	PR, S, Sz, T, Tz, communication
ЪО	Default
	Name
1	0x01
ı	SRDY
2	0x07
2	ALRM
3	0x00
3	- -

Note:

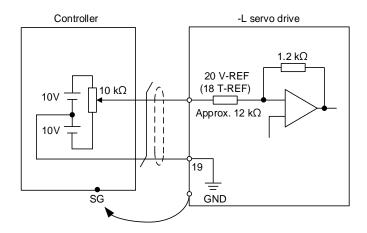
1. Description of each DO signal:

DO name	Description	DO name	Description	DO name	Description
SRDY	Servo ready	ALRM	Servo alarm	-	-

2. Refer to the C5 and C6 diagrams in Section 3.3.6 for wiring.

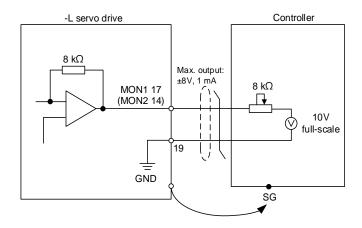
If the default DI/DO functions cannot meet the application requirement, you can refer to the following tables and specify the DI/DO functions by setting the DI and DO codes to the corresponding parameters.

Sign	al	CN1 Pin No.	Corresponding parameter	Signal		CN1 Pin No.	Corresponding parameter
	DI1-	2	P2.010		DI4-	5	P2.013
Standard DI	DI2-	2- 3 P2.011	Standard DI	DI5-	6	P2.014	
וט	DI3-	4	P2.012]	DI6-	7	P2.015


Signal		CN1 Pin No.	Corresponding parameter	Signal		CN1 Pin No.	Corresponding parameter
	DO1+	9	P2.018		DO3+	13	P2.020
Standard Do	DO1-	8	P2.016	Standard	DO3-	12	P2.020
DO	DO2+	11	P2.019	DO	-	-	
	DO2-	10	P2.019		-	-	-

3.3.6 CN1 wiring diagrams

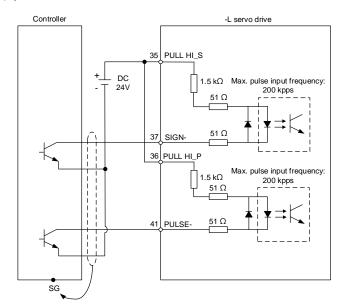
The wiring diagrams in this section take the E3-L model for example. For detailed information, refer to the notes of each diagram. Refer to Chapter 1 for the functions supported by each model.


For the analog speed command and the analog torque (thrust) command, the valid voltage is between -10V and +10V. You can set the command value that corresponds to the voltage range with the relevant parameters.

C1: input for analog speed / torque (thrust) command

Note: this function is available on E3-L models only.

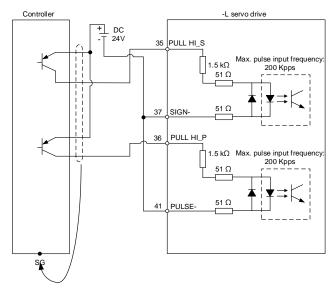
C2: output for analog monitoring command (MON1 and MON2)


Note: this function is available on E3-L models only.

You can input the pulse command with the open collector or differential line driver. The maximum pulse input is 4 Mpps for the differential line driver and 200 Kpps for the open collector.

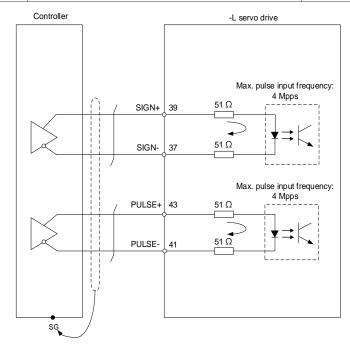
Caution: when the source for the pulse input is open collector NPN type or PNP type equipment, you must connect the external power (24V \pm 10%) to the PULL HI pins.

- Do not connect the 24V power to the SIGN+ and SIGN- pins at the same time, or the circuit elements will be damaged.
- Do not connect the 24V power to the PULSE+ and PULSE- pins at the same time, or the circuit elements will be damaged.


C3-1: the source for the pulse input is open collector NPN type equipment, which uses the external power supply.

Note: this function is available on E3-L models only.

3


C3-2: the source for the pulse input is open collector PNP type equipment, which uses the external power supply.

Note: this function is available on E3-L models only.

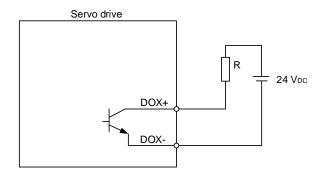
C4: pulse input (differential input) can only be used with 2.8V - 3.6V power systems. **Do not use** it with 24V power.

Pulse		Туре	Maximum input frequency	
High speed hillse		Pulse train + sign	4 Mpps	
	Differential signal	CW and CCW pulses		
	oigridi	A phase + B phase	2 Mpps	
Low speed pulse	ı	Differential signal	200 Kpps	

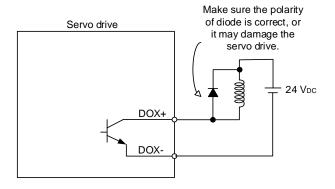
Note:

- 1. This function is available on E3-L models only.
- 2. Refer to the description of P1.000 in Chapter 8 for setting details.

Caution: when the drive connects to an inductive load, you must install the diode.


DO specification:

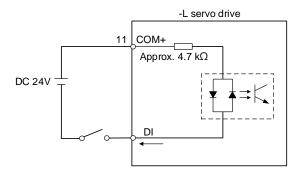
Permissible current: below 40 mA; surge current: below 100 mA; maximum voltage: 30V.


Diode specification:

1A or above, 500V or above (such as the 1N4005 diode).

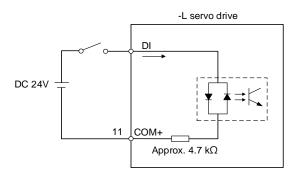
C5: DO wiring - the servo drive uses an external power supply and the resistor is for general load.

C6: DO wiring - the servo drive uses an external power supply and the resistor is for inductive load.


DI wiring - input signals by relay or open collector transistor.

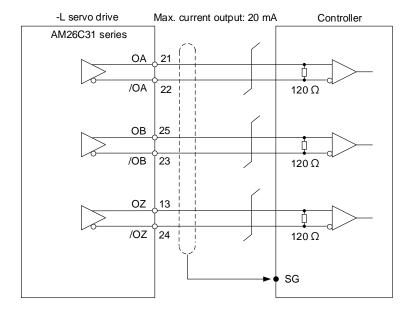
Conditions of DI On / Off:

ON: 15V - 24V; input current = 3 mA.


OFF: 5V or below; the input current must not be higher than 0.5 mA.

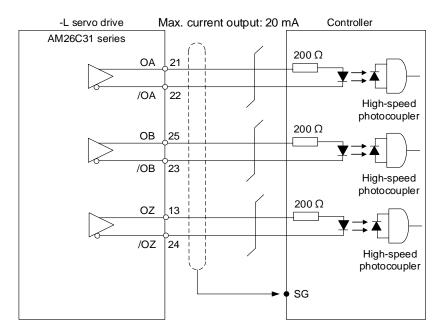
C7: NPN transistor (SINK mode)

Note: the pin no. is 1 for COM+ on E3-E models.

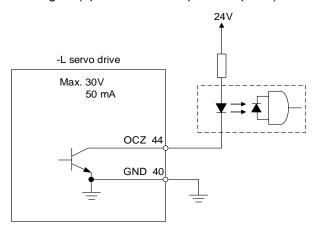

C8: PNP transistor (SOURCE mode)

Note: the pin no. is 1 for COM+ on E3-E models.

3

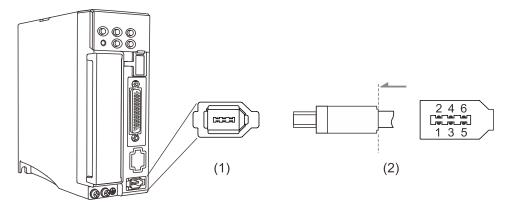

C9: output for encoder position signal (line driver)

Note:


- It is suggested that you connect the GND of the controller and the GND of the servo drive in parallel when the voltage difference between the two GND terminals is too great.
- 2. This function is available on E3-L models only.

C10: output for encoder position signal (photocoupler)

Note: this function is available on E3-L models only.

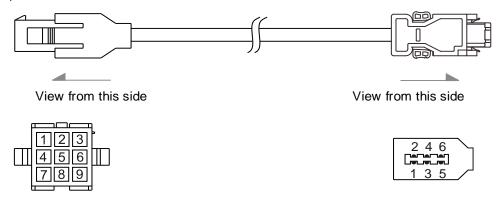

C11: output for encoder OCZ signal (open collector output for Z pulse)

Note: this function is available on E3-L models only.

3.4 Wiring for the CN2 encoder connector

The wiring of the CN2 encoder connector is shown as follows:

(1) CN2 connector (female); (2) CN2 connector (male)


■ DO NOT connect to Pin 3 and Pin 4 of the servo drive CN2 connector. These pins are for internal use only. Wiring them will cause damage to the internal circuit.

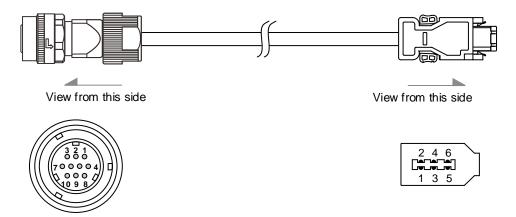

■ When an absolute encoder is used, the battery supplies power directly to the encoder, so wiring the battery wires to the CN2 connector of the servo drive is not required. (E3-L models do not support the absolute functions.)

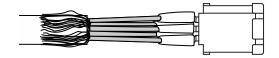
Illustration of connector	Recommended brand	Model number
	Delta	ACS3-CNENC200
	JAWS	IES06G7AQB1

Connectors (standard connector / CN2 connector) of the encoder cable (for ECM-E3 F40 to F80 motors):

Connectors (military connector / CN2 connector) of the encoder cable (for ECM-E3 F130 to F180 motors):

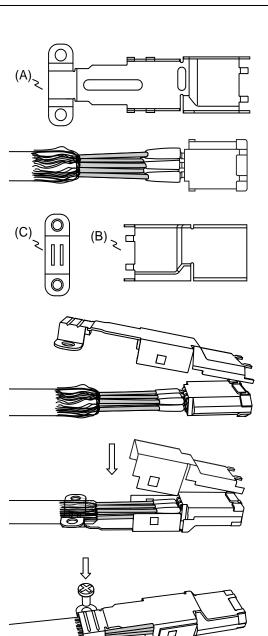
Pin assignment of CN2 connector:

Encoder cable connector (female)				CN2 of servo drive			
Standard connector	Military connector	Color	Pin No.	Signal	Description		
7	4	Brown	1	DC+5V	+5V power supply		
8	9	Blue	2	GND	Power ground		
-	-	-	3	-	Do not connect this pin. For internal use only.		
-	-	-	4	-	Do not connect this pin. For internal use only.		
1	1	White	5	T+	Serial communication signal (+)		
4	2	White/Red	6	T-	Serial communication signal (-)		
9	10	-	Case	Shield	Shielding		
2	6	Red	-	-	+3.6V battery (Not supported by E3-L)		
5	5	Black	-	-	Battery ground (Not supported by E3-L)		


Note: for the wiring details of the absolute encoder connector, refer to Section 3.1.5 Specification for encoder cable and connector. (E3-L models do not support the absolute functions.)

Connect the shielded wires to the CN2 connector as follows:

Step 1:


Strip the cable and expose the wires covered by the metal shield. The exposed wire length should be 20 - 30 mm (0.79 - 1.18 inches).

Step 2:

Spread the metal shield and fold it back. Refer to the pin assignment in the preceding table to connect the wires. Wiring ASDA-E3

3

You need the following items to assemble the connector:

- (A) Big metal case
- (B) Small metal case
- (C) U-shaped bracket

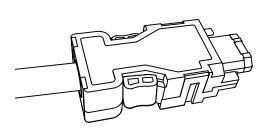
Step 4:

Place the big metal case to cover the exposed metal shield. Make sure the metal shield is completely covered to maintain the integrity of the shielding.

Step 5:

Fasten the small metal case on the other side.

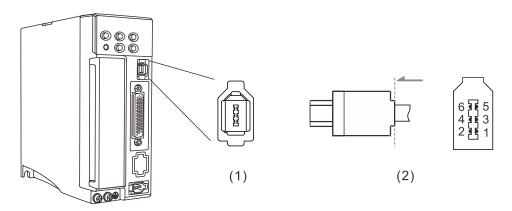
Step 6:


Place the U-shaped bracket over the big metal case and fasten them with screws.

Step 7:

Fit one side of the plastic case over the connector.

Step 8:

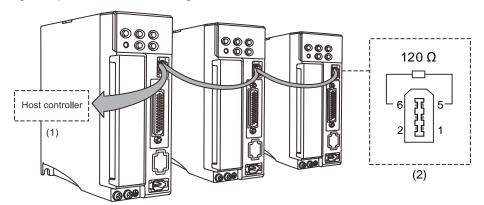

Place and fasten the other side of the case to complete assembling the connector.

3.5 Wiring for the CN3 connector (-L models)

E3-L servo drives can connect to the PC, PLC, or HMI through Modbus communication. The CN3 communication connector supports both RS-232 and RS-485 interfaces. The maximum transmission distance for RS-232 communication is 15 meters (50 ft), while RS-485 communication supports long-distance transmission and connecting multiple servo drives simultaneously.

When the servo drive and ASDA-Soft are connecting, the software automatically sets P3.005.X to 1 for selecting RS-232 for communication. After completing the operation with the software, you need to manually set P3.005.X to 0 or cycle power on the servo drive to use the RS-232 / RS-485 standard Modbus communication. Refer to the description of P3.005 in Chapter 8 Parameters.

(1) CN3 connector (female); (2) CN3 connector (male)

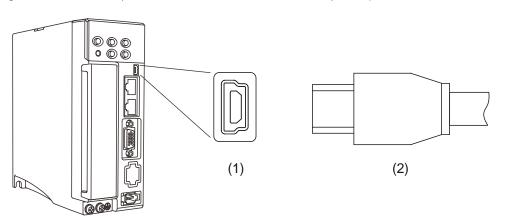

Pin assignment:

Pin No.	Signal	Description
1	GND	Ground for +5V power and signals.
2	RS-232_TX	For the servo drive to transmit data. Connects to the RX pin of the RS-232 port on PC.
3	-	Reserved
4	RS-232_RX	For the servo drive to receive data. Connects to the TX pin of the RS-232 port on PC.
5	RS-485+	The positive terminal for the servo drive to transmit and receive differential signals.
6	RS-485-	The negative terminal for the servo drive to transmit and receive differential signals.

Note:

- Refer to Section 9.1 for the RS-485 wiring.
- There are two types of IEEE 1394 communication cables on the market. Do not use the type whose
 internal ground terminal (Pin 1) is short-circuited with the shield; using this type of cable will result in
 corrupted communication. Do not short circuit the ground wire of the communication cable with the
 terminal case.

Connecting multiple servo drives through RS-485:

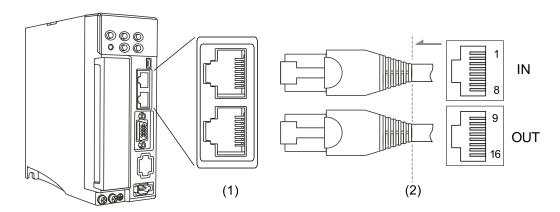

(1) Connect to the controller / PLC; (2) Wiring for RS-485 terminal resistor

Note:

- You can connect up to 32 axes through RS-485. The communication quality and the allowable number
 of connected axes are determined by the controller's specifications, quality of wires, grounding,
 interference, and whether a shielded twisted-pair cable is used.
- 2. It is suggested that you use a terminal resistor of 120 Ω (Ohm) and 0.5 W (or more).
- 3. Connect multiple servo drives in parallel through the Modbus connector and put the terminal resistor in the last servo drive.
- 4. When using RS-485 Modbus communication to connect two or more servo drives in series, the interval between each communication command should be at least 160 ms.

3.6 CN4 connector (Mini USB) (-E models)

The CN4 is a serial communication port for connecting the E3-E servo drive to a PC and operate the servo drive with the software. This is a Type B Mini USB connector that is compatible with the USB 2.0 specification. When there is high interference during operation, installing the USB isolator (Delta model number: UC-ADP01-A) is required.


(1) Mini USB connector (female); (2) Mini USB connector (male)

E3-E models do not support USB power supply.

3.7 Wiring for the CN6 connector (-E models)

The CN6 connector of the E3-E models provides two EtherCAT ports for connecting multiple servo drives, with one way in and the other way out.

(1) CN6 connector (female); (2) CN6 connector (male)

Pin assignment:

Transmission port	Pin No.	Signal	Function description
	1	TX+	Transmit +
	2	TX-	Transmit -
	3	RX+	Receive +
INI	4	-	Reserved
IN	5	-	Reserved
	6	RX-	Receive -
	7	-	Reserved
	8	-	Reserved
	9	TX+	Transmit +
	10	TX-	Transmit -
	11	RX+	Receive +
OUT	12	-	Reserved
OUT	13	-	Reserved
	14	RX-	Receive -
	15	-	Reserved
	16	-	Reserved

Note: the IN port is for connecting the controller or the previous servo drive, and the OUT port is for connecting the next servo drive or not connecting to other devices. Incorrect wiring will lead to communication error.

Set P0.002 to 124 for monitoring the EtherCAT network and connection status with the panel:

■ X & Y: network status for OUT and IN ports

X & Y	Status	Description
0	No connection	Network connection is not established.
1	Network is connected	Network connection is established.

■ Z: EtherCAT error status

Z	Status	Description
0	No error	No error has occurred.
1	Error	Error occurs in the controller or servo drive.

■ U: EtherCAT connection status

U	Status	Description
0	Init	After power cycling and the initialization of the servo drive is complete, the communication has not yet started, but the controller can access the servo drive's register.
1	Operational	SDO, TxPDO, and RxPDO data packets can be transmitted.
2	Pre-Operational	The controller can exchange data through the mailbox.
3	Safe-Operational	The servo drive can use the SDO and TxPDO data packets to exchange data with the controller.

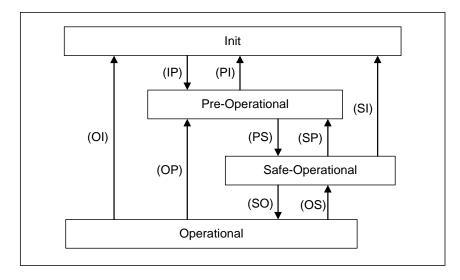
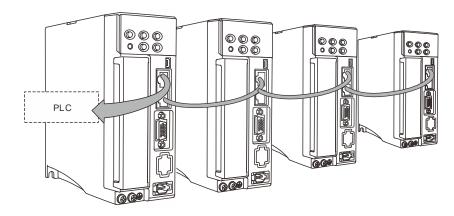
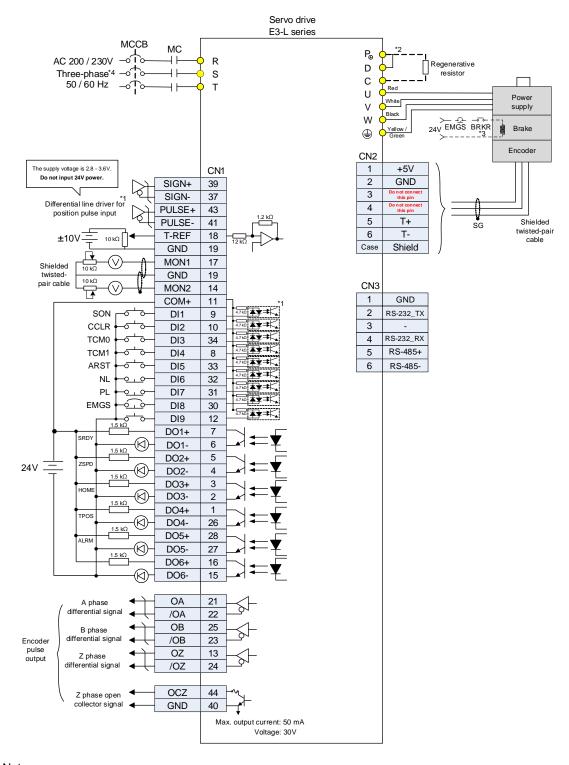
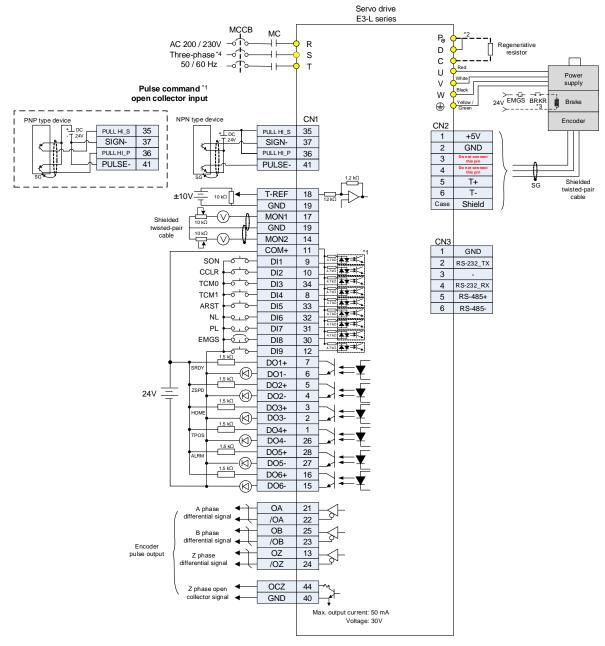



Figure 3.7.1 EtherCAT State Machine


Connecting multiple servo drives:

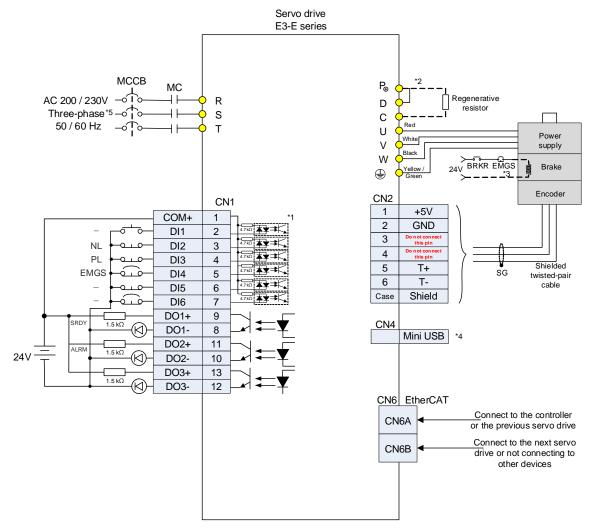
- When multiple servo drives are connected, the maximum distance between each drive is 50 m (164.04 inches)
- 2. Use CAT5e STP cable.
- 3. It is suggested that you use a Beckhoff cable (model number: ZB9020).
- 4. The IN port is for connecting the controller or the previous servo drive, and the OUT port is for connecting the next servo drive or not connecting to other devices. Incorrect wiring will lead to communication error.

3.8 Standard wiring example


3.8.1 Position (PT) control mode – differential line driver input

Note:

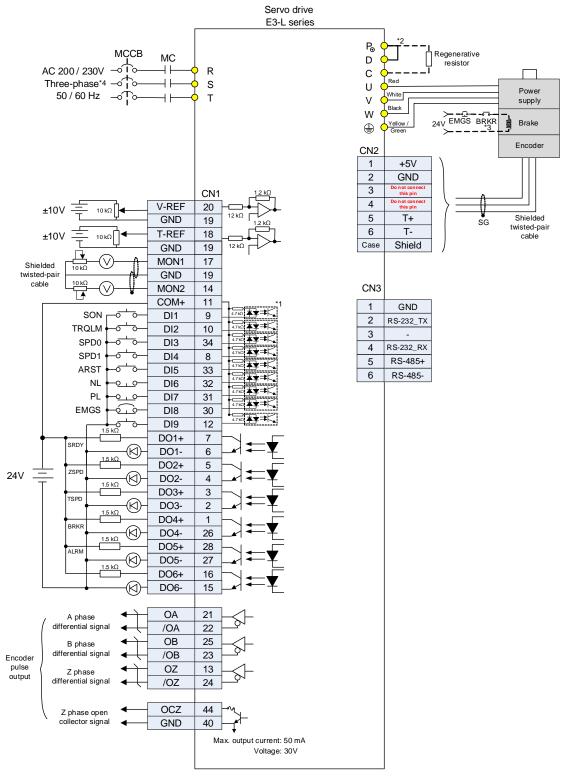
- *1. The preceding figure uses the differential line driver for position pulse input. For open collector input or other wiring methods, refer to Section 3.3.6.
- *2. The 400 W models and below have no built-in regenerative resistor.
- *3. The brake coil has no polarity.
- *4. The 1.5 kW models and below can use single-phase power supply.


3.8.2 Position (PT) control mode – open collector input

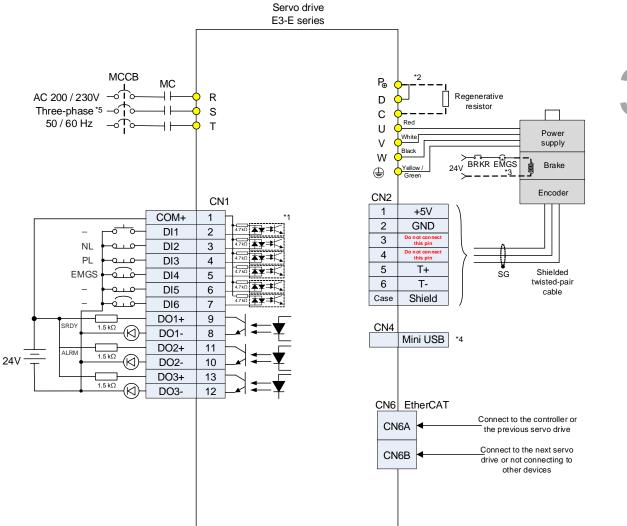
- *1. The preceding figure uses the open collector for position pulse input. For differential line driver input or other wiring methods, refer to Section 3.3.6.
- *2. The 400 W models and below have no built-in regenerative resistor.
- *3. The brake coil has no polarity.
- *4. The 1.5 kW models and below can use single-phase power supply.

ASDA-E3 Wiring

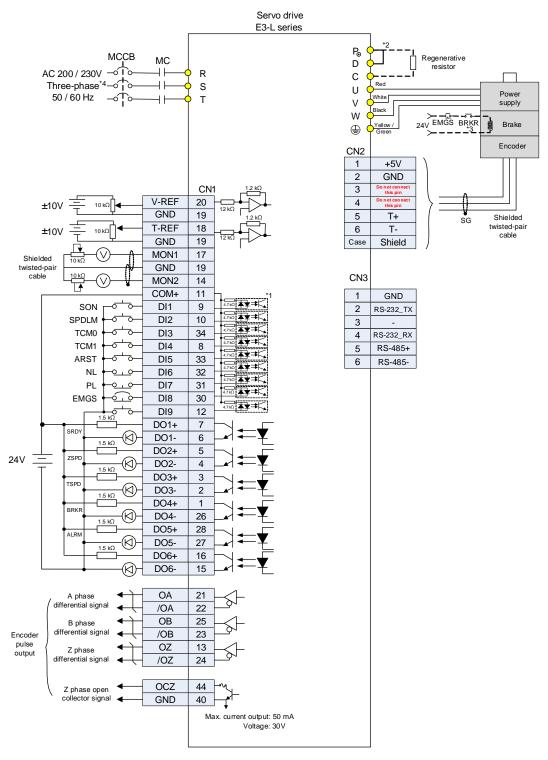
3.8.3 Position (PR) control mode – internal position commands

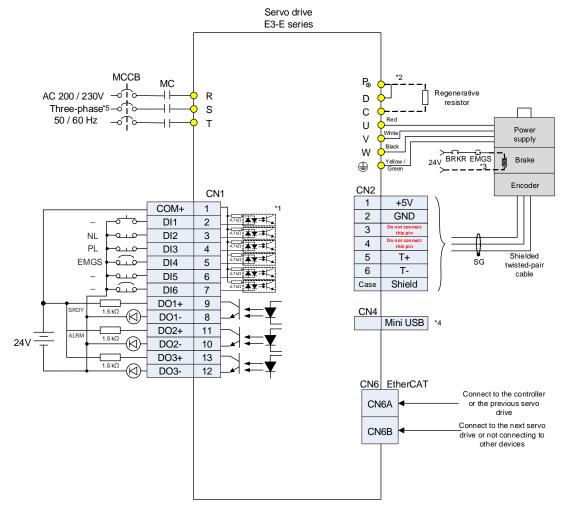


Note:

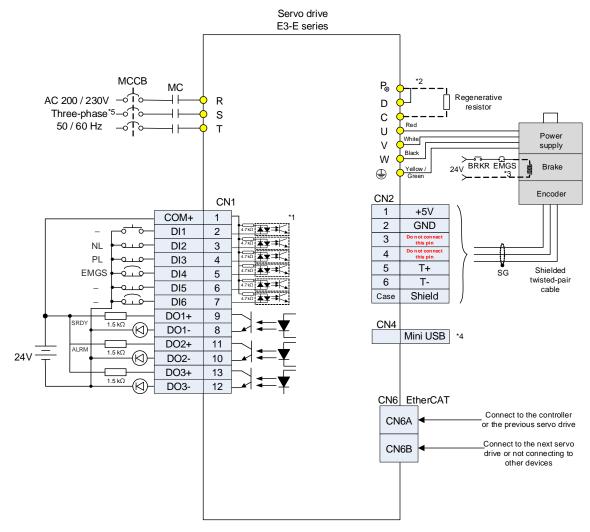

- *1. Refer to Section 3.3.6 for wiring.
- *2. The 400 W models and below have no built-in regenerative resistor.
- *3. The brake coil has no polarity.
- *4. The Mini USB connector for connecting to the PC.
- *5. The 1.5 kW models and below can use single-phase power supply.

3-59


3.8.4 Speed (S) control mode


- *1. Refer to Section 3.3.6 for wiring.
- *2. The 400 W models and below have no built-in regenerative resistor.
- *3. The brake coil has no polarity.
- *4. The 1.5 kW models and below can use single-phase power supply.

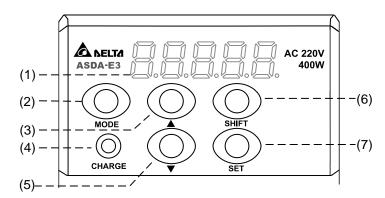
- *1. Refer to Section 3.3.6 for wiring.
- *2. The 400 W models and below have no built-in regenerative resistor.
- *3. The brake coil has no polarity.
- *4. The Mini USB connector for connecting to the PC.
- *5. The 1.5 kW models and below can use single-phase power supply.


- *1. Refer to Section 3.3.6 for wiring.
- *2. The 400 W models and below have no built-in regenerative resistor.
- *3. The brake coil has no polarity.
- *4. The 1.5 kW models and below can use single-phase power supply.

Note:

- *1. Refer to Section 3.3.6 for wiring.
- *2. The 400 W models and below have no built-in regenerative resistor.
- *3. The brake coil has no polarity.
- *4. The Mini USB connector for connecting to the PC.
- *5. The 1.5 kW models and below can use single-phase power supply.

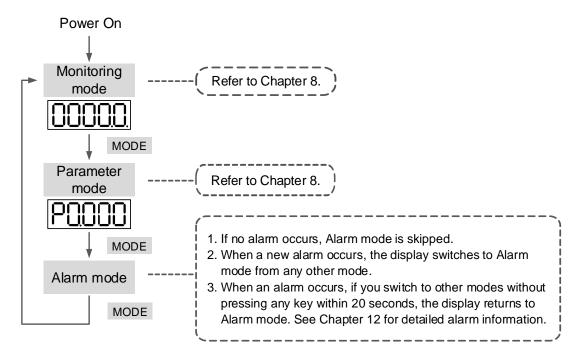
3.8.6 Communication mode - EtherCAT


- *1. Refer to Section 3.3.6 for wiring.
- *2. The 400 W models and below have no built-in regenerative resistor.
- *3. The brake coil has no polarity.
- *4. The Mini USB connector for connecting to the PC.
- *5. The 1.5 kW models and below can use single-phase power supply.

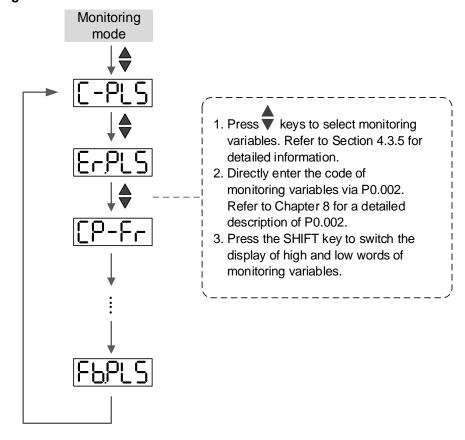
Test Operation and Panel Display

This chapter describes the display and operation for the servo drive panel as well as the testing for the servo drive and motor.

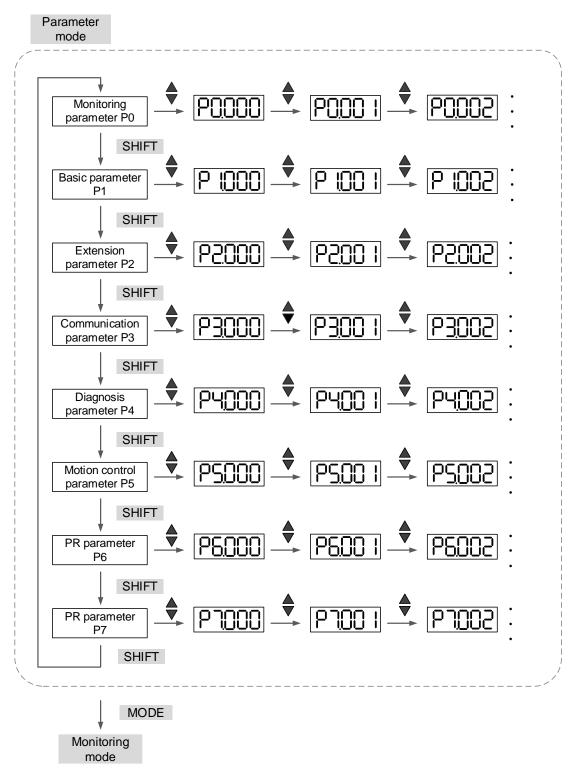
4.1 F	Panel description4-2
4.2 F	Parameter setting procedure······4-3
4.3	Status display4-6
4.3.	1 Data save status ·······4-6
4.3.	2 Decimal points ······ 4-6
4.3.	3 Alarm messages ······4-7
4.3.	4 Positive and negative value setting······4-7
4.3.	5 Monitoring display······4-7
4.3.	6 Display when power is off······4-9
4.4	General functions ······ 4-10
4.4.	1 Operation of fault record display 4-10
4.4.	2 Force DO on 4-11
4.4.	3 Digital input diagnosis······ 4-12
4.4.	4 Digital output diagnosis······ 4-12
4.5 T	
4.5.	1 Initial testing ····· 4-13
4.5.	2 Apply power to the servo drive 4-14
4.5.	3 JOG trial run without load······· 4-18
4.5.	4 Trial run without load (Speed mode) ······ 4-20
4.5.	5 Trial run without load (Position mode) · · · · · · 4-22


4.1 Panel description

- (1) Display: 5-digit, 7-segment LED displays the monitoring codes, parameter numbers, and setting values.
- (2) MODE key: switches the display among Monitoring mode, Parameter mode, and Alarm mode. In Editing mode, pressing the MODE key switches back to Parameter mode.
- (3) UP (▲) key: changes the monitoring codes, parameter numbers, and setting values.
- (4) CHARGE: the LED indicator is on when the power is applied to the main circuit.
- (5) DOWN (▼) key: changes the monitoring codes, parameter numbers, and setting values.
- (6) SHIFT key: in Monitoring mode, pressing the SHIFT key switches the display of high and low words. In Parameter mode, pressing the SHIFT key changes the group number. In Editing mode, pressing the SHIFT key moves the flashing (selected) digit to the left, so you can adjust the higher setting bit.
- (7) SET key: in Monitoring mode, pressing the SET key switches between decimal and hexadecimal display. In Parameter mode, pressing the SET key switches to Editing mode. In Editing mode, pressing the SET key displays and saves the parameter setting value.

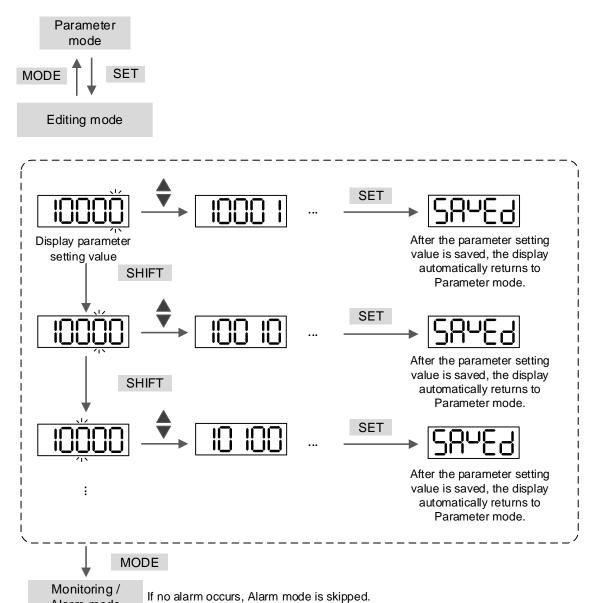

4.2 Parameter setting procedure

Switching modes:



Operating in each mode:

Monitoring mode



Parameter mode

Editing mode

Alarm mode

4-5

4.3 Status display

4.3.1 Data save status

When you complete the parameter setting, press the SET key to save the parameters. The panel displays the symbol of the corresponding status for one second.

Displayed symbol	Description
28nE9	Correctly saved the setting value (Saved).
r-0LY	Read-only and write-protected parameter (Read-only).
Locky	Entered the wrong password or did not enter a password (Locked).
00F-c	Entered an incorrect setting value or the reserved setting value (Out of Range).
50-00	You cannot enter a value when the servo is in the Servo On state (Servo On).
Po-Cn	Changes to the parameter take effect after power cycling of the servo drive (Power On).

4.3.2 Decimal points

Displayed symbol		Description
Low word indication	High word indication	High word / low word indication: this indicates the current high word or low word when the 32-bit data is displayed in decimal format.
Negative sign	No function	Negative sign: the two decimal points on the left represent the negative sign when the 16-bit or 32-bit data is displayed in decimal format. In hexadecimal format, it only shows positive values.

4.3.3 Alarm messages

Displayed symbol	Description
BLann	When an alarm occurs, the servo drive panel displays 'AL' as the alarm symbol and 'nnn' as the alarm code. Refer to Chapter 8 Parameters for a detailed description of P0.001 or Chapter 12 Troubleshooting for alarm details.

4.3.4 Positive and negative value setting

Displayed symbol	Description
02468	In Editing mode, press the UP (▲) and DOWN (▼) keys to change the displayed value. Press the SHIFT key to change the selected digit (the selected digit is flashing).
2.4680	In Editing mode, press and hold the SHIFT key for two seconds to switch between the positive and negative values. If the parameter setting value is out of range after you switch the positive or negative value, the display switches back to the original value.

4.3.5 Monitoring display

When you apply power to the drive, the display shows the monitoring displayed symbol for one second and then enters Monitoring mode. In Monitoring mode, press the UP (\blacktriangle) and DOWN (\blacktriangledown) keys to change the monitoring variables. Or you can directly set P0.002 to specify the monitoring code. When the drive is powered, the default monitoring code is determined by the value of P0.002. For example, if the value of P0.002 is 4, when the drive is powered, the display shows the monitoring symbol "C-PLS" first and then shows the input number of pulse commands. Refer to the following table for more information. For all monitoring variables, refer to Table 8.3 Monitoring variables descriptions in Chapter 8.

P0.002 setting value	Monitoring displayed symbol	Description	Unit
0	FEPUU	Motor feedback pulse number (after the scaling of E-Gear ratio)	PUU
1	[-200	Input number of pulse commands (after the scaling of E-Gear ratio)	PUU
2	ErPUU	The deviation between control command pulse and feedback pulse number	PUU
3	FBPLS	Motor feedback pulse number (encoder unit)	pulse
4	[-PLS	Input number of pulse commands (before the scaling of E-Gear ratio) (encoder unit)	pulse
5	ErPLS	Error pulse number (after the scaling of E-Gear ratio) (encoder unit)	pulse
6	[P-Fr	Input frequency of pulse commands	Kpps
7	SPEEd	Motor speed	rpm
8	[SPd]	Speed command	Volt
9	[5842]	Speed command	rpm

P0.002 setting value	Monitoring displayed symbol	Description	Unit
10	[-64]	Torque command	Volt
11	[-645]	Torque command	%
12	AUG-L	Average torque	%
13	PE-L	Peak torque	%
14	U 60S	Main circuit voltage	Volt
15]-[Load / motor inertia ratio Note: if the display shows 13.0, it means the load inertia ratio is 13.	1 times
16	1066	IGBT temperature	°C
17	rSnFr	Resonance frequency (low word is the first resonance point and high word is the second resonance point)	Hz
18	0 +5000 0 +5000 0 1 1 1 1 2 Z Z Z	The absolute pulse number counting from the encoder Z phase (origin). It is -4999 to +5000 pulses when the motor rotates in the forward or reverse direction starting from the origin (0).	-
19	NAP I	Mapping parameter #1: shows the content of parameter P0.025 (P0.035 specifies the mapping target)	-
20		Mapping parameter #2: shows the content of parameter P0.026 (P0.036 specifies the mapping target)	-
21	NAP3	Mapping parameter #3: shows the content of parameter P0.027 (P0.037 specifies the mapping target)	-
22	NAPY	Mapping parameter #4: shows the content of parameter P0.028 (P0.038 specifies the mapping target)	-
23	UAr-I	Monitoring variable #1: shows the content of parameter P0.009 (P0.017 specifies the monitoring variable)	-
24	UR2	Monitoring variable #2: shows the content of parameter P0.010 (P0.018 specifies the monitoring variable)	-
25	UR3	Monitoring variable #3: shows the content of parameter P0.011 (P0.019 specifies the monitoring variable)	-
26	U8r-4	Monitoring variable #4: shows the content of parameter P0.012 (P0.020 specifies the monitoring variable)	-

The following table shows the panel display of 16-bit and 32-bit values.

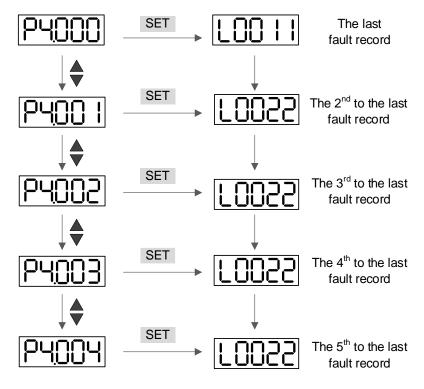
Example of the displayed value	Description	
(Dec)	16 bits	If the value is 1234, the panel displays 01234 (in decimal format).
(Hex)		If the value is 0x1234, the panel displays 1234 (in hexadecimal format; the first digit is not shown).
(Dec high)	32 bits	If the value is 1234567890, the display of the high word is 1234.5 and the display of the low word is 67890 (in decimal
[57890] (Dec low)		format).
Hex high)		If the value is 0x12345678, the display of the high word is h1234 and the display of the low word is L5678 (in hexadecimal format).
[156]B (Hex low)		

The following table shows the panel display for negative values.

Example of the displayed value	Description
(2.345)	If the value is -12345, the panel displays 1.2.345 (only in decimal format; there is no positive or negative sign for hexadecimal format display).

Note:

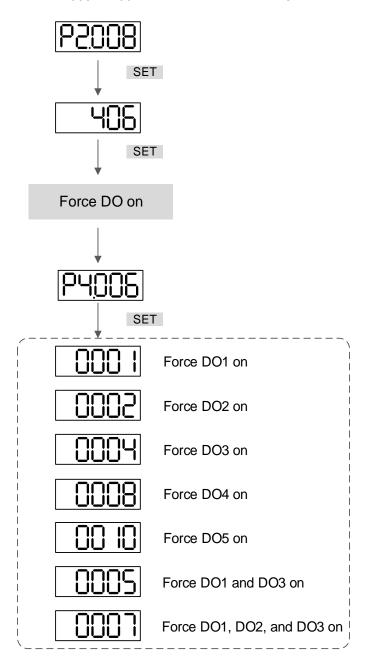
- Dec means the value is displayed in decimal format; Hex means the value is displayed in hexadecimal format.
- 2. The display shown in the preceding tables is applicable in both Monitoring mode and Editing mode.
- 3. All monitoring variables are 32-bit data, and you can switch the high / low word and the display format (Dec / Hex). As for parameters, each parameter only supports one display format and switching the display format is not allowed. Refer to the definitions in Chapter 8.

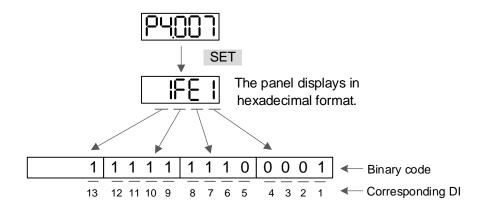

4.3.6 Display when power is off

Displayed symbol	Description
Poliff	Updating the firmware is not allowed until the display of this symbol is off. For parameters requiring power cycling to have the changes take effect, you can cycle power on the servo drive when the panel displays this symbol.

4.4 General functions

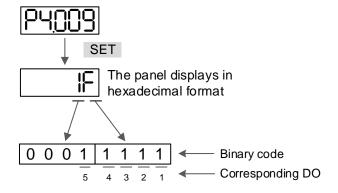
4.4.1 Operation of fault record display


In Parameter mode, select P4.000 - P4.004 and press the SET key to show the corresponding fault record.


4.4.2 Force DO on

You can switch to the Diagnosis mode by the following steps. Set P2.008 to 406 to enable the function of forcing DO on. Then, set the DO by binary method with P4.006. When the value of P4.006 is 0x0002, it forces DO2 on. When the value is 0x0005, it forces DO1 and DO3 on. These settings are volatile, so the servo drive returns to the normal DO mode after power cycling. You can also set P2.008 to 400 to switch to the normal DO mode.

You can switch to the Diagnosis mode by the following steps. When DI1 - DI9 are triggered by the external signals, the panel shows the corresponding signal. In binary format, when the bit shows 1, it means the DI is on.


For example, if the panel shows "1FE1", the hexadecimal E is 1110 in binary format, indicating that DI6 - DI8 are on.

4.4.4 Digital output diagnosis

You can switch to the Diagnosis mode by the following steps. When DO1 - DO6 are triggered by the output signals, the panel shows the corresponding signal. In binary format, when the bit shows 1, it means the DO is on.

For example, if the panel shows "1F", the hexadecimal F is 1111 in binary format, indicating that DO1 - DO4 are on.

4.5 Testing

This section introduces the testing operations without load. To avoid danger, make sure to operate the servo motor without load first.

4.5.1 Initial testing

Remove the load from the servo motor, including the coupling and accessories on the shaft, to avoid any damage to the servo drive or machine. This prevents the parts on the motor shaft from falling off and possibly causing personnel injury or equipment damage during operation.

Caution: to prevent danger, it is strongly recommended that you first check if the motor runs normally without load during normal operation. Then, try operating the motor with load.

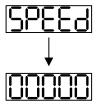
Check the following items carefully to avoid damages during motor operation.

	■ Check for any obvious visible damage on the servo drive.
	■ The wires at the wiring terminals should be isolated.
	■ Make sure the wiring is correct to avoid damage or any abnormal operation.
	■ Check for and remove any electrically conductive objects, including sheet metal and screws, or inflammable objects inside or near the servo drive.
Inspection before	■ Check that the control switch is in the Off state.
operation	Do not place the servo drive or external regenerative resistor on inflammable objects.
	■ To ensure the electromagnetic brake works, check if the stop and circuit breaker functions are working normally.
	■ Reduce the electromagnetic interference if there is electromagnetic interference with the peripheral devices.
	■ Make sure the external voltage level of the servo drive is correct.
	■ Protect the encoder cable from excessive stress. When the motor is running, make sure the cable is not worn or stretched.
	Contact Delta if the servo motor vibrates or makes unusual noise during operation.
Inspection during operation	Make sure the settings for the parameters are correct. Different machinery has different characteristics. Adjust the parameters according to the characteristics of each machine.
	Reset the parameters when the servo drive is in the Servo Off state, or it may cause malfunction.
	If the relay makes abnormal noise or does not make any contact noise when operating, please contact Delta.
	■ Check if the power indicator and LED display work properly.

4.5.2 Apply power to the servo drive

Follow these instructions.

- 1. Make sure the wiring between the motor and servo drive is correct:
 - (1) Connect the red, white, black, and yellow/green wires to the U, V, W, and FG terminals respectively. If the wiring is incorrect, the motor cannot work properly. The motor ground wire FG must connect to the drive's ground terminal. Refer to Chapter 3 for wiring.
 - (2) The encoder cable for the motor is correctly connected to CN2: if you only want to use the JOG function, connecting CN1 and CN3 is not necessary. Refer to Chapter 3 for the wiring for CN2.


Caution: do not connect the main circuit power (R, S, T) to the output terminal (U, V, W) of the servo drive, or it may damage the servo drive.

- Connect the power circuit for the servo drive:
 Servo drive: connect the power to the servo drive. Refer to Chapter 3 for the wiring for power supply.
- Turn on the power:
 Servo drive power supply: apply power to the main circuit (R, S, T).
- When the power is on, the display of the servo drive shows:

The default settings for the DIs are negative limit (NL), positive limit (PL), and emergency stop (EMGS). If not using the default settings, you must set the values of the corresponding parameters to 0 (disable the DI function) or some other values for different functions.

■ When P0.002 is set to 07 (motor speed), the display of the servo drive shows:

When the display shows no text, check if the voltage of the power input is too low.

■ When the display shows:

4

Overvoltage warning:

This means the input voltage of the main circuit is higher than the allowable rated value or an incorrect power input is applied (incorrect power system).

Corrective action:

- 1. Use a voltmeter to check if the input voltage of the main circuit is within the allowable rated value.
- 2. Use a voltmeter to check if the power system complies with the specifications.
- When the display shows:

CN2 communication failure warning:

Check if the CN2 connector is securely connected and the wiring is correct.

Corrective action:

- 1. Make sure the wiring complies with the instructions in the user manual.
- 2. Check the CN2 connector.
- 3. Check for loose wiring.
- 4. Check if the encoder is damaged.

■ When the display shows:

Emergency stop warning:

Check if any of the digital inputs DI1 - DI9 are set to emergency stop (EMGS).

Corrective action:

- If you do not want to set the emergency stop (EMGS) as one of the digital inputs, make sure none of the digital inputs DI1 - DI9 are set to emergency stop (EMGS) (make sure that none of the parameters, P2.010 - P2.017 and P2.036, are set to 21).
- 2. If the emergency stop (EMGS) function is needed, make sure the corresponding DI is on when it is preset as normally closed (function code: 0x0021), and then set this DI as normally open (function code: 0x0121).

■ When the display shows:

Negative limit error warning:

Check if any of the digital inputs DI1 - DI9 are set to negative limit (NL) and that DI is off.

Corrective action:

- If you do not want to set the negative limit (NL) as one of the digital inputs, make sure none of the digital inputs DI1 - DI9 are set to negative limit (NL) (make sure that none of the parameters, P2.010 - P2.017 and P2.036, are set to 22).
- 2. If the negative limit (NL) function is needed, make sure the corresponding DI is on when it is preset as normally closed (function code: 0x0022), and then set this DI as normally open (function code: 0x0122).

■ When the display shows:

4

Positive limit error warning:

Check if any of the digital inputs DI1 - DI9 are set to positive limit (PL) and make sure that DI is off.

Corrective action:

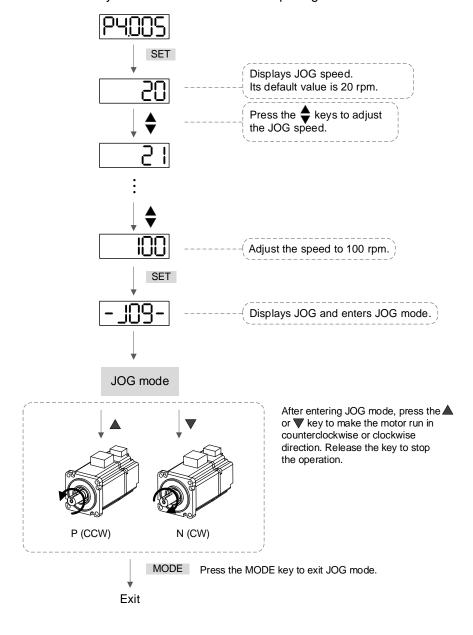
- 1. If you do not want to set the positive limit (PL) as one of the digital inputs, make sure none of the digital inputs DI1 DI9 are set to positive limit (PL) (make sure that none of the parameters, P2.010 P2.017 and P2.036, are set to 23).
- 2. If the positive limit (PL) function is needed, make sure the corresponding DI is on when it is preset as normally closed (function code: 0x0023), and then set this DI as normally open (function code: 0x0123).
- When the display shows:

Overcurrent warning:

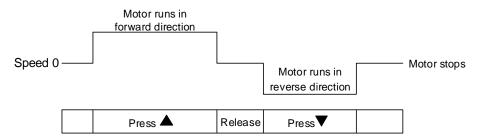
Corrective action:

- 1. Check the connection between the motor and servo drive.
- 2. Check if the conducting wire is short-circuited. Fix the short circuit and make sure the metal part of the wiring is not exposed.
- When the display shows:

Undervoltage warning:


Corrective action:

- 1. Check if the wiring of input voltage for the main circuit is correct.
- 2. Use a voltmeter to check the main circuit voltage.
- 3. Use a voltmeter to check if the power system complies with the specifications.


Note: during power on or in the Servo On state (without any commands issued), if an alarm occurs or any abnormal display appears, contact the distributor.

It is easy to test the motor and servo drive using a JOG trial run without load since no extra wiring is needed. For safety reasons, it is recommended that you set JOG at low speed. Follow these steps:

- Step 1: JOG trial run is available only when the servo drive is in the Servo On state. The drive can be forced into the Servo On state by setting P2.030 to 1 or with the controller. JOG trial run with panel operation is not available in the Communication mode (P1.001.X = C).
- Step 2: set the JOG speed (unit: rpm) with P4.005. Press the SET key to display the JOG speed. The default is 20 rpm.
- Step 3: press the ▲ or ▼ key to adjust the JOG speed. In the following example, the speed is set to 100 rpm.
- Step 4: press the SET key to save the setting value, and then the panel displays "JOG" and enters JOG mode.
- Step 5: press the MODE key to exit JOG mode after completing the trial run.

The following shows the JOG timing diagram:

4

If the motor does not run, check if the UVW and encoder cables are correctly wired.

If the motor runs abnormally, check if the U, V, W phase sequence is correct.

Before starting the trial run without load, firmly secure the motor base to avoid any danger caused by force generated by the motor during speed changes.

Step 1: set P1.001.YX to 02 to set the control mode of the servo drive to Speed mode. Then cycle the power to the servo drive.

Step 2: in Speed mode, set the digital input settings as shown in the following table for the trial run.

Digital input	Parameter setting value	DI name	Function description	CN1 Pin No.
DI1	P2.010 = 0x0101	SON	Servo On	DI1- = 9
DI2	P2.011 = 0x0109	TRQLM	Torque limit	DI2- = 10
DI3	P2.012 = 0x0114	SPD0	Speed selection 0	DI3- = 34
DI4	P2.013 = 0x0115	SPD1	Speed selection 1	DI4- = 8
DI5	P2.014 = 0x0102	ARST	Alarm reset	DI5- = 33
DI6	P2.015 = 0x0000	-	DI disabled	-
DI7	P2.016 = 0x0000	-	DI disabled	-
DI8	P2.017 = 0x0000	-	DI disabled	-
DI9	P2.036 = 0x0000	-	DI disabled	-
DI10	P2.037 = 0x0000	-	DI disabled	-
DI11	P2.038 = 0x0000	-	DI disabled	-
DI12	P2.039 = 0x0000	-	DI disabled	-
DI13	P2.040 = 0x0000	-	DI disabled	-

The preceding settings take the -L model for example. You can program the digital inputs of Delta's servo drive by referring to Table 8.1 Digital input (DI) descriptions in Chapter 8.

The default setting includes the negative limit, positive limit, and emergency stop functions. Therefore, if any alarm occurs after you complete the preceding settings, cycle the power to the servo drive or set DI5 to On to clear the alarm. Refer to Section 4.5.2.

The Speed command selection is determined by SPD0 and SPD1. See the following table.

Speed command number		Command source Conte		Content	Range		
Hullibel	SPD1	SPD0					
S1	0 0		Mode	S	External analog signal	Voltage difference between V-REF and GND	-10V to +10V
				Sz	N/A	Speed command is 0	0
S2	0	1				P1.009	+/- 7500 rpm
S3	1	0	Internal register parameter			P1.010	+/- 7500 rpm
S4	1	1				P1.011	+/- 7500 rpm

0: means that DI is off (the circuit is open).

1: means that DI is on (the circuit is closed).

The parameter setting range of the internal register is from -75000 to +75000.

Rotation speed = setting value x unit (0.1 rpm).

For example, P1.009 = +30000, and the rotation speed = $+30000 \times 0.1 \text{ rpm} = +3000 \text{ rpm}$.

Command setting for the speed register:

Set P1.009 to +30000.

Set P1.010 to +1000.

Set P1.011 to -30000.

Motor's running direction:

Input command	Rotation direction
+	CCW (forward direction)
-	CW (reverse direction)

Step 3:

- (a) Switch on DI1 to have the drive be in the Servo On state.
- (b) When both DI3 (SPD0) and DI4 (SPD1) are off, that means the drive executes the S1 command. The motor rotates according to the analog voltage command.
- (c) When DI3 (SPD0) is on, that means the drive executes the S2 command. The rotation speed is +3000 rpm.
- (d) When DI4 (SPD1) is on, that means the drive executes the S3 command. The rotation speed is +100 rpm.
- (e) When both DI3 (SPD0) and DI4 (SPD1) are on, that means the drive executes the S4 command. The rotation speed is -3000 rpm.
- (f) You can repeatedly execute steps (c), (d), and (e).
- (g) If you want to stop the motor, switch off DI1 (Servo Off).

4.5.5 Trial run without load (Position mode)

You cannot perform this trial run for E3-L models which do not support PR mode.

Before starting the trial run without load, firmly secure the motor base to avoid any danger caused by the force generated by the motor during speed changes.

Step 1: set P1.001.YX to 01 to set the control mode of the servo drive to Position (PR) mode.

Then cycle the power to the servo drive.

Step 2: in Position (PR) mode, set the digital input settings as shown in the following table for the trial run.

Digital input	Parameter setting value	DI name	Function description	CN1 Pin No.
DI1	P2.010 = 0x0101	SON	Servo On	DI1- = 2
DI2	P2.011 = 0x0108	CTRG	Command triggered	DI2- = 3
DI3	P2.012 = 0x0111	POS0	Position selection 0	DI3- = 4
DI4	P2.013 = 0x0112	POS1	Position selection 1	DI4- = 5
DI5	P2.014 = 0x0102	ARST	Alarm reset	DI5- = 6
DI6	P2.015 = 0x0000	-	DI disabled	-
DI7	P2.016 = 0x0000	-	DI disabled	-
DI8	P2.017 = 0x0000	-	DI disabled	-
DI9	P2.036 = 0x0000	-	DI disabled	-
DI10	P2.037 = 0x0000	-	DI disabled	-
DI11	P2.038 = 0x0000	-	DI disabled	-
DI12	P2.039 = 0x0000	-	DI disabled	-
DI13	P2.040 = 0x0000	-	DI disabled	-

The preceding settings take the -E model for example. You can program the digital inputs of Delta's servo drive by referring to Table 8.1 Digital input (DI) descriptions in Chapter 8.

The default setting includes the negative limit, positive limit, and emergency stop functions. Therefore, if any alarm occurs after you complete the preceding settings, cycle the power to the servo drive or set DI5 to On to clear the alarm. Refer to Section 4.5.2.

Refer to Section 3.8.3 for the wiring for Position (PR) control mode. See the following table for the 100 sets of PR and the corresponding Position commands (POS0 - POS6) and parameters.

Position command	POS6	POS5	POS4	POS3	POS2	POS1	POS0	CTRG	Corresponding parameter
Homina	0	0	0	0	0	0	0		P6.000
Homing	0	U	U	U	U	U	U	I	P6.001
DD#4	0	0	0	0	0	0	4		P6.002
PR#1	0	0	0	0	0	0	1	Î	P6.003
DD#50	0	4	4	0	0	4	0		P6.098
PR#50	0	1	1	0	0	1	0	1	P6.099
DD#54	0	4	4	0	0	4	4		P7.000
PR#51	0	1	1	0	0	1	1	T T	P7.001
DD#00	4	4	0	0	0	4	4		P7.098
PR#99	1	1	0	0	0	I	1	Î	P7.099

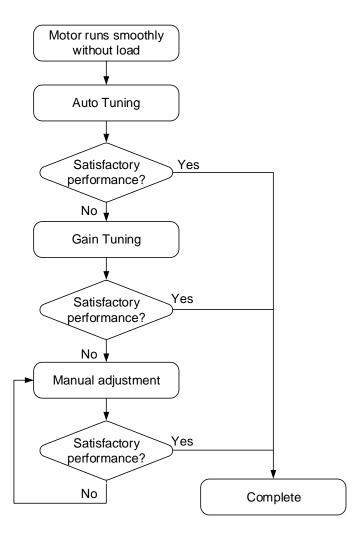
^{0:} means that DI is off (the circuit is open).

You can set the 100 sets of PR (P6.000 - P7.099), which you can also set for absolute position commands.

^{1:} means that DI is on (the circuit is closed).

(This page is intentionally left blank.)

Tuning


This chapter contains information about Auto tuning and gain adjustment modes. Advanced users can also tune the servo system in Manual mode.

5.1	Tur	ing prod	cedure and modes······	5-2
5.	.1.1	Flowch	nart of the tuning procedure·····	5-2
5.	.1.2	Differe	nces between adjustment modes·····	5-3
5.2	Aut	o tuning	j	5-4
5.	.2.1	Flowch	nart of auto tuning ······	5-5
5.	.2.2	Auto tu	uning through the drive panel······	5-6
5.	.2.3	Auto tu	uning with ASDA-Soft	5-7
5.	.2.4	Alarms	s related to auto tuning······ 5-	-14
5.3	Ga	n adjust	tment modes ····· 5-	-15
5.	.3.1	Flowch	nart of gain adjustment mode······ 5-	-15
5.	.3.2	Gain a	djustment mode 1 ····· 5-	-16
5.	.3.3	Gain a	djustment mode 2 ····· 5-	-16
5.	.3.4	Gain a	djustment mode 3 ····· 5-	-17
5.	.3.5	Param	eters related to gain adjustment modes······ 5-	-18
	5.3.	5.1 Ba	andwidth response level (P2.031) - stiffness adjustment ······ 5-	-18
	5.3.	5.2 Cc	ommand response gain (P2.089) - response adjustment ······ 5-	-19
5.4	Ма	nual tun	ing of gain parameters ······ 5-	-20
5.5	Ме	chanical	l resonance suppression · · · · · 5-	-22

5.1 Tuning procedure and modes

5.1.1 Flowchart of the tuning procedure

You can tune the servo drive by following this flowchart. First, start from **Auto Tuning**. If you are not satisfied with the tuning results, then use **Gain Tuning** and Manual mode in sequence to meet the requirements.

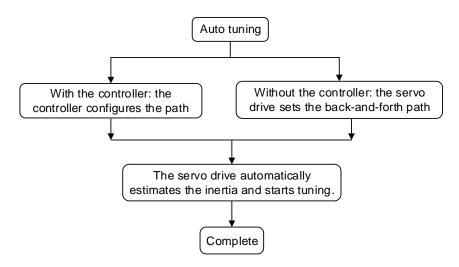
5.1.2 Differences between adjustment modes

P2.032	A division suctions and	lo outio potionation	Parameter		
value	Adjustment mode	Inertia estimation	Manual	Auto	
0	Manual	Fixed set value of P1.037	P1.037, P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.098, P2.099, P2.101, P2.102	N/A	
1	Gain adjustment mode 1	Real-time estimation	P2.031	P1.037, P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.098, P2.099, P2.101, P2.102	
2	Gain adjustment mode 2	Fixed set value of P1.037	P1.037 P2.031	P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.098, P2.099, P2.101, P2.102	
3*2	Gain adjustment mode 3	Fixed set value of P1.037	P1.037 P2.031 P2.089	P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.098, P2.099, P2.101, P2.102	
4	Gain adjustment mode 4	Reset to the default gain values			
5	Gain adjustment mode 5 (same as setting P2-32 = 1 for the B2 series)	Real-time estimation; the value is updated to P1.037 every 30 minutes	P2.126	P1.037, P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.094, P2.098, P2.099, P2.101, P2.102	
6	Gain adjustment mode 6 (same as setting P2-32 = 2 for the B2 series)	Fixed set value of P1.037	P1.037 P2.126	P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.094, P2.098, P2.099, P2.101, P2.102	

Note:

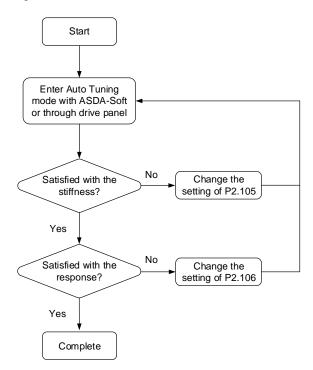
- 1. For more information about the parameter functions, refer to the tables in Section 5.2.
- 2. E3-L models do not support Gain adjustment mode 3.

5.2 Auto tuning

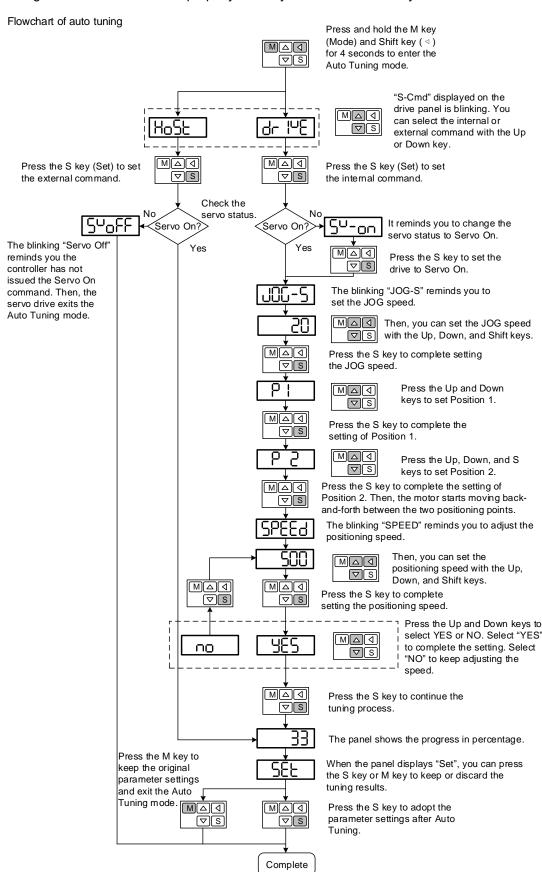

The auto tuning function enables the system to perform real-time machine inertia estimation and downloads the optimized parameters to the servo drive. You can start auto tuning with ASDA-Soft (software) or through the drive panel. The following tables list the parameters that change according to the results of auto tuning.

	Gain parameters			
Parameter No.	Function	Parameter No.	Function	
P1.037	Load inertia ratio or total weight	P2.031	Bandwidth response level	
P2.000	Position control gain	P2.032	Gain adjustment mode	
P2.002	Position feed forward gain	P2.089	Command response gain	
P2.004	Speed control gain	P2.090	Two degree of freedom mode - anti-interference gain	
P2.006	Speed integral compensation	P2.094	Special bit register 3 (enable the two degree of freedom control function)	
P2.026	Anti-interference gain	-	-	

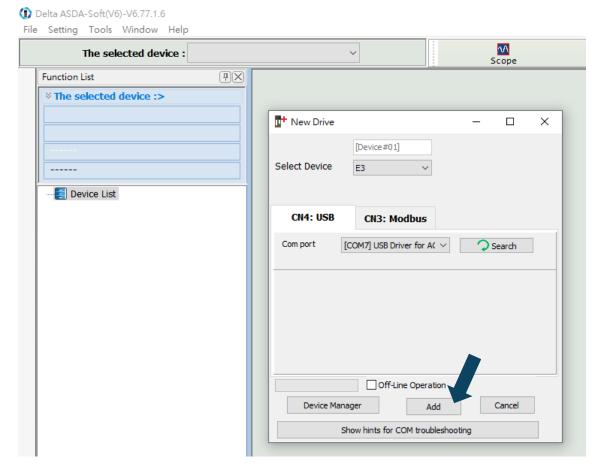
Filter and resonance suppression parameters			
Parameter No.	Function	Parameter No.	Function
P1.025	Low-frequency vibration suppression frequency 1	P2.025	Resonance suppression low-pass filter
P1.026	Low-frequency vibration suppression gain 1	P2.043	Notch filter 2 - frequency
P1.027	Low-frequency vibration suppression frequency 2	P2.044	Notch filter 2 - attenuation level
P1.028	Low-frequency vibration suppression gain 2	P2.045	Notch filter 3 - frequency
P1.029	Auto low-frequency vibration suppression mode	P2.046	Notch filter 3 - attenuation level
P1.061	Viscous friction compensation	P2.049	Speed detection filter and jitter suppression
P1.062	Percentage of friction compensation	P2.095	Notch filter 1 - Q factor
P1.063	Constant of friction compensation	P2.096	Notch filter 2 - Q factor
P1.089	Vibration elimination 1 - anti-resonance frequency	P2.097	Notch filter 3 - Q factor
P1.090	Vibration elimination 1 - resonance frequency	P2.098	Notch filter 4 - frequency
P1.091	Vibration elimination 1 - resonance difference	P2.099	Notch filter 4 - attenuation level
P1.092	Vibration elimination 2 - anti-resonance frequency	P2.100	Notch filter 4 - Q factor
P1.093	Vibration elimination 2 - resonance frequency	P2.101	Notch filter 5 - frequency
P1.094	Vibration elimination 2 - resonance difference	P2.102	Notch filter 5 - attenuation level
P2.023	Notch filter 1 - frequency	P2.103	Notch filter 5 - Q factor
P2.024	Notch filter 1 - attenuation level	-	-


5.2.1 Flowchart of auto tuning

You can complete auto tuning through the drive panel or with ASDA-Soft. The Auto Tuning function helps you to find the most suitable parameters for your system according to the machine characteristics.


Note: when the path is configured by the controller, make sure the delay time is added to the operation cycle. Otherwise, an alarm occurs and the servo drive cannot complete auto tuning.

You can use P2.105 and P2.106 to adjust the stiffness and response during the auto tuning process. See the following flowchart.

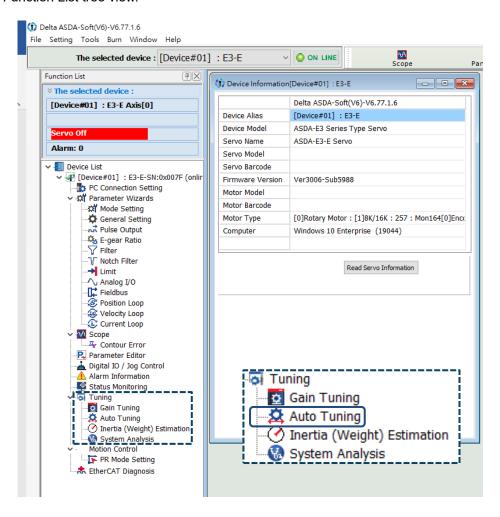

5.2.2 Auto tuning through the drive panel

You can use the drive panel to start auto tuning. Make sure the emergency stop and positive and negative limit switches work properly before you start to tune the system.

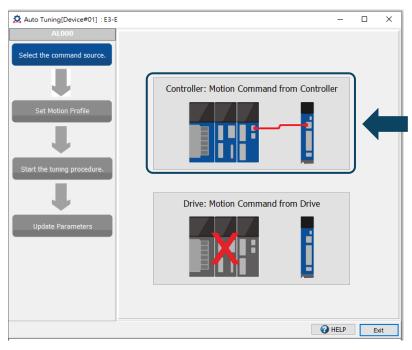
5.2.3 Auto tuning with ASDA-Soft

In addition to executing auto tuning through the drive panel, you can go to <u>Delta's website</u> to download ADSA-Soft for free to tune the servo drive. After installing ASDA-Soft, start the executable file and the screen is as follows.

Make sure your servo drive, servo motor, and power are all properly connected. Then click **Add** for the ASDA-Soft to be in online mode.

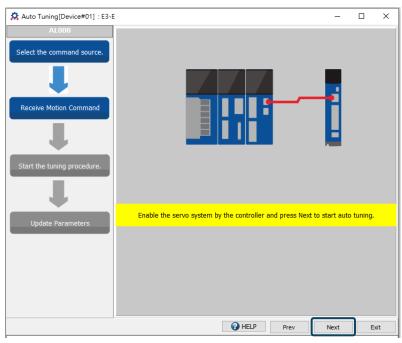

Tuning ASDA-E3

When ASDA-Soft is in online mode, start auto tuning according to the following steps. The following describes two auto tuning procedures, one using the controller and the other using the servo drive.

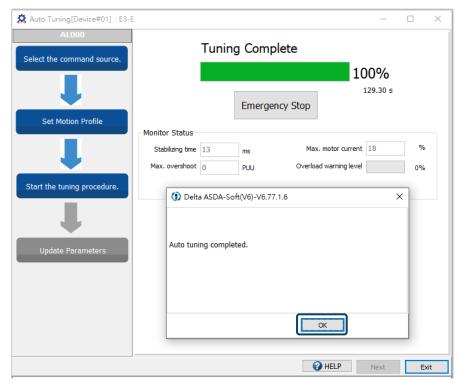

Auto tuning with the controller: the controller sends the commands to drive the motor.

Step 1:

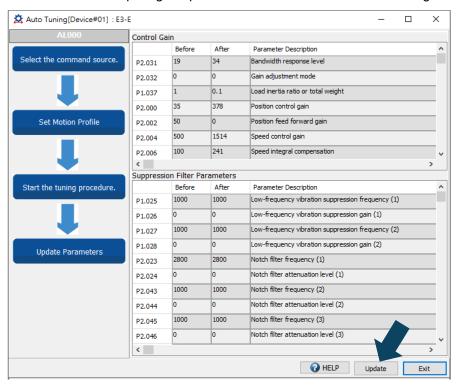
When ASDA-Soft is in online mode, the program window appears as follows. Click **Auto Tuning** in the Function List tree view.


Step 2: Click **Controller: Motion Command from Controller** and check for the motion / machining path.

Suggestions: set the motor to operate at least one cycle in both forward and reverse directions. The delay time for reaching the positioning points in both forward and reverse directions should be no less than 1000 ms with the running speed no less than 500 rpm.


Step 3:

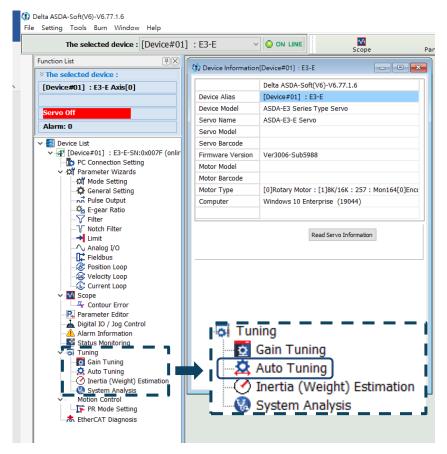
Repeatedly run the motor with the path you just set. Make sure no personnel is standing close to the machinery, and then you can click **Next** to start the auto tuning procedure.



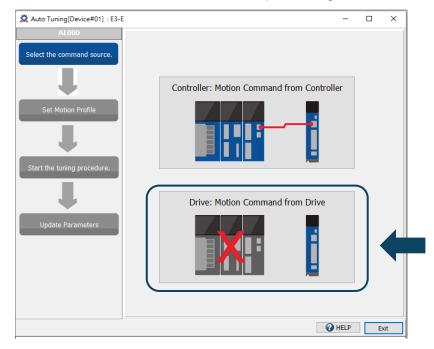
Tuning ASDA-E3

Wait until the tuning progress bar reaches 100%, and a window with "Auto tuning completed." appears as follows. Then click **OK**.

The screen shows a table comparing the parameter values before and after tuning.



Click **Update** to complete auto tuning.


Auto tuning with the servo drive: the servo drive sends the commands to drive the motor.

Step 1:

When ASDA-Soft is in online mode, the program window appears as follows. Click **Auto Tuning** in the Function List tree view.

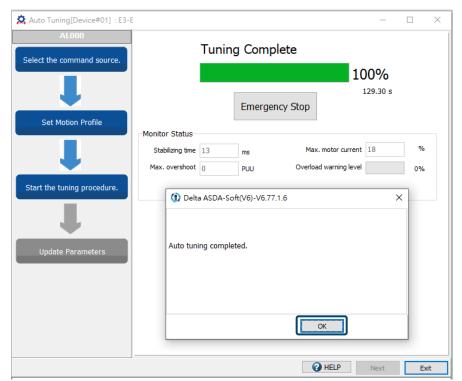
Step 2: Click **Drive: Motion Command from Drive** to enter the path setting screen.

Tuning ASDA-E3

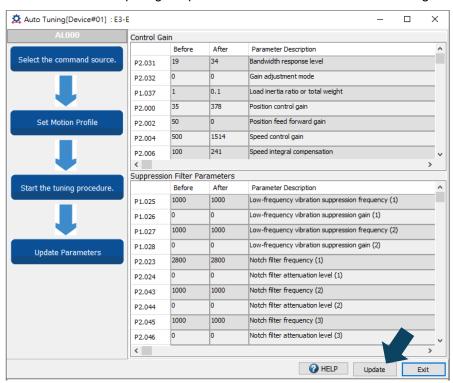
Follow these steps to set the motor running path:

Step 1: set the system to the Servo ON state.

Step 2: set the acceleration / deceleration time and jog speed. The default acceleration / deceleration time is 500 ms. Set the jog speed to no less than 500 rpm. After completing the settings, click the Download button.

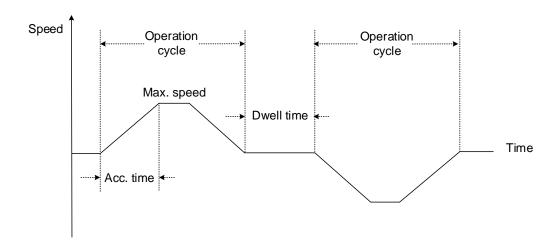

Step 3: use the Left () or Right () button to rotate the motor to Position 1 and Position 2.

Then click **Start Moving**, and the motor regards Position 1 and Position 2 as the positive and negative limits and starts rotating in the forward and reverse directions.


After completing the settings, make sure no personnel is standing close to the machinery. Then, click **Next** to start the auto tuning procedure.

Step 3: Wait until the tuning progress bar reaches 100%, and a window with "Auto tuning completed." appears as follows. Then click **OK**.

The screen shows a table comparing the parameter values before and after tuning.

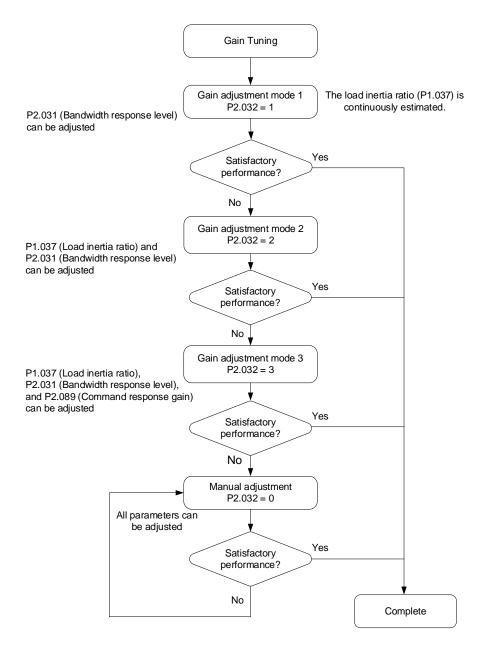


Click **Update** to complete auto tuning.

Tuning ASDA-E3

5.2.4 Alarms related to auto tuning

In Auto Tuning mode, it is vital that you program the command path. The path must contain the operation cycle (including acceleration, constant speed, and deceleration) and dwell time as shown in the following figure. When any of the settings is incorrect, the servo drive stops tuning and displays an alarm. Check the alarm causes and take corrective actions.


Alarm	Alarm name
AL08A	Auto tuning function - command error
AL08B	Auto tuning function - dwell time is too short
AL08C	Auto tuning function - inertia estimation error

5.3 Gain adjustment modes

In addition to the Auto Tuning function, the servo drive also provides the following gain adjustment modes. You can easily complete tuning by increasing or decreasing the bandwidth response level (P2.031). Follow the tuning procedure in Section 5.1.1.

5

5.3.1 Flowchart of gain adjustment mode

5.3.2 Gain adjustment mode 1

In this mode, the servo drive continuously estimates the machine inertia and updates the value of P1.037.

P2.032	Adjustment mode Inertia estimation		Parameter		
value	Adjustment mode	menta estimation	Manual	Auto	
1	Gain adjustment mode 1	Real-time estimation	P2.031	P1.037, P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.098, P2.099, P2.101, P2.102	

Requirements for inertia estimation:

- 1. The time duration for the motor to accelerate from 0 rpm to 3,000 rpm or to decelerate from 3,000 rpm to 0 rpm should be within 1.5 seconds.
- 2. It is advisable to set the motor speed to 500 rpm or higher. The lowest speed should be no less than 200 rpm.
- 3. The load inertia ratio must be no more than 50 times the motor inertia.
- 4. The change in the inertia ratio cannot be too great.

5.3.3 Gain adjustment mode 2

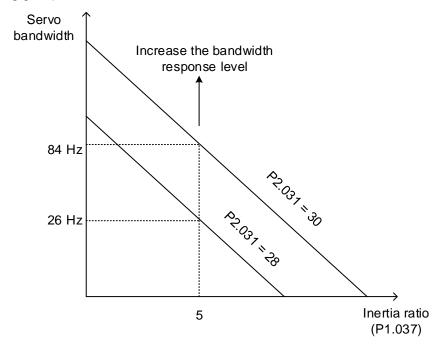
When Gain adjustment mode 1 cannot meet the requirements, try Gain adjustment mode 2 to tune the servo system. In this mode, the system does not estimate the inertia automatically. You need to correctly set the machine inertia ratio in P1.037 first.

P2.032	Adjustment made	Inertia estimation	Parameter		
value	Adjustment mode	mertia estimation	Manual	Auto	
2	Gain adjustment mode 2	Fixed set value of P1.037	P1.037 P2.031	P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.098, P2.099, P2.101, P2.102	

Inertia estimation is available for most machines. However, when the machine does not comply with the requirements for inertia estimation, you have to set the correct inertia ratio in P1.037.

5.3.4 Gain adjustment mode 3

When Gain adjustment modes 1 and 2 cannot meet the requirements, try Gain adjustment mode 3 to tune the servo system. P2.089 (Command response gain) is available for manual adjustment in this mode. You can increase the gain value to shorten the response and settling time for the position command. However, if you set the parameter value too high, it might cause position overshoot and machinery vibration. P2.089 is effective only when the commands are changing, such as in the acceleration / deceleration application, and adjusting this parameter can improve the response. However, when the two degree of freedom control function is disabled (P2.094 [Bit 12] = 0), the effect of Gain adjustment mode 3 is the same as that of Gain adjustment mode 2, so setting P2.089 is invalid in that scenario.


Note: E3-L models do not support this mode.

P2.032	Adjustment mode	Inertia estimation	Parameter	
value	Adjustment mode	mertia estimation	Manual	Auto
3	Gain adjustment mode 3	Fixed set value of P1.037	P1.037 P2.031 P2.089	P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.098, P2.099, P2.101, P2.102

5.3.5 Parameters related to gain adjustment modes

5.3.5.1 Bandwidth response level (P2.031) - stiffness adjustment

When the inertia is fixed and you increase the bandwidth response level (P2.031), the servo's bandwidth increases as well. If resonance occurs, decrease the setting value of P2.031 by one or two bandwidth response levels (you should adjust the bandwidth response level according to the actual situation). For instance, if the value of P2.031 is 30, you can lower the setting to 28. When you adjust the value of this parameter, the servo drive automatically adjusts the corresponding gain parameters, such as P2.000 and P2.004.

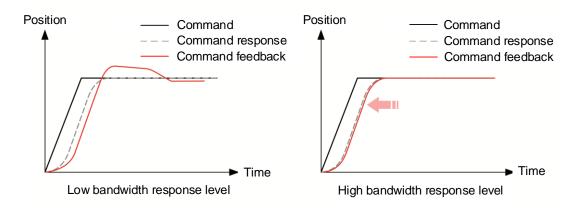


Figure 5.3.5.1.1 Adjust the bandwidth response level

5.3.5.2 Command response gain (P2.089) - response adjustment

P2.089 adjusts the command response gain to improve the response to the servo command. Increasing the gain can reduce the transient error (in acceleration and deceleration zones) between the position command and command response. That is, the P2.089 setting is effective only when the commands are changing. This parameter is available only when the two degree of freedom control function is enabled (P2.094 [Bit 12] = 1). The two degree of freedom control function is enabled by default.

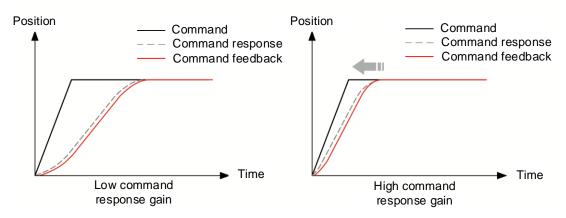


Figure 5.3.5.2.1 Adjust the command response gain

5.4 Manual tuning of gain parameters

The response bandwidth of the position or speed loop is determined by the mechanical stiffness and the application. Generally, for applications or machines that require high-speed positioning and high precision, higher response bandwidth is required. However, increasing the response bandwidth is likely to cause mechanical resonance. Thus, machinery with higher stiffness is used to solve this problem. When the response bandwidth of the machine is unknown, you can gradually increase the gain parameter values to increase the response bandwidth. Then, decrease the gain parameter values until you hear the sound of the resonance. The following are the descriptions of the gain adjustment parameters.

■ Position control gain (KPP, P2.000)

This parameter determines the response of the position loop. The bigger the KPP value, the higher the bandwidth of the position loop. This reduces the following error, position error, and settling time. However, if you set the value too high, it can cause machine jitter or cause overshoot when positioning. The calculation of position loop bandwidth is as follows:

Position loop bandwidth (Hz) =
$$\frac{\text{KPP}}{2\pi}$$

■ Speed control gain (KVP, P2.004)

This parameter determines the response of the speed loop. The bigger the KVP value, the higher the bandwidth of the speed loop and the lower the following error. However, if you set the value too high, it is likely to cause mechanical resonance. The speed loop bandwidth must be 4 to 6 times the position loop bandwidth; when the position loop bandwidth is higher than the speed loop bandwidth, it can cause machine jitter or cause overshoot when positioning. The calculation of speed loop bandwidth is as follows:

Speed loop bandwidth (Hz) =
$$\left(\frac{\text{KVP}}{2\pi}\right) \times \left[\frac{(1 + \text{P1.037} / 10)}{(1 + \text{JL} / \text{JM})}\right]$$

JM: motor inertia; JL: load inertia

When P1.037 (auto estimation or manually set value) is equal to the actual load inertia ratio (JL / JM), the actual speed loop bandwidth is:

Speed loop bandwidth (Hz) =
$$\left(\frac{KVP}{2\pi}\right)$$

ASDA-E3

Tuning

■ Speed integral compensation (KVI, P2.006)

The higher the KVI value, the better the elimination of the deviation. However, if you set the value too high, it can cause machine jitter. It is advisable to set the KVI value as follows:

■ Resonance suppression low-pass filter (NLP, P2.025)

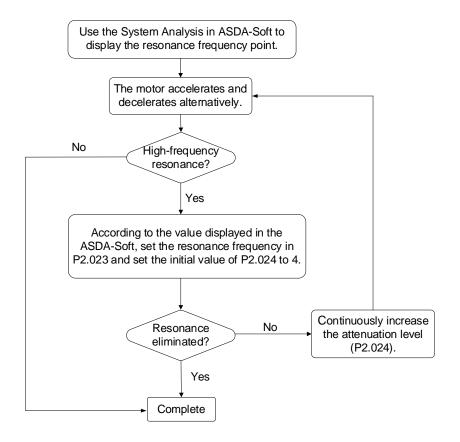
A high load inertia ratio reduces the speed loop bandwidth. Therefore, you must increase the KVP value to maintain the speed loop bandwidth. Increasing the KVP value might cause mechanical resonance, and you can use this parameter to eliminate the noise. The higher the NLP value, the better the effect of reducing high-frequency noise. However, if you set the value too high, it can cause instability in the speed loop and overshoot. It is advisable to set the NLP value as follows:

■ Anti-interference gain (DST, P2.026)

Use this parameter to increase the ability to resist external force and reduce overshoot during acceleration / deceleration. The default value is 0. Adjusting this value in Manual mode is not suggested unless it is for fine-tuning the results of auto tuning.

Note: disable the two degree of freedom control function (P2.094 [Bit 12] = 0) before using this gain parameter.

■ Position feed forward gain (PFG, P2.002)


This parameter reduces the position error and settling time. However, if you set the value too high, it might cause overshoot when positioning. If the E-Gear ratio is higher than 10, it is likely to cause noise.

Tuning ASDA-E3

5.5 Mechanical resonance suppression

The servo drive provides 5 sets of notch filters for suppressing mechanical high-frequency resonances. Each set of notch filter supports the function of auto resonance suppression (P2.047). In addition, you can suppress the resonance manually.

Flowchart of manual resonance suppression:

Control Mode

This chapter describes the control structure of each mode, including the use of gain adjustment and filters. For Position mode, you use the external pulse and commands from the internal registers. For Speed mode and Torque mode, apart from the commands from the internal registers, you can also control the servo drive by the analog voltage input. In addition to the single modes, dual modes and multi-modes are also available for meeting the application requirements.

6.1	ام	ecting the control mode ······6-		
		sition mode·······6-		
6.2				
	.2.1	Position command in PT mode6		
6.	.2.2	Position command in PR mode 6-		
6.	.2.3	Control structure of Position mode6-		
6.	2.4	S-curve filter for Position commands		
6.	2.5	Electronic gear ratio (E-Gear ratio)6		
6.	2.6	Low-pass filter ····· 6-		
6.	.2.7	Timing diagram of PR mode6-		
6.	2.8	Gain adjustment of the position loop 6-1		
6.	2.9	Low-frequency vibration suppression in Position mode 6-1.		
6.3	Spe	eed mode······ 6-1		
6.	3.1	Selecting the Speed command source 6-1		
6.	3.2	Control structure of Speed mode····· 6-1		
6.	3.3	Smoothing the Speed command · · · · · 6-1		
6.	3.4	Scaling of the analog command 6-1		
6.	3.5	Timing diagram of Speed mode 6-2		
6.	3.6	Gain adjustment of the speed loop ······ 6-2		
6.	3.7	Resonance suppression unit ······ 6-2		
6.4	Tord	que mode 6-2		
6.	4.1	Selecting the Torque command source 6-2		
6.	4.2	Control structure of Torque mode 6-2		
6.	4.3	Smoothing the Torque command······ 6-2		
6.	4.4	Scaling of the analog command 6-2		
6.	4.5	Timing diagram of Torque mode······ 6-2		
6.5		al modes and multi-modes····································		
	.5.1	Speed / Position dual mode · · · · · · 6-3		
0.	. J. I	Opoca / 1 ocition dual mode		

Control Mode ASDA-E3

V.	J

6.5.2	Speed / Torque dual mode······ 6-3	31
6.5.3	Torque / Position dual mode 6-3	32
6.6 Oth	ners6-3	33
6.6.1	Applying the speed limit 6-3	33
6.6.2	Applying the torque limit 6-3	33
6.6.3	Analog monitoring6-3	34

ASDA-E3 Control Mode

6.1 Selecting the control mode

This servo drive provides three basic control modes, Position, Speed, and Torque, and one communication mode. For the basic control mode, you can choose from single mode, dual mode, and multi-mode. The following table lists all the available modes and corresponding descriptions.

Mode		Short name	Code	Description
	Position mode (Terminal block input)	PT	00	The servo drive receives the Position command and commands the motor to run to the target position. The Position commands are pulse signals input from the external terminal block.
	Position mode (Internal register)	PR	01	The servo drive receives the Position command and commands the motor to run to the target position. The Position commands are issued from the internal registers (100 sets in total). Select the register number with DI signals or through communication.
	Speed mode	S	02	The servo drive receives the Speed command and commands the motor to run at the target speed. The Speed commands are issued from the internal registers (3 sets in total) or by the analog voltage (-10V to +10V) input from the external terminal block. Select the command with DI signals.
Single mode	Speed mode (No analog input)	Sz	04	The servo drive receives the Speed command and commands the motor to run at the target speed. The Speed command can only be issued from the internal registers (3 sets in total) instead of through the external terminal block. Select the command with DI signals.
	Torque mode	Т	03	The servo drive receives the Torque command and commands the motor to run with the target torque. The Torque commands are issued from the internal registers (3 sets in total) or by the analog voltage (-10V to +10V) input from the external terminal block. Select the command with DI signals.
	Torque mode (No analog input)	Tz	05	The servo drive receives the Torque command and commands the motor to run with the target torque. The Torque command can only be issued from the internal registers (3 sets in total) instead of through the external terminal block. Select the command with DI signals.
		PT-S	06	Switch between PT and S modes with DI signal.
		PT-T	07	Switch between PT and T modes with DI signal.
	Dual mode	PR-S	80	Switch between PR and S modes with DI signal.
	Daai modo	PR-T	09	Switch between PR and T modes with DI signal.
		S-T	0A	Switch between S and T modes with DI signal.
		PT-PR	0D	Switch between PT and PR modes with DI signal.
Com	munication mode	EtherCAT	0C	EtherCAT mode.
	Multi-mode	PT-PR-S	0E	Switch between PT, PR, and S modes with DI signals.
		PT-PR-T	0F	Switch between PT, PR, and T modes with DI signals.

Here are the steps to switch the control modes:

- 1. Switch the servo drive to Servo Off status. You can do this by setting DI.SON to off.
- 2. Set P1.001 by referring to the codes listed in the preceding table to set the control mode.
- 3. After setting the parameter, cycle the power to the servo drive.

The following sections describe the operation of each mode, including the control structure, command source and selection, command processing, and gain adjustment.

Control Mode ASDA-E3

6.2 Position mode

The servo drive can receive two types of position control commands: external pulse (PT mode) and internal register (PR mode). In PT mode, the servo drive receives the pulse command for the moving direction (motor runs forward or reverse). You can control the rotation angle of the motor with the input pulse. The servo drive can receive pulse commands of up to 4 Mpps.

The internal register (PR mode) allows you to accomplish position control without the external pulse command. The servo drive provides 100 command registers. Set the required registers before switching the drive to Servo On status. There are two ways to select the commands. One is setting DI.POS0 - DI.POS6 of CN1, and the other is directly setting the register values through communication.

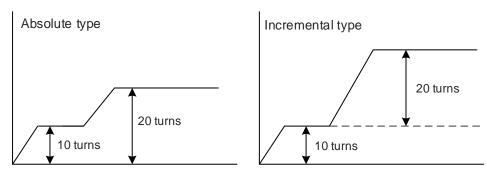
6.2.1 Position command in PT mode

The PT Position command is the pulse input from the terminal block. There are three pulse types and each type has positive and negative logic that you can set in P1.000. Refer to Chapter 8 for more details.

Parameter	Function
P1.000	External pulse input type

ASDA-E3 Control Mode

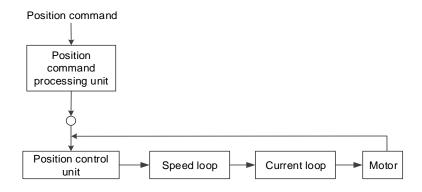
6.2.2 Position command in PR mode

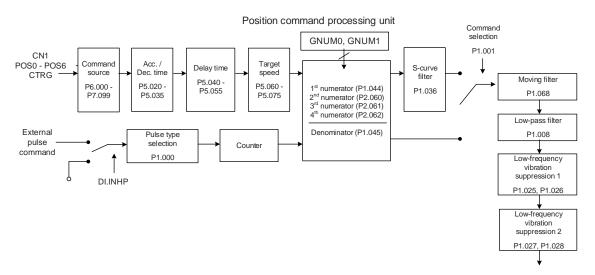

The PR command source is the 100 sets of internal command registers (P6.000 - P7.099). Use DI.POS0 - DI.POS6 (0x11, 0x12, 0x13, 0x1A, 0x1B, 0x1C, 0x1E) of CN1 to select one of the 100 sets as the Position command and then trigger the command with DI.CTRG (0x08). See the following table for more details.

Position command	POS6	POS5	POS4	POS3	POS2	POS1	POS0	CTRG	Corresponding parameter
Llamina	0	0	0	0	0	0	_	1	P6.000
Homing	U	0	U	U	U	0	0		P6.001
PR#1	0	0	0	0	0	0	1	1	P6.002
PR#1	U	U	0	U	U	0			P6.003
PR#50	0	1	1	0	0	1	0	↑	P6.098
FR#30	U	ı	ı	U	U	'			P6.099
PR#51	0	0 1	1	0	0	1	1	↑	P7.000
PR#31	0	I	I	U	U	ı			P7.001
PR#99	1	1 1	0	0	0	1	1	1	P7.098
									P7.099

Status of POS0 - POS6: 0 means the DI is off (the circuit is open); 1 means the DI is on (the circuit is closed).

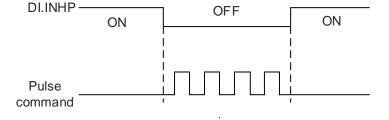
CTRG ↑: this indicates the moment the DI is switched from off to on.


The absolute type and incremental type position registers are used to control the operation process. You can easily complete a periodic motor operation according to the preceding table. For example, if the Position command PR#1 is 10 turns and PR#2 is 20 turns, when PR#1 is issued first and PR#2 comes second, the difference between absolute and incremental positioning is shown in the following diagrams.


Control Mode ASDA-E3

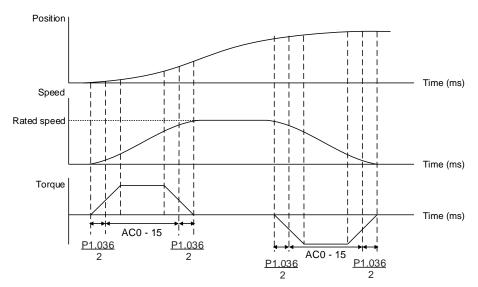
6.2.3 Control structure of Position mode

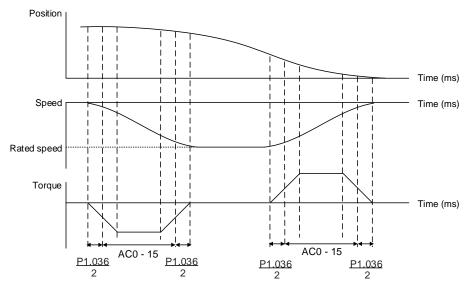
The following diagram shows the basic control structure of Position mode.


For better control, the pulse signals are processed by the Position command processing unit. The structure is shown in the following diagram.

In the diagram, the upper path is the PR mode and the lower one is the PT mode, which you can select with P1.001. You can set the E-Gear ratio in both modes to adjust the positioning resolution. In addition, you can use either a moving filter or low-pass filter to smooth the command. Refer to the following sections for more details.

The Pulse Command Input Inhibit (INHP) function


In PT mode, when DI.INHP is on, the servo drive stops receiving external pulse commands and the motor stops running. As this function is only supported by P2.017 (DI8 functional planning), setting P2.017 to 0x45 (DI.INHP) is required.


ASDA-E3 Control Mode

6.2.4 S-curve filter for Position commands

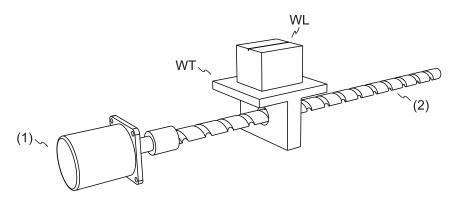
The S-curve filter for Position commands smoothes the motion command in PR mode. The filter makes the speed and acceleration continuous and reduces jerking, resulting in a smoother mechanical operation. If the load inertia increases, the motor operation is affected by friction and inertia generated when the motor starts or stops rotating. Setting a larger acceleration / deceleration smoothing constant for the S-curve (P1.036) and the acceleration / deceleration time in P5.020 - P5.035 can increase the smoothness of operation. When the Position command source is the pulse input, the speed and angular acceleration are continuous, so the S-curve command filter is not necessary.

S-curve speed profile of Position command and time setting (incremental position command)

S-curve speed profile of Position command and time setting (decremental position command)

Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function				
P1.036	S-curve acceleration / deceleration smoothing constant				
P5.020 - P5.035	Acceleration / deceleration times (#0 - 15)				


Control Mode ASDA-E3

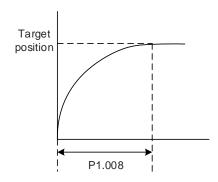
6.2.5 Electronic gear ratio (E-Gear ratio)

The electronic gear provides easy settings for the resolution. The resolution of the servo drive is 24-bit, which means 16,777,216 pulses are generated per motor revolution. Regardless of the encoder resolution (17-bit, 20-bit, or 22-bit), the E-Gear ratio is set according to the servo drive resolution (24-bit).

When the E-Gear ratio is 1, it means 16,777,216 pulses are generated per motor revolution; when the E-Gear ratio is 0.5, then every two pulses from the command (controller) corresponds to one pulse for the motor. A high E-Gear ratio might create a sharp corner in the profile and lead to a high jerk. To solve this problem, apply an S-curve command filter or a low-pass filter.

For example, if the workpiece is moved at the speed of 1 μ m/pulse after you set a proper E-Gear ratio, then it means the workpiece moves 1 μ m per pulse.

(1) Motor; (2) Ball screw pitch: 3 mm (equals 3,000 µm); WL: workpiece; WT: platform

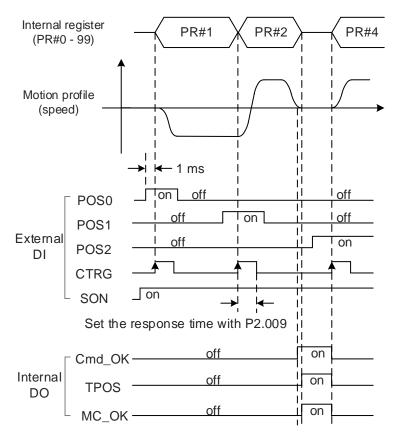

	Gear ratio	Moving distance per 1 pulse command
E-Gear is not applied	= 1/1	$= \frac{3000 \frac{\mu m}{\text{rev}}}{16777216 \frac{\text{pulse}}{\text{rev}}} \times \frac{1}{1} = \frac{3000}{16777216} \text{ (Unit: } \frac{\mu m}{\text{pulse}}\text{)}$
E-Gear is applied	$=\frac{16777216}{3000}$	$= \frac{3000 \frac{\mu m}{rev}}{16777216 \frac{pulse}{rev}} \times \frac{16777216}{3000} = 1 \text{ (Unit: } \frac{\mu m}{pulse}\text{)}$

Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function
P1.044	E-Gear ratio - numerator N1
P1.045	E-Gear ratio - denominator M

ASDA-E3 Control Mode

6.2.6 Low-pass filter



Refer to Chapter 8 for detailed descriptions of the relevant parameter.

Parameter	Function
P1.008	Position command - smoothing constant (low-pass filter)

6.2.7 Timing diagram of PR mode

In PR mode, the Position command is selected with the DI signals (POS0 - POS6 and CTRG) of CN1. Refer to Section 6.2.2 for information about the DI signals and the selected register. The timing diagrams are shown as follows.

Note: Cmd_OK is on when the PR command is complete; TPOS is on when the position error is smaller than the value set by P1.054; MC_OK is on when Cmd_OK and TPOS are both on.

6-9

Control Mode ASDA-E3

6.2.8 Gain adjustment of the position loop

There are two ways of gain adjustment for the position loop: auto and manual.

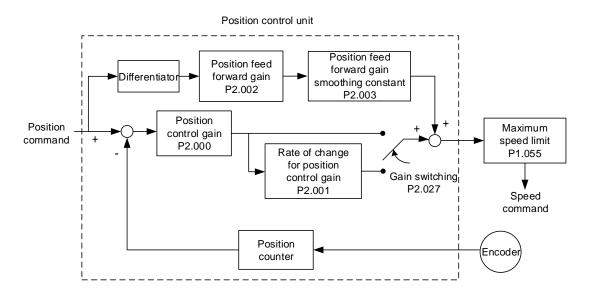
■ Auto

The servo drive can complete the gain adjustment with the Auto Tuning function. Refer to Chapter 5 Tuning for a detailed description.

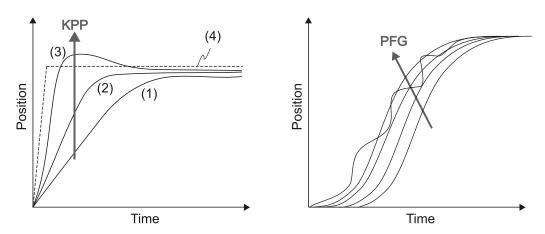
Manual

Before setting the position control unit, you have to manually set the speed control unit with P2.004 and P2.006 since a speed loop is included in the position loop. Then, set the position control gain (KPP, P2.000) and position feed forward gain (PFG, P2.002).

Description:


- Position control gain: the higher the gain, the larger response bandwidth for the position loop.
- 2. Position feed forward gain: the higher the gain, the smaller the deviation of phase delay. Note that the position loop bandwidth should not be larger than the speed loop bandwidth.

Calculation: $fp \le \frac{fv}{4}$ (fv: response bandwidth (Hz) of speed loop;


fp: response bandwidth (Hz) of position loop)

$$KPP = 2 \times \pi \times fp$$

Example: if the desired response bandwidth of the position loop is 20 Hz, then adjust KPP (P2.000) to 125. (2 × π × 20 Hz = 125)

When you set the value of KPP (P2.000) too high, the bandwidth for the position loop is increased and the phase margin is reduced. Meanwhile, the rotor rotates and vibrates in the forward and reverse directions. Then, you have to decrease the KPP value until the rotor stops vibrating. However, when there is an external torque (e.g. workpiece is added to the platform), a low value of KPP might not be able to reduce the position following error. In this case, increasing the value of PFG (P2.002) can effectively reduce the position following error.

The actual position profile changes from (1) to (3) with the increase in the KPP value. (4) stands for the Position command.

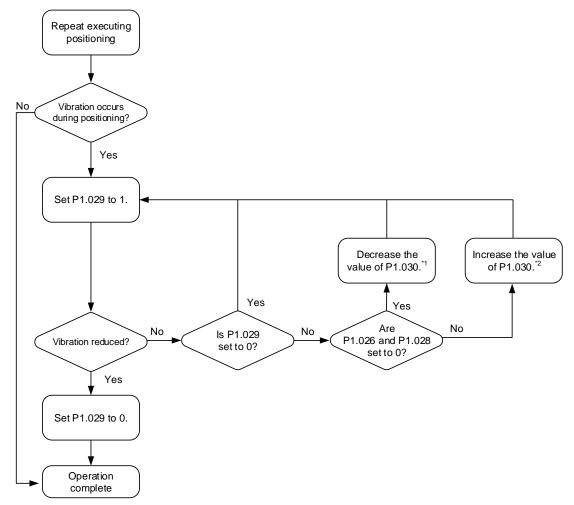
Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function				
P2.000	Position control gain				
P2.002	Position feed forward gain				

Control Mode ASDA-E3

6.2.9 Low-frequency vibration suppression in Position mode

If the machine is too flexible, the vibration persists even when the motor stops after the positioning command is complete. The low-frequency vibration suppression function can reduce the machine vibration. The suppression range is between 1.0 Hz and 100.0 Hz. You can use this function with either auto or manual setting.


Auto setting

If you have difficulty finding the frequency, enable the auto low-frequency vibration suppression function (P1.029 = 1), which automatically searches for the vibration frequency. When you set P1.029 to 1, the system automatically disables the low-frequency vibration suppression filters (by setting P1.026 and P1.028 to 0) and then starts to search for the vibration frequency. When the detected frequency remains at the same level, the system automatically changes the settings in the following order.

- 1. Sets P1.029 to 0.
- 2. Sets P1.025 to the first frequency and sets P1.026 to 1.
- 3. Sets P1.027 to the second frequency and sets P1.028 to 1.

When P1.029 is automatically reset to 0, but the low-frequency vibration persists, check if P1.026 or P1.028 is set to 1. If either P1.026 or P1.028 is 1, increase the setting of P1.030 (low-frequency vibration detection). If the values of P1.026 and P1.028 are both 0, it means no vibration frequency is detected. In this case, lower the value of P1.030 and set P1.029 to 1 to search for the vibration frequency again. Note that when you set the detection level too low, it might detect noise as the low-frequency vibration.

Flowchart for the auto suppression of low-frequency vibration:

Note:

- When the values of P1.026 and P1.028 are both 0, it means the frequency cannot be found. It is
 probably because the detection level is set too high, causing the low-frequency vibration to be
 ignored.
- 2. When the value of P1.026 or P1.028 is greater than 0, but the vibration cannot be suppressed, it is probably because the detection level is too low, causing the system to detect minor frequency or noise as low-frequency vibration.
- 3. When the auto suppression procedure is complete, but the vibration persists, you can manually set P1.025 or P1.027 to suppress the vibration if you have identified the low frequency.

6

P1.030 sets the detection range for the peak-to-peak amplitude of low-frequency vibration. When the frequency is not detected, it is probably because the value of P1.030 is too high and exceeds the vibration range. If so, it is suggested that you decrease the value of P1.030. Note that if the value is too small, the system might detect noise as the low-frequency vibration. In this case, you can use the Scope function of ASDA-Soft and set the channel to "Position error (pulse)" to observe the peak-to-peak amplitude of the signal during positioning for setting P1.030.

Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function			
P1.029	Auto low-frequency vibration suppression mode			
P1.030	Low-frequency vibration detection			

Manual setting

There are two sets of low-frequency vibration suppression parameters: one is parameters P1.025 - P1.026 and the other is parameters P1.027 - P1.028. You can use these two sets of low-frequency vibration suppression parameters to reduce two different low-frequency vibrations. Use P1.025 and P1.027 to set the frequencies when the low-frequency vibrations occur. The suppression function works only when the set frequency is close to the actual vibration frequency. Use P1.026 and P1.028 to set the response after frequency filtering. The bigger the values of P1.026 and P1.028, the better the response. However, if you set the values too high, the motor might not operate smoothly. The default values of P1.026 and P1.028 are 0, which means the two sets of filters are disabled by default.

Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function
P1.025	Low-frequency vibration suppression frequency 1
P1.026	Low-frequency vibration suppression gain 1
P1.027	Low-frequency vibration suppression frequency 2
P1.028	Low-frequency vibration suppression gain 2

ASDA-E3 Control Mode

6.3 Speed mode

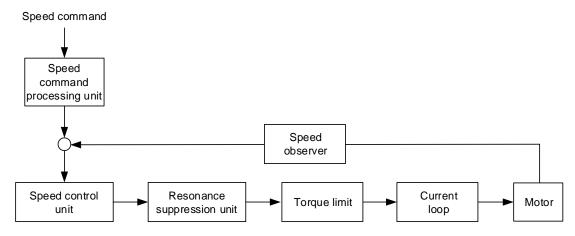
There are two types of Speed command sources: analog input and internal register (parameters). The analog command controls the motor speed by scaled external voltage input. The command register controls the motor speed in two ways. Before operation, respectively set the speed values in the three registers. Then, you can switch between the three sets of speed either by using DI.SPD0 and DI.SPD1 of CN1 or by changing the value in the register through communication. In order to deal with the problem of non-continuous speed when switching registers, you can use the S-curve acceleration and deceleration filter.

6.3.1 Selecting the Speed command source

There are two types of Speed command sources: analog voltage input and internal register (parameters). Select the command source with DI signals of CN1. See the following table for more details.

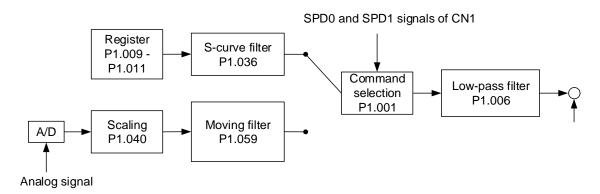
Speed command	CN1 DI signal		Command source			Content	Range
number	SPD1	SPD0	Command source		and source	Content	Nange
S1	0	0	Mode	S	External analog signal	Voltage difference between V_REF and GND	-10V to +10V
				Sz	N/A	Speed command is 0	0
S2	0	1	Internal register (parameter)			P1.009	-75000 to +75000
S3	1	0				P1.010	-75000 to +75000
S4	1	1				P1.011	-75000 to +75000

- Status of SPD0 and SPD1: 0 means that DI is off (the circuit is open); 1 means that DI is on (the circuit is closed).
- When both SPD0 and SPD1 are 0, if the drive is in Sz mode, the command is 0. Thus, if there is no need to use the analog voltage for the Speed command, you can use Sz mode to avoid the problem of zero drift in the voltage. If the drive is in S mode, then the command is the voltage difference between V_REF and GND. The range of the input voltage is between -10V and +10V, and you can adjust the corresponding speed with P1.040.
- When either one of SPD0 and SPD1 is not 0, the internal parameters become the source for the Speed command. The command takes effect once the status of SPD0 and SPD1 are switched. There is no need to use DI.CTRG for triggering.
- The parameter (internal register) setting range is -75000 to +75000.


 Rotation speed = setting value x unit (0.1 rpm).

 For example, if P1.009 = +30000, then rotation speed = +30000 x 0.1 rpm = +3000 rpm.

You can use the Speed command in Speed mode (S or Sz) and Torque mode (T or Tz). When the drive is in Torque mode, you can use the Speed command input as the speed limit.


6.3.2 Control structure of Speed mode

The following diagram shows the basic control structure of Speed mode.

The Speed command processing unit selects the command source (see Section 6.3.1), including the scaling parameter (P1.040) for setting the rotation speed corresponding to the analog voltage and the S-curve filter (P1.036) for smoothing the speed. The speed control unit manages the gain parameters for the servo drive and calculates the current command for servo motor in real-time. The Resonance suppression unit suppresses the resonance of the machine.

The following diagram introduces the function of Speed command processing unit. Its structure is shown as follows.

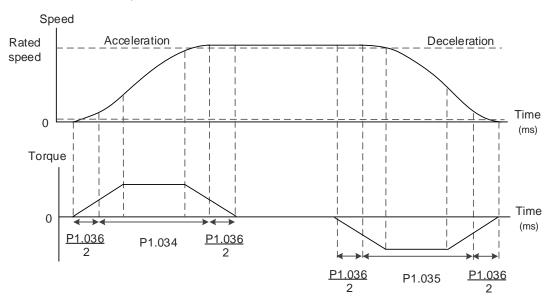
The upper path is the command from the register and the lower one is the command from the external analog voltage, which you can select with the status of SPD0 and SPD1, and P1.001 (S or Sz). In this condition, the S-curve and low-pass filters are applied to achieve a smoother response.

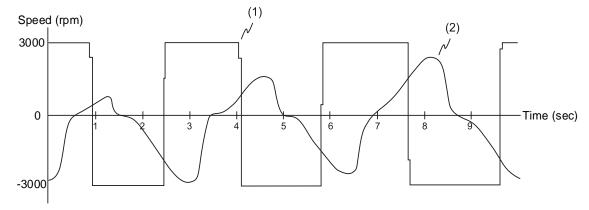
6.3.3 Smoothing the Speed command

S-curve filter

During the process of acceleration or deceleration, the three-phase motion profile of the S-curve filter provides a smoother motion. Using the S-curve filter avoids jerk (rapid change of acceleration), resonance, and noise caused by abrupt changes in the speed input. You can use the following parameters for adjustment.

- The S-curve acceleration constant (P1.034) adjusts the slope of the change in acceleration.
- The S-curve deceleration constant (P1.035) adjusts the slope of the change in deceleration.
- The S-curve acceleration / deceleration constant (P1.036) improves the stability of the motor when it starts and stops.



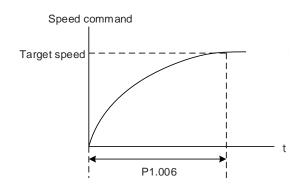

Figure 6.3.3.1 S-curve speed profile and time setting

Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function
P1.034	S-curve acceleration constant
P1.035	S-curve deceleration constant
P1.036	S-curve acceleration / deceleration smoothing constant

Analog Speed command filter

The Analog Speed command filter provided by the servo drive helps to stabilize the motor operation when the analog input signal (speed) changes rapidly.

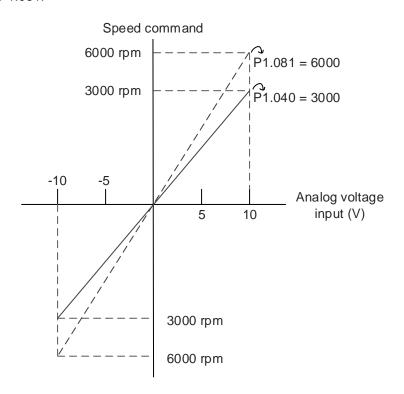


(1) Analog Speed command; (2) Motor speed

The filter for smoothing the analog input commands is the same as the S-curve filter in terms of the time planning as well as the continuous speed and acceleration curves. In the preceding diagram, the slopes of the Speed command in acceleration and deceleration are different. Adjust the time settings (P1.034, P1.035, and P1.036) according to the actual application to improve the performance.

Low-pass filter for Speed commands

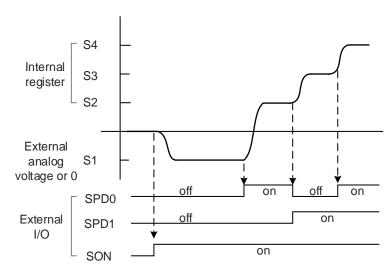
The low-pass filter for Speed commands is usually used to remove unwanted high-frequency response or noise so that the speed change is smoother.



Refer to Chapter 8 for detailed descriptions of the relevant parameter.

Parameter	Function
P1.006	Speed command - smoothing constant (low-pass filter)

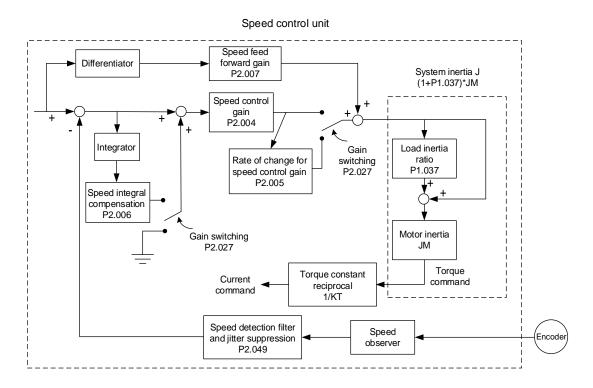
6.3.4 Scaling of the analog command


The Speed command is controlled by the analog voltage difference between V_REF and GND. Use P1.040 and P1.081 to adjust the slope of the speed change and the setting range of the command. Moreover, you can use P1.082 to change the time constant for switching between P1.040 and P1.081.

Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function
P1.040	Maximum motor speed for analog Speed command 1
P1.081	Maximum motor speed for analog Speed command 2
P1.082	Time constant for switching between P1.040 and P1.081

6.3.5 Timing diagram of Speed mode



Note:

- 1. "off" means that DI is off (the circuit is open); "on" means that DI is on (the circuit is closed).
- 2. When the drive is in Sz mode, the Speed command S1 = 0; when the drive is in S mode, the Speed command S1 refers to the external analog voltage input.
- 3. In Servo On state, the command is selected according to the status of SPD0 and SPD1.

6.3.6 Gain adjustment of the speed loop

The structure of the speed control unit is shown in the following diagram.

In the speed control unit, you can adjust different gain parameters manually or by using the multiple gain adjustment modes.

Manual mode: manually set the parameters with all auto or auxiliary functions disabled.

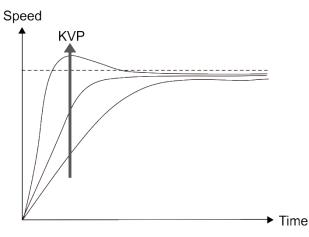
Gain adjustment mode: refer to Chapter 5 Tuning.

■ Manual mode

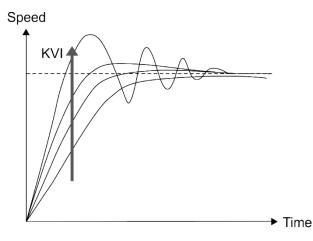
In Manual mode (P2.032 = 0), you can set the speed control gain (KVP, P2.004), speed integral compensation (KVI, P2.006), and speed feed forward gain (KVF, P2.007). The parameter descriptions are as follows.

Speed control gain: the higher the gain, the larger the bandwidth for the speed loop response. Speed integral compensation: increasing this gain increases the low frequency rigidity and reduces the steady-state error. However, the phase margin becomes smaller. If you set this gain too high, it reduces the system stability.

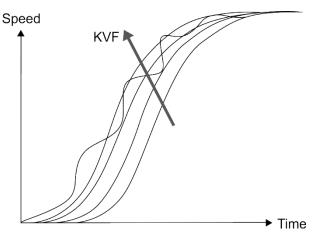
Speed feed forward gain: the higher the gain, the smaller the deviation of phase delay.


Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function
P2.004	Speed control gain
P2.006	Speed integral compensation
P2.007	Speed feed forward gain

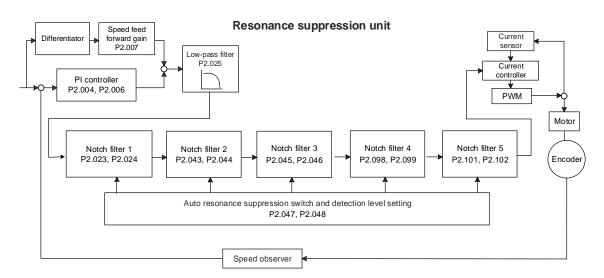

6

Here, the step response is used to illustrate the basic principles for speed control gain (KVP), speed integral compensation (KVI), and speed feed forward gain (KVF). Refer to the following examples.


Time domain

The higher the KVP value, the larger the bandwidth. The time of the speed increase will also be shorter. However, if the KVP value is set too high, the phase margin becomes too small. The effect of KVP is not as good as KVI for the steady-state error but is better in reducing the following error.

The higher the KVI value, the larger the low-frequency gain. It shortens the time for the steady-state error to reduce to zero but reduces the phase margin. However, it does not significantly reduce the following error.


The closer the KVF value is to 1, the more complete the forward compensation.

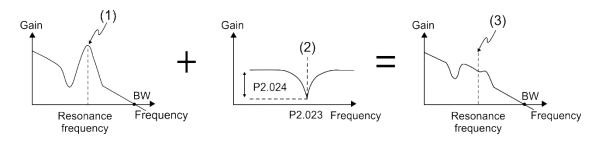
The following error becomes very small.

However, setting the KVF value too high causes vibration.

6.3.7 Resonance suppression unit

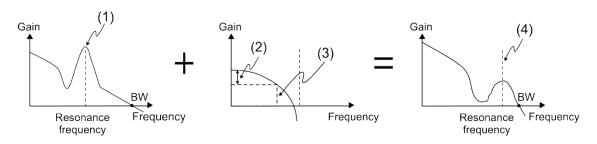
When resonance occurs, it is probably because the stiffness of the control system is too high or the response bandwidth is too great. Eliminating these two factors can improve the situation. In addition, you can use the low-pass filter (P2.025) and Notch filters (P2.023, P2.024, P2.043 - P2.046, and P2.095 - P2.103) to suppress the resonance if you want the control parameters to remain unchanged.

Refer to Chapter 8 for detailed descriptions of the relevant parameters.


Parameter	Function
P2.023	Notch filter 1 - frequency
P2.024	Notch filter 1 - attenuation level
P2.025	Resonance suppression low-pass filter
P2.043	Notch filter 2 - frequency
P2.044	Notch filter 2 - attenuation level
P2.045	Notch filter 3 - frequency
P2.046	Notch filter 3 - attenuation level
P2.095	Notch filter 1 - Q factor
P2.096	Notch filter 2 - Q factor
P2.097	Notch filter 3 - Q factor
P2.098	Notch filter 4 - frequency
P2.099	Notch filter 4 - attenuation level
P2.100	Notch filter 4 - Q factor
P2.101	Notch filter 5 - frequency
P2.102	Notch filter 5 - attenuation level
P2.103	Notch filter 5 - Q factor

6

The servo drive provides two methods to suppress the resonance: one is using the Notch filters and the other is using the low-pass filter. See the following diagrams for the effects of these filters.


System open-loop gain with resonance:

■ Notch filter

(1) Resonance point; (2) Notch filter; (3) Resonance point suppressed by the Notch filter

Low-pass filter

(1) Resonance point; (2) Attenuation level (-3 dB);

(3) Low-pass filter (Cutoff frequency of low-pass filter = 1000 / P2.025 Hz);

(4) Resonance point suppressed by the low-pass filter

To conclude from these two examples, if you increase the value of P2.025 (Low-pass filter) from 0, the bandwidth (BW) becomes smaller. Although it solves the problem of resonance, it also reduces the response bandwidth and phase margin, making the system unstable.

If knowing the resonance frequency, you can suppress the resonance by using the Notch filter, which is better than using the low-pass filter in this condition. The setting range for the frequency of the Notch filter is 50 - 5000 Hz and the attenuation level is 0 - 40 dB. If the resonance frequency drifts significantly with time or due to other causes, using the low-pass filter to reduce the resonance is suggested.

6.4 Torque mode

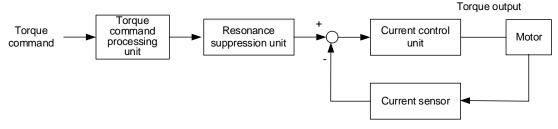
The Torque control mode (T or Tz) is suitable for torque control applications, such as printing machines and winding machines. There are two types of Torque command sources: analog input and internal register (parameters). The analog command uses scaled external voltage input to control the motor torque while the internal register uses the internal parameters (P1.012 - P1.014) for the Torque command.

6

6.4.1 Selecting the Torque command source

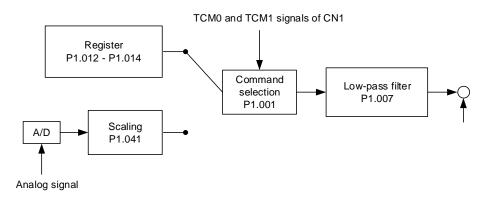
There are two types of Torque command sources: analog voltage input and internal register (parameters).

Select the command source with DI signals of CN1. See the following table for more details.

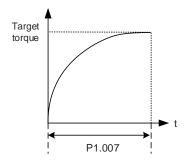

Torque	CN1 DI signal		Comment course			0 1 1	5
command number	TCM1	TCM0	Command source		and source	Content	Range
T1	0	0	Mode	Т	External analog signal	Voltage difference between T_REF and GND	-10V to +10V
				Tz	N/A	Torque command is 0	0
T2	0	1				P1.012	-500% to +500%
T3	1	0	Internal register (parameter)			P1.013	-500% to +500%
T4	1	1				P1.014	-500% to +500%

- Status of TCM0 and TCM1: 0 means that DI is off (the circuit is open); 1 means that DI is on (the circuit is closed).
- When both TCM0 and TCM1 are 0, if the drive is in Tz mode, the command is 0. Thus, if there is no need to use the analog voltage for the Torque command, you can use Tz mode to avoid the problem of zero drift in the voltage. If the drive is in T mode, then the command is the voltage difference between T_REF and GND. The range of the input voltage is between -10V and +10V, and you can adjust the corresponding torque with P1.041.
- When either one of TCM0 or TCM1 is not 0, the internal parameters become the source for the Torque command. The command takes effect once the status of TCM0 and TCM1 are switched. There is no need to use DI.CTRG for triggering.

You can use the Torque command in Torque mode (T or Tz) and Speed mode (S or Sz). When the drive is in Speed mode, you can use the Torque command input as the torque limit.


6.4.2 Control structure of Torque mode

The following diagram shows the basic control structure of Torque mode.

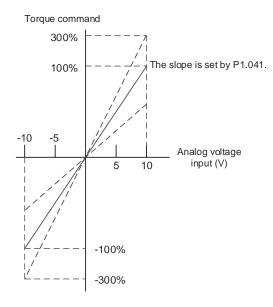

The Torque command processing unit selects the command source (see Section 6.4.1), including the scaling parameter (P1.041) for setting the torque corresponding to the analog voltage and the low-pass filter (P1.007) for smoothing the torque. The current control unit manages the gain parameters for the servo drive and calculates the current for servo motor in real-time.

The structure of Torque command processing unit is as follows.

The upper path is the command from the register and the lower one is the command from the external analog voltage, which you can select with the status of TCM0 and TCM1, and P1.001 (T or Tz). Adjust the torque with the analog voltage scaling (P1.041) and smooth the response with the low-pass filter (P1.007).

6.4.3 Smoothing the Torque command

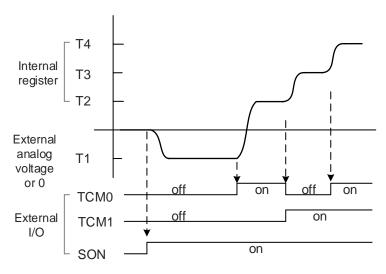
Refer to Chapter 8 for detailed descriptions of the relevant parameter.


Parameter	Function
P1.007	Torque command - smoothing constant (low-pass filter)

6.4.4 Scaling of the analog command

The Torque command is controlled by the analog voltage difference between T_REF and GND. Adjust the torque slope and the setting range of the command with P1.041.

For example:


- 1. If you set P1.041 to 100 and the external input voltage is 10V, the Torque command is 100% of the rated torque.
- 2. If you set P1.041 to 300 and the external input voltage is 10V, the Torque command is 300% of the rated torque.

Refer to Chapter 8 for detailed descriptions of the relevant parameter.

Parameter	Function
P1.041	Maximum output for analog Torque command

6.4.5 Timing diagram of Torque mode

Note:

- 1. "off" means that DI is off (the circuit is open); "on" means that DI is on (the circuit is closed).
- 2. When the drive is in Tz mode, the Torque command T1 = 0; when the drive is in T mode, the Torque command T1 refers to the external analog voltage input.
- 3. In Servo On state, the command is selected according to the status of TCM0 and TCM1.

6.5 Dual modes and multi-modes

Apart from the single modes for controlling the position, speed, and torque of the motor, there are also dual modes and multi-modes available for operation (see Section 6.1).

Mode	Short name	Code	Description		
	PT-S	06	Switch between PT and S modes with DI.S-P.		
	PT-T	07	Switch between PT and T modes with DI.T-P.		
Dual mode	PR-S	08	Switch between PR and S modes with DI.S-P.		
Duai mode	PR-T	09	Switch between PR and T modes with DI.T-P.		
	S-T	0A	Switch between S and T modes with DI.S-T.		
	PT-PR	0D	Switch between PT and PR modes with DI.PT-PR.		
Multi mada	PT-PR-S	0E	Switch between PT, PR, and S modes with DI.S-P and DI.PT-PR.		
Multi-mode	PT-PR-T	0F	Switch between PT, PR, and T modes with DI.T-P and DI.PT-PR.		

The dual mode for Sz and Tz is not supported. To avoid occupying too many digital inputs in the dual mode or multi-mode, Speed and Torque modes can use the external analog voltage as the command source to reduce the use of DIs (SPD0, SPD1 or TCM0, TCM1). In addition, the PT mode can use the pulse input to reduce the use of DIs (POS0 - POS6).

To refer to the table of default DI/DO functions or to change the DI/DO functions, see Section 3.3 for more information.

6

6.5.1 Speed / Position dual mode

Speed / Position dual mode includes PT-S and PR-S. The command source for PT-S is from the external pulse while the source for PR-S is from the internal parameters (P6.000 - P7.099). You can control the Speed command with the external analog voltage or the internal parameters (P1.009 - P1.011). The switch between Speed and Position modes is controlled by DI.S-P (0x18). The switch between PT and PR for Position mode is controlled by DI.PT-PR (0x2B). The following timing diagram illustrates the PR-S mode. The switch between Position and Speed commands in PR-S mode is controlled by DI signals.

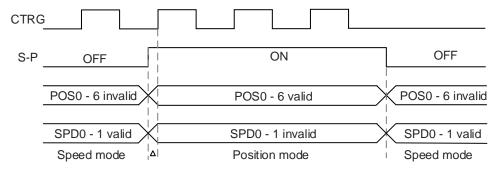


Figure 6.5.1.1 Speed / Position dual mode

In Speed mode (DI.S-P is off), you select the Speed command with DI.SPD0 and DI.SPD1, and DI.CTRG is not applicable. When the drive switches to Position mode (DI.S-P is on), since the Position command has not been issued (it waits for the rising edge of DI.CTRG), the motor stops (indicated by \triangle in the preceding figure). The Position command is selected with DI.POS0 - DI.POS6 when the rising edge of DI.CTRG is triggered, and then the motor operates to the specified position. When DI.S-P is off, the drive returns to the Speed mode. Refer to the introduction of each single mode for the DI signals and the selected commands.

6.5.2 Speed / Torque dual mode

Speed / Torque dual mode includes only S-T. The source of the Speed command can be the external analog voltage or the internal parameters (P1.009 - P1.011), which you select with DI.SPD0 and DI.SPD1. Similarly, the source of the Torque command can be the external analog voltage or the internal parameters (P1.012 - P1.014), which you select with DI.TCM0 and DI.TCM1. The following timing diagram illustrates the S-T mode. The switch between Speed and Torque modes is controlled by DI.S-T (0x19).

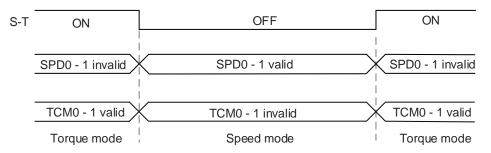


Figure 6.5.2.1 Speed / Torque dual mode

In Torque mode (DI.S-T is on), you select the Torque command with DI.TCM0 and DI.TCM1. When the drive switches to Speed mode (DI.S-T is off), you select the Speed command with DI.SPD0 and DI.SPD1. Then the motor operates according to the Speed command. When DI.S-T is on, the drive returns to the Torque mode. Refer to the introduction of each single mode for the DI signals and the selected commands.

6.5.3 Torque / Position dual mode

Torque / Position dual mode includes PT-T and PR-T. The command source for PT-T comes from the external pulse while the source for PR-T comes from the internal parameters (P6.000 - P7.099). You can control the Torque command with the external analog voltage or the internal parameters (P1.012 - P1.014). The switch between Torque and Position modes is controlled by DI.T-P (0x20). The switch between PT and PR for Position mode is controlled by DI.PT-PR (0x2B). The following timing diagram illustrates the PR-T mode. The switch between Position and Torque commands in PR-T mode is controlled by DI signals.

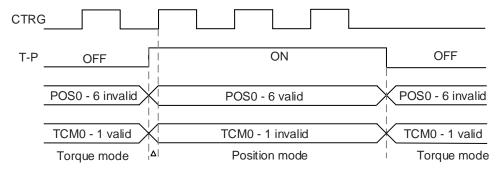
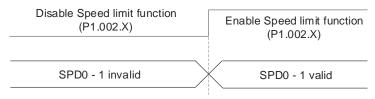


Figure 6.5.3.1 Torque / Position dual mode

In Torque mode (DI.T-P is off), you select the Torque command with DI.TCM0 and DI.TCM1, and DI.CTRG is not applicable. When the drive switches to Position mode (DI.T-P is off), since the Position command has not been issued (it waits for the rising edge of DI.CTRG), the motor stops (indicated by \triangle in the preceding figure). The Position command is selected with DI.POS0 - DI.POS6 when the rising edge of DI.CTRG is triggered, and then the motor operates to the specified position. When DI.T-P is off, the drive returns to the Torque mode. Refer to the introduction of each single mode for the DI signals and the selected commands.

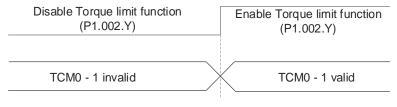

6.6 Others

6.6.1 Applying the speed limit

The maximum motor speed in all modes (Position, Speed, and Torque) is determined by the internal parameter P1.055.

The methods for using the Speed limit command and Speed command are the same. You can use either the external analog voltage or the internal parameters (P1.009 - P1.011). Refer to Section 6.3.1 for more details.

The Speed limit command is applicable only in Torque mode (T or Tz) for limiting the motor speed. If you are using the external analog voltage in Torque mode, you can use the available DI signals to set SPD0 and SPD1 for the motor speed limit value (internal parameters). If there is no DI signals available, use the analog voltage input for the Speed limit command. When you set P1.002.X (disable / enable Speed limit function) to 1, the Speed limit function is enabled. The timing diagram is shown as follows.



Source selection for Speed limit command

6.6.2 Applying the torque limit

The methods for using the Torque limit command and Torque command are the same. You can use either the external analog voltage or the internal parameters (P1.012 - P1.014). Refer to Section 6.4.1 for more details.

The Torque limit command is applicable in Position mode (PT or PR) or Speed mode (S) for limiting the motor torque output. If you are using the external pulse in Position mode or using the external analog voltage in Speed mode, you can use the available DI signals to set TCM0 and TCM1 for the torque limit command (internal parameters). If there is no DI signals available, use the analog voltage input for the Torque limit command. When you set P1.002.Y (disable / enable Torque limit function) to 1, the Torque limit function is enabled. The timing diagram is shown as follows.

Source selection for Torque limit command

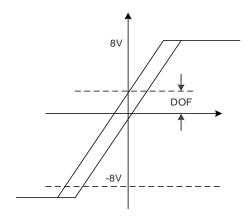
6

6.6.3 Analog monitoring

You can find the required voltage signal with analog monitoring. The servo drive provides two analog channels. Refer to Chapter 3 for more information about wiring.

Example:

If the analog voltage output is 8V when the motor speed is 1,000 rpm and the maximum speed of the motor is 5,000 rpm, the setting of P1.004 is as follows.


P1.004 =
$$\frac{\text{Required speed}}{\text{Max. speed}}$$
 x 100% = $\frac{1000 \text{ rpm}}{5000 \text{ rpm}}$ × 100% = 20%

You can calculate the voltage output corresponding to the current motor speed with the following formula.

Motor speed	MON1 analog monitor output							
300 rpm	MON1 = 8V × $\frac{\text{Current speed}}{\text{Max. speed}}$ × 100% = 8V × $\frac{300 \text{ rpm}}{5000 \text{ rpm} \times \frac{20}{100}}$ × 100% = 2.4V							
900 rpm	MON1 = 8V × $\frac{\text{Current speed}}{\text{Max. speed}} \times \frac{\text{P1.004}}{100} \times 100\% = 8V \times \frac{900 \text{ rpm}}{5000 \text{ rpm} \times \frac{20}{100}} \times 100\% = 7.2V$							

Voltage drift

When voltage drift occurs, the voltage level defined as zero voltage is different from the set zero point. To fix this problem, use DOF1 (P4.020) and DOF2 (P4.021) to calibrate the offset voltage output. The voltage level for analog monitoring output is ±8V. If the output voltage exceeds the range, it is limited within ±8V. The resolution is 10 bits, which is equivalent to 13 mV/LSB.

Refer to Chapter 8 for detailed descriptions of the relevant parameters.

Parameter	Function
P0.003	Analog output monitoring
P1.003	Encoder pulse output polarity
P1.004	MON1 analog monitor output proportion
P1.005	MON2 analog monitor output proportion
P4.020	Analog monitor output (Ch1) - offset compensation value
P4.021	Analog monitor output (Ch2) - offset compensation value

Motion Control

7

This chapter introduces internal motion commands of the servo drive in PR mode. In this mode, commands are generated based on the internal command of the servo drive. Various motion commands are available, including Homing, Speed, Position, Jump, Write, and Rotary Axis Position commands. This chapter contains detailed description of each command type.

7.1	PR	mod	le description ·····	7-2
7	.1.1	Sha	ared parameters for PR paths······	7-4
7	.1.2	Mor	nitoring variables of PR mode·····	7-6
7	.1.3	Mot	tion Control commands······	7-9
	7.1	.3.1	Homing command ······	7-9
	7.1	.3.2	Speed command	7-22
	7.1	.3.3	Position command······	7-25
	7.1	.3.4	Jump command ·····	7-29
	7.1	.3.5	Write command ·····	7-31
	7.1	.3.6	Rotary Axis Position command (Index Position)	7-33
7	.1.4	Ove	erview of the PR procedure ·····	7-37
7	.1.5	Trig	ger methods for the PR command ······	7-43
7	.1.6	PR	procedure execution flow	7-47
7	.1.7	Data	a array·····	7-59

7.1 PR mode description

PR mode is only supported by the E3-E models. In PR mode, the servo drive automatically generates the motion commands and saves all parameter settings in the servo drive parameter file. Thus, changing parameter settings simultaneously changes the PR commands. The servo drive provides 100 sets of PR path settings, which include homing methods, Speed command, Position command, Jump command, Write command, and Rotary Axis Position command.

The property and corresponding data content for each PR path are set by parameters. You can find information of all PR parameters in the descriptions for parameter groups 6 and 7 in Chapter 8. For example, PR#1 path is defined by parameters P6.002 and P6.003. P6.002 specifies the property of PR#1, such as the PR command type, whether to interrupt, and whether to auto-execute the next PR path. The definition of P6.003 is subject to change based on the property set in P6.002. When P6.002 is set to a Speed command, then P6.003 specifies the target speed. When P6.002 is set to a Jump command, then P6.003 specifies the target PR path. PR#2 path is defined by parameters P6.004 and P6.005, and they work the same way as P6.002 and P6.003. The same is true for the rest of the PR paths. See Figure 7.1.1.

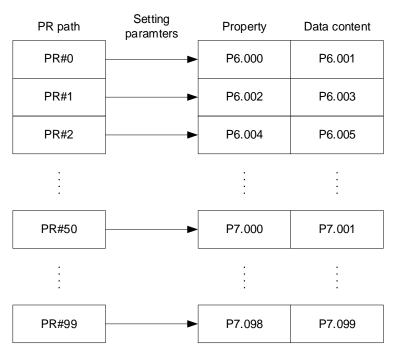


Figure 7.1.1 Setting parameters for each PR path

In ASDA-Soft, when you select a PR to be edited in PR mode, the corresponding parameters appear at the top of the window. See Figure 7.1.2. If you select PR#1, the settings of P6.002 and P6.003 appear at the top of the editing section. See P6.002 and P6.003 in Table 7.1.1 for example. The path property and data content differ in accordance with the motion command type you set. For more information about Motion Control commands, refer to Section 7.1.3.

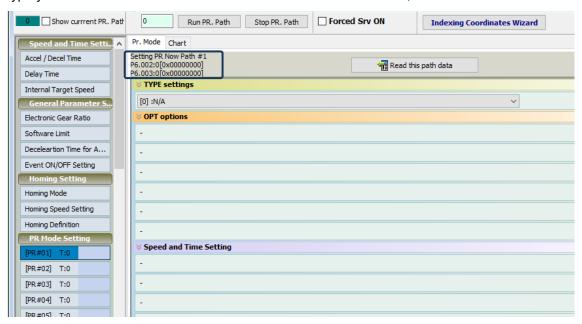


Figure 7.1.2 PR Mode interface in ASDA-Soft

Table 7.1.1 Example of PR#1 property and data content

Bit PR#1	31 - 28	27 - 24	23 - 20	19 - 16	15 - 12	11 - 8	7 - 4	3 - 0
P6.002	-	AUTO	DLY	SPD	DEC	ACC	OPT	TYPE
P6.003	Data content (32-bit)							

Note:

TYPE: path type

Setting value of TYPE	Path type			
1	SPEED, constant speed control			
2	SINGLE, positioning control. The execution stops once the positioning is complete.			
3	AUTO, positioning control. The next PR path is automatically loaded once the positioning is complete.			
7	JUMP, jump to the specified path.			
8	WRITE, write specified parameters to specified path.			
Α	INDEX, rotary axis position control (index position control)			

ASDA-Soft V6 provides a graphical interface for editing PR paths (see Figure 7.1.3). It is easier to set PR paths in ASDA-Soft, where you can set the options of command triggering, command types, and other properties.

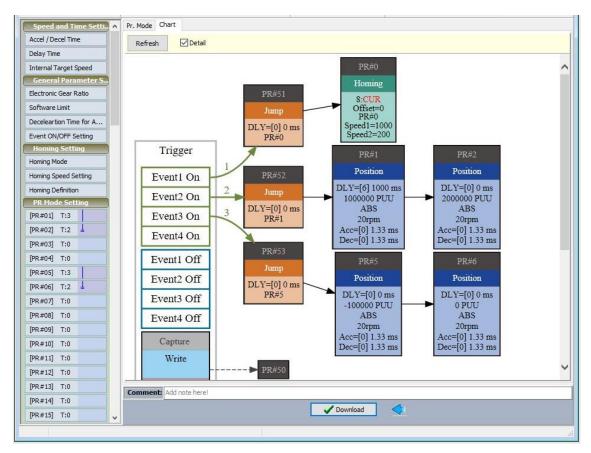


Figure 7.1.3 Graphical interface for PR paths in ASDA-Soft

7.1.1 Shared parameters for PR paths

The servo drive provides 16 acceleration / deceleration time settings (P5.020 - P5.035), 16 delay time settings (P5.040 - P5.055), and 16 target speed settings (P5.060 - P5.075) for you to set the PR paths (as shown in Figure 7.1.1.1). If you change a parameter that is used by multiple PR paths, then all PR paths using this parameter are changed as well. For example, if multiple PR commands use the setting of P5.060 as the target speed, when you change the setting of P5.060, the target speed settings of those PR commands are changed as well. Please be aware of this when setting the PR paths so as to avoid any danger or damage to the machine.

The PR Mode Setting function of ASDA-Soft also provides a user-friendly screen for setting the shared parameters (see Figure 7.1.1.2). Among the data, the acceleration / deceleration time indicates the time duration required for the motor to accelerate from 0 to 3000 rpm or to decelerate from 3000 rpm to 0.

For instance, if the acceleration time is set to 50 ms, the required acceleration time is 50 ms when the target speed for the motion command is 3000 rpm, and the required acceleration time is 25 ms when the target speed for the motion command is 1500 rpm. The acceleration / deceleration time setting is like a fixed slope for acceleration or deceleration; the slope does not change when you change the target speed settings.

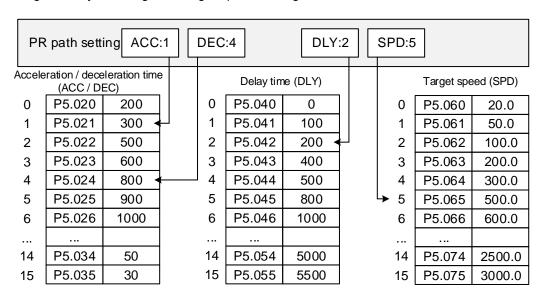


Figure 7.1.1.1 Shared parameter data for PR paths

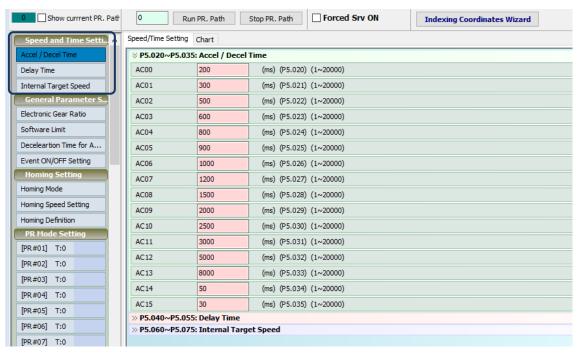


Figure 7.1.1.2 Setting screen of shared parameter data for PR paths in ASDA-Soft

7.1.2 Monitoring variables of PR mode

In PR mode, there are four monitoring variables for you to monitor the servo commands and feedback status: Position command (PUU), Register of PR command endpoint, Feedback position (PUU), and Following error (PUU). These are described as follows:

 Position command (PUU): monitoring variable code 001, simplified as Cmd_O (Command Operation). The motion command generated during servo operation (updated every millisecond), which indicates the target position per scan cycle.

- Register of PR command endpoint: monitoring variable code 064, simplified as Cmd_E
 (Command End). The target position of the PR command. When a command is triggered,
 the servo drive calculates the target position and then updates this register.
- Feedback position (PUU): monitoring variable code 000, simplified as Fb_PUU (Feedback PUU). The current feedback position of the motor encoder.
- 4. Following error (PUU): monitoring variable code 002, simplified as Err_PUU (Error PUU). The difference between Position command (PUU) and Feedback position (PUU).

How these four monitoring variables work is shown in Figure 7.1.2.1. After issuing a Position command, the servo sets the position of Cmd_E once the target position data is acquired. The motor operates to the target position based on the PR path setting. Cmd_O is a dynamic command which calculates the amount of command difference in each fixed scan cycle and sends it to the servo drive. Fb_PUU is the motor encoder feedback position and Err_PUU is the difference of subtracting Fb_PUU from Cmd_O.

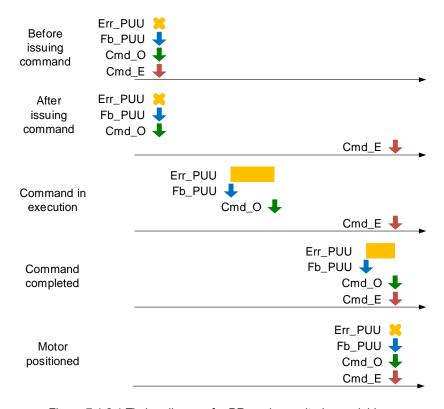


Figure 7.1.2.1 Timing diagram for PR mode monitoring variables

The detailed behavior of the servo drive at the stage of command execution is illustrated in Figure 7.1.2.2. Cmd_E is the command endpoint which is set when the PR path is triggered. Fb_PUU is the feedback position, which is motor's actual position. Divide this motion command into scan cycles and take one of the cycles as the example. Cmd_O is the command target of this cycle and Err_PUU is the difference between the command target and the feedback position of this cycle.

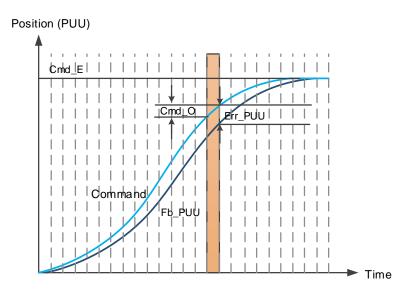


Figure 7.1.2.2 Monitoring variable status when a command is executed in PR mode

You can use digital inputs (DIs) to call PR paths and digital outputs (DOs) to monitor PR paths (refer to Tables 8.1 and 8.2 in Chapter 8 for the DI/O function descriptions). When you trigger the motion command with DI.CTRG (0x08), the servo drive operates based on the command from the internal registers. Once the command is complete, DO.Cmd_OK (0x15) is set to on. When the motor reaches the target position, DO.TPOS (0x05) is set to on. After DO.Cmd_OK (0x15) and DO.TPOS (0x05) are both on, the servo outputs the DO.MC_OK (0x17) signal to signify that it has completed this PR path. The operation is as shown in Figure 7.1.2.3.

If you have set a delay time in this PR, when the motor reaches the target position, DO.TPOS (0x05) is set to on. When the delay time is over, DO.Cmd_OK (0x15) is set to on. After these two DO signals are both on, the servo outputs the DO.MC_OK (0x17) signal to signify that it has completed this PR path. The operation is as shown in Figure 7.1.2.4.

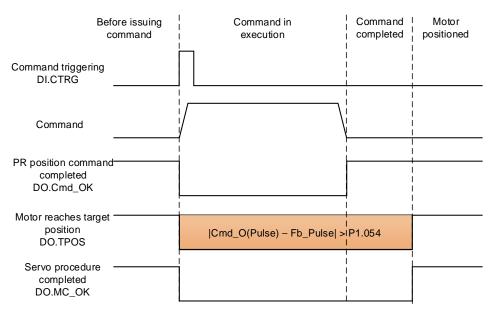


Figure 7.1.2.3 Operation of DI/DO signals in PR mode

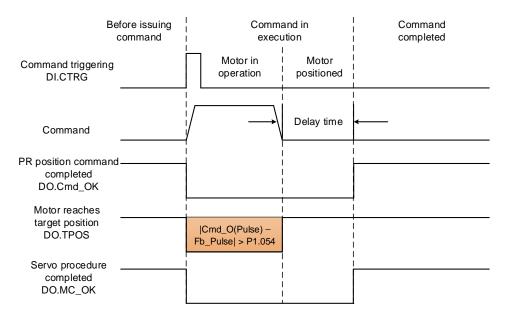


Figure 7.1.2.4 Operation of DI/DO signals in PR mode (including delay time)

7.1.3 Motion Control commands

The servo drive provides 100 sets of PR path settings, and each set can be a Homing command, Speed command, Position command, Jump command, Write command, or Rotary Axis Position command (Index Position). The following sections detail each command type.

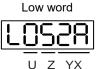
7.1.3.1 Homing command

The servo drive provides 11 homing methods in the PR mode, including referring to the home sensor, limit, and hard stop as the reference origin. They come with sub-selections such as whether to refer to the Z pulse and the behavior when reaching the positive / negative limit signal, with more than 30 combinations available. The homing method is specified by P5.004 and the homing definition is determined by P6.000. The following lists the function of each bit.

P5.004	Homing methods			Address: 0508H 0509H
Default:	0x0000	Control mode:	PR	
Unit:	•	Setting range:	0x0000 to 0)x012A
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

Definition of each setting value:


U	Z	Y	X		
Reserved	Limit setting	Z pulse setting	Homing method		
	0 to 1	0 to 2	0 to A		
			X = 0: homing in forward direction and define the positive limit as the homing origin		
	-	Y = 0: reverse to Z pulse Y = 1: go forward to Z pulse	X = 1: homing in reverse direction and define the negative limit as the homing origin		
		Y = 2: do not look for Z pulse	X = 2: homing in forward direction, ORG: OFF→ON as the homing origin		
			X = 3: homing in reverse direction, ORG: OFF→ON as the homing origin		
-	When reaching the limit: Z = 0: show error Z = 1: reverse direction		X = 4: look for Z pulse in forward direction and define it as the homing origin		
		-	X = 5: look for Z pulse in reverse direction and define it as the homing origin		
		Y = 0: reverse to Z pulse Y = 1: go forward to Z pulse	X = 6: homing in forward direction, ORG: ON→OFF as the homing origin		
		Y = 2: do not look for Z pulse	X = 7: homing in reverse direction, ORG: ON→OFF as the homing origin		
	-	-	X = 8: define current position as the origin		
	When reaching the limit: Z = 0: show error	Y = 0: reverse to Z pulse	X = 9: torque homing in forward direction		
	Z = 1: reverse direction	Y = 2: do not look for Z pulse	X = A: torque homing in reverse direction		

7

P6.000	Homing definition			Address: 0600H 0601H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 to 0xFFFFFF6F
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Α	DEC2: deceleration time selection for second homing	YX	PATH: path type
В	DLY: select 0 - F for delay time	Z	ACC: select 0 - F for acceleration time
С	Reserved	U	DEC1: deceleration time selection for first homing
D	BOOT: whether to execute homing automatically when the drive is powered on	-	-

■ YX: PATH: path type

0x00: Stop: the servo stops after homing is complete

0x01 - 0x63: Auto: the servo executes the specified path (PR#1 - PR#99) after homing is complete

■ Z: ACC: select 0 - F for acceleration time

0 - F: correspond to P5.020 - P5.035

■ U: DEC1: deceleration time selection for first homing

0 - F: correspond to P5.020 - P5.035

■ A: DEC2: deceleration time selection for second homing

0 - F: correspond to P5.020 - P5.035

■ B: DLY: select 0 - F for delay time

0 - F: correspond to P5.040 - P5.055

■ D: BOOT: whether to execute homing automatically when the drive is powered on

0: do not execute homing

1: execute homing automatically (servo switches to on for the first time after power is applied)

The PR Homing mode includes the function for setting the origin offset. You can define any point in the position system as the reference origin, which does not have to be 0. Once you define the reference origin, the position system of the motion axis can be established.

See Figure 7.1.3.1.1. The position of the reference origin is 2000 (P6.001 = 2000). The motor passes by the reference origin and then stops at the position of 1477. From the position system that it established, the system automatically calculates the position of 0 (origin). Now the motor can move to the specified position as soon as the PR motion command is issued.

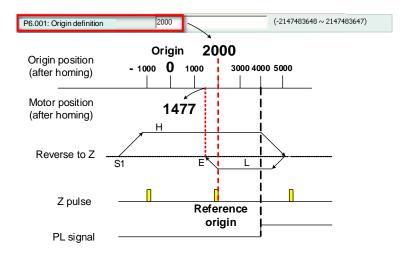
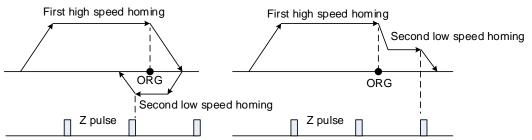


Figure 7.1.3.1.1 Origin definition

P6.001	Origin definition			Address: 0602H 0603H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:


Origin definition.

The homing procedure goes through two stages: high speed and low speed. The servo starts the homing procedure at high speed to seek the reference point (such as the limit switch or ORG signal), which takes shorter time. Once the servo detects the reference point, the motor runs at low speed to find the reference point accurately (such as the Z pulse). The speeds for the two stages are defined by P5.005 and P5.006.

P5.005	High speed hor		Address: 050AH 050BH		
Operation interface:	Panel / software	Communication	Control mode:	PR (set with	n P5.004)
Default:	100.0	1000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.1 to 2000.0	1 to 20000	-	-	
Format:	DEC	DEC	-	-	
Example:	1.5 = 1.5 rpm	15 = 1.5 rpm	-	-	
Model:	-E				

Settings:

The first speed setting for high speed homing.

P5.006	Low speed homing (second speed setting) Address: 050CH 050DH					
Operation interface:	Panel / software	Communication	Control mode:	PR (set with	n P5.004)	
Default:	20.0	200	Data size:	32-bit		
Unit:	1 rpm	0.1 rpm	-	-		
Setting range:	0.1 to 500.0	1 to 5000	-	-		
Format:	DEC	DEC	-	-		
Example:	1.5 = 1.5 rpm	15 = 1.5 rpm	-	-		
Model:	-E					

Settings:

The second speed setting for low speed homing.

You can set the homing parameters in the PR mode Homing Setting screen in ASDA-Soft, including the Homing Mode, Homing Speed Setting, and Homing Definition (see Figure 7.1.3.1.2).

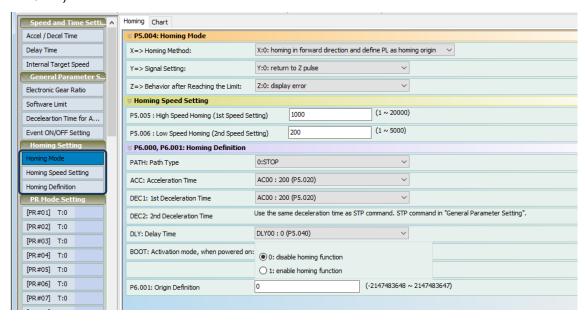
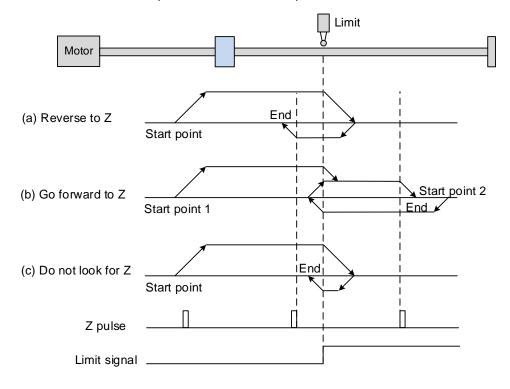



Figure 7.1.3.1.2 Homing screen in ASDA-Soft

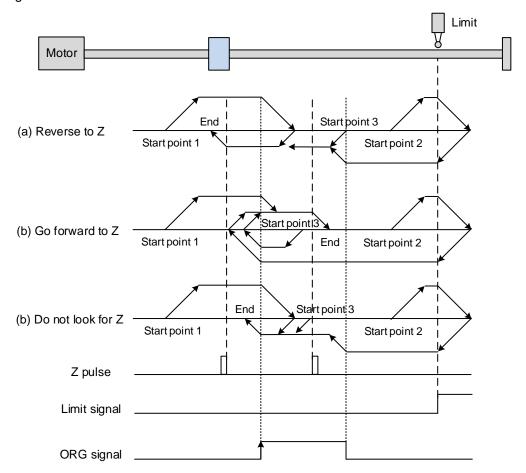
The following describes the homing methods supported by the servo drive. They can be categorized into six types based on their reference points.

1. Referencing the limit.

This method uses the positive or negative limit as the reference point. You can set whether or not to look for the Z pulse and use it as the reference origin after the limit is detected. The searching result is the same regardless of where the start point is. The servo drive always looks for the set reference point to reset the motor position.

(a) If you set the servo to look for the Z pulse in the reverse direction, the servo operates at high speed (first speed setting) and then decelerates once it reaches the limit (rising-edge triggered). Then the servo switches to low speed (second speed setting) to look for the Z pulse in the reverse direction. When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.

(b) If you set the servo to look for the Z pulse in the forward direction and the limit signal at the start position is un-triggered (low, Start point 1), the servo operates at high speed (first speed setting) and then decelerates once it reaches the limit (rising-edge triggered). Then the servo switches to low speed (second speed setting) to look for the Z pulse in the forward direction. When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.


If you set the servo to look for the Z pulse in the forward direction and the limit signal at the start position is triggered (high, Start point 2), the servo operates at low speed (second speed setting) in the reverse direction to look for the rising-edge limit signal. Then the servo starts to look for the Z pulse in the forward direction once it reaches the limit (rising-edge triggered). When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.

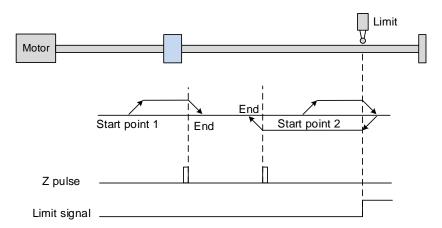
From the examples, regardless of the start positions, the origin position after homing is the same under the same setting condition.

(c) If you set the servo to not look for the Z pulse, the servo operates at high speed (first speed setting) and then decelerates once it reaches the limit (rising-edge triggered). Then the servo switches to low speed (second speed setting) in the reverse direction to look for the rising-edge limit signal. When the servo finds the rising-edge signal, it decelerates to a stop, completing the homing procedure.

2. Referencing the rising edge of the ORG signal.

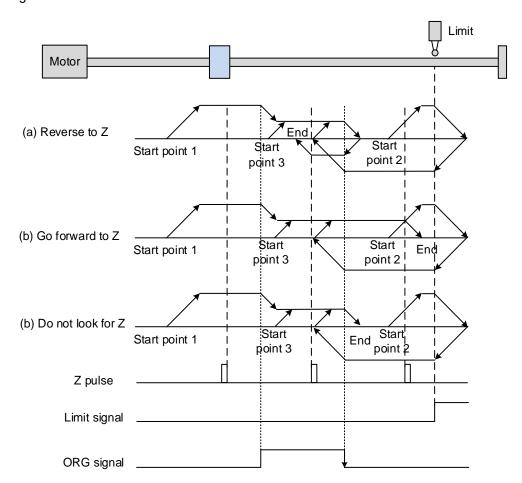
This method uses the rising edge of the home sensor (ORG) signal as the reference origin. You can set whether or not to use the Z pulse as the reference origin after the ORG signal is detected.

(a) If you set the servo to look for the Z pulse in the reverse direction, when the ORG signal at the start point is un-triggered (low, Start point 1), the servo operates at high speed (first speed setting) and then decelerates once it reaches the ORG signal (rising-edge triggered). Then it reverses and switches to low speed (second speed setting) until the ORG signal switches to low. Next, the servo starts to look for the Z pulse in the reverse direction. When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.


If the ORG signal at the start point is un-triggered and the current position is relatively closer to the limit switch (Start point 2), the servo operates at high speed (first speed setting) until reaching the limit switch. You can set whether to show an error or reverse the operating direction when the servo reaches the limit switch. If you set the servo to reverse direction, it reverses to reach the home sensor (ORG), and then decelerates and operates at low speed (second speed setting) until the ORG signal switches to low. Next, the servo starts to look for the Z pulse. When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.

If the ORG signal at the start point is triggered (high, Start point 3), the servo reverses with low speed (second speed setting) until the ORG signal switches to low. Next, the servo continues to look for the Z pulse. When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.

(b) If you set the servo to look for the Z pulse in the forward direction or not to look for the Z pulse (this is similar to method (a) Reverse to Z), refer to the preceding timing diagram.

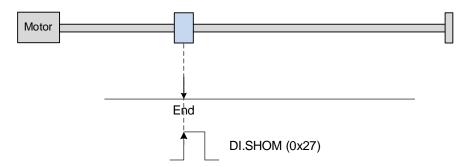

3. Referencing the Z pulse.

This method uses the Z pulse as the reference origin. One Z pulse is generated per rotation of the motor. This method is only suitable when the operation is kept within one motor rotation.

4. Referencing the falling edge of the ORG signal.

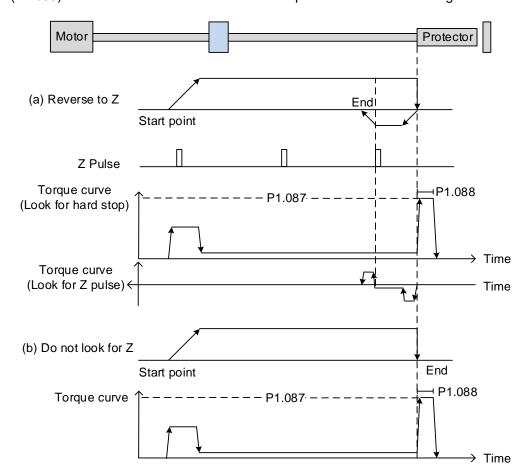
This method uses the falling edge of the home sensor (ORG) signal as the reference origin. You can set whether or not to use the Z pulse as the reference origin after the ORG signal is detected.

(a) If you set the servo to look for the Z pulse in the reverse direction, when the ORG signal at the start point is un-triggered (low, Start point 1), the servo operates at high speed (first speed setting) until reaching the rising edge of the ORG signal. Then it decelerates and switches to low speed (second speed setting) until the ORG signal switches to low. Next, the servo reverses to look for the Z pulse. When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.


If the ORG signal at the start point is un-triggered and the current position is relatively closer to the limit switch (Start point 2), the servo operates at high speed (first speed setting) until reaching the limit switch. You can set whether to show an error or reverse the operating direction when the servo reaches the limit switch. If you set the servo to reverse direction, it reverses to reach the home sensor (ORG), and then decelerates and operates in the forward direction to reach the falling edge of the ORG signal. Next, the servo operates at low speed (second speed setting) and reverses to look for the Z pulse. When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.

If the ORG signal at the start point is triggered (high, Start point 3), the servo operates at low speed (second speed setting) in the forward direction until the ORG signal switches to low. Next, the servo reverses to look for the Z pulse. When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.

(b) If you set the servo to look for the Z pulse in the forward direction or not to look for the Z pulse (this is similar to method (a) Reverse to Z), refer to the preceding timing diagram.

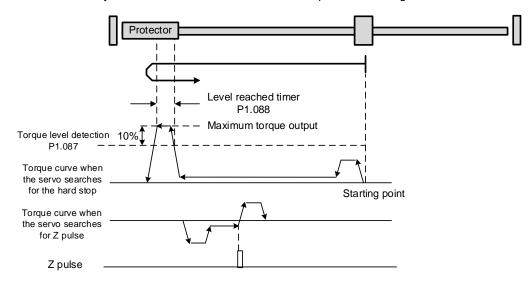

5. Referencing the current position as the origin.

This method uses the motor's current position as the reference origin. As long as the homing procedure is triggered and the motor remains still, then motor positioning is complete.

6. Torque homing mode.

This method uses the motor's stop position as the reference origin by referring to: the limit on the mechanical parts, the torque level detection (P1.087), and the level reached timer (P1.088). You can also set whether to use the Z pulse as the reference origin.

- (a) If you set the servo to look for the Z pulse in the reverse direction, the servo outputs a greater current to counter the external force once it touches the protector at high speed (first speed setting). When the motor torque reaches the torque level detection (P1.087) and the output duration is longer than the level reached timer setting (P1.088), the servo reverses to look for the Z pulse at low speed (second speed setting). When the servo finds the Z pulse, it decelerates to a stop, completing the homing procedure.
- (b) If you set the servo not to look for the Z pulse, the servo outputs a greater current to counter the external force once it touches the protector at high speed (first speed setting). When the motor torque reaches the torque level detection (P1.087) and the output duration is longer than the level reached timer setting (P1.088), the servo stops, completing the homing procedure.


Pay special attention when executing the Torque homing procedure. The motor's actual maximum torque output is 10% greater than the torque level detection setting (P1.087); excessive impact may cause damage to the machine.

The following tables describe the settings for the torque level detection (P1.087) and the level reached timer (P1.088).

P1.087	Torque homing - torque level de	Address: 01AEH 01AFH		
Default:	1	Control mode:	PR	
Unit:	%	Setting range:	1 to 300	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

This setting is only for the torque homing mode. As shown in the following figure, after homing is triggered, the motor runs in one direction and the mechanical part reaches the protector. The servo drive then outputs a larger motor current in order to counter the external force. The servo drive uses P1.087 and P1.088 as the conditions for homing. Since the hard stops are not always the same, it is recommended that you have the servo reverse to find the Z pulse as the origin.

Note: the actual maximum torque output of the motor is 10% greater than the detected torque level (P1.087).

For example, when you set P1.087 to 50%, the maximum torque output of the motor is 60%.

P1.088	Torque homing - level reached ti	Address: 01B0H 01B1H		
Default:	2000	Control mode:	PR	
Unit:	ms	Setting range:	2 to 2000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The setting of the torque level reached timer for the torque homing mode. If the motor torque output continues to exceed the level set by P1.087 and the duration exceeds this setting, the homing is complete. Refer to P1.087 for the timing diagram of torque homing mode.

As mentioned in Section 7.1.2, there are four monitoring variables for you to monitor the servo commands and feedback status in the PR mode. These variables are Position command PUU (Cmd_O), Register of PR command endpoint (Cmd_E), Feedback position PUU (Fb_PUU), and Following error PUU (Err_PUU). Since the position system is not established before homing is complete, the target position remains unknown and thus Cmd_E cannot be calculated. This is why the changes of the monitoring variables in Homing mode (Figure 7.1.3.1.3) are different from that when the servo issues the PR position command (Figure 7.1.2.1). In Homing mode, the content of Cmd_E is identical to that of Cmd_O at default setting. After the servo finds the reference origin and establishes the position system, it sets the content of Cmd_E to the position of the reference origin. However, once the servo finds the reference origin, the motor still requires some distance to decelerate to a stop. Meanwhile, Cmd_O continues to issue the commands. If no other PR commands are issued after the Homing command, unlike the condition where the servo issues the PR position command, the final contents of Cmd_O and Cmd_E in Homing mode will be different. See Figure 7.1.3.1.3.

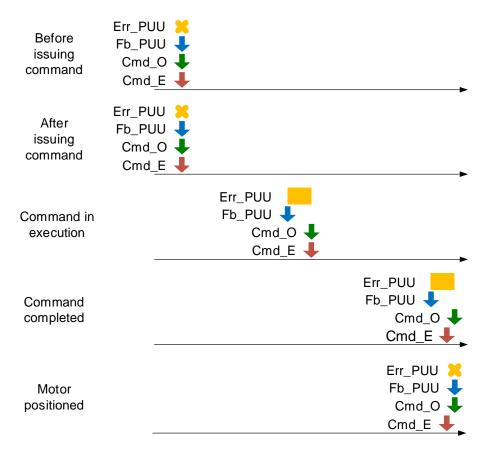


Figure 7.1.3.1.3 Timing diagram for monitoring variables in Homing mode

7.1.3.2 Speed command

The PR mode includes a speed control function. The following parameters are available for PR speed setting: acceleration / deceleration time, delay time, and target speed. You can easily set the Speed command by selecting [1]: Constant speed control for the TYPE settings in the PR mode screen in ASDA-Soft. See Figure 7.1.3.2.1.

■ INS is the interrupt function that allows the next command to interrupt the previous motion command. Refer to Section 7.1.6 for more details.

- AUTO is the function that automatically loads and executes the next PR path when the current PR path completes.
- UNIT is the unit setting for the target speed, with options of 0.1 rpm and 1 PPS, and the setting range is -6000 rpm to 6000 rpm.
- ACC / DEC is the acceleration / deceleration time determined by the shared parameters. The software calculates and displays the required duration for accelerating from 0 to the target speed or for decelerating from the target speed to 0.
- DLY is the delay time determined by the shared parameters. It is defined by the command from the controller; in other words, once the target speed is reached, the servo drive starts counting the delay time.

See Figure 7.1.3.2.2 for the effects of the parameters for the PR mode speed control.

Table 7.1.3.2.1 shows the bit functions when speed Speed control command is in operation.

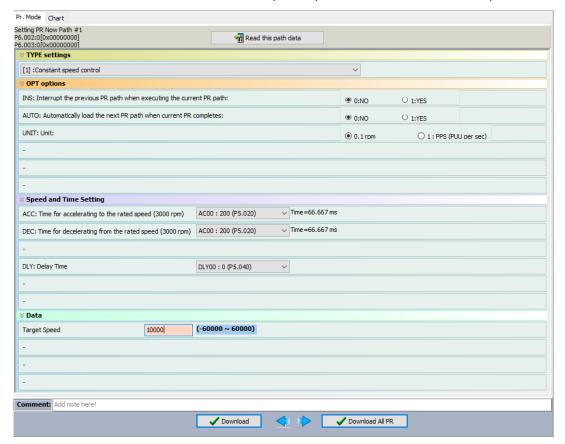


Figure 7.1.3.2.1 PR mode Speed control screen in ASDA-Soft

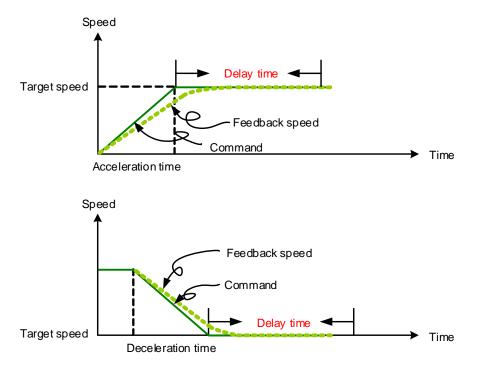


Figure 7.1.3.2.2 Parameters for PR mode speed control

Table 7.1.3.2.1 Bit functions of PR speed control

PR parameters	D	С	В	Α	U	Z	Υ	Х
Property	-	-	DLY	-	DEC	ACC	OPT	1
Data content	Target speed [0.1 rpm / PPS]							

Note:

1. X: 1: SPEED, constant speed control

2. Y: OPT, option

Bit	3	2	1	0
Property	-	UNIT	AUTO	INS

INS: interrupts the previous path when the current path is executed.

AUTO: once current PR path is finished, automatically loads the next path.

UNIT: speed unit selection; 0 = 0.1 rpm and 1 = PPS.

3. Z, U: ACC / DEC, acceleration / deceleration time, set by P5.020 - P5.035.

4. B: DLY, delay time, set by P5.040 - P5.055.

7.1.3.3 Position command

The PR mode includes a position control function of two types: [2]: Point-to-Point Command and [3]: Point-to-Point Command (Proceed to the next path when completed). The way to set these two types of commands is the same. You can easily set the Position command in the PR mode screen in ASDA-Soft. Refer to Figure 7.1.3.3.1.

- INS is the interrupt function that allows the next command to interrupt the previous motion command. Refer to Section 7.1.6 for more details.
- OVLP is the function that allows the next PR command to overlap the command currently being executed when decelerating. If you use this function, setting the delay time to 0 is suggested. Refer to Section 7.1.6 for more details.
- ACC / DEC is the acceleration / deceleration time determined by the shared parameters.
 The software calculates and displays the required duration for accelerating from 0 to the target speed or for decelerating from the target speed to 0.
- SPD is the target speed determined by the shared parameters. You can choose whether it is multiplied by 0.1.
- DLY is the delay time determined by the shared parameters. It is defined by the command from the controller; in other words, once the target position is reached, the servo drive starts counting the delay time.
- The Position command (Postion CMD DATA) is user-defined and its unit is PUU.

7

See Figure 7.1.3.3.2 for the effects of the parameters for the PR mode position control.

Table 7.1.3.3.1 shows the bit functions when Position command is in operation.

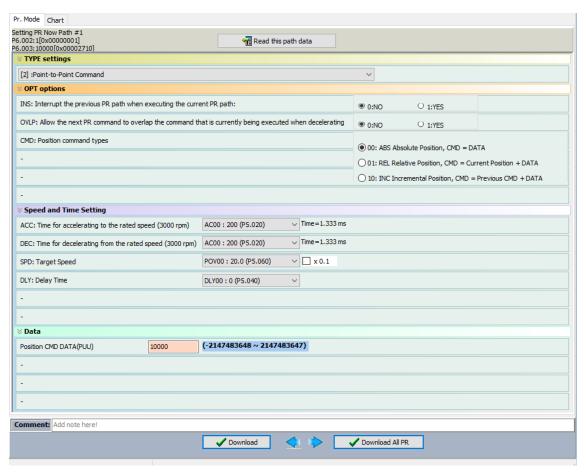


Figure 7.1.3.3.1 PR mode Position control screen in ASDA-Soft

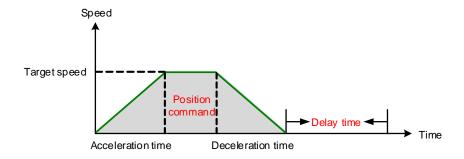


Figure 7.1.3.3.2 Parameters for PR mode position control

There are three types of position commands for the PR mode. You can choose the position command according to the application requirements. The functions of each type are described in the following examples. Note that the condition in these examples is that a position command is still being executed and another type of command interrupts. To see the definition of each command and how the position commands are integrated, refer to Figure 7.1.3.3.3.

- Absolute position command (ABS): when an absolute command interrupts, the target position value equals the absolute command value. In the following example, an ABS command with the value of 60000 PUU interrupts the previous PR path, so the target position is 60000 PUU in the position system.
- 2. Relative position command (REL): when a relative command interrupts, the target position value is the motor's current position value plus the position command value. In the following example, a REL command with the value of 60000 PUU interrupts the previous PR path. The target position is the motor's current position (20000 PUU) plus the relative position command (60000 PUU), which equals 80000 PUU in the position system. The target position specified by the previous command is omitted.
- 3. Incremental position command (INC): when an incremental command interrupts, the target position is the previous target position value plus the current position command value. In the following example, an INC command with the value of 60000 PUU interrupts the previous PR path. The target position is the previous target position value (30000 PUU) plus the relative position command (60000 PUU), which equals 90000 PUU in the position system. The target position specified by the previous command is integrated into the new one.

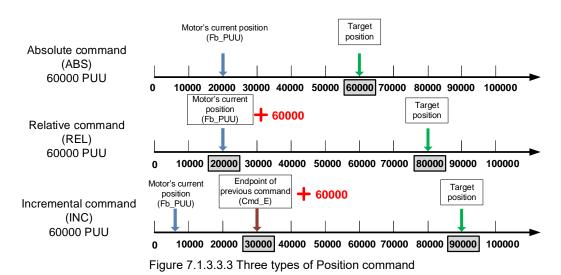


Table 7.1.3.3.1 Bit functions of PR position control

PR parameters	D	С	В	А	U	Z	Υ	Х
Property	-	-	DLY	SPD	DEC	ACC	OPT	2 or 3
Data content	Target position [PUU]							

Note:

1. X:

- 2: SINGLE, positioning control. It stops once positioning is complete.
- 3: AUTO, positioning control. It automatically loads the next path once positioning is complete.

2. Y: OPT, option

Bit	3	2	1	0	Description			
Property	CMD		CMD		CMD OVLP INS		-	
	0	0			ABS (absolute positioning)			
Data content	0	1	-	-	REL (relative positioning)			
	1	0			INC (incremental positioning)			

INS: interrupts the previous path when the current path is executed.

OVLP: allow overlapping of the next command.

CMD: Position command selection.

- 3. Z, U: ACC / DEC, acceleration / deceleration time, set by P5.020 P5.035.
- 4. A: SPD, target speed, set by P5.060 P5.075.
- 5. B: DLY, delay time, set by P5.040 P5.055.

7.1.3.4 Jump command

The PR mode includes a Jump command. It can call any PR paths or form PR paths into a loop, as shown in Figure 7.1.3.4.1. You can specify the target PR number by selecting [7]: Jump to the specified path for the TYPE settings in the PR mode screen in ASDA-Soft (see Figure 7.1.3.4.2).

- INS is the interrupt function that allows the next command to interrupt the previous motion command. Refer to Section 7.1.6 for more details.
- DLY is the delay time determined by the shared parameters. Once a Jump command is issued, the servo drive starts counting the delay time.
- Available target PR numbers are PR#0 PR#99.

Table 7.1.3.4.1 shows the bit functions when Jump command is in operation.

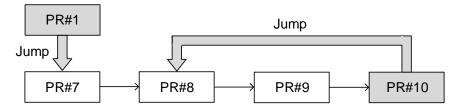


Figure 7.1.3.4.1 Jump command in PR mode

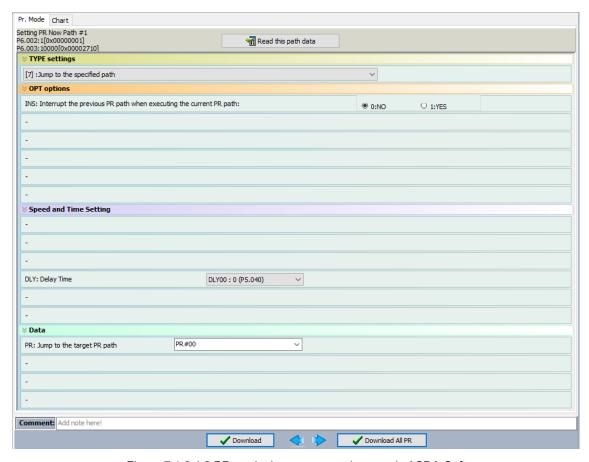


Figure 7.1.3.4.2 PR mode Jump command screen in ASDA-Soft

Table 7.1.3.4.1 Bit functions of PR Jump command

PR parameters	D	С	В	Α	U	Z	Υ	Х
Property	-	-	DLY	-	-	-	OPT	7
Data content	Jump to target PR path (PR#0 - PR#99)							

Note:

1. X: 7: JUMP, jump to the specified path.

2. Y: OPT, option

Bit	3	2	1	0
Property	-	-	-	INS

INS: interrupts the previous path when the current path is executed.

3. B: DLY, delay time, set by P5.040 - P5.055.

7.1.3.5 Write command

The PR mode includes a Write command. It can write constants, parameters, data arrays, and monitoring variables to the specified parameters or data arrays. You can set the Write command by selecting [8]: Write to Parameters or Data Array for the TYPE settings in the PR mode screen in ASDA-Soft (see Figure 7.1.3.5.1).

- INS is the interrupt function that allows the next command to interrupt the previous motion command. Refer to Section 7.1.6 for more details.
- AUTO is the function that automatically loads and executes the next PR path when the current PR path completes.
- ROM is the function that writes parameters to both RAM and EEPROM at the same time for the parameter settings to be non-volatile; however, frequent writing shortens the life of the EEPROM.
- DLY is the delay time determined by the shared parameters. Once a Write command is issued, the servo drive starts counting the delay time.
- Writing target and data source (Written Data).

Writing target	Data source
Parameter	Constant
Data array	Parameter
-	Data array
-	Monitoring variable

Table 7.1.3.5.1 shows the bit functions when Write command is in operation.

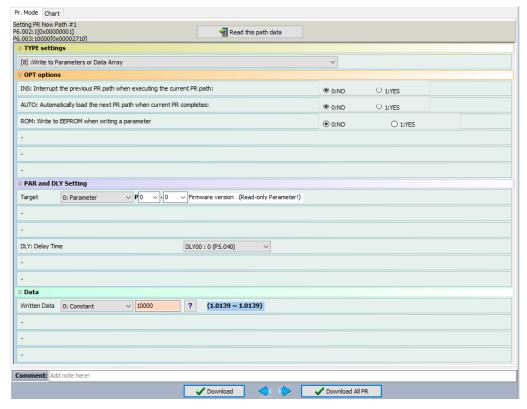


Figure 7.1.3.5.1 PR mode Write command screen in ASDA-Soft

Table 7.1.3.5.1 Bit functions of PR Write command

PR parameters	D	С	В	Α	U	Z	Υ	Х
Property	0	SOUR_DEST	DLY	DE	STINATI	ON	OPT	8
Data content				SOURC	Œ			

Note:

1. X: 8: WRITE, write specified parameters to the specified path.

2. Y: OPT, option

Bit	3	2	1	0
Property	-	ROM	AUTO	INS

INS: interrupts the previous path when the current path is executed.

AUTO: once current PR path is finished, automatically loads the next path.

ROM: write data to RAM and EEPROM at the same time. This function can only write parameters.

- 3. B: DLY, delay time, set by P5.040 P5.055.
- 4. C: SOUR_DEST, data source and writing target.

Bit	3	2	1	0	Description	
Property	SOUR		-	DEST	Data source	Writing target
	0	0		0	Constant	Parameter
	0	1		0	Parameter	Parameter
	1	0		0	Data array	Parameter
Data	1	1	0	0	Monitoring variable	Parameter
content	0	0		1	Constant	Data array
	0	1		1	Parameter	Data array
	1	0		1	Data array	Data array
	1	1		1	Monitoring variable	Data array

5. Z, U, A: DESTINATION, writing target setting

	A	U	Z
Writing target: parameter	Parameter group	Paramete	er number
Writing target: data array		Data array number	

6. SOURCE: data source setting

	D	С	В	А	U	Z	Υ	Х
Data source: constant				Consta	ant data			
Data source: parameter		- Parameter group						er number
Data source: data array	- Data array number				nber			
Data source: monitoring variable				-				g variable nber

7.1.3.6 Rotary Axis Position command (Index Position)

The PR mode includes a Rotary Axis Position command, which creates a rotary axis position system and positions the motor within the position system. Unlike other feedback positions in a global position system, the Rotary Axis Position command is able to divide the rotary axis position scale into the number of paths required by the application (see Figure 7.1.3.6.1). When using the Rotary Axis Position command for motor operation in single direction (or mostly in the same direction), if the motor position exceeds the range, absolute position or position counter overflow occurs. Refer to the setting in Chapter 10.

You can click **Indexing Coordinates Wizard** in the PR mode screen in ASDA-Soft to start the Rotary Axis Position Setting Wizard (Index Coordinates Setting Wizard) (see Figure 7.1.3.6.2). As shown in the example, the starting PR path is set to 1, the number of paths (path size) is set to 8, and the total moving distance (P2.052) is 80000 PUU. When you click **OK**, the software automatically writes the position command 0 PUU to PR#1, 10000 PUU to PR#2, 20000 PUU to PR#3, and so on up to PR#8. When the rotary axis position reaches 80000 PUU, it automatically returns to 0 PUU.

In addition, you can modify the Rotary Axis Position command in the setting screen of each PR path as needed, as shown in Figure 7.1.3.6.3.

- INS is an interrupt function that interrupts the previous motion command. Refer to Section 7.1.6 for more details.
- OVLP is the function that allows the next PR command to overlap the command currently being executed when decelerating. If you use this function, setting the delay time to 0 is suggested. Refer to Section 7.1.6 for more details.
- DIR sets the rotation direction with options of forward rotation (always move forward), reverse rotation (always move in reverse direction), and the shortest distance. The movement is illustrated in Figure 7.1.3.6.4.
- S_LOW is the speed unit with options of 0.1 r/min or 0.01 r/min.
- AUTO is the function that automatically loads and executes the next PR path when the current PR path completes.
- ACC / DEC is the acceleration / deceleration time determined by the shared parameters.
- SPD is the target speed determined by the shared parameters.
- DLY is the delay time determined by the shared parameters. It is defined by a command from the controller; in other words, once the target position is reached, the servo drive starts counting the delay time.
- Rotary Axis Position command (Written Data) is the target position of each rotary axis traveling segment. Note that the setting range must be smaller than P2.052 (rotary axis position scale).

7

Table 7.1.3.6.1 shows the bit functions when a Rotary Axis Position command is in operation. When you use the rotary axis position function, execute homing first to create a position system so that the origin of the motor's feedback position and that of the motor's rotary axis position can be identical. If you use the rotary axis position function without executing homing, AL237 occurs.

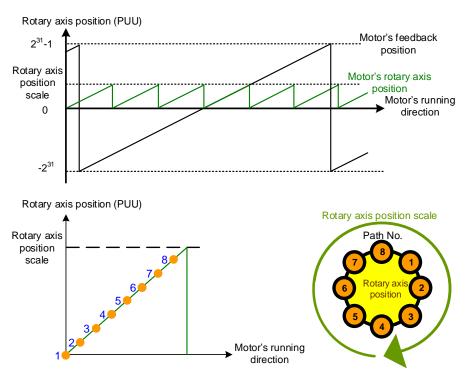


Figure 7.1.3.6.1 Rotary axis position in PR mode

Figure 7.1.3.6.2 Rotary Axis Position Setting Wizard (Index Coordinates Setting Wizard) in PR mode

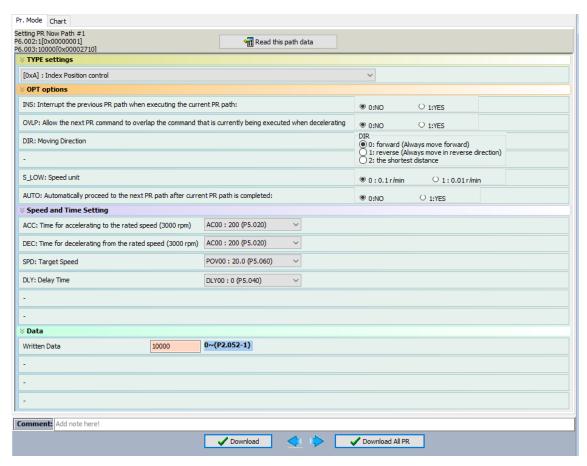


Figure 7.1.3.6.3 PR mode Rotary Axis Position control (Index Position control) screen in ASDA-Soft

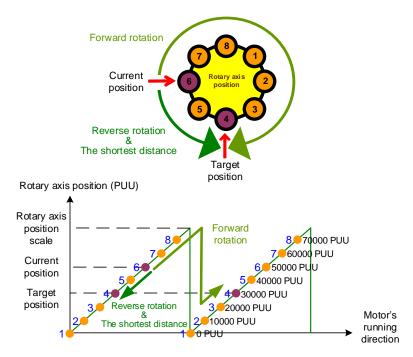


Figure 7.1.3.6.4 Motor's operation direction and rotary axis position

Table 7.1.3.6.1 Bit functions of the PR Rotary Axis Position command

Bit PR parameters	D	С	В	Α	U	Z	Υ	Х	
Property	-	OPT2	DLY	SPD	DEC	ACC	OPT	Α	
Data content		Rotary Axis Position command [PUU] (0 to P2.052 minus 1)							

Note:

1. X: A: INDEX, rotary axis position control (index position control)

2. Y: OPT, option

Bit	3	2	1	0	Description		
Property	DIR		DIR		OVLP	INS	-
	0	0			Forward rotation (always move forward)		
Data content	0	1			Reverse rotation (always move in reverse direction)		
	1	0			The shortest distance		
	1	1			-		

INS: interrupts the previous path when the current path is executed.

OVLP: allow overlapping of the next command.

DIR: rotation direction.

3. C: OPT2, option 2

Bit	3	2	1	0
Property	-	AUTO	-	S_LOW

S_LOW: speed unit options, 0 = 0.1 r/min and 1 = 0.01 r/min.

AUTO: once current PR path is finished, automatically loads the next path.

- 4. Z, U: ACC / DEC, acceleration / deceleration time, set by P5.020 P5.035.
- 5. A: SPD, target speed, set by P5.060 P5.075.
- 6. B: DLY, delay time, set by P5.040 P5.055.

7.1.4 Overview of the PR procedure

In the PR mode, there are six types of commands. To make users understand how the PR procedure works, ASDA-Soft presents the execution order and calling sequence of all PR procedures. The symbols and contents in the PR diagram are shown as follows, including five parts: number, command execution type (property), command type, next PR command, and command information. See Figure 7.1.4.1.

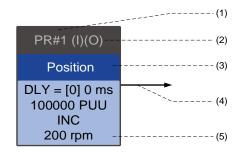


Figure 7.1.4.1 Overview of the PR procedure

- (1) Number: the PR path number, ranging from PR#0 to PR#99 (100 sets of PR paths).
- (2) Command execution type (property): (B) execute homing when powered on; (O) command overlap; (R) write data to EEPROM; and (I) command interrupt.
- (3) Command type: there are six types of PR commands: Homing, Speed, Position, Jump, Write, and Rotary Axis Position (Index Position). The color displayed in this section depends on the command type.
- (4) Next PR command: if the current path is followed by a PR command, there would be an arrow pointing to the specified PR path.
- (5) Command information: displays the details of this PR path. The displayed contents and color depend on the command type.

The following sections illustrate each command type and its display.

Homing methods

In the display of homing methods, PR#0 always signifies the homing procedure, which is marked as "Homing". See Figure 7.1.4.2.

Figure 7.1.4.2 Homing methods display

- (1) Activation mode (Boot): if the drive is set to execute homing in the Servo On state after powered on, it displays (B); if homing is not required, no information is displayed.
- (2) Method selection: including the homing methods and Z pulse setting which are shown in the following table.

PL signifies positive limit; NL signifies negative limit. When the mode name ends with a "Z", it means the servo looks for the Z pulse in the forward or reverse direction; when the mode name ends with a non-Z character, it means the servo does not look for the Z pulse. F signifies running forward; R signifies running in reverse; ORG signifies the home sensor signal; CUR signifies the current position; and BUMP signifies the hard stop.

Homing method	Y = 0: reverse to Z pulse Y = 1: go forward to Z pulse	Y = 2: do not look for Z pulse			
X = 0: homing in forward direction and define the positive limit as the homing origin	0: PLZ	0: PL			
X = 1: homing in reverse direction and define the negative limit as the homing origin	1: NLZ	1: NL			
X = 2: homing in forward direction, ORG: OFF→ON as the homing origin	2: F_ORGZ	2: F_ORG			
X = 3: homing in reverse direction, ORG: OFF→ON as the homing origin	3: R_ORGZ	3: R_ORG			
X = 4: look for Z pulse in forward direction and define it as the homing origin	4: F_Z				
X = 5: look for Z pulse in reverse direction and define it as the homing origin	5: R_Z				
X = 6: homing in forward direction, ORG: ON→OFF as the homing origin	6: F_ORGZ	6: F_ORG			
X = 7: homing in reverse direction, ORG: ON→OFF as the homing origin	7: R_ORGZ	7: R_ORG			
X = 8: define current position as the origin	8: CUR				
X = 9: torque homing in forward direction	9: F_BUMPZ	9: F_BUMP			
X = A: torque homing in reverse direction	A: R_BUMPZ	A: R_BUMP			

- (3) Offset: origin offset, P6.001.
- (4) Path: the next PR path to be executed after homing.

- (5) Homing at high speed (Speed1): first homing speed, P5.005.
- (6) Homing at low speed (Speed2): second homing speed, P5.006.

Speed command

You can use the Speed command in any PR paths from PR#1 to PR#99. It is marked as "Speed". See Figure 7.1.4.3.

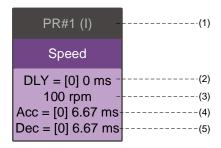


Figure 7.1.4.3 Speed command display

- (1) Command execution type (property): a Speed command can interrupt (INS) the previous PR path. If the Interrupt function is enabled, it displays (I); if not, no information is displayed.
- (2) Delay time (DLY): determined by the shared parameters. It is defined by the command from the controller; in other words, once the target speed is reached, the servo drive starts counting the delay time.
- (3) Target speed: the set target speed.
- (4) Acceleration time (Acc): determined by the shared parameters. The software calculates and displays the required duration for accelerating from 0 to the target speed.
- (5) Deceleration time (Dec): determined by the shared parameters. The software calculates and displays the required duration for decelerating from the target speed to 0.

7

Position command

You can use the Position command in any PR paths from PR#1 to PR#99. It is marked as "Position", and includes the options of "stop once the positioning is complete" and "automatically loads the next PR path once the positioning is complete". The only difference between the two options is that the latter shows an arrow pointing to the next PR path. See Figure 7.1.4.4.

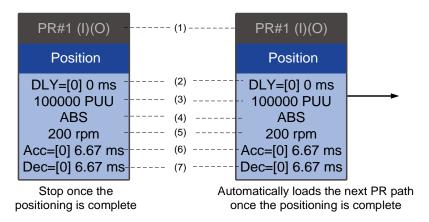


Figure 7.1.4.4 Position command display

- (1) Command execution type (property): a Position command can interrupt (INS) the previous PR path. If the Interrupt function is enabled, it displays (I); if not, no information is displayed. You can also set an Overlap (OVLP) function in the Position command and set the delay time (DLY) to 0, so that the next PR path can overlap the current one. If the Overlap function is enabled, it displays (O); if not, no information is displayed.
- (2) Delay time (DLY): determined by the shared parameters. It is defined by the command from the controller; in other words, once the target position is reached, the servo drive starts counting the delay time.
- (3) Target position: the set target position.
- (4) Position command type: "ABS" means absolute positioning; "REL" means relative positioning; and "INC" means incremental positioning.
- (5) Target speed: determined by the shared parameters.
- (6) Acceleration time (Acc): determined by the shared parameters. The software calculates and displays the required duration for accelerating from 0 to the target speed.
- (7) Deceleration time (Dec): determined by the shared parameters. The software calculates and displays the required duration for decelerating from the target speed to 0.

Jump command

You can use the Jump command in any PR paths from PR#1 to PR#99. It is marked as "Jump" and followed by an arrow pointing to the next PR path. See Figure 7.1.4.5.

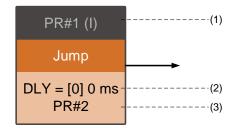


Figure 7.1.4.5 Jump command display

- (1) Command execution type (property): a Jump command can interrupt (INS) the previous PR path. If the Interrupt function is enabled, it displays (I); if not, no information is displayed.
- (2) Delay time (DLY): determined by the shared parameters.
- (3) Target PR number: the set target PR number.

Write command

You can use the Write command in any PR paths from PR#1 to PR#99. It is marked as "Write". See Figure 7.1.4.6.

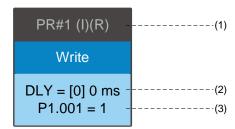


Figure 7.1.4.6 Write command display

- (1) Command execution type (property): a Write command can interrupt (INS) the previous PR path. If the Interrupt function is enabled, it displays (I); if not, no information is displayed. You can determine whether to write the data to EEPROM. If writing data to EEPROM is required, it shows (R); if not, no information is displayed.
- (2) Delay time (DLY): determined by the shared parameters.
- (3) Writing target and data source: the representations are shown in the following table. Note that constants can be written in DEC or HEX format.

Writing target	Data source			
Parameter (PX.XXX)	Constant			
Data array (Arr[#])	Parameter (PX.XXX)			
-	Data array (Arr[#])			
-	Monitoring variable (Mon[#])			

Rotary Axis Position command (Index Position)

You can use the Rotary Axis Position command in any PR paths from PR#1 to PR#99. The setting of the number of PR paths for the Rotary Axis Position command determines the number of path segments. It is marked as "Index Position". See Figure 7.1.4.7.



Figure 7.1.4.7 Rotary Axis Position command (Index Position) display

- (1) Rotary Axis Position command section: indicates a set of Rotary Axis Position commands. It shows the total moving distance at the top, and uses double arrows to show that the motor can run reciprocally between each target position in each PR path.
- (2) Command execution type (property): a Rotary Axis Position command can interrupt (INS) the previous PR path. If the Interrupt function is enabled, it displays (I); if not, no information is displayed. You can also set an Overlap (OVLP) function in the Rotary Axis Position command and set the delay time (DLY) to 0, so that the next PR path can overlap the current one. If the Overlap function is enabled, it displays (O); if not, no information is displayed.
- (3) Delay time (DLY): determined by the shared parameters. It is defined by the command from the controller; in other words, once the target position is reached, the servo starts counting the delay time.
- (4) Position command: the numerator is the Rotary Axis Position command, which is the target position of each PR path; the denominator is the total moving distance of this set of Rotary Axis Position commands, which is set by P2.052.
- (5) Rotation direction (Dir): available options are Forward (always move forward), Reverse (always move in reverse direction), and Shortest (the shortest distance).
- (6) Target speed: determined by the shared parameters.
- (7) Acceleration time (Acc): determined by the shared parameters. The software calculates and displays the required duration for accelerating from 0 to the target speed.
- (8) Deceleration time (Dec): determined by the shared parameters. The software calculates and displays the required duration for decelerating from the target speed to 0.

7.1.5 Trigger methods for the PR command

There are three types of PR trigger methods: Digital input (DI) triggering, Event triggering, and PR command trigger register (P5.007). Choose the most suitable trigger method according to the applications and requirements.

Digital input (DI) triggering

You can choose the PR path to be executed by using the internal command registers (POS0 - POS6) and use the CTRG command to trigger the selected PR path. Before triggering the PR command with the digital inputs (DIs), you must define the functions of the 8 sets DIs, which are DI.POS0 (0x11), DI.POS1 (0x12), DI.POS2 (0x13), DI.POS3 (0x1A), DI.POS4 (0x1B), DI.POS5 (0x1C), DI.POS6 (0x1E), and DI.CTRG (0x08) (see Table 8.1 in Chapter 8). You can set these DIs in the Digital IO setting screen in ASDA-Soft, as shown in Figure 7.1.5.1.

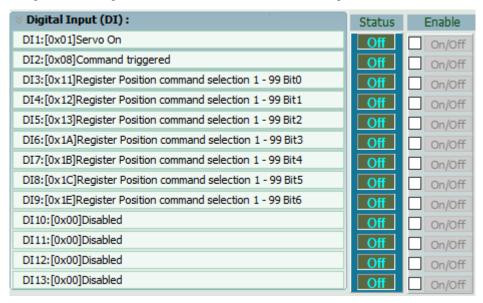


Figure 7.1.5.1 Digital IO setting screen in ASDA-Soft

Select the PR number to be executed based on the On / Off status of DI.POS0 - POS6 and use DI.CTRG to trigger the specified PR path. See the following table for an example.

Position command	POS 6	POS 5	POS 4	POS 3	POS 2	POS 1	POS 0	CTRG	Correspon- ding parameter	
Homing	0	0	0	0	0	0	0	†	P6.000	
Homing		0	0	0	0	0	0	l	P6.001	
PR#1	0	0	0	0	0 0	0	1	†	P6.002	
FR#1	0	U	0	U	U	U		'	P6.003	
PR#50	0	1	1	0	0	1	0	0	†	P6.098
FN#30		'	'	0	U	'			P6.099	
DD#54	0		1	0	0	4	0 1	4	†	P7.000
PR#51	0	1	'	U	U	ı	1		P7.001	
PR#99	DD#00	1 1 0	0	0	0	1	1	†	P7.098	
FR#99	1	1	U	U	U	'	'		P7.099	

In addition, there are two sets of DIs for special functions: DI.SHOM (0x27) and DI.STP (0x46). If the former is triggered, the servo drive executes homing based on the homing setting. If the latter is triggered, the servo drive stops the motor. You can use the Digital IO setting screen in ASDA-Soft to set these functions, as shown in Figure 7.1.5.2.

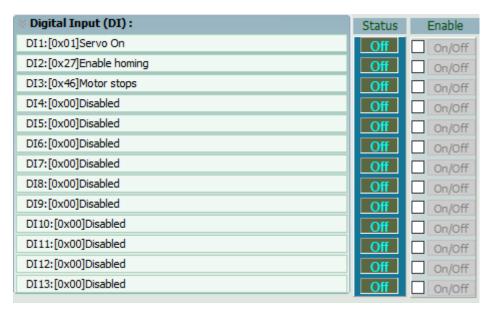


Figure 7.1.5.2 Digital IO setting screen in ASDA-Soft

Event triggering

You can use Event trigger commands 1 - 4 to execute the specified PR path. There are two types of Event triggering: rising-edge trigger and falling-edge trigger. The PR path numbers that you can specify are PR#51 - 63 (see the example in Figure 7.1.5.3). Before using the event triggering for PR commands, you must define the functions of these DIs, which are DI.EV1 (0x39), DI.EV2 (0x3A), DI.EV3 (0x3B), and DI.EV4 (0x3C) (see Table 8.1 in Chapter 8). You can use the Digital IO setting screen in ASDA-Soft to set these functions, as shown in Figure 7.1.5.4.

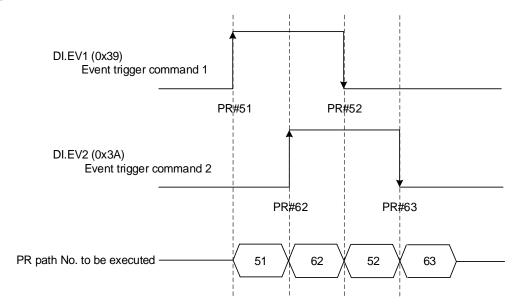


Figure 7.1.5.3 Example of event triggering timing diagram

∀ Digital Input (DI):	Status	Enable
DI1:[0x01]Servo On	Off	On/Off
DI2:[0x39]Event trigger command 1	Off	On/Off
DI3:[0x3A]Event trigger command 2	Off	On/Off
DI4:[0x3B]Event trigger command 3	Off	On/Off
DI5:[0x3C]Event trigger command 4	Off	On/Off
DI6:[0x00]Disabled	Off	On/Off
DI7:[0x00]Disabled	Off	On/Off
DI8:[0x00]Disabled	Off	On/Off
DI9:[0x00]Disabled	Off	On/Off
DI 10:[0x00]Disabled	Off	On/Off
DI11:[0x00]Disabled	Off	On/Off
DI 12: [0x00] Disabled	Off	On/Off
DI13:[0x00]Disabled	Off	On/Off

Figure 7.1.5.4 Digital IO setting screen in ASDA-Soft

You can set the rising-edge trigger of the PR path with P5.098 and set the falling-edge trigger with P5.099. Refer to Chapter 8 for more details. You can also use ASDA-Soft to set the event trigger of PR paths. See Figure 7.1.5.5.

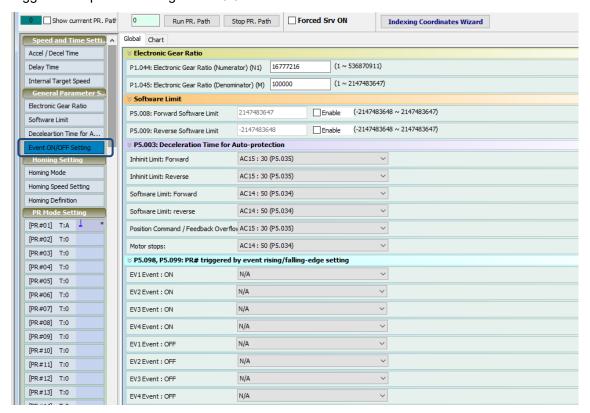


Figure 7.1.5.5 Event ON / OFF setting screen in ASDA-Soft

PR command trigger register (P5.007)

You can write the PR number to be executed in P5.007 to have the servo drive execute the specified PR path. If you set P5.007 to 0, the servo drive executes homing. If you set P5.007 to 1 - 99, the servo drive executes the specified PR path. If you set P5.007 to 1000, the servo drive stops executing PR commands. Refer to the setting descriptions of P5.007 in Chapter 8.

7.1.6 PR procedure execution flow

The servo drive updates the command status every millisecond. Figure 7.1.6.1 illustrates how the servo drive deals with the PR commands. Once a PR procedure is triggered, it goes through three processing units, which are PR queue, PR executor, and motion command generator.

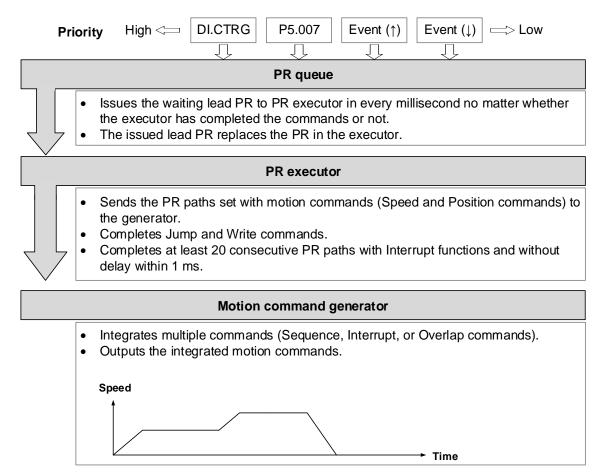


Figure 7.1.6.1 PR execution flow in the servo drive

■ Trigger mechanism

As mentioned in Section 7.1.5, the servo drive provides multiple trigger methods. A PR procedure is executed as long as a trigger signal is output. When two different trigger commands are generated within the same millisecond, the priority is as follows: DI triggering (DI.CTRG) > PR command trigger register (P5.007) > Rising-edge event triggering (Event ↑) > Falling-edge event triggering (Event ↓). Within this millisecond, the command with higher priority is executed first and then the command with lower priority is sent in the next millisecond. If three trigger commands are generated in the same millisecond, the third is not added to the PR queue.

■ PR queue

The triggered PR path is the lead PR. The waiting lead PR goes into the PR queue with its PR group. In each millisecond, the servo drive sends the lead PR and its PR group to the PR executor on a first-in first-out basis no matter whether a PR path is being executed in the PR executor. Therefore, as long as a PR path is triggered, the PR queue collects it and sends it to the PR executor.

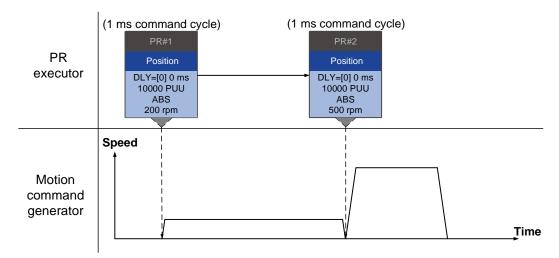
PR executor

Once the PR executor receives the lead PR and its PR group, the PR group in execution will be replaced immediately. If the received PR group includes motion commands (Speed and Position commands), then the PR executor sends them to the motion command generator. PR paths with Write or Jump commands are executed at the moment when the PR executor reads the command, and thus they do not enter the generator. The PR executor can consecutively complete at least 20 PR paths with Interrupt functions (INS) without delay (DLY) within 1 ms. If there are PR paths that have not been completed within 1 ms, and the PR queue has already sent a new PR group to the PR executor, then the new PR group replaces the previous PR group. In other words, instead of executing the PR group that has not been completed, the PR executor starts executing the new PR group. If there are PR paths that have not been completed within

1 ms but no new PR group is sent to the PR executor, the PR executor continues to execute the unfinished PR paths.

Motion command generator

The PR executor sends the motion commands (Speed and Position commands) to the motion command generator. This generator has a buffer for temporarily storing the next motion command, and all motion commands are integrated here. Motion commands can be executed as long as they enter the generator. If another motion command with the Interrupt setting also enters the generator, it is integrated with the current command in the generator. The settings of the integrated command, including whether multiple motion commands are Sequence commands and whether they are set with the Interrupt (INS) or Overlap (OVLP) function, are determined by the setting of each PR path.


Sequence command

The configurable motion commands for PR paths are the Position and Speed commands. Sequence command refers to a series of motion commands without the Overlap (OVLP) or Interrupt (INS) function, and the following command is only executed after the delay time (DLY) set in the previous command. For Position commands, the delay time starts to count after the target position is reached. For Speed commands, the delay time starts to count after the target speed is reached.

■ Position command ▶ Position command

When the PR executor receives two consecutive Position commands without the Interrupt or Overlap function, the PR executor issues the first Position command to the motion command generator, and the generator starts the first part of position control. After the first Position command completes, if no delay time is set, the PR executor issues the second Position command for the generator to start the second part of position control, as shown in Figure 7.1.6.2 (a).

If the first Position command includes a delay, the PR executor starts counting the delay time right after the motor reaches the target position, and then issues the second Position command for the generator to start the second part of position control, as shown in Figure 7.1.6.2 (b).

(a) Position command without delay

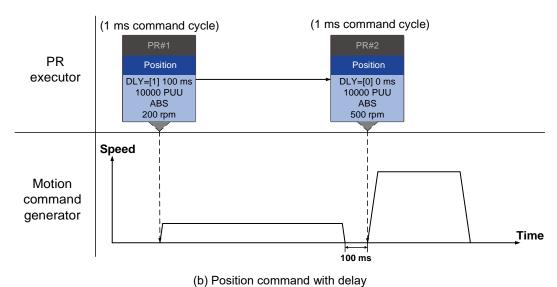


Figure 7.1.6.2 Position Sequence command

■ Speed command ▶ Speed command

When the PR executor receives two consecutive Speed commands without the Interrupt or Overlap function, the PR executor issues the first Speed command to the motion command generator, and the generator starts the first part of speed control. After the first Speed command completes, if no delay time is set, the PR executor issues the second Speed command for the generator to start the second part of speed control, as shown in Figure 7.1.6.3 (a). If the first Speed command includes a delay, the PR executor starts counting the delay time right after the motor reaches the target speed, and then issues the second Speed command for the generator to start the second part of speed control, as shown in Figure 7.1.6.3 (b).

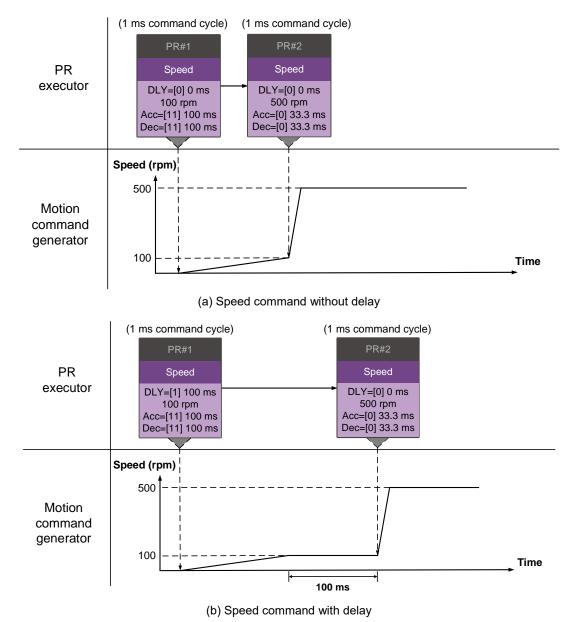


Figure 7.1.6.3 Speed Sequence command

Multiple commands

The PR queue updates the commands every millisecond. For a motion command, the PR queue sends the next command to the motion command generator only after the previous command is complete. Jump or Write commands are executed by the PR executor immediately. As shown in Figure 7.1.6.4, in the first millisecond, the PR queue receives a Position command and the PR executor sends this command to the motion command generator for execution. In the millisecond after the command is complete, the PR queue receives a Write command and the PR executor executes it immediately. In the next millisecond, the PR queue receives a Jump command and the PR executor executes it immediately as well. The Write and Jump commands are not sent to the motion command generator since the PR executor and the generator execute commands independently. In the next millisecond, the PR queue receives a Position command and the PR executor sends this command to the motion command generator for execution.

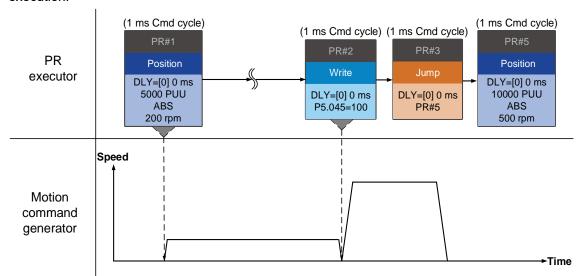
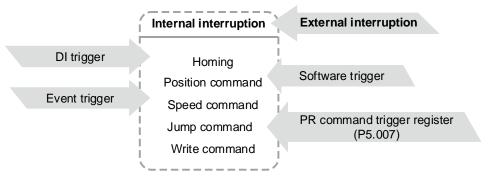
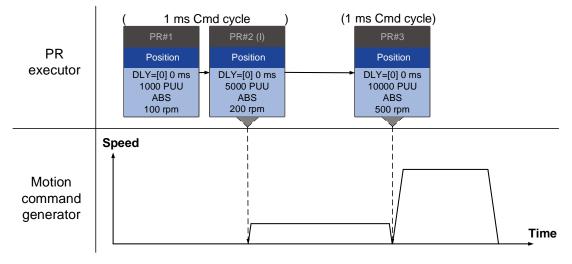


Figure 7.1.6.4 Multiple Sequence commands

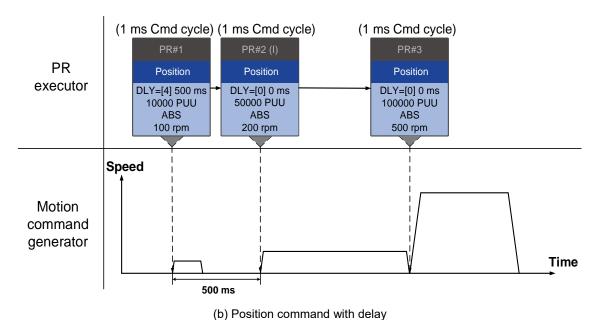
Command interruption

Interruption (INS) causes a command in execution to be replaced or integrated by the next command. The results of interruption differ based on the command types. There are two types of interruption: internal and external, as shown in Figure 7.1.6.5.




Figure 7.1.6.5 Internal and external interruption

1. Internal interruption


For a series of PR paths, if one PR path includes an AUTO function (auto-execute the next path), the system continues to read the next path right after reading the current path instead of reading the next path after the current path is complete. If the current path includes a delay, the next path is read after the delay time is over. Meanwhile, if the next path includes an Interrupt function (which has a higher execution priority), the servo drive immediately executes the path set with the Interrupt function by replacing the un-executed commands in the previous path with the next path or integrating the commands of the previous path which are in execution with the next path.

■ Position command ▶ Position command (I) ▶ Position command

When the PR executor receives three consecutive Position commands with the second command set with an Interrupt function, it treats the first and the second Position commands as one PR group. Since the first Position command is not yet executed by the PR executor, the PR executor replaces the first command with the second command and only sends the second command to the motion command generator for execution. After the second command is complete, the PR executor sends the third command to the generator (see Figure 7.1.6.6 (a)). If the first command includes a delay, the PR executor sends the first command to the generator and then starts counting the delay time. After the delay is over, the PR executor then sends the second command and the generator starts the second part of speed control. While the first command is still being executed, it is integrated with the second command. Since this integration differs from that described in Section 7.1.3.3, refer to the following note for descriptions. Once the integrated command is complete, the PR executor sends the third command to the generator for execution (see Figure 7.1.6.6 (b)).

(a) Position command without delay

(b) i Osition Command with delay

Figure 7.1.6.6 Internal interruption - Position command

Note: the way to integrate the position commands of internal interruption is slightly different from what is described in Section 7.1.3.3.

Generally, the relative position command (REL)'s target position = motor's current position + command value. However, for internal interruption, the relative position command (REL) works the same as the incremental position command (INC), with the target position = previous target position + command value. See the following example.

The rest of the integration method is the same as that mentioned in Section 7.1.3.3.

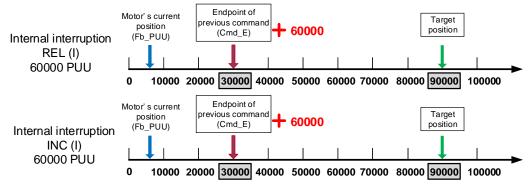


Figure 7.1.6.7 Example of relative and incremental position commands for internal interruption

Motion Control ASDA-E3

■ Speed command ► Speed command (I) ► Speed command

When the PR executor receives three consecutive Speed commands with the second command set with an Interrupt function, it treats the first and the second as one PR group. Since the first Speed command is not yet executed by the PR executor, the PR executor replaces the first command with the second command and only sends the second command to the motion command generator for execution. After the second command is complete, the PR executor sends the third command to the generator (see Figure 7.1.6.8 (a)).

If the first command includes a delay, the PR executor sends the first command to the generator and then starts counting the delay time. After the delay is over, the PR executor then sends the second command and the generator starts the second part of speed control. While the first command is still being executed, it is integrated with the second command. Once the second command is complete, the PR executor sends the third command to the generator for execution (see Figure 7.1.6.8 (b)).

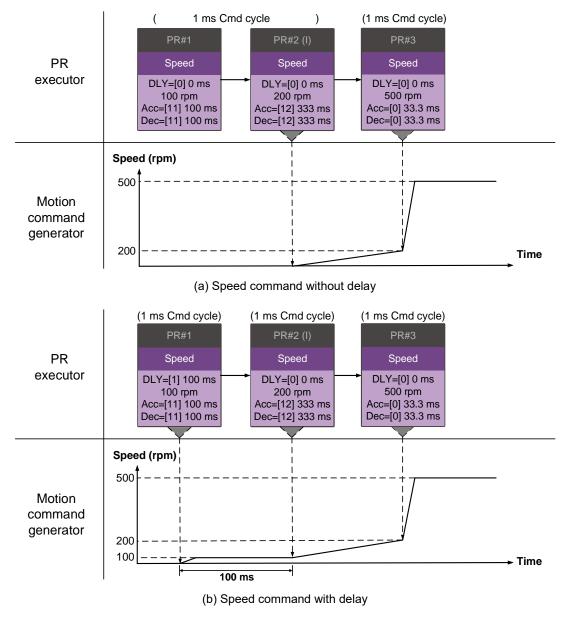


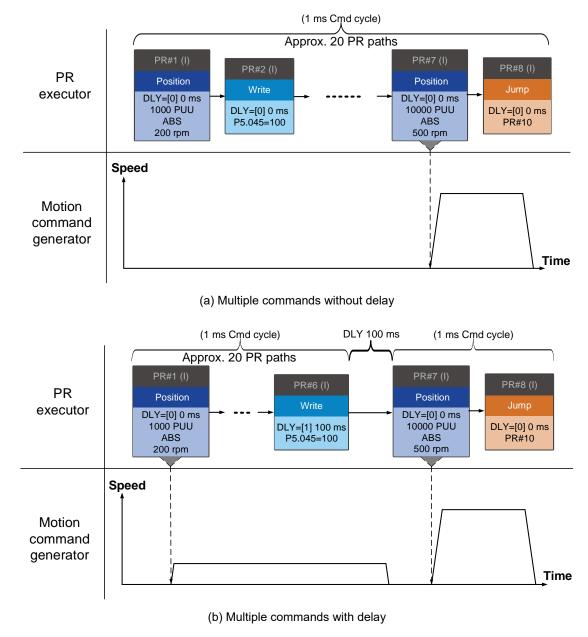
Figure 7.1.6.8 Internal interruption - Speed command

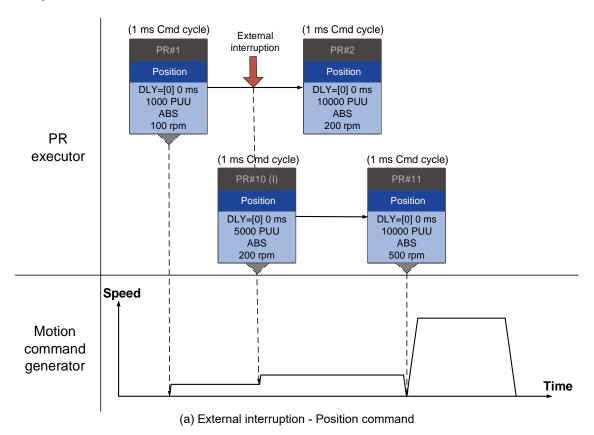
ASDA-E3 Motion Control

■ Multiple interruptions

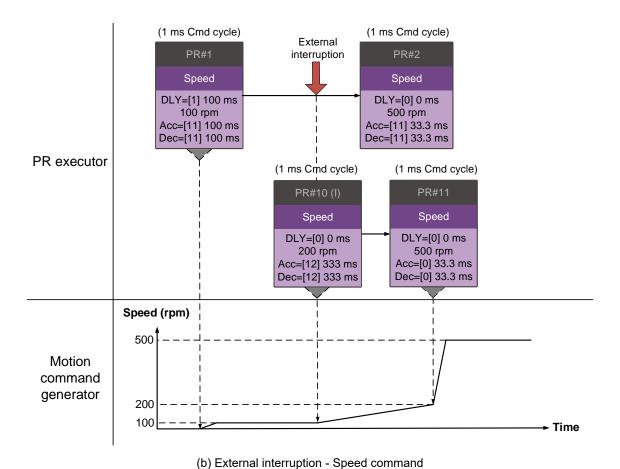
The PR queue updates the commands every millisecond. If all PR paths are consecutive with Interrupt functions and without delay, the PR queue can read at least 20 PR paths in 1 ms, and these paths are regarded as one PR group. If this PR group includes multiple motion commands, the PR queue only sends the last command it receives to the motion command generator for execution. That is in a PR group, only one PR path with motion command is executed. The latter motion command directly replaces the former ones, whereas Jump and Write commands are executed by the PR executor as soon as they are received by the PR queue, as shown in Figure 7.1.6.9 (a).

If one of the PR paths includes a delay, the PR queue regards this PR path and the prior path(s) as the first PR group, and what follows is the second PR group. In this case, up to two PR paths with motion commands can be executed, as shown in Figure 7.1.6.9 (b).




Figure 7.1.6.9 Internal interruption - Multiple commands

Motion Control ASDA-E3


2. External interruption

When a PR path is being executed, if another PR path is forced to execute with any of the trigger methods for the PR command (refer to Section 7.1.5 for PR trigger methods), the PR queue receives a PR path with an Interrupt function and sends this path to the motion command generator immediately to change the path in execution. Note that a delay does not change the result of an external interruption. That is, once the PR queue receives a command set with an Interrupt function through external interruption, the motion commands in the latter part are executed by the generator and integrated with the previous command.

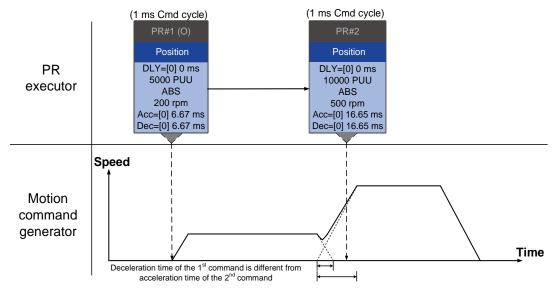
The external interruption of the Position command is as shown in Figure 7.1.6.10 (a). If a PR path with an Interrupt function enters the PR executor by external interruption, the executor sends this Position command immediately to the motion command generator for execution. The motor then runs with the settings integrated with the previous motion command. The methods of integration are described in Section 7.1.3.3. The external interruption of the Speed commands is the same as that of the Position commands (see Figure 7.1.6.10 (b)), and the same is true for multiple commands.

ASDA-E3 Motion Control

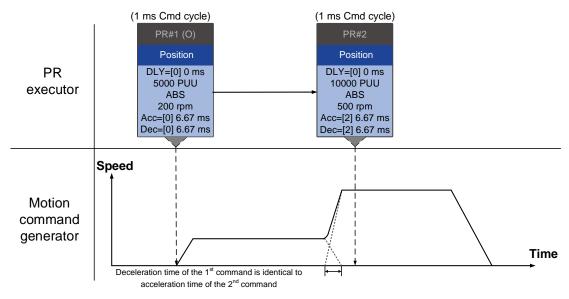
. .

Figure 7.1.6.10 External interruption

Command overlapping


If the previous position command includes an Overlap (OVLP) function, it allows the next command to be executed while the previous motion is decelerating, thus achieving a continuous motion. When you use an Overlap function, the delay time is still effective. The delay time starts to count from the start point of the command; however, in order to have a smooth command transition, setting the delay time to 0 is suggested. In addition, if the deceleration time of the previous command is identical to the acceleration time of the next command, the discontinuous speed during transition can be avoided, smoothing the transition between commands (see Figure 7.1.6.11).

The relationship between the 1st target speed and its deceleration time and the relationship between the 2nd target speed and its acceleration time are as follows.


$$\frac{1\text{st target speed (Spd1)}}{3000} \times \text{Deceleration time (Dec)} = \frac{2\text{nd target speed (Spd2)}}{3000} \times \text{Acceleration time (Acc)}$$

Command interruption has a higher priority than command overlapping. Thus, when you set an Overlap function in the current Position command, and the next motion command includes an Interrupt function, only the command with the Interrupt function is executed.

Motion Control ASDA-E3

(a) Command overlapping - Acceleration and deceleration times are different

(b) Command overlapping - Acceleration and deceleration times are identical

Figure 7.1.6.11 Command overlapping

Interpret PR path flow

As mentioned earlier, the PR paths include the Sequence command, the Interrupt function, the Overlap function, and so on. The replacement, integration, and overlapping of commands lead to different motion behaviors depending on the settings. The suggested steps to interpret a series of PR paths are as follows.

- Check the command sequence. Check whether there are delay time (DLY) and interrupt (INS) settings because these two settings change the command execution sequence.
- 2. Find the lead PR and identify the PR groups of each millisecond.
- 3. In each PR group of 1 ms, only the last motion command is executed. Meanwhile, the Jump and Write commands are immediately executed in the PR executor.
- 4. Position commands are integrated based on the principle described in Section 7.1.3.3.

ASDA-E3 Motion Control

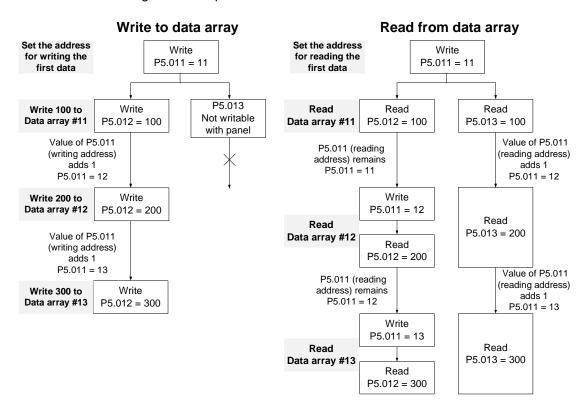
7.1.7 Data array

The data array stores up to 128 sets of 32-bit data (0 - 127). Set P2.008 to 30 and then 35 to write the data to EEPROM; otherwise, the data in RAM is volatile.

You can read data from or write data to the data array with parameter settings through the drive panel or communication. The first group of parameters for reading and writing the data array are P5.011 to P5.013. P5.011 specifies the address of data array to be read and written. P5.012 and P5.013 read data from or write data to the data array address set by P5.011. The behaviors after reading and writing with P5.012 and P5.013 differ. Refer to Table 7.2.1.1 for more information.

The second group of parameters for reading and writing the data array are P5.011 and P5.100 to P5.103. P5.011 specifies the address of data array to be read and written. P5.100 reads data from or writes data to the data array address set by P5.011. P5.101 reads data from or writes data to the data array address following the address set by P5.011. P5.102 and P5.103 work the same way. If the address accumulates and exceeds the maximum value, the return content of the address is 0. Refer to Table 7.2.1.2 for descriptions and examples.

Table 7.2.1.1 Group 1 parameters for reading and writing the data array


Parameter		Description					
P5.011 Address for reading and writing	Specif	ies the data array address for re	eading and writing				
Window for reading and writing	Read / write through	Behavior after reading	Behavior after writing				
P5.012 Window #1 for	Panel	Value of P5.011 does not add 1	Value of P5.011 adds 1				
reading and writing	Communication	Value of P5.011 adds 1	Value of P5.011 adds 1				
P5.013 Window #2 for	Panel	Value of P5.011 adds 1	Not writable with the drive panel				
reading and writing	Communication	Value of P5.011 adds 1	Value of P5.011 adds 1				

Motion Control ASDA-E3

Example: reading and writing the data array through the drive panel or communication.

Write values to the data array addresses in the following sequence: Data array #11 = 100, Data array #12 = 200, Data array #13 = 300. Then, read the data in the same sequence.

1. Read / write through the drive panel:

ASDA-E3 Motion Control

2. Read / write with communication:

To read from or write to the data array through Modbus, use the communication command 0x10 to write consecutively, 0x06 to write single data, and 0x03 to read consecutively. First, use the consecutive writing command to write 100 to Data array #11, 200 to Data array #12, and 300 to Data array #13.

When reading, use the single data writing command to set the start address as Data array #11, and then use the consecutive reading command to read P5.011 - P5.013 (Data array #11 and #12). Since P5.011 has been read twice, its value is incremented by 2, and you can continue to read from Data array #13.

	Writing to the data array								
Packet	Communication	Start	Data	P5.	011	P5.012		P5.013	
1 donot	command	address	length	Low byte	High byte	Low word	High word	Low word	High word
1	0x10	P5.011	6 words	11	0	100	0	200	0
2	0x10	P5.011	6 words	13	0	300	0	0	0
			Rea	ading from	the data a	ray			
Packet	Communication			P5.011		P5.012		P5.013	
	command	address	length	Low byte	High byte	Low word	High word	Low word	High word
3	0x06	P5.011	-	11	0	-	-	-	-
4	0x03	P5.011	6 words	11	0	100	0	200	0
5	0x03	P5.011	6 words	13	0	300	0	0	0

Table 7.2.1.2 Group 2 parameters for reading and writing the data array

Parameter	Description	Exam	ple 1	Exam	ple 2
P5.011 Address for reading and writing	Specifies the data array address for reading and writing	Ę	5		25
Window for	Description	Exam	ple 1	Exam	ple 2
reading and writing	Description	Address	Content	Address	Content
P5.100 Window #3 for reading and writing	Reads from or writes to the address specified by P5.011.	5	1234	125	5678
P5.101 Window #4 for reading and writing	Reads from or writes to the first address following the address specified by P5.011.	6	2345	126	6789
P5.102 Window #5 for reading and writing	Reads from or writes to the second address following the address specified by P5.011.	7	3456	127	7890
P5.103 Window #6 for reading and writing	Reads from or writes to the third address following the address specified by P5.011.	8	8 4567 x		0

Motion Control ASDA-E3

(This page is intentionally left blank.)

Parameters

This chapter introduces the parameter settings of the servo drive, as well as the descriptions for digital input (DI), digital output (DO), and monitoring variables. You can control the drive functions with these parameters and DI/O.

8.1 Par	ameter definitions ······8-2
8.2 List	of parameters 8-3
8.3 Par	ameter descriptions······ 8-18
P0.xxx	Monitoring parameters 8-18
P1.xxx	Basic parameters 8-35
P2.xxx	Extension parameters 8-74
P3.xxx	Communication parameters8-109
P4.xxx	Diagnosis parameters
P5.xxx	Motion control parameters8-126
P6.xxx	PR parameters8-150
P7.xxx	PR parameters8-173
Table 8.	1 Digital input (DI) descriptions
Table 8.	2 Digital output (DO) descriptions 8-202
Table 8.	3 Monitoring variables descriptions8-208

8.1 Parameter definitions

The servo drive parameters are divided into eight groups. The first character after the start code P is the group number and the following three characters are the parameter indicator. The communication address is the combination of the group number and the three-digit parameter indicator, expressed in hexadecimal. The parameter groups are:

Group 0: Monitoring parameters (Example: P0.xxx)

Group 1: Basic parameters (Example: P1.xxx)

Group 2: Extension parameters (Example: P2.xxx)

Group 3: Communication parameters (Example: P3.xxx)

Group 4: Diagnosis parameters (Example: P4.xxx)

Group 5: Motion control parameters (Example: P5.xxx)

Group 6: PR parameters* (Example: P6.xxx)

Group 7: PR parameters* (Example: P7.xxx)

Note: the -L model does not support this function.

Control mode description:

PT: Position control (command input through terminal block)*1

PR: Position control (command sent from internal register)*2

S: Speed control

T: Torque control

EtherCAT: Communication control*2

Note:

1. The -E model does not support this function.

2. The -L model does not support this function.

Special symbol description:

Icon of parameter property	Description
*	Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
A	Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
•	Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
•	Parameter resets to its default value after power cycling. For example, P3.006.

ASDA-E3 Parameters

8.2 List of parameters

Monitoring and general output parameters

Parameter	Function	Default value	Unit	Control mode				
No.	Function	Delault value	Offic	PT	PR	S	Т	
P0.000★	Firmware version	Factory setting	-	√	√	√	✓	
P0.001∎	Current drive alarm code (seven- segment display)	-	-	√	√	√	✓	
P0.002	Drive status	1	-	✓	✓	✓	✓	
P0.003	Analog output monitoring	0x0000	-	✓	✓	√	✓	
P0.008★	Total servo drive operation time	0x00000000	hour	✓	✓	√	✓	
P0.009★■	Status monitoring register 1	-	-	✓	✓	√	✓	
P0.010 ★ ■	Status monitoring register 2	-	-	✓	✓	√	✓	
P0.011 ★ ■	Status monitoring register 3	-	-	✓	✓	√	✓	
P0.012★■	Status monitoring register 4	-	-	✓	✓	√	✓	
P0.013 ★ ■	Status monitoring register 5	-	-	✓	✓	√	✓	
P0.017	Select content displayed by status monitoring register 1	0	-	√	√	√	√	
P0.018	Select content displayed by status monitoring register 2	0	-	√	√	√	✓	
P0.019	Select content displayed by status monitoring register 3	0	-	√	√	✓	√	
P0.020	Select content displayed by status monitoring register 4	0	-	√	√	✓	✓	
P0.021	Select content displayed by status monitoring register 5	0	-	√	√	√	✓	
P0.025 ■	Mapping parameter 1	-	-	✓	✓	✓	✓	
P0.026∎	Mapping parameter 2	-	-	✓	✓	✓	✓	
P0.027∎	Mapping parameter 3	-	-	✓	✓	√	✓	
P0.028∎	Mapping parameter 4	-	-	✓	✓	√	✓	
P0.029 ■	Mapping parameter 5	-	-	✓	✓	✓	✓	
P0.030∎	Mapping parameter 6	-	-	✓	✓	√	✓	
P0.031∎	Mapping parameter 7	-	-	✓	✓	√	✓	
P0.032 ■	Mapping parameter 8	-	-	✓	✓	✓	✓	
P0.035	Target setting for mapping parameter P0.025	-	-	√	√	√	✓	
P0.036	Target setting for mapping parameter P0.026	-	-	√	√	√	✓	
P0.037	Target setting for mapping parameter P0.027	-	-	√	√	√	✓	
P0.038	Target setting for mapping parameter P0.028	-	-	√	√	√	√	
P0.039	Target setting for mapping parameter P0.029	-	-	√	√	√	√	
P0.040	Target setting for mapping parameter P0.030	-	-	√	√	√	√	
P0.041	Target setting for mapping parameter P0.031	-	-	√	√	√	√	
P0.042	Target setting for mapping parameter P0.032	-	-	✓	✓	✓	√	

Parameter	Function	Default value	Unit	Control mode					
No.	Function	Default value	Unit	PT	PR	S	Т		
P0.044★■	Status monitoring register (for PC software)	0	ı	√	√	>	√		
P0.045 ■	Status monitoring register content selection (for PC software)	0	-	√	✓	√	√		
P0.046 ★ ■	Servo drive digital output (DO) status	0x0000	-	✓	✓	√	✓		
P0.050 ★ ■	Absolute position system status	0x0000	-	✓	✓	√	√		
P0.063★	Total duration of DC Bus voltage exceeding 400V	0	ms	√	√	√	√		
P0.079★	IGBT highest temperature	0	°C	✓	✓	√	✓		
P1.004	MON1 analog monitor output proportion	100	% (full scale)	√	√	>	√		
P1.005	MON2 analog monitor output proportion	100	% (full scale)	√	√	√	√		
P1.101∎	Analog monitor output voltage 1	0	mV	√	✓	>	√		
P1.102∎	Analog monitor output voltage 2	0	mV	✓	√	√	√		

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- () Parameter resets to its default value after power cycling. For example, P3.006.

Filter and resonance suppression parameters

Parameter	Function	Default value Unit		Co	ntro	l mode		
No.	Function	Default value	Unit	PT	PR	S	Т	
P1.006	Speed command - smoothing constant (low-pass filter)	0	ms	-	-	✓	-	
P1.007	Torque command - smoothing constant (low-pass filter)	0	ms	-	-	-	✓	
P1.008	Position command - smoothing constant (low-pass filter)	0	10 ms	✓	✓	-	-	
P1.025	Low-frequency vibration suppression frequency 1	1000	0.1 Hz	✓	✓	-	-	
P1.026	Low-frequency vibration suppression gain 1	0	-	√	✓	-	-	
P1.027	Low-frequency vibration suppression frequency 2	1000	0.1 Hz	√	✓	-	-	
P1.028	Low-frequency vibration suppression gain 2	0	-	✓	√	-	-	
P1.029	Auto low-frequency vibration suppression mode	0	-	✓	✓	-	-	
P1.030	Low-frequency vibration detection	8000	pulse	✓	✓	-	-	
P1.034	S-curve acceleration constant	200	ms	-	-	\checkmark	-	
P1.035	S-curve deceleration constant	200	ms	-	-	\checkmark	-	
P1.036	S-curve acceleration / deceleration smoothing constant	0	ms	-	✓	√	-	
P1.061	Viscous friction compensation	0	0.1%/1000 rpm	✓	✓	√	-	
P1.062	Percentage of friction compensation	0	%	✓	✓	\checkmark	-	
P1.063	Constant of friction compensation	100	%	✓	✓	√	-	
P1.068	Position command - moving filter	4	ms	✓	✓	-	-	
P1.089	Vibration elimination 1 - anti-resonance frequency	4000	0.1 Hz	√	\	-	-	
P1.090	Vibration elimination 1 - resonance frequency	4000	0.1 Hz	√	✓	-	-	
P1.091	Vibration elimination 1 - resonance difference	10	0.1 dB	√	✓	-	-	
P1.092	Vibration elimination 2 - anti-resonance frequency	4000	0.1 Hz	√	✓	-	-	
P1.093	Vibration elimination 2 - resonance frequency	4000	0.1 Hz	✓	✓	-	-	
P1.094	Vibration elimination 2 - resonance difference	10	0.1 dB	√	✓	-	-	
P2.023	Notch filter 1 - frequency	1000	Hz	✓	✓	✓	✓	
P2.024	Notch filter 1 - attenuation level	0	-dB	✓	✓	✓	✓	
P2.025	Resonance suppression low-pass filter	1.0 (panel / software) 10 (communication)	1 ms (panel / software) 0.1 ms (communication)	1	✓	✓	√	
P2.043	Notch filter 2 - frequency	1000	Hz	√	✓	√	✓	
P2.044	Notch filter 2 - attenuation level	0	-dB	√	✓	√	√	
P2.045	Notch filter 3 - frequency	1000	Hz	√	√	√	√	
P2.046	Notch filter 3 - attenuation level	0	-dB	√	√	√	√	
P2.047	Auto resonance suppression mode	0x0001	-	√	√	√	√	
P2.048	Auto resonance detection level	100	-	√	√	✓	✓	

Parameter	Function	Default value	l l=i4	Control mode				
No.	Function	Default value	Unit	PT	PR	S	Т	
P2.049	Speed detection filter and jitter	1.0 (panel / software)	(panel / software) (panel / software)		V	√	1	
1 2.049	suppression	10 (communication)	0.1 ms (communication)	√	v	V	V	
P2.095	Notch filter 1 - Q factor	5	-	✓	✓	✓	✓	
P2.096	Notch filter 2 - Q factor	5	-	✓	✓	✓	✓	
P2.097	Notch filter 3 - Q factor	5	-	✓	✓	✓	✓	
P2.098	Notch filter 4 - frequency	1000	Hz	✓	✓	✓	✓	
P2.099	Notch filter 4 - attenuation level	0	-dB	✓	✓	✓	✓	
P2.100	Notch filter 4 - Q factor	5	-	✓	✓	✓	✓	
P2.101	Notch filter 5 - frequency	1000	Hz	✓	✓	✓	✓	
P2.102	Notch filter 5 - attenuation level	0	-dB	✓	✓	✓	✓	
P2.103	Notch filter 5 - Q factor	5	-	✓	✓	✓	✓	

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- () Parameter resets to its default value after power cycling. For example, P3.006.

ASDA-E3 Parameters

Gain and switching parameters

Parameter	F Ai a	Defections	11	Co	ntro	l mo	de
No.	Function	Default value	Unit	РТ	PR	S	Т
P1.037	Load inertia ratio or total weight	2.0 (panel / software)	1 times (panel / software)	√	√	√	/
1 1.037	Load menta ratio or total weight	20 (communication)	0.1 times (communication)	V	v	v	
P1.078	Gain switching delay time	0	ms	✓	✓	✓	-
P1.079	Rate of change for gain values during gain switching delay	100	%	✓	√	✓	-
P1.080	Rate of change for speed detection filter and jitter suppression	100	%	✓	√	✓	-
P2.000	Position control gain	35	rad/s	✓	✓	-	-
P2.001	Rate of change for position control gain	100	%	✓	✓	-	-
P2.002	Position feed forward gain	50	%	✓	✓	-	-
P2.003	Position feed forward gain smoothing constant	5	ms	√	√	ı	-
P2.004	Speed control gain	500	rad/s	✓	✓	✓	✓
P2.005	Rate of change for speed control gain	100	%	✓	✓	✓	✓
P2.006	Speed integral compensation	100	rad/s	✓	✓	✓	√
P2.007	Speed feed forward gain	0	%	✓	√	√	√
P2.026	Anti-interference gain	0	rad/s	√	√	√	√
P2.027	Gain switching condition and method selection	0x0000	-	√	√	√	✓
P2.028	Gain switching time constant	10	ms	√	✓	✓	√
P2.029	Gain switching condition	16777216	pulse Kpps rpm	√	✓	√	√
P2.031	Bandwidth response level	19	-	√	√	✓	√
P2.032	Gain adjustment mode	0x0000	-	√	√	√	√
P2.053	Position integral compensation	0	rad/s	√	√	✓	√
P2.089	Command response gain	25	rad/s	√	√	-	-
P2.090	Two degree of freedom mode - anti- interference gain	850	0.001	√	√	-	-
P2.091	Two degree of freedom mode - position feed forward gain	1000	0.1%	√	√	-	-
P2.092	Two degree of freedom mode - speed feed forward gain	1000	0.1%	√	√	-	-
P2.094 ▲	Special bit register 3	0x0090	-	√	✓	√	L-
P2.104	Torque command condition for P/PI switching	800	%	√	✓	-	-
P2.105	Automatic gain adjustment level 1	11	-	√	✓	-	-
P2.106	Automatic gain adjustment level 2	2000	pulse	√	✓	-	-
P2.107	Rate of change for resonance suppression low-pass filter	100	%	√	√	√	-
P2.112▲	Special bit register 4	0x2018	-	√	✓	√	-
P2.126	Bandwidth for speed loop response	40	Hz	√	✓	√	-

Parameters ASDA-E3

(★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.

- (lacktriangle) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.

(\blacksquare) Parameter resets to its default value after power cycling. For example, P3.006.

Parameters

Position control parameters

Parameter	Function	Default value	Unit	Control mode					
No.	Function	Default value	Unit	PT	PR	S	Т		
P1.001●	Input for control mode and control command	0x0000	-	√	√	√	√		
P1.002▲	Speed and torque limits	0x0000	-	√	√	√	√		
P1.003	Encoder pulse output polarity	0x0000	-	√	√	√	√		
P1.012 - P1.014	Internal Torque command / internal torque limit 1 - 3	100	%	√	√	√	√		
P1.044 ▲	E-Gear ratio - numerator N1	16777216	pulse	√	√	√	√		
P1.045 ▲	E-Gear ratio - denominator M	100000	pulse	√	√	√	√		
P1.046 ▲	Encoder pulse number output (OA, OB)	2500	pulse	√	√	√	√		
P1.055	Maximum speed limit	Rated speed	rpm	√	√	√	√		
P1.076▲	Maximum speed for encoder output (OA, OB)	5500	rpm	√	√	√	√		
P1.097▲	Encoder output denominator (OA, OB)	0	-	√	√	√	√		
P1.111	Overspeed protection level	Maximum motor speed x 1.1	rpm	√	√	√	√		
P1.112	Single-direction torque limit	500	%	✓	√	√	✓		
P2.035	Excessive deviation warning condition of Position command	50331648	pulse	√	√	-	-		
P2.068	Following error compensation switch	0x0000	-	√	√	√	✓		
P5.003	Deceleration time for auto-protection	0xEEEFEEFF	-	-	√	√	√		
P5.016∎	Axis position - main encoder	0	PUU	✓	√	√	✓		
P5.018	Axis position - pulse command	0	pulse	✓	√	√	✓		
P5.020 - P5.035	Acceleration / deceleration times (#0 - #15)	Refer to description of each parameter	ms	-	√	-	-		

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- () Parameter resets to its default value after power cycling. For example, P3.006.

Parameters ASDA-E3

Position control parameters - external pulse control command (PT mode)

Parameter	Function	Default value	Unit	Control mode					
No.	Function	Delault value		PT	PR	1	Т		
P1.000 ▲	External pulse input type	0x1042	-	√	-	-	-		
P2.060	E-Gear ratio - numerator N2	16777216	pulse	✓	√	√	√		
P2.061	E-Gear ratio - numerator N3	16777216	pulse	√	✓	✓	✓		
P2.062	E-Gear ratio - numerator N4	16777216	pulse	✓	√	√	√		

Position control parameters - internal register control command (PR mode)

Parameter	Function	Default value	Unit	Control mode				
No.	Function	Default value	Onit	PT	PR	S	Т	
P5.004	Homing methods	0x0000	-	-	✓	-	-	
P5.005	High speed homing	100.0 (panel / software)	1 rpm (panel / software)	-	-			
	(first speed setting)	1000 (communication)	0.1 rpm (communication)	ı	√	ı	-	
P5.006	(second speed setting)		-	√	ı	-		
	(second speed setting)	200 (communication)	0.1 rpm (communication)	-	✓	-	-	
P5.007∎	Trigger Position command (PR mode only)	0	-	-	✓	-	-	
P5.008	Positive software limit	2147483647	PUU	-	✓	-	-	
P5.009	Negative software limit	-2147483648	PUU	-	√	-	-	
P5.015∎	PATH 1 - PATH 2 volatile setting	0x0000	-	-	√	-	-	
P5.040 - P5.055	Delay time #0 - 15 after position reached	0 - 5500	ms	-	√	-	-	
P5.060 - P5.075	Target speed setting #0 - #15	20.0 - 3000.0 (panel / software) 1 rpm (panel / software)	-	√	-	_		
		200 - 30000 (communication)	0.1 rpm (communication)					
P5.098	PR number triggered by event rising-edge	0x0000	-	ı	✓	1	-	
P5.099	PR number triggered by event falling-edge	0x0000	-	-	✓	-	-	
P6.002 - P7.099	Internal Position commands #1 - #99	0x00000000	-	-	✓	ı	-	

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- (**a**) Parameter resets to its default value after power cycling. For example, P3.006.

Speed control parameters

Parameter	Fination	Defection	l lmit	C	Control mode			
No.	Function	Default value	Unit	PT	PR	S	Т	
P1.001●	Input for control mode and control command	0x0000	-	√	√	√	√	
P1.002▲	Speed and torque limits	0x0000	-	✓	✓	✓	✓	
P1.003	Encoder pulse output polarity	0x0000	-		✓	✓	✓	
P1.009 - P1.011	Internal Speed command / internal speed limit 1 - 3	1000 - 3000	0.1 rpm	-	-	>	√	
P1.012 - P1.014	Internal Torque command / internal torque limit 1 - 3	100	0 %		✓	>	√	
P1.040	Maximum motor speed for analog Speed command 1	Rated speed	rpm	-	-	✓	✓	
P1.041 ▲	Maximum output for analog Torque command	100	%	✓	✓	>	√	
P1.046 ▲	Encoder pulse number output (OA, OB)	2500	pulse	✓	✓	✓	✓	
P1.055	Maximum speed limit	Rated speed	rpm	✓	✓	✓	✓	
P1.076 ▲	Maximum speed for encoder output (OA, OB)	5500	rpm	✓	✓	✓	√	
P1.081	Maximum motor speed for analog Speed command 2	Rated speed	rpm	-	-	✓	√	
P1.097▲	Encoder output denominator (OA, OB)	0	-	✓	✓	✓	✓	
P1.111	Overspeed protection level	Maximum motor speed x 1.1	rpm	√	√	>	√	
P1.112	Single-direction torque limit	500	500 %		✓	✓	√	
P2.034	Excessive deviation warning condition of Speed command	5000	rpm	-	-	>	-	
P2.112▲	Special bit register 4	0x2018 -		✓	✓	✓	-	

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- (\blacksquare) $\;\;$ Parameter resets to its default value after power cycling. For example, P3.006.

Torque control parameters

Parameter	Function	Defections	11:4	Control mode				
No.	Function	Default value	Unit	РТ	PR	S	Т	
P1.001●	Input for control mode and control command	0x0000	0 -		√	√	✓	
P1.002▲	Speed and torque limits	0x0000	0x0000 -		√	\	√	
P1.003	Encoder pulse output polarity	0x0000	-	√	√	✓	✓	
P1.009 - P1.011	Internal Speed command / internal speed limit 1 - 3	1000 - 3000	0.1 rpm	-	-	√	✓	
P1.012 - P1.014	Internal Torque command / internal torque limit 1 - 3	100 %		√	√	√	✓	
P1.040	Maximum motor speed for analog Speed command 1	Rated speed	rpm	-	-	√	✓	
P1.041 ▲	Maximum output for analog Torque command	100	%	√	✓	>	✓	
P1.046▲	Encoder pulse number output (OA, OB)	2500	pulse	√	√	✓	✓	
P1.055	Maximum speed limit	Rated speed	rpm	√	√	√	√	
P1.081	Maximum motor speed for analog Speed command 2	Rated speed rpm		-	-	√	√	
P1.111	Overspeed protection level	Maximum motor speed x 1.1	rpm	√	√	√	✓	
P1.112	Single-direction torque limit	500	%	✓	✓	✓	√	

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- () Parameter resets to its default value after power cycling. For example, P3.006.

Digital input / Digital output functional planning parameters

P1 PR S T PR T PR S T PR T PR S T PR T PR S T PR T T PR T PR T T PR T T T T T T T T T	Parameter	Function	Default value	Unit	Control			mode	
P0.055 filter time	No.	Function	Delauit value	Offic	РТ	PR	s	Т	
1 - lower limit	P0.053		0x0000	-	✓	✓	✓	✓	
P0.056 General range compare digital output 2 - lower limit 0 -	P0.054	General range compare digital output 1 - lower limit	0	-	√	√	√	√	
P0.057 General range compare digital output 2 - y y y y y y y y y y	P0.055		0	-	√	√	√	√	
P0.059 Compare limit	P0.056		0	-	√	√	√	√	
P0.095 3 - lower limit	P0.057	General range compare digital output 2 - upper limit	0	-	√	√	√	√	
P0.009 3 - upper limit	P0.058		0	-	√	√	√	√	
P0.061 General range compare digital output 0	P0.059		0	-	√	√	√	√	
P1.038 Zero speed range 10.0 1 rpm	P0.060	General range compare digital output 4 - lower limit	0	-	√	√	√	√	
P1.038 Zero speed range (panel / software) (100	P0.061		0	-	√	✓	✓	✓	
P1.039 Target speed detection level 3000 rpm ✓	P1.038	Zero speed range	(panel / software)	(panel / software) 0.1 rpm	√	√	√	√	
P1.042 brake 0 ms √ <t< td=""><td>P1.039</td><td>Target speed detection level</td><td>,</td><td>,</td><td>√</td><td>√</td><td>√</td><td>√</td></t<>	P1.039	Target speed detection level	,	,	√	√	√	√	
P1.043 brake 0 IIIS √ ✓ ✓ ✓ √ ✓	P1.042		0	ms	√	√	√	√	
P1.054 Pulse range for position reached 167772 pulse ✓	P1.043		0	ms	√	√	√	√	
P1.056 Motor output overload warning level 120 % ✓ <td>P1.047</td> <td>Speed reached (DO.SP_OK) range</td> <td>10</td> <td>rpm</td> <td>-</td> <td>-</td> <td>✓</td> <td>-</td>	P1.047	Speed reached (DO.SP_OK) range	10	rpm	-	-	✓	-	
P2.009 DI response filter time 2 ms ✓ <th< td=""><td>P1.054</td><td>Pulse range for position reached</td><td>167772</td><td>pulse</td><td>✓</td><td>√</td><td>-</td><td>-</td></th<>	P1.054	Pulse range for position reached	167772	pulse	✓	√	-	-	
P2.010 DI1 functional planning 0x0101 (-L) 0x0100 (-E) - √ <	P1.056	Motor output overload warning level	120	%	√	√	√	√	
P2.010 DIT functional planning 0x0100 (-E) - √	P2.009	DI response filter time	2	ms	√	√	√	√	
P2.011 DI2 functional planning 0x0022 (-E) - √ √ √ ✓	P2.010	DI1 functional planning		-	✓	✓	✓	✓	
P2.012 DI3 functional planning 0x0023 (-E) - √ ✓ <td>P2.011</td> <td>DI2 functional planning</td> <td>` '</td> <td>-</td> <td>√</td> <td>√</td> <td>√</td> <td>√</td>	P2.011	DI2 functional planning	` '	-	√	√	√	√	
P2.013 DI4 functional planning 0x0021 (-E) - √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	P2.012	DI3 functional planning	, ,	-	√	√	√	√	
P2.014 DIS functional planning 0x0100 (-E) -	P2.013	DI4 functional planning	, ,	-	✓	√	√	√	
P2.015 DI6 functional planning 0x0100 (-E) -	P2.014	DI5 functional planning	` ,	-	√	√	√	√	
P2.016 DI7 functional planning 0x0100 (-E)	P2.015	DI6 functional planning	, ,	-	√	√	√	√	
P2 017 DI8 functional planning 0x0021 (-L)	P2.016	DI7 functional planning	, ,	-	√	√	√	√	
0.00 (-L)	P2.017	DI8 functional planning		-	√	√	√	√	

Parameter	Function Detault value I Init	Control mode					
No.	FullClion	Delault value	Offic	РТ	PR	S	Т
P2.018	DO1 functional planning	0x0101	-	√	√	√	√
P2.019	DO2 functional planning	0x0103 (-L) 0x0100 (-E)	-	√	√	√	√
P2.020	DO3 functional planning	0x0109 (-L) 0x0100 (-E)	-	✓	√	✓	√
P2.021	DO4 functional planning	0x0105	-	✓	√	>	√
P2.022	DO5 functional planning	0x0007	-	√	√	√	√
P2.036	DI9 functional planning	0x0100	-	√	√	√	√
P2.037	DI10 functional planning	0x0100	-	√	√	✓	√
P2.038	DI11 functional planning	0x0100	-	√	√	✓	√
P2.039	DI12 functional planning	0x0100	-	√	√	√	√
P2.040	DI13 functional planning	0x0100	-	√	√	✓	√
P2.041	DO6 functional planning	0x0100	-	√	√	✓	√

^(★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.

- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- (ullet) Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- (■) Parameter resets to its default value after power cycling. For example, P3.006.

Communication parameters

Parameter		D () ()		С	ontro	l mod	de
No.	Function	Default value	Unit	PT	PR	S	Т
P3.000●	Address	0x007F	-	√	√	√	√
P3.001●	Transmission speed	0x0033	-	√	√	✓	✓
P3.002	Modbus communication protocol	0x0006	-	√	√	✓	✓
P3.003	Modbus communication error handling	0x0000	-	√	√	✓	✓
P3.004	Modbus communication timeout	0	sec	√	✓	✓	√
P3.006∎	Digital input (DI) control switch	0x0000	-	√	√	✓	✓
P3.007	Modbus communication response delay time	1	0.5 ms	√	✓	✓	√
P3.009	Communication synchronization	0x5055	-	-	-	-	-
P3.012	Communication support setting	0x1000		-	-		
P3.018	EtherCAT special function switch	0x00002000	-	-	-	-	-
P3.022	EtherCAT PDO timeout setting	0xFF04	-	-	-	-	-

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- () Parameter resets to its default value after power cycling. For example, P3.006.

Diagnosis parameters

Parameter	Function	Default value	Unit	С	ontro	l mo	de
No.	Function	Delault value	Offic	РТ	PR	s	Т
P4.000	Fault record (last)	0x00000000	-	√	√	√	√
P4.001★	Fault record (second to the last)	0x00000000	-	✓	✓	✓	√
P4.002★	Fault record (third to the last)	0x00000000	-	✓	✓	✓	√
P4.003★	Fault record (fourth to the last)	0x00000000	-	✓	√	✓	√
P4.004★	Fault record (fifth to the last)	0x00000000	-	✓	✓	✓	√
P4.005	Servo motor JOG control	20	rpm	✓	✓	✓	✓
P4.006∎	Software digital output register (readable and writable)	0x0000	-	√	✓	✓	√
P4.007∎	Multi-function for digital input	0x0000	-	✓	✓	✓	√
P4.008★	Input status of servo drive panel (read-only)	-	-	√	✓	√	✓
P4.009★	Digital output status (read-only)	-	-	✓	✓	✓	√
P4.010▲■	Hardware calibration options	0	-	✓	✓	✓	√
P4.011	Analog speed input 1 - hardware offset calibration	Factory setting	-	√	√	√	✓
P4.012	Analog speed input 2 - hardware offset calibration	Factory setting	-	√	√	√	✓
P4.013	Analog torque input 1 - hardware offset calibration	Factory setting	-	√	√	√	✓
P4.014	Analog torque input 2 - hardware offset calibration	Factory setting	-	✓	✓	√	✓
P4.015	Current detector (V1 phase) - hardware offset calibration	Factory setting	-	✓	✓	✓	✓
P4.016	Current detector (V2 phase) - hardware offset calibration	Factory setting	-	✓	✓	✓	✓
P4.017	Current detector (W1 phase) - hardware offset calibration	Factory setting	-	✓	✓	✓	✓
P4.018	Current detector (W2 phase) - hardware offset calibration	Factory setting	-	✓	✓	✓	✓
P4.019	IGBT NTC calibration level (cannot reset)	Factory setting	-	✓	✓	√	✓
P4.020	Analog monitor output (Ch1) - offset compensation value	0	mV	√	√	√	✓
P4.021	Analog monitor output (Ch2) - offset compensation value	0	mV	√	√	√	✓
P4.022	Analog speed input - offset compensation value	0	mV	-	-	√	
P4.023	Analog torque input - offset compensation value	0	mV	-	-	-	✓

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (▲) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- () Parameter resets to its default value after power cycling. For example, P3.006.

Encoder parameters

Parameter	Function	Default value Unit	Lloit	Control			de
No.	No.		Onit	PT	PR	S	Т
P0.049∎	Update encoder absolute position	0x0000	-	√	\	√	✓
P0.051 ★ ■	Encoder absolute position - number of revolutions	0	rev	√	√	✓	✓
P0.052 ★ ■	Encoder absolute position - pulse number within single turn or PUU	0	pulse or PUU	>	>	✓	✓
P2.069●	Absolute encoder	0x0000	-	√	√	✓	√

Special function parameters

Parameter	Function	Default value	Default value Linit		Control mode				
No.	Function	Default value	Unit	PT	PR	S	Т		
P1.057	Motor hard stop 1 - torque percentage	0	%	√	✓	√	✓		
P1.058	Motor hard stop - protection time	1	ms	√	✓	√	✓		
P1.060	Motor hard stop 1 - level offset	0	%	√	√	√	✓		
P1.105	Motor hard stop 2 - torque upper limit	0	%	√	√	√	✓		
P1.106	Motor hard stop 2 - torque lower limit	0	%	√	√	√	✓		
P2.112▲	Special bit register 4	0x2018	-	√	√	√	-		
P2.121	Special bit register 6	0x00000000	-	√	√	√	✓		
P2.125	Special bit register 7	0x0000	-	√	√	√	√		
P4.044	Special bit register 5	0x0000	-	√	√	√	✓		

- (★) Read-only parameter. Can only read the value of the parameter. For example, P0.000, P0.010, and P4.001.
- (**A**) Parameter cannot be changed when servo is in Servo On status. For example, P1.000 and P1.046.
- () Parameter changes become valid after power cycling. For example, P1.001 and P3.000.
- (\blacksquare) $\;\;$ Parameter resets to its default value after power cycling. For example, P3.006.

8.3 Parameter descriptions

P0.xxx Monitoring parameters

P0.000★	Firmware version			Address: 0000H 0001H
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Displays the firmware version of the servo drive.

P0.001∎	Current drive alarm code (seven-segment display)			Address: 0002H 0003H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	DI.ARST). 0x0001 - 0x	rm clear (same as CFFFF: displays the (not writable).
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

For the list of alarms, refer to Section 12.1 Alarm list.

P0.002	Drive status			Address: 0004H 0005H
Default:	1	Control mode:	All	
Unit:	-	Setting range:	-300 to +12	7
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Input the monitoring code to P0.002 to view changes to the variable on the panel. For the list of monitoring variables, refer to Table 8.3 Monitoring variables descriptions.

P0.003	Analog output monitoring			Address: 0006H 0007H
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0077
Format:	HEX	Data size:	16-bit	
Model:	-L			

Settings:

	U	_	^	
		Χ		MON2 setting value

X	MON2 setting value	Z	Reserved
Υ	MON1 setting value	U	Reserved

X & Y setting value	Description	X & Y setting value	Description
0	Motor speed (+/- 8 volts / Maximum speed)	4	Torque command (+/- 8 volts / Maximum Torque command)
1	Motor torque (+/- 8 volts / Maximum torque)	5	VBUS voltage (+/- 8 volts / 450V)
2	Pulse command frequency (+8 volts / 4.5 Mpps)	6	Analog output voltage is the setting value of P1.101
3	Speed command (+/- 8 volts / Maximum Speed command)	7	Analog output voltage is the setting value of P1.102

Note: refer to P1.004 and P1.005 for the proportional setting for the analog output voltage.

For example: when you set P0.003 to 0x0001 (MON1 is the analog output of motor speed; MON2 is the analog output of motor torque):

MON1 output voltage = 8 x
$$\frac{\text{Motor speed}}{(\text{Maximum speed x} \frac{\text{P1.004}}{100})}$$
 (Unit: volts)

MON2 output voltage = 8 x
$$\frac{\text{Motor torque}}{(\text{Maximum torque x} \frac{\text{P1.005}}{100})}$$
 (Unit: volts)

P0.004 -	Reserved
P0.007	Reserveu

P0.008★	Total servo drive operation time			Address: 0010H 0011H
Default:	0x0000000	Control mode:	All	
Unit:	hour	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

Displays the total servo drive Power On and Servo On time. The time is recorded in hours and durations of less than 1 hour are not recorded. The recorded hours are saved when the power is off.

DCBA	Total time of Servo On	UZYX	Total servo power applied time

Parameters ASDA-E3

P0.009★■	Status monitoring register 1			Address: 0012H 0013H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Set the value to be monitored in P0.017 through the drive panel or communication (refer to P0.002). To get the status, read the communication address through the communication port or monitor the value from the panel (set P0.002 to 23, and the panel displays "VAR-1" and then the value of P0.009).

For example, when you set P0.017 to 7, reading P0.009 can access the motor speed (rpm). To access the data through Modbus communication, have the servo drive read two 16-bit values (0012H and 0013H) as a single 32-bit value. (0013H: 0012H) = (High word: Low word). To monitor the data through the drive panel, set P0.002 to 23 and the panel displays "VAR-1" and then the value of P0.009.

P0.010★■	Status monitoring register 2			Address: 0014H 0015H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Set the value to be monitored in P0.018 through the drive panel or communication (refer to P0.002). To get the status, read the communication address through the communication port or monitor the value from the panel (set P0.002 to 24, and the panel displays "VAR-2" and then the value of P0.010).

P0.011★■	Status monitoring register 3			Address: 0016H 0017H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	_	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Set the value to be monitored in P0.019 through the drive panel or communication (refer to P0.002). To get the status, read the communication address through the communication port or monitor the value from the panel (set P0.002 to 25, and the panel displays "VAR-3" and then the value of P0.011).

P0.012★■	Status monitoring register 4			Address: 0018H 0019H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Set the value to be monitored in P0.020 through the drive panel or communication (refer to P0.002). To get the status, read the communication address through the communication port or monitor the value from the panel (set P0.002 to 26, and the panel displays "VAR-4" and then the value of P0.012).

P0.013★■	Status monitoring register 5			Address: 001AH 001BH
Default:	-	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Set the value to be monitored in P0.021 through the drive panel or communication (refer to P0.002). To get the status, read the communication address through the communication port.

P0.014 - P0.016

P0.017	Select content displayed by statu	Address: 0022H 0023H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-300 to +12	7
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to Table 8.3 for the available values.

For example, if you set P0.017 to 7, then reading P0.009 displays the motor speed (rpm).

P0.018	Select content displayed by statu	Address: 0024H 0025H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-300 to +12	7
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to Table 8.3 for the available values.

Parameters ASDA-E3

P0.019	Select content displayed by statu	Address: 0026H 0027H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-300 to +12	7
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to Table 8.3 for the available values.

P0.020	Select content displayed by statu	Address: 0028H 0029H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-300 to +12	7
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to Table 8.3 for the available values.

P0.021	Select content displayed by statu	Address: 002AH 002BH		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-300 to +12	7
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to Table 8.3 for the available values.

P0.022 - P0.024

P0.025∎	Mapping parameter 1			Address: 0032H 0033H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined parameter I	by the corresponding
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

You can continuously read and write two different parameters faster with mapping parameters. Use P0.035 to specify the parameter numbers to be read or written with the mapping parameter through the panel or communication. The value of the parameter that is specified by P0.035 is shown in P0.025. Refer to P0.035 for its settings.

P0.026∎	Mapping parameter 2			Address: 0034H 0035H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined parameter I	by the corresponding P0.036
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

This setting is the same as P0.025, except its mapping target is set in P0.036.

P0.027∎	Mapping parameter 3			Address: 0036H 0037H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined parameter F	l by the corresponding 20.037
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

This setting is the same as P0.025, except its mapping target is set in P0.037.

P0.028∎	Mapping parameter 4			Address: 0038H 0039H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined parameter I	by the corresponding 0.038
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

This setting is the same as P0.025, except its mapping target is set in P0.038.

P0.029∎	Mapping parameter 5			Address: 003AH 003BH
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined parameter I	by the corresponding
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

This setting is the same as P0.025, except its mapping target is set in P0.039.

Parameters ASDA-E3

8

P0.030∎	Mapping parameter 6			Address: 003CH 003DH
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined parameter l	by the corresponding P0.040
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

This setting is the same as P0.025, except its mapping target is set in P0.040.

P0.031∎	Mapping parameter 7			Address: 003EH 003FH
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined parameter I	by the corresponding
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

This setting is the same as P0.025, except its mapping target is set in P0.041.

P0.032∎	Mapping parameter 8			Address: 0040H 0041H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined parameter I	by the corresponding P0.042
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

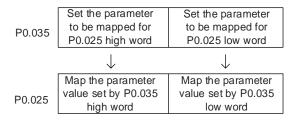
This setting is the same as P0.025, except its mapping target is set in P0.042.

P0.033 - P0.034	Reserved
--------------------	----------

P0.035	Target setting for mapping param	Address: 0046H 0047H		
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined address of	I by the communication the parameter group
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

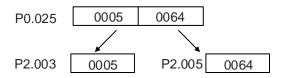
The formats of the parameter high word (PH) and parameter low word (PL) are:



ВА	Hexadecimal code for the parameter index	YX	Hexadecimal code for the parameter index
С	Hexadecimal code for the parameter group	Z	Hexadecimal code for the parameter group
D	Reserved	U	Reserved

Select the corresponding parameter(s) for the data block access register 1 (P0.035). The mapping value is 32 bits and can map to two 16-bit parameters or one 32-bit parameter.

P0.035: (Parameter to be mapped: P0.035; Content of mapping parameter: P0.025)

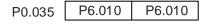

1. When PH ≠ PL, it indicates that the content of P0.025 includes two 16-bit parameters.

Example: Target: set P2.003 to 0 and P2.005 to 100 through the mapping parameter.

Setting: set the P0.035 high word to 0203 (P2.003) and low word to 0205 (P2.005).

Thus, P0.035 = 0x02030205.

Write: set 0x00050064 to the mapping parameter P0.025, and the values of P2.003 and P2.005 are:

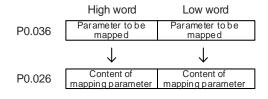


2. When PH = PL = P, it indicates that the content of P0.025 includes one 32-bit parameter.

Example: Target: set P6.010 to 0x00050064 through the mapping parameter.

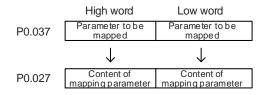
Setting: set both the high word and low word of P0.035 to 060A (P6.010).

Thus, P0.035 = 0x060A060A.

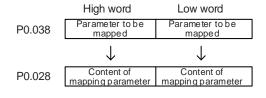


Write: set 0x00050064 to the mapping parameter P0.025, and P6.010 changes immediately.

Parameters ASDA-E3

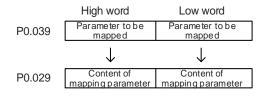

P0.036	Target setting for mapping parameter P0.026			Address: 0048H 0049H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined address of	l by the communication the parameter group
Format:	HEX	Data size:	32-bit	
Model:	-E, -L		·	

Settings:

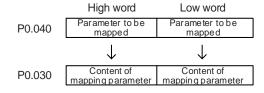

P0.037	Target setting for mapping param	Address: 004AH 004BH		
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined address of	I by the communication the parameter group
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

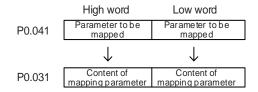
P0.038	Target setting for mapping parameter P0.028			Address: 004CH 004DH
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined address of	l by the communication the parameter group
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			


Settings:

Ö


P0.039	Target setting for mapping parameter P0.029			Address: 004EH 004FH
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined address of	l by the communication the parameter group
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

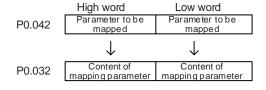

P0.040	Target setting for mapping parameter P0.030			Address: 0050H 0051H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined by the communication address of the parameter group	
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

P0.041	Target setting for mapping parameter P0.031			Address: 0052H 0053H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Determined address of	by the communication the parameter group
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

P0.042 Target setting for mapping parameter P0.032 Address: 0054H


Default: - Control mode: All

Unit: - Setting range: Determined by the communication address of the parameter group

Format: HEX Data size: 32-bit

Model: -E, -L

Settings:

P0.043 Reserved

P0.044★■	Status monitoring register (for Pe	Address: 0058H 0059H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	Determined address of	by the communication the parameter group
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

This setting is the same as P0.009.

P0.045 ■	Status monitoring register content selection (for PC software) Address: 005AH 005BH					
Default:	0	Control mode:	All			
Unit:	-	Setting range:	-300 to +12	7		
Format:	DEC	Data size:	16-bit			
Model:	-E, -L					

Settings:

This setting is the same as P0.017.

P0.046★■	Servo drive digital output (DO) st	Address: 005CH 005DH		
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0	x00FF
Format:	HEX	Data size:	16-bit	
Model:	-E -L (does not support Bit 8)			

Bit	7	6	5	4	3	2	1	0
Bit	15	14	13	12	11	10	9	8

Bit	Function	Bit	Function
0	SRDY (servo ready)	8	HOME (homing complete)
1	SON (Servo On)	9	OLW (early warning for motor overload)
2	ZSPD (zero speed detection)	10	WARN (Servo warning, CW, CCW, EMGS, undervoltage, or communication error)
3	TSPD (target speed reached)	11	Reserved
4	TPOS (target position reached)	12	Reserved
5	TQL (torque limit activated)	13	Reserved
6	ALRM (servo alarm)	14	Reserved
7	BRKR (magnetic brake control output)	15	Reserved

P0.047 - P0.048	Reserved
--------------------	----------

P0.049∎	Update encoder absolute position		Address: 0062H 0063H	
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0002
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

UZYX

Χ	Command processing	Z	Reserved
Υ	Reserved	U	Reserved

■ X: command processing

0. N/A

1: update the encoder data to P0.050 - P0.052.

2: update P0.050 - P0.052 and clear the position error. When this command takes effect, the motor's current position is set to the terminal point of the Position command.

8

P0.050★■	Absolute position system status		Address: 0064H 0065H	
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x001F
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

Bit	7	6	5	4	3	2	1	0
Bit	15	14	13	12	11	10	9	8

Bit	Function	Description
Bit 0	Absolute position status	0: normal. 1: lost.
Bit 1	Battery voltage status	0: normal. 1: undervoltage.
Bit 2	Status of absolute number of revolutions	0: normal. 1: overflows.
Bit 3	PUU status	0: normal. 1: overflows.
Bit 4	Absolute position status	0: established. 1: not yet established.
Bit 5 - Bit 15	Reserved	-

P0.051★■	Encoder absolute position - number of revolutions			Address: 0066H 0067H
Default:	0	Control mode:	All	
Unit:	rev	Setting range:	-32768 to +	32767
Format:	DEC	Data size:	16-bit	
Model:	-E			

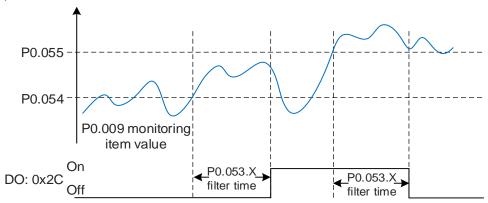
Settings:

When you set P2.070 [Bit 1] to 1 for reading the pulse number, this parameter displays the encoder's absolute position in the form of number of revolutions. When you set P2.070 [Bit 1] to 0 for reading the PUU number, this parameter becomes invalid and the panel displays 0.

P0.052★■	Encoder absolute position - pulse number within single turn or PUU			Address: 0068H 0069H
Default:	0	Control mode:	All	
Unit:	pulse or PUU	Setting range:		216-1 (pulse) 48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

When you set P2.070 [Bit 1] to 1 for reading the pulse number, this parameter displays the encoder's absolute position in the form of pulse number within a single turn. When you set P2.070 [Bit 1] to 0 for reading the PUU number, this parameter displays the motor's absolute position in PUU.


P0.053	General range compare digital output - filter time			Address: 006AH 006BH
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0	0x000F (-L) 0xFFFF (-E)
Format:	HEX	Data size:	16-bit	
Model:	-E -L (only supports P0.053.X)			

X	First filter time	Z	Third filter time
Υ	Second filter time	U	Fourth filter time

Note: the minimum filter time is 1 ms (set value 0 = 1 ms; 1 = 2 ms; 2 = 3 ms; ...; F = 16 ms).

Example of the first filter:

P0.054	General range compare digital output 1 - lower limit			Address: 006CH 006DH
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Before using this function, set the digital output function to 0x2C (first set of general range comparison) and the monitoring item of P0.017. When the monitoring item value of P0.009 is within the range set in P0.054 and P0.055, and after the filter time set in P0.053.X has elapsed, this digital output is on.

P0.055	General range compare digital output 1 - upper limit			Address: 006EH 006FH
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Refer to the description of P0.054.

P0.056	General range compare digital output 2 - lower limit			Address: 0071H 0072H
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Before using this function, set the digital output function to 0x2D (second set of general range comparison) and the monitoring item of P0.018. When the monitoring item value of P0.010 is within the range set in P0.056 and P0.057, and after the filter time set in P0.053.Y has elapsed, this digital output is on.

P0.057	General range compare digital output 2 - upper limit			Address: 0073H 0074H
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P0.056.

P0.058	General range compare digital output 3 - lower limit			Address: 0075H 0076H
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Before using this function, set the digital output function to 0x2E (third set of general range comparison) and the monitoring item of P0.019. When the monitoring item value of P0.011 is within the range set in P0.058 and P0.059, and after the filter time set in P0.053.Z has elapsed, this digital output is on.

P0.059	General range compare digital output 3 - upper limit			Address: 0077H 0078H
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P0.058.

ASDA-E3 Parameters

P0.060	General range compare digital output 4 - lower limit			Address: 0079H 007AH
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Before using this function, set the digital output function to 0x2F (fourth set of general range comparison) and the monitoring item of P0.020. When the monitoring item value of P0.012 is within the range set in P0.060 and P0.061, and after the filter time set in P0.053.U has elapsed, this digital output is on.

P0.061	General range compare digital ou	Address: 007BH 007CH		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P0.060.

P0.062	
--------	--

P0.063★	Total duration of DC Bus voltage	Address: 007EH 007FH			
Default:	0	Control mode:	: All		
Unit:	ms	Setting range:	0 to 2147483647		
Format:	DEC	Data size:	32-bit		
Model:	-E, -L				

Settings:

Records the total time during which the voltage of the DC Bus exceeded 400V.

P0.064 - P0.078	Reserved
--------------------	----------

P0.079★	IGBT highest temperature			Address: 009EH 009FH
Default:	0	Control mode:	All	
Unit:	°C	Setting range:	0 to 214748	33647
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Records the highest IGBT temperature.

P0.080 -P0.100 Reserved

8

Address: 0100H

P1.000 ▲	External pulse input type			Address: 0100H 0101H
Default:	0x1042	Control mode:	PT	
Unit:	-	Setting range:	0x0000 to 0)x31F2
Format:	HEX	Data size:	16-bit	
Model:	-L			

8

Settings:

P1.xxx

X	Pulse type	Z	Logic type
Υ	Filter width	U	Filter width

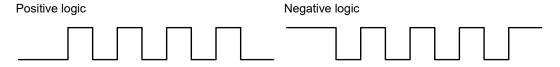
X: pulse type

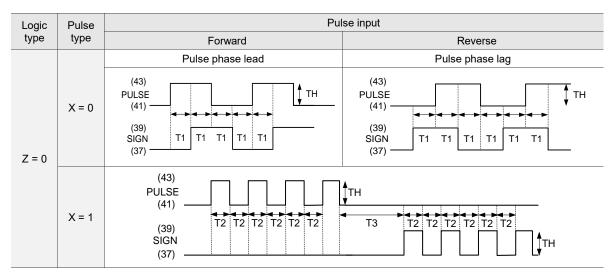
0: AB phase pulse (4x)

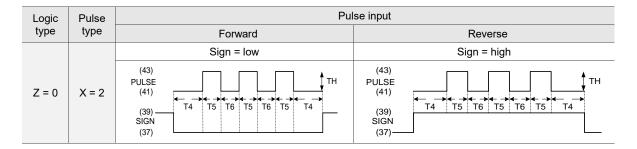
Basic parameters

1: clockwise and counterclockwise pulses

2: pulse train + sign


■ Z: logic type


0: positive logic


1: negative logic

Digital circuits use 0 and 1 to represent the high and low voltage levels. In positive logic, 1 represents high voltage and 0 represents low voltage; in negative logic, 1 represents low voltage and 0 represents high voltage.

Example:

Pulse type		Maximum input	Maximum input Minimum allowed time width frequency					
		(single-phase) T1		T2	Т3	T4	T5	Т6
	Pulse train + sign	4 Mpps	62.5 ns	125 ns	250 ns	200 ns	125 ns	125 ns
Differential signal	CW and CCW pulses							
	A phase + B phase	2 Mpps	125 ns	250 ns	250 ns	200 ns	250 ns	250 ns
Open-collector		200 Kpps	1.25 µs	2.5 µs	5 µs	5 µs	2.5 µs	2.5 µs

Pulse	Parameter settings	Туре		Maximum input frequency (single-phase)	Voltage	Forward current
High speed pulse			Pulse train + sign			< 25 mA
	Refer to the U & Y settings in	Differential signal	CW and CCW pulses	4 Mpps	5V	
	the following		A phase + B phase	2 Mpps		
	table	Ор	en-collector	200 Kpps	24V (max.)	< 25 mA
Low speed pulse ^{Note}	U = 2 and	Diffe	erential signal	200 Kpps	5V	< 25 mA
	Y = 0	Open-collector		200 Kpps	24V (max.)	< 25 mA

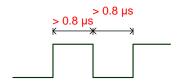
Note:

- 1. When the low speed pulse is used (U = 2), parameter Y has to be 0 (no filter function).
- 2. It is suggested that you use the low speed pulse function when there is high frequency interference.
- 3. The low speed pulse function is only supported by the servo drives of the production week W2113 or later.

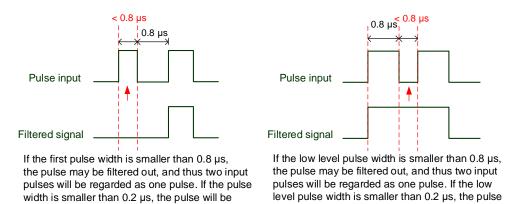
■ U, Y: filter width

If the pulse frequency is suddenly too high, causing a pulse width smaller than the set filter width, then this pulse gets filtered out as noise. Therefore, set the filter width smaller than the actual pulse width. You should set the filter width as 4 times smaller than the actual pulse width.

U and Y values	Filter width Unit: µs (kHz)	U and Y values	Filter width Unit: µs (kHz)
0, 0	No filter function	1, 0	No filter function
0, 1	2 (250)	1, 1	0.2 (2500)
0, 2	3 (166)	1, 2	0.3 (1666)
0, 3	4 (125)	1, 3	0.4 (1250)
0, 4	5 (100)	1, 4	0.5 (1000)
0, 5	6 (83)	1, 5	0.6 (833)
0, 6	7 (71)	1, 6	0.7 (714)
0, 7	8 (62)	1, 7	0.8 (625)
0, 8	9 (55)	1, 8	0.9 (555)


	7
	⋞
-	

U and Y values	Filter width Unit: µs (kHz)	U and Y values	Filter width Unit: µs (kHz)
0, 9	10 (50)	1, 9	1 (500)
0, A	11 (45)	1, A	1.1 (454)
0, B	12 (41)	1, B	1.2 (416)
0, C	13 (38)	1, C	1.3 (384)
0, D	14 (35)	1, D	1.4 (357)
0, E	15 (33)	1, E	1.5 (333)


Example:

filtered out.

When you set U and Y both to 1 (filter width = $0.2 \mu s$), and when the widths of the command pulse at high and low levels are both larger than $0.8 \mu s$ (four times the filter width $0.2 \mu s$), then the pulse command is not filtered out.

When the width of the pulse at high or low level is smaller than the filter width, then the pulse is filtered out.

If you use a 125 ns (4 Mpps) input pulse, set the filter width value Y to 0 to disable the filter function.

Note: when the signal is a high-speed pulse (4 Mpps) and the value of the filter width is 0, then the pulse is not filtered out.

will be filtered out.

P1.001•	Input for control mode and contr	Address: 0102H 0103H			
Default:	0x0000	Control mode:	: All		
Unit:	-	Setting range:	0x0000 to 0x112F		
Format:	HEX	Data size: 16-bit			
Model:	-E (does not support PT mode or any PT dual / multi-modes) -L (does not support PR mode, any PR dual / multi-modes, or communication mode)				

YX	Control mode setting	Z	Direction control
-	-	U	DIO value control

■ YX: control mode setting

Mode	PT	PR	S	Т	Sz	Tz
00	A					
01		A				
02			A			
03				A		
04					A	
05						A
		D	ual mode			
06	A		A			
07	A			A		
08		A	A			
09		A		A		
0A			A	A		
0C	EtherCAT mode					
0D	A	A				
	Multi-mode					
0E	A	A	A			
0F	A	A		A		

PT: Position control mode; the command source is from the external pulse and the external analog voltage

PR: Position control mode; the command source is from the 100 sets of internal registers which you can select with DI.POS0 - DI.POS6. Multiple homing methods are also available.

S: Speed control mode; the command source is from the external analog voltage and the internal registers which you can select with DI.SPD0 and DI.SPD1.

T: Torque control mode; the command source is from the external analog voltage and the internal registers which you can select with DI.TCM0 and DI.TCM1.

ASDA-E3 Parameters

Sz: Speed control mode; the speed command is zero or the command source is from the internal speed registers which you can select with DI.SPD0 and DI.SPD1.

Tz: Torque control mode; the torque command is zero or the command source is from the internal torque registers which you can select with DI.TCM0 and DI.TCM1.

Dual mode: you can switch between two modes with the external DI. For example, you can use DI.S-P to switch the dual mode of PT-S (control mode setting: 06). Refer to Table 8.1 for further information.

Multi-mode: you can switch between three modes with the external DI. For example, you can use DI.S-P and DI.PT-PR to switch the multi-mode of PT-PR-S (control mode setting: 0E). Refer to Table 8.1 for further information.

Communication mode: the command source is from the external fieldbus controller, which sends the command to the servo drive through direct communication.

Note: if the command source is the external analog voltage, make sure to connect the voltage source properly to avoid floating connection causing misoperation.

Z: direction control

	Z = 0	Z = 1
Positive direction	P(CCW)	P(CW)
Negative direction	N(CW)	N(CCW)

U: DIO value control (volatile)

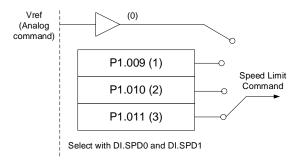
0: when modes are switched, DIO settings remain the same.

1: when modes are switched, DIO settings are reset to the default for each mode.

Note: for the default settings of -L models, refer to Section 3.3.2. For the default settings of -E models, refer to Section 3.3.5.

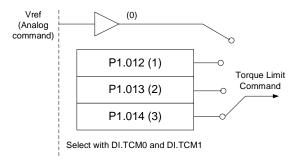
8

P1.002▲	Speed and torque limits			Address: 0104H 0105H
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0011
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			


X	Disable / enable Speed Limit function	Z	Reserved
Υ	Disable / enable Torque Limit function	U	Reserved

X: disable / enable Speed Limit function

0: disable Speed Limit function


1: enable Speed Limit function (only available in T and Tz modes)

See the following diagram for Speed Limit setting:

- Y: disable / enable Torque Limit function
 - 0: disable Torque Limit function
 - 1: enable Torque Limit function

See the following diagram for Torque Limit setting:

When using the Torque Limit function, set P1.002.Y to 1 to enable the Torque Limit function permanently without occupying a DI setting. Alternatively, you can enable or disable the Torque Limit function with DI.TRQLM, which is more flexible, but the setting then occupies a DI setting. You can enable the Torque Limit function by either P1.002 or DI.

P1.003	Encoder pulse output polarity			Address: 0106H 0107H
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0013
Format:	HEX	Data size:	16-bit	
Model:	-L			

Χ	Polarity of monitor analog output	Z	Reserved
Υ	Direction of encoder pulse output	U	Reserved

- X: polarity of monitor analog output
 - 0: MON1(+), MON2(+)
 - 1: MON1(+), MON2(-)
 - 2: MON1(-), MON2(+)
 - 3: MON1(-), MON2(-)
- Y: direction of encoder pulse output
 - 0: forward
 - 1: reverse

P1.004	MON1 analog monitor output pro	Address: 0108H 0109H		
Default:	100	Control mode:	All	
Unit:	% (full scale)	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

Refer to P0.003 for the analog output setting.

Example:

If the analog voltage output is 8V when the motor speed is 1,000 rpm and the maximum speed of the motor is 5,000 rpm, the setting is as follows.

P1.004 =
$$\frac{\text{Required speed}}{\text{Maximum speed}} \times 100\% = \frac{1000 \text{ rpm}}{5000 \text{ rpm}} \times 100\% = 20\%$$

You can calculate the voltage output corresponding to the current motor speed with the following formula.

Motor speed	MON1 analog monitor output		
300 rpm	MON1 = 8V $\times \frac{\text{Current speed}}{\text{Maximum speed}} \times 100\% = 8V \times \frac{300 \text{ rpm}}{5000 \text{ rpm}} \times \frac{20}{100} \times 100\% = 2.4V$		
900 rpm	MON1 = 8V $\times \frac{\text{Current speed}}{\text{Maximum speed}} \times \frac{\text{P1.004}}{100} \times 100\% = 8V \times \frac{900 \text{ rpm}}{5000 \text{ rpm}} \times \frac{20}{100} \times 100\% = 7.2V$		

P1.005	MON2 analog monitor output pro	Address: 010AH 010BH		
Default:	100	Control mode:	All	
Unit:	% (full scale)	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

Refer to P0.003 for the analog output setting.

P1.006	Speed command - smoothing co	Address: 010CH 010DH		
Default:	0	Control mode:	S / Sz	
Unit:	ms	Setting range:	0 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

0: disable this function.

P1.007	Torque command - smoothing co	Address: 010EH 010FH		
Default:	0	Control mode:	T / Tz	
Unit:	ms	Setting range:	0 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

0: disable this function.

P1.008	Position command - smoothing of	Address: 0110H 0111H		
Default:	0	Control mode:	PT / PR	
Unit:	10 ms	Setting range:	0 to 1000	
Format:	DEC Data size: 16-bit			
Example:	11 = 110 ms			
Model:	-E, -L			

Settings:

0: disable this function.

P1.009	Internal Speed command 1 / internal speed limit 1			Address: 0112H 0113H
Default:	1000	Control mode: S / Sz: interr		rnal Speed command 1 nal speed limit 1
Unit:	0.1 rpm	Setting range:	-75000 to +	75000
Format:	DEC	Data size:	32-bit	
	Internal Speed command: 120 = 12 rpm Internal speed limit: positive and negative values are identical. Refer to the following descriptions.			
Model:	-E, -L			

Internal Speed command 1: first internal Speed command.

Internal speed limit 1: first internal speed limit.

Example of internal speed limit:

Speed limit value of P1.009	Valid speed range	Speed limit in forward direction	Speed limit in reverse direction
1000	400 to 1400 mm	400	400
-1000	-100 to +100 rpm	100 rpm	-100 rpm

P1.010	Internal Speed command 2 / internal speed limit 2			Address: 0114H 0115H
Default:	2000	Control mode:	S / Sz: inter T / Tz: inter	rnal Speed command 2 nal speed limit 2
Unit:	0.1 rpm	Setting range:	-75000 to +	75000
Format:	DEC	Data size:	ize: 32-bit	
Example:	Internal Speed command: 120 = 12 rpm Internal speed limit: positive and negative values are identical. Refer to the following descriptions.			
Model:	-E, -L			

Settings:

Internal Speed command 2: second internal Speed command.

Internal speed limit 2: second internal speed limit.

Example of internal speed limit:

Speed limit value of P1.010	Valid speed range	Speed limit in forward direction	Speed limit in reverse direction
1000	100 to 1100 rpm	400	100 rpm
-1000	-100 to +100 rpm	100 rpm	-100 rpm

Address: 0116H

Default: 3000

Control mode: S / Sz: internal Speed command 3 T / Tz: internal speed limit 3

Unit: 0.1 rpm
Setting range: -75000 to +75000

Format: DEC
Data size: 32-bit

Internal Speed command: 120 = 12 rpm

Example: Internal speed limit: positive and negative values are identical. Refer to the following descriptions.

Model: -E, -L

Internal Speed command 3 / internal speed limit 3

Settings:

P1.011

Internal Speed command 3: third internal Speed command.

Internal speed limit 3: third internal speed limit.

Example of internal speed limit:

Speed limit value of P1.011	Valid speed range	Speed limit in forward direction	Speed limit in reverse direction
1000	400 to 1400 man	400	400
-1000	-100 to +100 rpm	100 rpm	-100 rpm

P1.012	Internal Torque command 1 / in	Address: 0118H 0119H		
Default:	100	Control mode:	T / Tz: interna PT / PR / S /	al Torque command 1 Sz: internal torque limit 1
Unit:	%	Setting range:	-5000 to +500	00
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Internal Torque command 1: first internal Torque command.

Internal torque limit 1: first internal torque limit.

1. When P2.112 [Bit 14] = 0

Internal Torque command: 35 = 35%

Internal torque limit: positive and negative values are identical. Refer to the following descriptions.

Example of internal torque limit:

Torque limit value of P1.012	Valid torque range	Torque limit in forward direction	Torque limit in reverse direction
35	250/ +- +250/	35%	-35%
-35	-35% to +35%	35%	-35%

2. When P2.112 [Bit 14] = 1

Internal Torque command: 35 = 3.5%

Internal torque limit: positive and negative values are identical. Refer to the following descriptions.

Example of internal torque limit:

Torque limit value of P1.012	Valid torque range	Torque limit in forward direction	Torque limit in reverse direction
35	-3.5% to +3.5%	3.5%	-3.5%
-35	-3.5% to +3.5%	3.3%	-3.370

8-44

)

P1.013	Internal Torque command 2 / internal torque limit 2			Address: 011AH 011BH
Default:	100	Control mode:	Control mode: T / Tz: internal Torque command 2 PT / PR / S / Sz: internal torque lir	
Unit:	%	Setting range:	: -5000 to +5000	
Format:	DEC	Data size:	: 16-bit	
Model:	-E, -L			

Internal Torque command 2: second internal Torque command.

Internal torque limit 2: second internal torque limit.

1. When P2.112 [Bit 14] = 0

Internal Torque command: 35 = 35%

Internal torque limit: positive and negative values are identical. Refer to the following descriptions.

Example of internal torque limit:

Torque limit value of P1.013	Valid torque range	Torque limit in forward direction	Torque limit in reverse direction
35	-35% to +35%	35%	-35%
-35			-33%

2. When P2.112 [Bit 14] = 1

Internal Torque command: 35 = 3.5%

Internal torque limit: positive and negative values are identical. Refer to the following descriptions.

Example of internal torque limit:

Torque limit value of P1.013	Valid torque range	Torque limit in forward direction	Torque limit in reverse direction
35	-3.5% to +3.5%	3.5%	2.50/
-35			-3.5%

P1.014	Internal Torque command 3 / internal torque limit 3			Address: 011CH 011DH
Default:	100	Control mode:	T / Tz: internal Torque command 3 PT / PR / S / Sz: internal torque limit 3 -5000 to +5000	
Unit:	%	Setting range:		
Format:	DEC	Data size:		
Model:	-E, -L			

Settings:

Internal Torque command 3: third internal Torque command.

Internal torque limit 3: third internal torque limit.

1. When P2.112 [Bit 14] = 0

Internal Torque command: 35 = 35%

Internal torque limit: positive and negative values are identical. Refer to the following descriptions.

Example of internal torque limit:

Torque limit value of P1.014	Valid torque range	Torque limit in forward direction	Torque limit in reverse direction
35	-35% to +35%	35%	250/
-35			-35%

2. When P2.112 [Bit 14] = 1

Internal Torque command: 35 = 3.5%

Internal torque limit: positive and negative values are identical. Refer to the following descriptions.

Example of internal torque limit:

Torque limit value of P1.014	Valid torque range	Torque limit in forward direction	Torque limit in reverse direction
35	-3.5% to +3.5%	3.5%	2.50/
-35			-3.5%

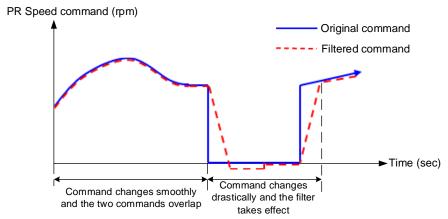
P1.022	PR command special filter			Address: 012CH 012DH
Default:	0x0000	Control mode:	PR	
Unit:	-	Setting range:	0x0000 to 0x107F	
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

U	_	Υ.	٨
	Λ	- 1 -	4

YX	Acceleration / deceleration time limit (0 - 1270 ms)	Z	Reserved
_	-	U	Reverse inhibit

Parameters

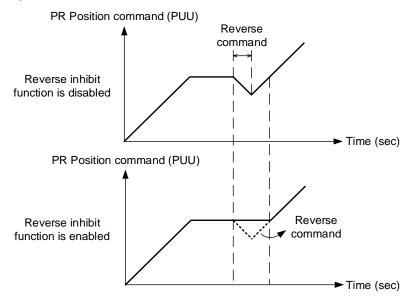

8

■ YX: acceleration / deceleration time limit (0 - 1270 ms)

If the PR command changes too drastically, it causes mechanical vibration. Set the acceleration / deceleration time limit (the time required for the motor to accelerate from 0 to 3,000 rpm or to decelerate from 3,000 rpm to 0) with this function. If the acceleration / deceleration time of the command is shorter than this limit, the filter takes effect to smooth the acceleration / deceleration which prevents the command from changing too drastically and causing mechanical vibration. When the filter is functioning, the lag caused by the smooth command is automatically compensated after the command is smoothed, so the final position is not deviated.

Example

Set YX to 12 (data format is HEX and unit is 10 ms) and thus the acceleration / deceleration time limit is 180 ms. If the acceleration / deceleration time of the PR command is shorter than 180 ms, the filter takes effect. If the acceleration / deceleration time of the PR command is longer than 180 ms, the filter does not take effect.



Note: if the command keeps changing drastically, the following error of the internal position exceeds the allowable range and then triggers AL404.

■ U: reverse inhibit

0: disable this function

1: enable this function. When the value of the current position command is lower than that of the previous position command, the motor does not move.

P1.023 - P1.024

P1.025	Low-frequency vibration suppression frequency 1			Address: 0132H 0133H
Default:	1000	Control mode:	PT / PR	
Unit:	0.1 Hz	Setting range:	10 to 1000	
Format:	DEC	Data size:	16-bit	
Example:	150 = 15 Hz	-	-	
Model:	-E, -L			

Settings:

The frequency of the first low-frequency vibration suppression filter. When you set P1.026 to 0, the first low-frequency vibration suppression filter is disabled.

P1.026	Low-frequency vibration suppression gain 1 Address: 0			
Default:	0	Control mode:	PT / PR	
Unit:	•	Setting range:	0 to 9	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The gain of the first low-frequency vibration suppression filter. Increase the value to improve the position response. If you set the value too high, the motor may not operate smoothly. The suggested value is 1. Set P1.026 to 0 to disable the first low-frequency vibration suppression filter.

P1.027	Low-frequency vibration suppres	Address: 0136H 0137H		
Default:	1000	Control mode:	PT / PR	
Unit:	0.1 Hz	Setting range:	10 to 1000	
Format:	DEC	Data size:	16-bit	
Example:	150 = 15 Hz	-	-	
Model:	-E, -L			

Settings:

The frequency of the second low-frequency vibration suppression filter. When you set P1.028 to 0, the second low-frequency vibration suppression filter is disabled.

P1.028	Low-frequency vibration suppres	Address: 0138H 0139H		
Default:	0	Control mode:	PT / PR	
Unit:	-	Setting range:	0 to 9	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

The gain of the second low-frequency vibration suppression filter. Increase the value to improve the position response. If you set the value too high, the motor may not operate smoothly. The suggested value is 1. Set P1.028 to 0 to disable the second low-frequency vibration suppression filter.

P1.029	Auto low-frequency vibration sup	Address: 013AH 013BH		
Default:	0	Control mode:	PT / PR	
Unit:	-	Setting range:	0 to 1	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

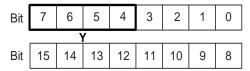
Setting value	Description	
0	Disable the automatic low-frequency vibration detection function.	
1	Vibration suppression is in automatic mode. When the vibration frequency cannot be detected or the vibration frequency is stable, the system resets the parameter to 0 and automatically saves the vibration suppression frequency to P1.025.	

P1.030	Low-frequency vibration detection			Address: 013CH 013DH
Default:	8000	Control mode:	PT / PR	
Unit:	pulse	Setting range:	1 to 128000)
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Sets the detection level when automatic vibration suppression is enabled (P1.029 = 1). The lower the value, the more sensitive the detection, but the system may treat noise or minor low-frequency vibrations as frequencies to be suppressed. If the value is high, the system is less likely to misjudge, but if the vibration of the machine is small, the system may not properly detect low-frequency vibrations.

|--|


P1.032	Motor stop mode			Address: 0140H 0141H
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0020
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Χ	Reserved	Z	Reserved
Y	Motor stop mode	U	Reserved

Y: motor stop mode

Bit	Function	Description
Bit 5, Bit 4	Dynamic brake operation options	Options for stopping the motor when the servo is in the Servo Off state or an alarm (including EMGS) occurs Bit 5 = 0 and Bit 4 = 0: use dynamic brake Bit 5 = 0 and Bit 4 = 1: motor runs freely Bit 5 = 1 and Bit 4 = 0: use dynamic brake first, and then let the motor run freely once the speed is slower than the value of P1.038
Bit 6	Trigger stop command when RST power error (AL022) occurs ^{Note}	0: disable this function 1: when P1.043 is a negative value and RST power error (AL022) occurs, the servo drive commands the motor to decelerate to 0 in the Servo On state
Bit 7	Reserved	-

When the motor reaches PL (CCWL) or NL (CWL), refer to P5.003 for setting the deceleration time. If you set the deceleration time to 1 ms, the motor stops instantly.

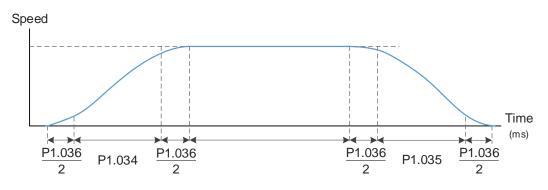
Note: this function is only available in Position and Speed (PT, PR, S, and Sz) modes and is effective only when P1.043 (Delay time for disabling the magnetic brake) is a negative value.

P1.033

P1.034	S-curve acceleration constant			Address: 0144H 0145H
Default:	200	Control mode:	S / Sz	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Sets the time for the Speed command to accelerate the motor from 0 to 3000 rpm. You can set P1.034, P1.035, and P1.036 individually. When an internal command is used, even if you set P1.036 to 0, the acceleration and deceleration follow a trapezoidal curve; when an analog command is used, you must set P1.036 larger than 0 so that the acceleration and deceleration follow a trapezoidal curve.


P1.035	S-curve deceleration constant			Address: 0146H 0147H
Default:	200	Control mode:	S / Sz	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Sets the time for the Speed command to decelerate the motor from 3000 rpm to 0. You can set P1.034, P1.035, and P1.036 individually. When an internal command is used, even if you set P1.036 to 0, the acceleration and deceleration follow a trapezoidal curve; when an analog command is used, you must set P1.036 larger than 0 so that the acceleration and deceleration follow a trapezoidal curve.

P1.036	S-curve acceleration / deceleration	Address: 0148H 0149H		
Default:	0	Control mode:	PR/S/Sz	
Unit:	ms	Setting range:	0 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

0: disable this function

P1.034: sets the acceleration time for the trapezoidal curve.

P1.035: sets the deceleration time for the trapezoidal curve.

P1.036: sets the smoothing time for the S-curve acceleration and deceleration.

You can set P1.034, P1.035, and P1.036 individually. Even if you set P1.036 to 0, the acceleration and deceleration still follow a trapezoidal curve.

	P1.036 = 0	P1.036 = 1	P1.036 > 1
Smoothing function for S-curve	Disabled	Disabled	Enabled
Following error compensation function	Disabled	Enabled	Determined by P2.068.X

P1.037	Load inertia rat	io or total weight			Address: 014AH 014BH
Operation interface:	Panel / software	Communication	Control mode:	All	
Default:	2.0	20	Data size:	16-bit	
Unit:	1 times	0.1 times	-	-	
Setting range:	0.0 to 200.0	0 to 2000	-	-	
Format:	One decimal	DEC	-	-	
Example:	1.5 = 1.5 times	15 = 1.5 times	-	-	
Model:	-E, -L				

Settings:

Load inertia ratio of servo motor (rotary motor): (J_load / J_motor)

J_motor: rotor inertia of the servo motor

J_load: total equivalent inertia of external mechanical load

P1.038	Zero speed range				Address: 014CH 014DH
Operation interface:	Panel / software	Communication	Control mode:	All	
Default:	10.0	100	Data size:	16-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 200.0	0 to 2000	-	-	
Format:	One decimal	DEC	-	-	
Example:	1.5 = 1.5 rpm	15 = 1.5 rpm	-	-	
Model:	-E, -L				

Settings:

Sets the range for the zero-speed signal (ZSPD). When the absolute value of the motor speed is lower than this value, the condition for triggering the zero-speed signal is met and DO.ZSPD is on.

P1.039	Target speed detection level			Address: 014EH 014FH
Default:	3000	Control mode:	All	
Unit:	rpm	Setting range:	0 to 30000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Sets the motor target speed. When the absolute value of the motor speed is higher than this value, the condition for triggering the target speed reached signal is met and DO.TSPD is on.

P1.040	Maximum motor speed for analog	Address: 0150H 0151H		
Default:	Rated speed	Control mode:	S/T	
Unit:	rpm	Setting range:	0 to 50000	
Format:	DEC	Data size:	32-bit	
Model:	-L			

In Speed mode:

Sets the motor speed corresponding to 10V (maximum voltage) for the analog Speed command.

Speed control command =
$$\frac{Input \text{ voltage} \times P1.040}{10}$$

If the value is 2000 and the external voltage input is 5V, then the speed control command = $\frac{5V \times 2000 \text{ rpm}}{10}$ = 1000 rpm

In Torque mode:

Sets the motor speed limit corresponding to 10V (maximum voltage) for the analog speed limit.

Speed limit command =
$$\frac{\text{Input voltage} \times P1.040}{10}$$

If the value is 2000 and the external voltage input is 5V, then the speed limit command = $\frac{5V \times 2000 \text{ rpm}}{10}$ = 1000 rpm.

P1.041 ▲	Maximum output for analog Torq	Address: 0152H 0153H		
Default:	100	Control mode:	All	
Unit:	%	Setting range:	-1000 to +1	000
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

In Torque mode:

Sets the torque corresponding to 10V (maximum voltage) for the analog Torque command.

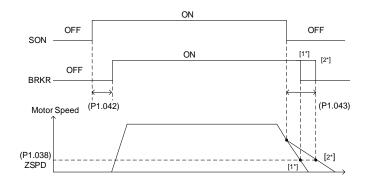
Torque control command =
$$\frac{Input \, voltage \times P1.041}{10}$$
 (Unit: %)

In Speed and PT modes:

Sets the torque limit corresponding to 10V (maximum voltage) for the analog torque limit.

Torque limit command =
$$\frac{Input \ voltage \times P1.041}{10}$$
 (Unit: %)

Example:


If P1.041 = 10,

- (a) when the external analog voltage input is 10V, the torque control (limit) command = $\frac{10V \times 10}{10}$ = 10%
- (b) when the external analog voltage input is 5V, the torque control (limit) command = $\frac{5V \times 10}{10}$ = 5%

P1.042	Delay time for enabling the magn	Address: 0154H 0155H		
Default:	0	Control mode:	All	
Unit:	ms	Setting range:	0 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Sets the delay time from Servo On status to the activation of the magnetic brake signal (DO: 0x08, BRKR).

Note:

- If the delay time specified in P1.042 has not passed yet and the motor speed is slower than the value of P1.038, the magnetic brake signal (BRKR) is disabled.
- If the delay time specified in P1.042 has passed and the motor speed is faster than the value of P1.038, the magnetic brake signal (BRKR) is disabled.

P1.043	Delay time for disabling the magi	Address: 0156H 0157H		
Default:	0	Control mode:	All	
Unit:	ms	Setting range:	-1000 to +1	000
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Sets the delay time from Servo Off status to the deactivation of the magnetic brake signal (DO: 0x08,

BRKR). Refer to P1.042 for the detailed diagram.

Note: if P1.043 is a negative value and the servo is off due to an alarm (except for AL022) or emergency stop, the setting of P1.043 is invalid. This is equivalent to setting the delay time to 0.

)

P1.044▲	E-Gear ratio - numerator N1			Address: 0158H 0159H
Default:	16777216	Control mode:	All	
Unit:	pulse	Setting range:	1 to (2 ²⁹ -1)	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

For the E-Gear ratio setting, refer to Section 6.2.5. For multiple E-Gear ratio (numerator) settings, refer to P2.060 - P2.062.

Note:

- Do not change the setting in the Servo On state.
- 2. In communication mode (EtherCAT), if you cycle the power to the drive, the E-Gear ratio is set to the default value of the communication protocol. Resetting to the default value results in the re-establishment of the absolute position system, so you must re-do the homing procedure. If you do not want P1.045 to be reset to the default value, set P3.012.Z to 1. Refer to P3.012 for details.

P1.045▲	E-Gear ratio - denominator M			Address: 015AH 015BH
Default:	100000	Control mode:	All	
Unit:	pulse	Setting range:	1 to (2 ³¹ -1)	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

If the setting is incorrect, the servo motor is prone to sudden unintended acceleration. Follow these instructions.

E-Gear ratio setting: $f2 = f1 \times \frac{N}{M}$

$$\begin{array}{c} \text{Pulse of User Unit (PUU)} \\ \text{(f1)} \end{array} \rightarrow \begin{array}{|c|c|} \hline{N} \\ \hline{M} \end{array} \rightarrow \begin{array}{|c|c|c|} \hline{\text{Resolution determined by}} \\ \text{servo drive (pulse)} \\ \text{(f2)} \end{array}$$

Range of E-gear ratio: $1 \le Nx / M \le 262144$.

For the E-Gear ratio setting, refer to Section 6.2.5.

Note:

- 1. Do not change the setting in the Servo On state.
- 2. In communication mode (EtherCAT), if you cycle the power to the drive, the E-Gear ratio is set to the default value of the communication protocol. Resetting to the default value results in the re-establishment of the absolute position system, so you must re-do the homing procedure. If you do not want P1.045 to be reset to the default value, set P3.012.Z to 1. Refer to P3.012 for details.

8

P1.046▲	Encoder pulse number output (O	Address: 015CH 015DH		
Default:	2500	Control mode:	All	
Unit:	pulse	Setting range:	1 to 536870	912
Format:	DEC	Data size:	32-bit	
Model:	-L			

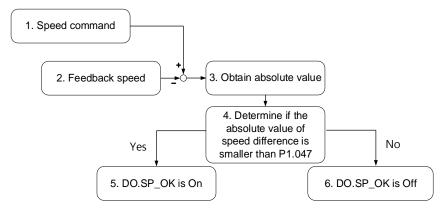
Settings:

The number of single-phase pulse outputs per revolution. The maximum output frequency of the hardware is 19.8 MHz. For the OA / OB settings, refer to P1.074.Y (selection of OA / OB / OZ output source) and P1.097 (encoder output denominator (OA, OB)).

Note:

In the following circumstances, pulse output of the encoder may exceed the maximum allowable output pulse frequency of the drive, causing AL018 or AL048:

- Encoder error.
- 2. The motor speed is faster than the setting of P1.076.
- 3. If P1.074.Y = 0 and P1.097 = 0, motor speed (rpm)/60 x P1.046 x 4 > 19.8 x 10⁶


P1.047	Speed reached (DO.SP_OK) rang	Address: 015EH 015FH		
Default:	10	Control mode:	S / Sz	
Unit:	rpm	Setting range:	0 to 300	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

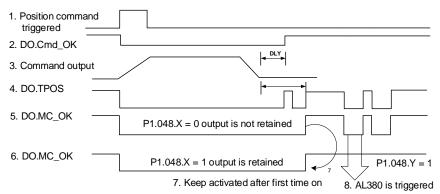
In Speed mode, when the absolute value of the difference between the Speed command and the motor feedback speed is less than this parameter and this status is kept for the time duration set in P1.049, the digital output DO.SP_OK (0x19) is on.

Note: when the difference between the Speed command and the motor feedback speed exceeds the range set in P1.047, the system recalculates the duration.

Diagram:

- 1. Speed command: the command that you input without acceleration or deceleration, rather than the command from the front end speed circuit. Its source is from the register.
- 2. Feedback speed: the actual speed of the motor which has been filtered.
- 3. Obtain the absolute value.
- 4. Determine whether the absolute value of the speed difference is smaller than the parameter value. If you set the parameter to 0, DO.SP_OK is always off. If the absolute value is smaller than the parameter, the digital output is on, otherwise it is off.

P1.048	Motion reached (DO.MC_OK) ope	Address: 0160H 0161H		
Default:	0x0000	Control mode:	PR	
Unit:	-	Setting range:	0x0000 to 0x0011	
Format:	HEX	Data size:	16-bit	
Model:	-E			


Options for controlling the behavior of the digital output DO.MC_OK (0x17).

Х	DO output retaining option	Z	Reserved
Υ	Position offset alarm (AL380) option	U	Reserved

- X: DO output retaining option
 - 0: output status is not retained
 - 1: output status is retained
- Y: position offset alarm (AL380) option
 - 0: AL380 not functioning
 - 1: AL380 functioning

Diagram:

Description:

- Command triggered: new PR command is effective. Command 3 starts and signals 2, 4, 5, and 6 are cleared simultaneously. Command triggering source: DI.CTRG, DI.EV1/EV2, and P5.007 (triggered through software).
- 2. DO.Cmd_OK: indicates whether command 3 is complete, and can be set with a delay time (DLY) with parameters.
- 3. Command output: output the profile of the Position command based on the setting for acceleration or deceleration.
- 4. DO.TPOS: position error of the servo drive is within the range set in P1.054.
- 5. DO.MC_OK: Position command output and servo positioning completed, which indicates that DO.Cmd_OK and DO.TPOS are both on.

- 6. DO.MC_OK (retains digital output status): same as 5, except that once this DO is on, its status is retained regardless of the signal 4 status.
- 7. Either signal 5 or signal 6 can be output, and this is determined by P1.048.X.
- 8. Position offset: when event 7 occurs, if signal 4 or 5 is off, it means there is a position offset and AL380 can be triggered. Set whether to enable AL380 with P1.048.Y.

P1.049	Accumulated time to reach desire	Address: 0162H 0163H		
Default:	0	Control mode:	S / Sz	
Unit:	ms	Setting range:	0 to 65535	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

In Speed mode, when the absolute value of the difference between the Speed command and the motor feedback speed is less than the range set in P1.047 and this status is kept for the time duration set in P1.049, the digital output DO.SP_OK (DO: 0x19) is on. If the difference exceeds the range set in P1.047, no matter how long it lasts, the system recalculates the duration.

P1.050 - P1.051	Reserved
--------------------	----------

P1.052	Regenerative resistor value			Address: 0168H 0169H
Default:	Determined by the model. Refer to the following table.	Control mode:	All	
Unit:	Ohm	Setting range:	Refer to the	e following table.
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Model	Default (Ω)	Setting range (Ω)
750 W or below	100	60 to 750
1 to 1.5 kW	100	30 to 750
2 to 3 kW	20	15 to 750

Refer to the description of P1.053 for the parameter values when connecting the regenerative resistor through different methods.

		١
7	4	Ĺ
L		Į

P1.053	Regenerative resistor capacity			Address: 016AH 016BH
Default:	Determined by the model. Refer to the following table.	Control mode:	All	
Unit:	Watt	Setting range:	0 to 15000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Model	Default (Watt)
400 W or below	0
750 W to 1.5 kW	40
2 kW to 3 kW	80

Setting the parameter value when connecting the regenerative resistor with different methods:

External regenerative resistor	Setting
External regenerative resistor (single) P 1 kW, 10Ω	Setting: P1.052 = 10 (Ω) P1.053 = 1000 (W)
External regenerative resistor (in series) P _Θ O 1 kW, 10Ω 1 kW, 10Ω	Setting: P1.052 = 20 (Ω) P1.053 = 2000 (W)
External regenerative resistor (in parallel) P _Φ O 1 kW, 10Ω C O	Setting: P1.052 = 5 (Ω) P1.053 = 2000 (W)

P1.054	Pulse range for position reached			Address: 016CH 016DH
Default:	167772	Control mode:	PT / PR	
Unit:	pulse	Setting range:	0 to 167772	216
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

In Position (PT) mode, when the pulse number error is smaller than the range set by P1.054, DO.TPOS is on.

In Position Register (PR) mode, when the difference between the target position and the actual motor position is smaller than the range set by P1.054, DO.TPOS is on.

Example:

If P1.054 = 167772 and the error is less than 167772 pulses, which equals 0.01 turns (167772 / 16777216 = 0.01), then DO.TPOS is on.

P1.055

Maximum speed limit

Default: Rated speed

Control mode: All

Unit: rpm
Setting range: 0 to maximum speed

Format: DEC
Data size: 16-bit

Model: -E, -L

Settings:

Sets the maximum speed of the servo motor.

P1.056	Motor output overload warning level			Address: 0170H 0171H
Default:	120	Control mode:	All	
Unit:	%	Setting range:	0 to 120	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

When the value is 0 - 100 and the servo motor continuously outputs load that is higher than the setting of P1.056, the pre-warning signal for overload (DO: 0x10, OLW) is on. If the value is over 100, the pre-warning function is disabled.

P1.057	Motor hard stop 1 - torque percentage			Address: 0172H 0173H
Default:	0	Control mode:	All	
Unit:	%	Setting range:	0 to 300	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L		•	

Settings:

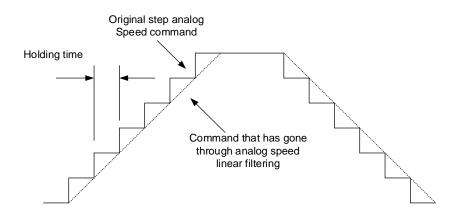
Sets the protection level which is the percentage of rated torque. Set the value to 0 to disable the function and set the value to 1 or above to enable the function.

When there is no external force, the setting value = (motor current in percentage when the motor runs at constant speed in the forward direction + motor current in percentage when the motor runs at constant speed in the reverse direction) / 2 + protection torque value. When there is external force, set P1.060 additionally.

P1.058 Motor hard stop - protection time			Address: 0174H 0175H	
Default:	1	Control mode:	All	
Unit:	ms	Setting range:	1 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Sets the protection time: when the motor torque reaches the protection level and the protection time is exceeded, AL030 occurs.


Note: this function is only suitable for non-contactable uses, such as electrical discharge machines (make sure P1.037 is correctly set).

P1.059	Speed command - moving filter				Address: 0176H 0177H
Operation interface:	Panel / software	Communication	Control mode:	S	
Default:	0.0	0	Data size:	16-bit	
Unit:	1 ms	0.1 ms	-	-	
Format:	One decimal	DEC	-	-	
Setting range:	0.0 to 4.0	0 to 40	-	-	
Example:	1.5 = 1.5 ms	15 = 1.5 ms	-	-	
Model:	-E, -L				

0: disable this function.

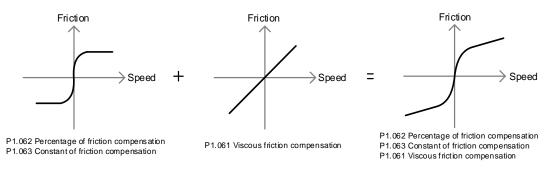
P1.006 is the low-pass filter and P1.059 is the moving filter. The difference between them is that the moving filter can smooth the beginning and end of the step command, while the low-pass filter can only smooth the command at the end.

Therefore, if the speed loop receives the command from the controller for the position control loop, then the low-pass filter is recommended. As for simple speed control, use the moving filter for better smoothing.

P1.060	Motor hard stop 1 - level offset			Address: 0178H 0179H
Default:	0	Control mode:	All	
Unit:	%	Setting range:	-300 to +30	0
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

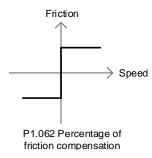
When using P1.057 (Motor hard stop 1 - torque percentage) and the average torque level deviates because of an external force, such as Z-axis gravity, you can use this parameter to set the corresponding compensation.


Suggested setting value = (Average torque at constant speed in forward direction + Average torque at constant speed in reverse direction) / 2

Note: refer to P0.002 = 54 (Torque feedback) for the average torque at constant speed.

P1.061	Viscous friction compensation			Address: 017AH 017BH
Default:	0	Control mode:	PT/PR/S	/ Sz
Unit:	0.1%/1000 rpm	Setting range:	0 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:


Because kinetic friction corresponds with the speed, you can use this parameter to compensate the motor torque according to the speed to reduce the position error during acceleration and deceleration. When P1.062 = 0, this parameter is invalid.

P1.062	Percentage of friction compensation			Address: 017CH 017DH
Default:	0	Control mode:	PT/PR/S	/ Sz
Unit:	%	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

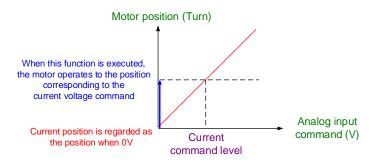
Sets the level of friction compensation, which is the percentage of the rated torque. Set the value to 0 to disable the friction compensation function. Set the value to 1 or above to enable the function to reduce the position error at the moment the motion starts.

)

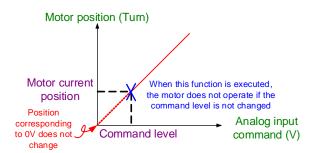
P1.063	Constant of friction compensation			Address: 017EH 017FH
Default:	100	Control mode:	PT/PR/S	/ Sz
Unit:	%	Setting range:	1 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Sets the speed for the friction compensation value to reach the setting value of P1.062. Based on the default setting of 100%, the smaller the setting value of P1.063, the faster the setting value of P1.062 is reached; the bigger the setting value of P1.063, the slower the setting value of P1.062 is reached.

P1.064	Analog position command - activation control			Address: 0180H 0181H
Default:	0x0000	Control mode:	PT	
Unit:	-	Setting range:	0x0000 to 0	x0011
Format:	HEX	Data size:	16-bit	
Model:	-L			


Settings:

UZYX


Х	Setting for position command issued by the analog signal	Z	Reserved
Υ	Initial position setting	U	Reserved

- X: setting for position command issued by the analog signal
 - 0: disable
 - 1: enable
- Y: initial position setting
 - 0: after the servo is on, the motor regards the current position as the position when the voltage is 0V. Then the motor operates to the corresponding position according to the analog input command.

8

1: after the servo is on, if the command level is not changed, the motor does not operate. The position the motor stops at is the position corresponding to the current command level.

P1.065	Analog Position command - smo	Address: 0182H 0183H		
Default:	1	Control mode:	PT	
Unit:	10 ms	Setting range:	1 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-L			

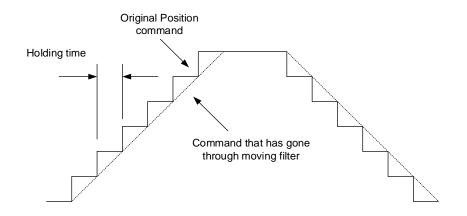
Settings:

The smoothing constant of analog Position command is only effective to analog Position command.

P1.066	Analog Position	Address: 0184H 0185H			
Operation interface:	Panel / software	Communication	Control mode:	PT	
Default:	0.0	0	Data size:	16-bit	
Unit:	1 cycle	0.1 cycle	-	-	
Format:	One decimal	DEC	-	-	
Setting range:	0.0 to 200.0	0 to 2000	-	-	
Example:	1.5 = 1.5 cycles	15 = 1.5 cycles	-	-	
Model:	-L	•			

Settings:

Rotation number setting when the maximum voltage (10V) is input to the analog Position command. If the setting on the panel is 3.0 and the external voltage input is +10V, then the Position command is +3 cycles. If the input is +5V, then the Position command is +1.5 cycles. If the input is -10V, then the Position command is -3 cycles.


Position control command = Input voltage x P1.066 setting value / 10

|--|

P1.068	Position command - moving filter	Address: 0188H 0189H		
Default:	4	Control mode:	PT / PR	
Unit:	ms	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

0: disable this function.

The moving filter smooths the beginning and end of the step command, but it also delays the command.

P1.069 - P1.073	Reserved			
--------------------	----------	--	--	--

P1.074	Output source of OA / OB / OZ			Address: 0194H 0195H
Default:	0x0000	Control mode:	PT	
Unit:	-	Setting range:	0x0000 to 0)x0030
Format:	HEX	Data size:	16-bit	
Model:	-L			

Settings:

UZYX

X	Reserved	Z	Reserved
Υ	Selection of OA / OB / OZ output source	U	Reserved

- Y: selection of OA / OB / OZ output source
 - 0: CN2 encoder is the output source
 - 1: reserved
 - 2: CN1 pulse command is the output source

 (If P1.097 = 0, the OA / OB output must be 1:1. If you need to change the output ratio, refer to the settings of P1.046 and P1.097.)

P1.075

Reserved

P1.076▲	Maximum speed for encoder outp	Address: 0198H 0199H			
Default:	5500	Control mode:	All		
Unit:	rpm	Setting range:	0 to 6000 (0: disable this function)		
Format:	DEC	Data size:	16-bit		
Model:	-L				

Settings:

Set a value which is slightly higher than the required maximum speed of motor.

P1.077	Reserved

P1.078	Gain switching delay time			Address: 019CH 019DH
Default:	0	Control mode:	P/S	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

When using the gain switching function (P2.027.X = 3 or 7), you can use this parameter to set the delay time after the switching condition is met. Refer to the description of P2.027 for more details.

P1.079	Rate of change for gain values du	Address: 019EH 019FH		
Default:	100	Control mode:	P/S	
Unit:	%	Setting range:	0 to 500	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Sets the rate of change for the gain values during gain switching delay. If P1.078 is 0, this function is disabled.

Within the delay time set by P1.078, the settings of P2.000 (Position control gain) and P2.004 (Speed control gain) will be affected by the setting of P1.079. Refer to the description of P2.027 for more details.

P1.080	Rate of change for speed detection filter and jitter suppression			Address: 01A0H 01A1H
Default:	100	Control mode:	P/S	
Unit:	%	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Adjusts the rate of change for speed detection filter and jitter suppression (P2.049) according to the gain switching condition. (This parameter is inversely proportional to the value of P2.049. The smaller the setting value, the stronger the filtering effect.)

P1.081	Maximum motor speed for analogous	Address: 01A2H 01A3H		
Default:	Rated speed	Control mode:	S/T	
Unit:	rpm	Setting range:	0 to 50000	
Format:	DEC	Data size:	32-bit	
Model:	-L			

Settings:

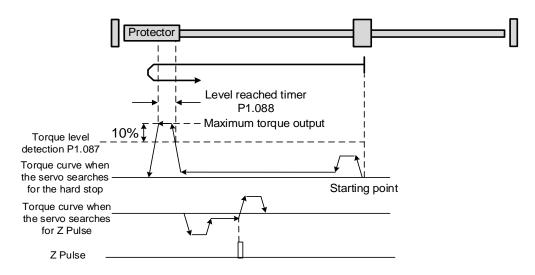
Refer to the description of P1.040.

P1.082	Time constant for switching between P1.040 and P1.081			Address: 01A4H 01A5H
Default:	0	Control mode:	S/T	
Unit:	ms	Setting range:	0 to 1000 (0): disable this function)
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

0: disable this function.

P1.083	Abnormal analog input voltage level			Address: 01A6H 01A7H
Default:	0	Control mode:	S	
Unit:	mV	Setting range:	0 to 12000	(0: disable this function)
Format:	DEC	Data size:	16-bit	
Model:	-L			


Settings:

When the absolute value of the analog input voltage is higher than the set value of this parameter for more than 50 ms, AL042 occurs. The comparison value for this parameter is the original analog input voltage which has not been changed by an offset value through P4.022 (Analog speed input - offset compensation value).

P1.087	Torque homing - torque level detection			Address: 01AEH 01AFH
Default:	1	Control mode:	PR	
Unit:	%	Setting range:	1 to 300	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

This setting is only for the torque homing mode. As shown in the following figure, after homing is triggered, the motor runs in one direction and the mechanical part reaches the protector. The servo drive then outputs a larger motor current in order to counter the external force. The servo drive uses P1.087 and P1.088 as the conditions for homing. Since the hard stops are not always the same, it is recommended that you have the servo reverse to find the Z pulse as the origin.

Note: the actual maximum torque output of the motor is 10% greater than the detected torque level (P1.087). For example, when you set P1.087 to 50%, the maximum torque output of the motor is 60%.

P1.088	Torque homing - level reached timer			Address: 01B0H 01B1H
Default:	2000	Control mode:	PR	
Unit:	ms	Setting range:	2 to 2000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The setting of the torque level reached timer for the torque homing mode. If the motor torque output continues to exceed the level set by P1.087 and the duration exceeds this setting, the homing is complete. Refer to P1.087 for the timing diagram of torque homing mode.

ASDA-E3 Parameters

P1.089	Vibration elimination 1 - anti-resonance frequency			Address: 01B2H 01B3H
Default:	4000	Control mode:	PT / PR	
Unit:	0.1 Hz	Setting range:	10 to 4000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Anti-resonance frequency for the first set of low frequency vibration elimination.

Use this function in flexible machines with low rigidity. The definition of a flexible machine is one for which when the target position is reached, due to lack of rigidity, the machine vibrates and needs more time to become stable.

The servo drive provides two sets of vibration elimination. The first set is P1.089 - P1.091 and the second set is P1.092 - P1.094. The vibration elimination setting must be obtained through the **System Module** function in **System Analysis** of ASDA-Soft with the check box for **Low Frequency Analysis** selected.

Vibration elimination takes effect only when the two degree of freedom control function is enabled (P2.094 [Bit 12] = 1). After enabling the two degree of freedom control function, enable the first set of vibration elimination with P2.094 [Bit 8] and the second set with P2.094 [Bit 9].

Example:

- 1. Set P2.094 = $0x11\square\square$ to enable the first set.
- 2. Set $P2.094 = 0x12\square\square$ to enable the second set.
- 3. Set P2.094 = $0x13\square\square$ to enable the first and second sets simultaneously.

P1.090	Vibration elimination 1 - resonance frequency			Address: 01B4H 01B5H
Default:	4000	Control mode:	PT / PR	
Unit:	0.1 Hz	Setting range:	10 to 4000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Resonance frequency for the first set of low frequency vibration elimination.

P1.091	Vibration elimination 1 - resonance difference			Address: 01B6H 01B7H
Default:	10	Control mode:	PT / PR	
Unit:	0.1 dB	Setting range:	10 to 4000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Attenuation rate for the first set of low frequency vibration elimination.

Ö

P1.092	Vibration elimination 2 - anti-resonance frequency			Address: 01B8H 01B9H
Default:	4000	Control mode:	PT / PR	
Unit:	0.1 Hz	Setting range:	10 to 4000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Anti-resonance frequency for the second set of low frequency vibration elimination. The setting method is the same as the first set of vibration elimination (P1.089).

P1.093	Vibration elimination 2 - resonance frequency			Address: 01BAH 01BBH
Default:	4000	Control mode:	PT / PR	
Unit:	0.1 Hz	Setting range:	10 to 4000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Resonance frequency for the second set of low frequency vibration elimination.

P1.094	Vibration elimination 2 - resonance difference			Address: 01BCH 01BDH
Default:	10	Control mode:	PT / PR	
Unit:	0.1 dB	Setting range:	10 to 4000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Attenuation rate for the second set of low frequency vibration elimination.

ASDA-E3 Parameters

P1.097▲	Encoder output denominator (OA, OB)			Address: 01C2H 01C3H
Default:	0	Control mode:	All	
Unit:	-	Setting range:	0 to 160000)
Format:	DEC	Data size:	32-bit	
Model:	-L			

Settings:

- 1. When P1.074.Y = 0 (output source is from the encoder connected to CN2):
 - When P1.097 = 0, OA / OB pulse output refers to the setting of P1.046. (Refer to Example
 1.)
 - When P1.097 ≠ 0, OA / OB pulse output refers to the settings of P1.046 and P1.097. (Refer to Example 2.)
- 2. When P1.074.Y = 2 (output source is the pulse command from CN1):
 - When P1.097 = 0, OA / OB pulse output does not refer to the setting of P1.046, but outputs according to the ratio of 1:1 instead.
 - When P1.097 ≠ 0, OA / OB pulse output refers to the settings of P1.046 and P1.097. (Refer to Example 2.)

Example 1 (the value must be multiplied by 4 times the frequency):

When P1.097 = 0 and P1.046 = 2500, indicating OA / OB outputs P1.046 * 4 = 10,000 pulses when the motor rotates 1 cycle.

Example 2 (the calculated value does not need to be multiplied by 4 times the frequency):

When P1.097 = 7 and P1.046 = 2500, indicating OA / OB outputs 2,500 pulses when the motor rotates 7 cycles.

P1.098	Disconnection detection protection (UVW) response time			Address: 01C4H 01C5H
Default:	0	Control mode:	All	
Unit:	ms	Setting range:	0, 100 to 80	00
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

When the switch for motor power cable disconnection detection (ALC31) is enabled (P2.065 [Bit 9] =

1), set the detection response time with this parameter.

Set P1.098 to 0 to use the servo's default response time.

When P1.098 is not set to 0, the range should be between 100 and 800 for the detection response time.

Note:

- 1. If it is necessary to shorten the response time, it is recommended that you use this parameter.
- When the servo is on and has not started running, it is recommended that you properly set this parameter if you need to detect disconnection.

P1.099 - P1.100	Reserved
--------------------	----------

P1.101∎	Analog monitor output voltage 1			Address: 01CAH 01CBH
Default:	0	Control mode:	All	
Unit:	mV	Setting range:	-10000 to +	10000
Format:	DEC	Data size:	16-bit	
Model:	-L			

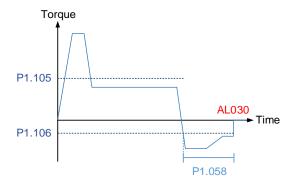
When you set P0.003 (Analog output monitoring) to 0x0006, then the analog monitor output voltage refers to the voltage value of P1.101.

Note: the valid setting range of P1.101 is -8V to +8V.

P1.102∎				Address: 01CCH 01CDH
Default:	0	Control mode:	All	
Unit:	mV	Setting range:	-10000 to +	10000
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

When you set P0.003 (Analog output monitoring) to 0x0007, then the analog monitor output voltage refers to the voltage value of P1.102.


Note: the valid setting range of P1.102 is -8V to +8V.

P1.103 - P1.104	Reserved
--------------------	----------

P1.105	Motor hard stop 2 - torque upper limit			Address: 01D2H 01D3H
Default:	0	Control mode:	All	
Unit:	%	Setting range:	-300 to +30	0
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

When Motor hard stop 2 is enabled (P2.112 [Bit 8] = 1), the settings of torque percentage (P1.057) and level offset (P1.060) for Motor hard stop 1 are invalid. During motor operation, if the motor torque is higher than this protection setting value and the duration of this condition exceeds the protection time (P1.058), AL030 will be triggered.

P1.106	Motor hard stop 2 - torque lower limit			Address: 01D4H 01D5H
Default:	0	Control mode:	All	
Unit:	%	Setting range:	-300 to +30	0
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

When Motor hard stop 2 is enabled (P2.112 [Bit 8]= 1), the settings of torque percentage (P1.057) and level offset (P1.060) for Motor hard stop 1 are invalid. During motor operation, if the motor torque is lower than this protection setting value and the duration of this condition exceeds the protection time (P1.058), AL030 will be triggered.

P1.107 - Reserved

P1.111	Overspeed protection level			Address: 01DEH 01DFH
Default:	Maximum motor speed x 1.1	Control mode:	All	
Unit:	rpm	Setting range:	0 to 66000	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

This function is to protect the motor from overspeeding, which can be applied to all control modes. When the filtered motor speed exceeds this set speed, AL056 occurs.

P1.112	Single-direction torque limit			Address: 01E0H 01E1H
Default:	500	Control mode:	All	
Unit:	%	Setting range:	-500 to +50	0
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Refer to the description of P4.044 for more details.

8

P2.xxx Extension parameters

P2.000	Position control gain			Address: 0200H 0201H
Default:	35	Control mode:	PT / PR	
Unit:	rad/s	Setting range:	0 to 2047	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Increasing the position control gain can enhance the position response and reduce the position errors. If you set the value too high, it may cause vibration and noise.

P2.001	Rate of change for position control gain			Address: 0202H 0203H
Default:	100	Control mode:	PT / PR	
Unit:	%	Setting range:	10 to 500	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Adjust the rate of change for the position control gain (P2.000) according to the gain switching condition.

P2.002	Position feed forward gain			Address: 0204H 0205H
Default:	50	Control mode:	PT / PR	
Unit:	%	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

If the position control command changes smoothly, increasing the gain value can reduce the position following errors. If the position control command does not change smoothly, decreasing the gain value can reduce the mechanical vibration.

P2.003	Position feed forward gain smoothing constant		Address: 0206H 0207H	
Default:	5	Control mode:	PT / PR	
Unit:	ms	Setting range:	2 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

If the position control command changes smoothly, decreasing the smoothing constant value can reduce the position following errors. If the position control command does not change smoothly, increasing the smoothing constant value can reduce the mechanical vibration.

P2.004	Speed control gain			Address: 0208H 0209H
Default:	500	Control mode:	All	
Unit:	rad/s	Setting range:	0 to 8191	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Increasing the speed control gain can enhance the speed response. If you set the value too high, it may cause vibration and noise.

P2.005	Rate of change for speed control gain			Address: 020AH 020BH
Default:	100	Control mode:	All	
Unit:	%	Setting range:	10 to 500	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Adjust the rate of change for the speed control gain (P2.004) according to the gain switching condition.

P2.006	Speed integral compensation			Address: 020CH 020DH
Default:	100	Control mode:	All	
Unit:	rad/s	Setting range:	0 to 1023	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Increasing the value of the integral speed control can enhance the speed response and reduce the deviation in speed control. If you set the value too high, it may cause vibration and noise.

P2.007	Speed feed forward gain			Address: 020EH 020FH
Default:	0	Control mode:	All	
Unit:	%	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

If the speed control command changes speed smoothly, increasing the gain value can reduce the speed following errors. If the speed control command does not change smoothly, decreasing the gain value can reduce the mechanical vibration.

8

8

P2.008∎	8■ Special parameter write-in function			Address: 0210H 0211H
Default:	0	Control mode:	All	
Unit:	-	Setting range:	0 to 501	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Code	Function
10	Reset parameter groups P0 - P7 (cycle the power after reset).
20	P4.010 is writable.
22	P4.011 - P4.021 are writable.
406	Enable forced DO mode.
400	When forced DO mode is enabled, switch back to the normal DO mode.

P2.009	DI response filter time			Address: 0212H 0213H
Default:	2	Control mode:	All	
Unit:	ms	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

When environmental interference is high, increasing this value can enhance the control stability. If you set the value too high, it affects the response time.

P2.010	DI1 functional planning			Address: 0214H 0215H
Default:	0x0101 (-L) 0x0100 (-E)	Control mode:	All	
Unit:	-		0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

YX	Input function selection	Z	Input contact: A or B contact	
-	-	U	Reserved	

YX: input function selection

Refer to Table 8.1.

■ Z: input contact: A or B contact

0: set this input contact to be normally closed (B contact)

1: set this input contact to be normally open (A contact)

When these parameters are modified, re-start the servo drive to ensure it functions normally. Use P3.006 to change the source for the digital input signal, which can be either an external terminal block or the communication parameter P4.007.

P2.011	DI2 functional planning			Address: 0216H 0217H
Default:	0x0104 (-L) 0x0022 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P2.010.

P2.012	DI3 functional planning			Address: 0218H 0219H
Default:	0x0116 (-L) 0x0023 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P2.010.

P2.013	DI4 functional planning			Address: 021AH 021BH
Default:	0x0117 (-L) 0x0021 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L	•	·	·

Settings:

Refer to the description of P2.010.

P2.014	DI5 functional planning			Address: 021CH 021DH
Default:	0x0102 (-L) 0x0100 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P2.010.

8

P2.015	DI6 functional planning			Address: 021EH 021FH
Default:	0x0022 (-L) 0x0100 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L		·	·

Settings:

Refer to the description of P2.010.

P2.016	DI7 functional planning			Address: 0220H 0221H
Default:	0x0023 (-L) 0x0100 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P2.010. There is no physical pin for DI7 on the -E model; this parameter can be a virtual digital input to be triggered through communication or to be used when the number of physical DI points is insufficient. You can set the DI to be used as soon as the servo power is on (e.g. DI.SON) to be a virtual DI and normally closed.

P2.017 DI8 functional planning			Address: 0222H 0223H	
Default:	0x0021 (-L) 0x0100 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co)x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P2.010. There is no physical pin for DI8 on the -E model; this parameter can be a virtual digital input to be triggered through communication or to be used when the number of physical DI points is insufficient. You can set the DI to be used as soon as the servo power is on (e.g. DI.SON) to be a virtual DI and normally closed.

P2.018	DO1 functional planning			Address: 0224H 0225H
Default:	0x0101	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x013F des are DO codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

8

Settings:

YX	Output function selection	Z	Output contact: A or B contact
-	-	U	Reserved

YX: output function selection

Refer to Table 8.2.

■ Z: output contact: A or B contact

0: set this output contact to be normally closed (B contact).

1: set this output contact to be normally open (A contact).

When these parameters are modified, re-start the servo drive to ensure it functions normally.

P2.019	DO2 functional planning			Address: 0226H 0227H
Default:	0x0103 (-L) 0x0100 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x013F des are DO codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P2.018.

P2.020	DO3 functional planning			Address: 0228H 0229H
Default:	0x0109 (-L) 0x0100 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x013F des are DO codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P2.018.

8

P2.021	DO4 functional planning			Address: 022AH 022BH
Default:	0x0105 (-L) 0x0100 (-E)	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x013F odes are DO codes)
Format:	HEX	Data size:	16-bit	
Model:	-L			

Settings:

Refer to the description of P2.018.

P2.022	DO5 functional planning			Address: 022CH 022DH
Default:	0x0007	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	x013F des are DO codes)
Format:	HEX	Data size:	16-bit	
Model:	-L			

Settings:

Refer to the description of P2.018.

P2.023	Notch filter 1 - frequency			Address: 022EH 022FH
Default:	1000	Control mode:	All	
Unit:	Hz	Setting range:	50 to 5000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The resonance frequency of the first Notch filter. This function is disabled if P2.024 is 0. P2.023, P2.024, and P2.095 are the first set of Notch filter parameters.

P2.024	Notch filter 1 - attenuation level			Address: 0230H 0231H
Default:	0	Control mode:	All	
Unit:	-dB	Setting range:	0 to 40	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The attenuation level of the first Notch filter. For example, a value of 5 indicates -5 dB. Set this parameter to 0 to disable the first Notch filter.

P2.025	Resonance suppression low-pass filter				Address: 0232H 0233H	
Operation interface:	Panel / software	Communication	Control mode:	All		
Default:	1.0	10	Data size:	16-bit		
Unit:	1 ms	0.1 ms	-	-		
Setting range:	0.0 to 100.0	0 to 1000	-	-		
Format:	One decimal	DEC	-	-		
Example:	1.5 = 1.5 ms	15 = 1.5 ms	-	-		
Model:	Model: -E, -L					

Sets the time constant for the low-pass filter for resonance suppression. Set this parameter to 0 to disable the low-pass filter.

P2.026	Anti-interference gain			Address: 0234H 0235H
Default:	0	Control mode:	All	
Unit:	rad/s	Setting range:	0 to 1023	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Increasing this parameter can increase the damping of the speed loop and reduce the speed loop response. Setting the value of P2.026 to the same value of P2.006 is recommended. See the following for setting P2.026:

- 1. In Speed mode, increase the value of this parameter to reduce speed overshoot.
- 2. In Position mode, decrease the value of this parameter to reduce position overshoot.

Note: the setting of this gain parameter is invalid when the two degree of freedom control function is on (P2.094 [Bit 12] = 1).

P2.027	Gain switching condition and me	Address: 0236H 0237H			
Default:	0x0000	Control mode:	Shown as follows		
Unit:	-	Setting range:	0x0000 to 0)x0018	
Format:	HEX	Data size:	16-bit		
Model:	-E, -L				

Settings:

X	Gain switching condition	Z	Reserved
Υ	Gain switching method	U	Reserved

8

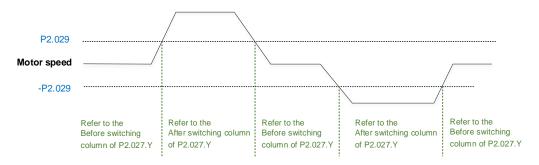
■ X: gain switching condition

Х	Condition	Control mode	P1.078 (Gain switching delay time)
0	Disable gain switching function.	-	-
1	Signal of gain switching (DI.GAINUP: 0x03) is on.	All	-
2	In Position control mode, position error is larger than P2.029.	Р	-
3	Frequency of Position command is larger than P2.029.	Р	Supported
4	Speed of servo motor is faster than P2.029.	All	-
5	Signal of gain switching (DI.GAINUP: 0x03) is off.	All	-
6	In Position control mode, position error is smaller than P2.029.	Р	-
7	Frequency of Position command is smaller than P2.029.	Р	Supported
8	Speed of servo motor is slower than P2.029.	All	-

Y: gain switching method

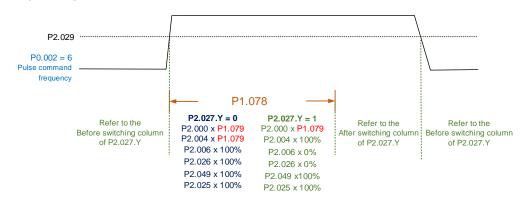
0: gain rate switching

1: integrator switching (switch from P controller to PI controller)

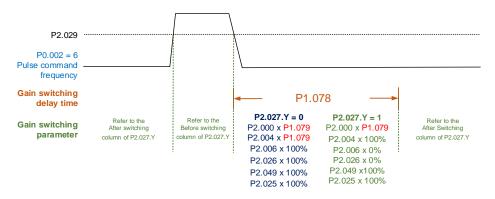

Setting value	Control mode P	Control mode S	Gain switching
	P2.000 x 100%	-	
	P2.004 x 100%	P2.004 x 100%	
	P2.006 x 100%	P2.006 x 100%	Defens switching
	P2.025 x 100%	P2.025 x 100%	Before switching
	P2.026 x 100%	P2.026 x 100%	
	P2.049 x 100%	P2.049 x 100%	
0	P2.000 x P2.001	-	
-	P2.004 x P2.005	P2.004 x P2.005	
	P2.006 x 100%	P2.006 x 100%	A Standard table on
	P2.025 x P2.107	P2.025 x P2.107	After switching
	P2.026 x 100%	P2.026 x 100%	
	P2.049 x P1.080	P2.049 x P1.080	
	P2.000 x 100%	-	
	P2.004 x 100%	P2.004 x 100%	
	P2.006 x 0%	P2.006 x 0%	D (''.'.
	P2.025 x 100%	P2.025 x 100%	Before switching
	P2.026 x 0%	P2.026 x 0%	
	P2.049 x100%	P2.049 x100%	
1	P2.000 x P2.001	-	
	P2.004 x 100%	P2.004 x 100%	
	P2.006 x 100%	P2.006 x 100%	A.60
	P2.025 x P2.107	P2.025 x P2.107	After switching
	P2.026 x 100%	P2.026 x 100%	
	P2.049 x P1.080	P2.049 x P1.080	

Note: the parameters marked with different colors in the preceding table are the differences between Y = 0 and Y = 1.

ASDA-E3 Parameters


When P2.027.X is set to 0, 1, 2, 4, 5, 6, or 8, P1.078 (Gain switching delay time) is not supported. P2.027.X = 4 is taken as the example in the following figure.

P2.027.X = 4



When P2.027.X is set to 3 or 7 and P1.078 (Gain switching delay time) is set, the gain parameter during the delay time is adjusted as follows.

P2.027.X = 3

P2.027.X = 7

P2.028	Gain switching time constant			Address: 0238H 0239H
Default:	10	Control mode:	Refer to P2	.027.X
Unit:	ms	Setting range:	0 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L		·	

Settings:

Smoothes the speed of gain switching (P2.027). Set this parameter to 0 to disable this function.

P2.029 Gain switching condition

Default: 16777216
Control mode: Refer to P2.027.X
Unit: pulse; Kpps; rpm
Setting range: 0 to 50331648

Format: DEC
Data size: 32-bit

Model: -E, -L

Settings:

The unit of this parameter is determined by the selection of gain switching condition (P2.027.X).

P2.030∎	Auxiliary function			Address: 023CH 023DH
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-8 to +8	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Value	Function
0	Disable all functions described as follows.
1	Switch servo to Servo On state.
2 to 4	Reserved.
5	This setting makes all parameter settings volatile. When there is no need to permanently save the data continually written through the panel or communication, this setting can avoid shortening the lifetime of the EEPROM from continuous writing. You must use this function when using communication control.
6	This setting enables command simulation mode. In this mode, use the Digital IO function in ASDA-Soft to switch the servo to the Servo On state as both the external Servo On signal and the force Servo On of the PR mode in ASDA-Soft cannot work, the DSP Error (variable 0x6F) is read as 0, and P0.001 only shows the external error code (positive / negative limit, emergency stop). When DO.SRDY is on, commands are accepted in each mode. You can use the Scope function in ASDA-Soft to observe these commands for their accuracy, but the motor does not operate.
7	Reserved.
8	Back up all current parameter values to EEPROM, so that the values are retained after power cycling. The panel displays "to.rom" during execution. This feature can also be executed when servo is in the Servo On state.
-1, -5, -6	Disable the functions of 1, 5, and 6.
-2 to -4, -7, -8	Reserved.

Note: set this parameter to 0 during normal operation. The value returns to 0 automatically after power cycling.

P2.031	Bandwidth response level			Address: 023EH 023FH
Default:	19	Control mode:	All	
Unit:	-	Setting range:	1 to 50	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

In gain adjustment mode (P2.032), adjust the servo bandwidth with the bandwidth response level parameter (P2.031). When you increase the bandwidth response level (P2.031), the servo bandwidth increases as well. Refer to Chapter 5 for adjustment details.

P2.032	Gain adjustment mode			Address: 0240H 0241H
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0006
Format:	HEX	Data size:	16-bit	
Model:	-E -L (does not support gain adjustment	mode 3)		

The servo drive provides the following gain adjustment modes for fine tuning. You can then easily complete tuning by increasing or decreasing the bandwidth response level (P2.031).

Recommendations for tuning the machine are in Section 5.1.

\/aliva	A diversion and one ada	lo anti a antina ati an	Parai	meter
Value	Adjustment mode	Inertia estimation	Manual	Auto
0	Manual	Fixed set value of P1.037	P1.037, P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.098, P2.099, P2.101, P2.102	N/A
1	Gain adjustment mode 1	Real-time estimation	P2.031	P1.037, P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.098, P2.099, P2.101, P2.102
2	Gain adjustment mode 2	Fixed set value of P1.037	P1.037 P2.031	P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.098, P2.099, P2.101, P2.102
3	Gain adjustment mode 3	Fixed set value of P1.037	P1.037 P2.031 P2.089	P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.098, P2.099, P2.101, P2.102
4	Gain adjustment mode 4		Reset to gain default value	
5	Gain adjustment mode 5 (same as setting P2-32 to 1 for B2 series)	Real-time estimation, the value is updated to P1.037 every 30 minutes	P2.126	P1.037, P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.094, P2.098, P2.099, P2.101, P2.102
6	Gain adjustment mode 6 (same as setting P2-32 to 2 for B2 series)	Fixed set value of P1.037	P1.037 P2.126	P2.000, P2.004, P2.006, P2.023, P2.024, P2.025, P2.043, P2.044, P2.045, P2.046, P2.049, P2.089, P2.094, P2.098, P2.099, P2.101, P2.102

P2.033

8

P2.034	Excessive deviation warning con	Address: 0244H 0245H		
Default:	5000	Control mode:	S / Sz	
Unit:	rpm	Setting range:	1 to 30000	
Format:	DEC	Data size:	16-bit	
Model:	-E -L (does not support PR mode)			

Settings:

In Speed mode, this parameter sets the acceptable difference between the command speed and the feedback speed. If the difference is greater than this value, AL007 occurs.

Note: when P2.094 [Bit 6] = 1, this parameter is available in Position (PT, PR) and Speed (S, Sz) modes.

P2.035	Excessive deviation warning con command	Address: 0246H 0247H		
Default:	50331648	Control mode:	PT / PR	
Unit:	pulse	Setting range:	1 to 167772	21600
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

In Position mode, this parameter sets the acceptable difference between the command position and the feedback position. If the difference is greater than this value, AL009 occurs.

P2.036	DI9 functional planning			Address: 0248H 0249H
Default:	0x0100	Control mode:	All	
Unit:	-	Cotting range	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P2.010. There is no physical pin for DI9 on the -E model; this parameter can be a virtual digital input to be triggered through communication or to be used when the number of physical DI points is insufficient. You can set the DI to be used as soon as the servo power is on (e.g. Servo On) to be a virtual DI and normally closed.

ASDA-E3 Parameters

P2.037	DI10 functional planning			Address: 024AH 024BH
Default:	0x0100	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:		Data size:		
Model:	-E			

Settings:

Refer to the description of P2.010. There is no physical pin for DI10 on the -E model; this parameter can be a virtual digital input to be triggered through communication or to be used when the number of physical DI points is insufficient. You can set the DI to be used as soon as the servo power is on (e.g. Servo On) to be a virtual DI and normally closed.

P2.038	DI11 functional planning			Address: 024CH 024DH
Default:	0x0100	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

Refer to the description of P2.010. There is no physical pin for DI11 on the -E model; this parameter can be a virtual digital input to be triggered through communication or to be used when the number of physical DI points is insufficient. You can set the DI to be used as soon as the servo power is on (e.g. Servo On) to be a virtual DI and normally closed.

P2.039	DI12 functional planning			Address: 024EH 024FH
Default:	0x0100	Control mode:	All	
Unit:	-		0x0000 to 0 (last two co	0x015F des are DI codes)
Format:	HEX	Data size:	16-bit	
Model:	-E	·	·	·

Settings:

Refer to the description of P2.010. There is no physical pin for DI12 on the -E model; this parameter can be a virtual digital input to be triggered through communication or to be used when the number of physical DI points is insufficient. You can set the DI to be used as soon as the servo power is on (e.g. Servo On) to be a virtual DI and normally closed.

8

 P2.040
 DI13 functional planning
 Address: 0250H 0251H

 Default: 0x0100
 Control mode: All

 Unit: Setting range: (last two codes are DI codes)

 Format: HEX
 Data size: 16-bit

Settings:

Refer to the description of P2.010. There is no physical pin for DI13 on the -E model; this parameter can be a virtual digital input to be triggered through communication or to be used when the number of physical DI points is insufficient. You can set the DI to be used as soon as the servo power is on (e.g. Servo On) to be a virtual DI and normally closed.

P2.041	DO6 functional planning		Address: 0252H 0253H	
Default:	0x0100	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 (last two co	0x013F des are DO codes)
Format:	HEX	Data size:	16-bit	
Model:	-L			

Settings:

Refer to the description of P2.018.

P2.042	Reserved
--------	----------

P2.043	Notch filter 2 - frequency			Address: 0256H 0257H
Default:	1000	Control mode:	All	
Unit:	Hz	Setting range:	50 to 5000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The resonance frequency of the second Notch filter. This function is disabled if P2.044 is 0.

P2.043, P2.044, and P2.096 are the second set of Notch filter parameters.

P2.044	Notch filter 2 - attenuation level		Address: 0258H 0259H	
Default:	0	Control mode:	All	
Unit:	-dB	Setting range:	0 to 40	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The attenuation level of the second Notch filter. A value of 5 indicates -5 dB. Set this parameter to 0 to disable the second Notch filter.

P2.045	Notch filter 3 - frequency			Address: 025AH 025BH
Default:	1000	Control mode:	All	
Unit:	Hz	Setting range:	50 to 5000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

The resonance frequency of the third Notch filter. This function is disabled if P2.046 is 0.

P2.045, P2.046, and P2.097 are the third set of Notch filter parameters.

P2.046	Notch filter 3 - attenuation level			Address: 025CH 025DH
Default:	0	Control mode:	All	
Unit:	-dB	Setting range:	0 to 40	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The attenuation level of the third Notch filter. A value of 5 indicates -5 dB. Set this parameter to 0 to disable the third Notch filter.

P2.047	Auto resonance suppression mode			Address: 025EH 025FH	
Default:	0x0001	Control mode:	All		
Unit:	-	Setting range:	0x0000 to 0	x01F2	
Format:	HEX	Data size:	16-bit		
Model:	-E, -L				

Settings:

X	Auto resonance suppression function	Z	Fixed resonance suppression parameter
Υ	Fixed resonance suppression parameter	U	Reserved

- X: auto resonance suppression function
 - 0: disable auto resonance suppression. After the function is disabled, the existing resonance suppression parameter values do not change.
 - 1: auto resonance suppression mode 1; when the servo determines it is stable*2, the servo stores the resonance suppression points to EEPROM (non-volatile memory for parameters) and disables the auto resonance suppression function (X = 0). Before the servo is stable,
 - (1) If you cycle power on the servo drive, the found resonance suppression points are lost and will not be saved. The servo searches for the resonance suppression points again.
 - (2) If you switch the setting of X from 1 to 0, the known resonance suppression points will be stored to EEPROM.

- (3) If you keep the setting of X as 1, the known resonance suppression points will not be cleared, but they are not written to EEPROM yet. They are written to EEPROM when the servo determines it is stable.
- 2: auto resonance suppression mode 2; when the servo determines it is stable*2, the servo stores the known resonance suppression points to EEPROM (non-volatile memory for parameters). In this mode, the searching cycle continues until the 5 sets of resonance suppression parameters are set, and then the auto resonance suppression function is disabled (X = 0). Before the servo is stable,
 - (1) If you cycle power on the servo drive, the resonance suppression points that are not yet stored in EEPROM are lost and will not be saved. The resonance suppression points that have been stored to EEPROM will not be affected.
 - (2) If you switch the setting of X from 2 to 0, the known resonance suppression points will be stored to EEPROM.
 - (3) If you keep the setting of X as 2, the known resonance suppression points will not be cleared, but they are not written to EEPROM yet. They are written to EEPROM when the servo determines it is stable.

Note:

- 1. If you switch the setting of X from 0 to 1 or 2, the unfixed Notch filter is automatically cleared, the frequency is set to 1,000 Hz, and the notch depth is set to 0 dB.
- 2. The servo determines it is stable when the following conditions are met: resonances have been suppressed, no other interference that affects the operation is found, and the motor speed is maintained at above 10 rpm for 3 minutes.
- Y: fixed resonance suppression parameter

In auto resonance suppression mode, you can set the resonance suppression parameters manually by setting P2.047.Y.

Bit	Function	Description
0	Notch 1 auto / manual setting	auto resonance suppression manually set the first set of resonance suppression parameters
1	Notch 2 auto / manual setting	auto resonance suppression manually set the second set of resonance suppression parameters
2	Notch 3 auto / manual setting	auto resonance suppression manually set the third set of resonance suppression parameters
3	Notch 4 auto / manual setting	auto resonance suppression manually set the fourth set of resonance suppression parameters

Z: fixed resonance suppression parameter

In auto resonance suppression mode, you can set the resonance suppression parameters manually by setting P2.047.Z.

Bit	Function	Description
0	Notch 5 auto / manual setting	auto resonance suppression manually set the fifth set of resonance suppression parameters
1 to 3	Reserved	-

Example: if P2.047 = 0x0021, the auto resonance suppression function is enabled, and the servo searches for the point of resonance and suppresses it. When you set P2.047.Y [Bit 1] to 1, you manually set the second set of resonance suppression parameters. Then, if the servo finds 2 resonance points, it writes the data of the 1st point to the 1st set of resonance suppression parameters and the data of the 2nd point to the 3rd set of resonance suppression parameters. That is, it skips the 2nd set of parameters.

8

P2.048	Auto resonance detection level			Address: 0260H 0261H
Default:	100	Control mode:	All	
Unit:	-	Setting range:	0 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

If P2.048 is larger, the resonance sensitivity is lower; on the other hand, if P2.048 is smaller, the resonance sensitivity is higher.

P2.049	Speed detection filter and jitter suppression		Address: 0262H 0263H		
Operation interface:	Panel / software	Communication	Control mode:	All	
Default:	1.0	10	Data size:	16-bit	
Unit:	1 ms	0.1 ms	-	-	
Setting range:	0.0 to 100.0	0 to 1000	-	-	
Format:	One decimal	DEC	-	-	
Example:	1.5 = 1.5 ms	15 = 1.5 ms	-	-	
Model:	-E, -L				

Settings:

Sets the filter for speed detection. Adjusting this parameter can improve the extent of the speed jitter, but when the value is too high, the phase margin affecting the speed loop decreases, and thus makes the system unstable.

P2.050	Position error clear setting			Address: 0264H 0265H
Default:	0x0000	Control mode:	PT, PR	
Unit:	-	Setting range:	0x0000 to 0)x0001
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to Table 8.1 for digital input descriptions. Set the digital input as CCLR (DI: 0x04) to enable this function. When DI.CCLR is on, the position error in the servo drive is reset to 0.

When P2.050 = 0, DI.CCLR is rising-edge triggered.

When P2.050 = 1, DI.CCLR is level triggered.

P2.051	Reserved
P2.051	Reserved

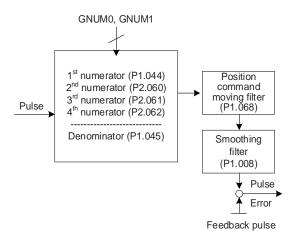
P2.052▲	Rotary axis position scale			Address: 0268H 0269H
Default:	100000000	Control mode:	All	
Unit:	PUU	Setting range:	0 to 100000	00000
Format:	DEC	Data size:	32-bit	
Model:	-E			

Sets the scale of the rotary axis position, rotary axis command position, and rotary axis feedback position. If the value is too small, it may cause errors in the rotary axis position system.

The input range of P2.052 is:

P2.052 > 1.05 x Maximum motor speed (rpm) x
$$\frac{16777216}{60000}$$
 x $\frac{P1.045}{P1.044}$

P2.053	Position integral compensation			Address: 026AH 026BH
Default:	0	Control mode:	All	
Unit:	rad/s	Setting range:	0 to 1023	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			


Settings:

Increase the position control integral compensation to reduce the position steady-state errors. If the value is too high, it may cause position overshoot and noise.

P2.054 - P2.059

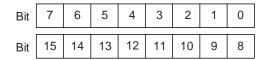
P2.060	E-Gear ratio - numerator N2			Address: 0278H 0279H
Default:	16777216	Control mode:	All	
Unit:	pulse	Setting range:	1 to (2 ²⁹ -1)	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

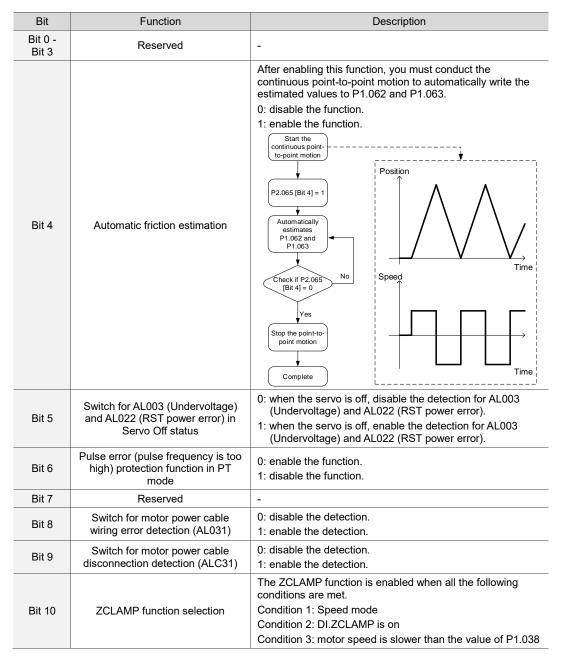
The numerator of the E-Gear ratio can be selected with DI.GNUM0 and DI.GNUM1 (refer to Table 8.1). If both DI.GNUM0 and DI.GNUM1 are not defined, P1.044 is the default numerator of the E-Gear ratio. Switch the numerator only when the servo is stopped in order to avoid mechanical vibration.

P2.061	E-Gear ratio - numerator N3			Address: 027AH 027BH
Default:	16777216	Control mode:	All	
Unit:	pulse	Setting range:	1 to (2 ²⁹ -1)	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

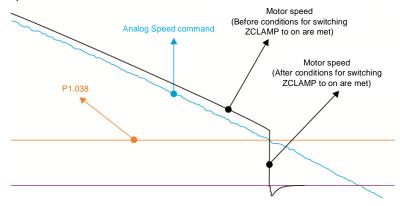
Refer to the description of P2.060.

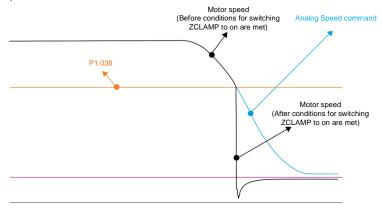

P2.062	E-Gear ratio - numerator N4			Address: 027CH 027DH
Default:	16777216	Control mode:	All	
Unit:	pulse	Setting range:	1 to (2 ²⁹ -1)	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			


Settings:

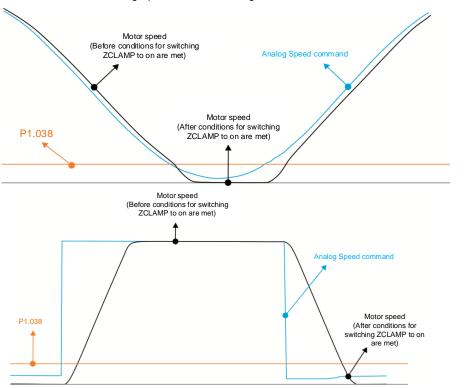
Refer to the description of P2.060.

P2.063 - P2.064	Reserved
--------------------	----------

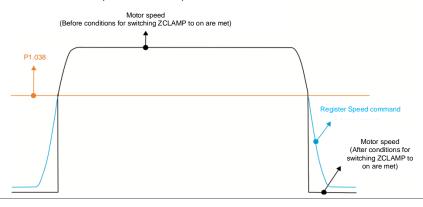

P2.065	Special bit register 1			Address: 0282H 0283H
Default:	0x0300	Control mode:	PT/PR/S	/ Sz
Unit:	-	Setting range:	0x0000 to 0)xFFFF
Format:	HEX	Data size:	-	
Model:	-E (does not support Bit 15) -L (does not support Bit 4)			



Bit 10 description


Bit 10 = 0 and command source is the analog voltage. The ZCLAMP function uses the analog Speed command without acceleration or deceleration to determine if this function should be enabled. The motor is clamped at the position where ZCLAMP conditions are met.

Bit 10 = 0 and command source is the internal register. The ZCLAMP function uses the register Speed command with acceleration or deceleration to determine if this function should be enabled. The motor is clamped at the position where ZCLAMP conditions are met.


Bit 10 = 1 and command source is the analog voltage. The ZCLAMP function uses the analog Speed command without acceleration or deceleration to determine if this function should be enabled. When ZCLAMP conditions are met, the motor speed decelerates to 0 rpm by S-curve deceleration. If ZCLAMP conditions are not met, the motor follows the analog Speed command through the S-curve.

O

Bit 10 description

Bit 10 = 1 and command source is the internal register. The ZCLAMP function uses the register Speed command with acceleration or deceleration to determine if this function should be enabled. When ZCLAMP conditions are met, the motor speed is set to 0 rpm.

Bit	Function	Description
Bit 11	Pulse inhibit function in PT mode	O: disable PL / NL pulse inhibit function. In PT mode, the servo drive receives pulse position commands for both positive- and negative-direction operations whether the motor reaches the PL or NL. 1: enable PL / NL pulse inhibit function. In PT mode, if the motor reaches the PL, the servo drive receives pulse position commands for negative-direction operation and stops receiving pulse position commands for positive-direction operation. In PT mode, if the motor reaches the NL, the servo drive receives pulse position commands for positive-direction operation and stops receiving pulse position commands for negative-direction operation.
Bit 12	RST power error (AL022) detection function	0: enable the RST power error (AL022) detection function. 1: disable the RST power error (AL022) detection function.
Bit 13	OA and OB output error (AL018 / AL048) detection	0: enable OA and OB output error (AL018 / AL048) detection. 1: disable OA and OB output error (AL018 / AL048) detection.
Bit 14	Reserved	-
Bit 15	Friction compensation mode selection	0: the compensation value remains unchanged when the motor speed is lower than the setting value of P1.038. 1: the compensation value reduces to 0 when the motor speed is lower than the setting value of P1.038.

P2.066	Special bit register 2			Address: 0284H 0285H
Default:	0x0020	Control mode:	PT/PR/S	/ Sz
Unit:	-	Setting range:	0x0000 to 0)x187F
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Bit	7	6	5	4	3	2	1	0
Bit	15	14	13	12	11	10	9	8

Bit	Function	Description
Bit 0 - Bit 1	Reserved	-
Bit 2	Disable the AL003 (Undervoltage error) latch	O: latch enabled; the undervoltage error is not cleared automatically. 1: latch disabled; the undervoltage error is cleared automatically.
Bit 3	Reserved	-
Bit 4	Disable the detection for AL044 (Servo function overload warning)	0: enable the detection. 1: disable the detection.
Bit 5	Reserved	-
Bit 6	RST power error (AL022) latch	0: disable the latch; RST power error (AL022) is cleared automatically. 1: enable the latch; RST power error (AL022) is not cleared automatically.
Bit 7 - Bit 8	Reserved	-
Bit 9	Set AL003 (Undervoltage) as ALM or WARN	0: WARN 1: ALM
Bit 10 - Bit 11	Reserved	-
Bit 12	Set AL022 (RST power error) as ALM or WARN	0: WARN 1: ALM
Bit 13 - Bit 15	Reserved	-

P2.067 Reserved

P2.068	Following error compensation sv	Address: 0288H 0289H		
Default:	0x0000			
Unit:	-	k0101		
Format:	HEX Data size: 16-bit			
Model:	-E -L (only supports P2.068.X)			

Settings:

Χ	Following error compensation switch		DI.STP triggering method
Υ	Reserved	U	Reserved

- X: following error compensation switch (functions under the condition of P1.036 > 1)
 - 0: disable following error compensation
 - 1: enable following error compensation
- Z: DI.STP triggering method
 - 0: rising-edge triggered
 - 1: level triggered

P2.069●	Absolute encoder			Address: 028AH 028BH
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x1211
Format:	HEX	Data size:	16-bit	
Model:	-E			

X	Operation mode setting	Z	Function of preventing rotary axis position loss when overflow occurs
Y	Pulse command setting when absolute position is lost	U	Single-turn absolute function

- X: operation mode setting
 - 0: incremental mode. An absolute type motor can be operated as an incremental type motor.
 - 1: absolute mode. This setting is only applicable to an absolute type motor. If it is used for an incremental type motor, AL069 occurs.
- Y: pulse command setting when absolute position is lost
 - 0: when AL060 or AL06A occurs, the system cannot receive a pulse command.
 - 1: when AL060 or AL06A occurs, the system can receive a pulse command.
- Z: function of preventing rotary axis position loss when overflow occurs
 - 0: rotary axis position is lost when overflow occurs.
 - 1: rotary axis position is not affected by overflow, but the absolute position is not retained (AL289 and AL062 do not function).
 - 2: when the DVP50MC series or AX series controller is used, rotary axis position is not affected by overflow, but the absolute position is not retained (AL289 and AL062 do not function).
- U: single-turn absolute function
 - 0: disable the single-turn absolute function.
 - 1: enable the single-turn absolute function and automatically set both P2.069.X and P2.069.Z to 1.

Note: changes to this setting are effective only after power is cycled to the servo drive.

		Address: 028CH 028DH			
Control mode:	All				
Setting range:	0x0000 to 0x0007				
Data size:	16-bit				

P2.070

Default: 0x0000

Unit: -

Format: HEX

Model: -E

Bit	7	6	5	4	3	2	1	0
Bit	15	14	13	12	11	10	9	8

Read data selection

Bit	Function	Description
Bit 0	DI/DO data unit setting	0: PUU
		1: pulse
Bit 1	Communication data unit setting	0: PUU
		1: pulse
Bit 2	Overflow warning setting	0: the servo drive issues the overflow warnings AL289 (PUU) and AL062 (pulse).
		1: no overflow warning.
Bit 3 - Bit 15	Reserved	-

P2.071∎	Absolute position homing			Address: 028EH 028FH
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0x0001	
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

Set P2.071 to 0x0001 to reset the current absolute position of the encoder. The clearing function is enabled by setting P2.008 to 271 and P2.069.X to 1.

P2.072 - P2.088	Reserved

P2.089	Command response gain			Address: 02B2H 02B3H
Default:	25	Control mode:	PT / PR	
Unit:	rad/s	Setting range:	1 to 2000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Increasing this gain speeds up the responsiveness of the Position command and shortens the settling time, but when the gain is too large, it causes position overshoot which leads to machine jitter.

Note: enable the two degree of freedom control function (P2.094 [Bit 12] = 1) before adjusting this parameter.

P2.090
Two degree of freedom mode - anti-interference gain

Default: 850
Control mode: PT / PR
Unit: 0.001
Setting range: 500 to 1999

Format: DEC
Data size: 16-bit

Model: -E

Settings:

This parameter improves the command response and fine tunes the overshoot when the command is settling. Set this parameter to a smaller value to reduce the occurrence of command overshoot. This parameter is only valid when the two degree of freedom control function is enabled (P2.094 [Bit 12] = 1) and its function is similar to that of P2.026.

P2.091	Two degree of freedom mode - position feed forward gain			Address: 02B6H 02B7H
Default:	1000	Control mode:	PT / PR	
Unit:	0.1%	Setting range:	0 to 3000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

This parameter reduces the following error of the motor. If the value is set too high, it may cause overshoot during positioning. It is suggested that you set this parameter to the default value or only make small adjustments. This parameter is only valid when the two degree of freedom control function is enabled (P2.094 [Bit 12] = 1) and its function is similar to that of P2.002.

P2.092	Two degree of freedom mode - speed feed forward gain			Address: 02B8H 02B9H
Default:	1000	Control mode:	PT / PR	
Unit:	0.1%	Setting range:	0 to 3000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

This parameter reduces the following error when the motor starts and stops. Use this parameter to roughly adjust the overshoot during positioning. Set this parameter to a larger value to reduce overshoot. This parameter is only valid when the two degree of freedom control function is enabled (P2.094 [Bit 12] = 1) and its function is similar to that of P2.007.

|--|--|--|

ASDA-E3 Parameters

P2.094▲	Special bit register 3		Address: 02BCH 02BDH	
Default:	0x0090	Control mode:	PT/PR/S	/ Sz
Unit:	-	Setting range:	0x0000 to 0	xF3F6
Format:	HEX	Data size:	16-bit	
Model:	-E -L (does not support Bit 8, Bit 9, and	Bit 12)		

Settings:

Bit	7	6	5	4	3	2	1	0
Bit	15	14	13	12	11	10	9	8

Bit	Function	Description
Bit 0 - Bit 3	Reserved	-
Bit 4	Dynamic brake options	disable new dynamic brake. enable new dynamic brake.
Bit 5	Switch for AL016 (Abnormal IGBT temperature)	0: enable AL016 (Abnormal IGBT temperature). 1: disable AL016 (Abnormal IGBT temperature).
Bit 6	Switch for AL007 detection in Position mode	Switch for AL007 detection in Position mode (PT and PR) 0: disable AL007 detection (default). 1: enable AL007 detection.
Bit 7	Switch for AL086	Switch for the regenerative resistor temperature protection when the input voltage is too high 0: disable 1: enable
Bit 8	First set of vibration elimination	0: disable first set of vibration elimination. 1: enable first set of vibration elimination (P1.089 - P1.091) Vibration elimination takes effect only when the two degree of freedom control function is enabled (P2.094 [Bit 12] = 1).
Bit 9	Second set of vibration elimination	0: disable second set of vibration elimination 1: enable second set of vibration elimination (P1.092 - P1.094) Vibration elimination takes effect only when the two degree of freedom control function is enabled (P2.094 [Bit 12] = 1).
Bit 10 - Bit 11	Reserved	-
Bit 12	Two degree of freedom control function	disable two degree of freedom control function (A2 and B2 models do not have this function.) enable two degree of freedom control function
Bit 13 - Bit 15	Reserved	-

P2.095	Notch filter 1 - Q factor			Address: 02BEH 02BFH
Default:	5	Control mode:	All	
Unit:	-	Setting range:	1 to 10	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The resonance Q factor of the first Notch filter. This function is disabled if P2.024 is 0. P2.023, P2.024, and P2.095 are the first set of Notch filter parameters.

8

P2.096	Notch filter 2 - Q factor			Address: 02C0H 02C1H
Default:	5	Control mode:	All	
Unit:	-	Setting range:	1 to 10	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The resonance Q factor of the second Notch filter. This function is disabled if P2.044 is 0. P2.043, P2.044, and P2.096 are the second set of Notch filter parameters.

P2.097	Notch filter 3 - Q factor			Address: 02C2H 02C3H
Default:	5	Control mode:	All	
Unit:	-	Setting range:	1 to 10	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The resonance Q factor of the third Notch filter. This function is disabled if P2.046 is 0. P2.045, P2.046, and P2.097 are the third set of Notch filter parameters.

P2.098	Notch filter 4 - frequency			Address: 02C4H 02C5H
Default:	1000	Control mode:	All	
Unit:	Hz	Setting range:	50 to 5000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L	·	·	

Settings:

The resonance frequency of the fourth Notch filter. This function is disabled if P2.099 is 0. P2.098, P2.099, and P2.100 are the fourth set of Notch filter parameters.

P2.099	Notch filter 4 - attenuation level			Address: 02C6H 02C7H
Default:	0	Control mode:	All	
Unit:	-dB	Setting range:	0 to 40	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The attenuation level of the fourth Notch filter. A value of 5 indicates -5 dB. Set this parameter to 0 to disable the fourth Notch filter.

P2.100	Notch filter 4 - Q factor	Address: 02C8H 02C9H		
Default:	5	Control mode:	All	
Unit:	-	Setting range:	1 to 10	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

The resonance Q factor of the fourth Notch filter. This function is disabled if P2.099 is 0. P2.098, P2.099, and P2.100 are the fourth set of Notch filter parameters.

P2.101	Notch filter 5 - frequency			Address: 02CAH 02CBH
Default:	1000	Control mode:	All	
Unit:	Hz	Setting range:	50 to 5000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The resonance frequency of the fifth Notch filter. This function is disabled if P2.102 is 0. P2.101,

P2.102, and P2.103 are the fifth set of Notch filter parameters.

P2.102	Notch filter 5 - attenuation level			Address: 02CCH 02CDH
Default:	0	Control mode:	All	
Unit:	-dB	Setting range:	0 to 40	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L	·	·	

Settings:

The attenuation level of the fifth Notch filter. A value of 5 indicates -5 dB. Set this parameter to 0 to disable the fifth Notch filter.

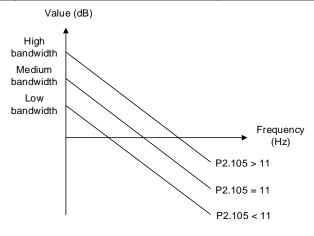
P2.103	Notch filter 5 - Q factor			Address: 02CEH 02CFH
Default:	5	Control mode:	All	
Unit:	-	Setting range:	1 to 10	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The resonance Q factor of the fifth Notch filter. This function is disabled if P2.102 is 0. P2.101, P2.102, and P2.103 are the fifth set of Notch filter parameters.

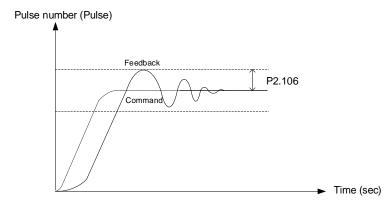
P2.104	Torque command condition for I	Address: 02D0H 02D1H		
Default:	800	Control mode:	PT / PR	
Unit:	%	Setting range:	1 to 800	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:


When the Torque command exceeds P2.104, the speed controller gain is switched from PI to P in order to reduce response overshoot.

P2.105	Automatic gain adjustment level	Address: 02D2H 02D3H		
Default:	11	Control mode:	PT / PR	
Unit:	-	Setting range:	1 to 21	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:


Use this parameter to adjust the bandwidth when auto tuning. The higher the value, the higher the bandwidth after auto tuning. However, the bandwidth margin may be insufficient, causing machine jitter. The smaller the value, the lower the bandwidth after auto tuning. However, the response is slower.

P2.105 setting value	Stiffness and response	Applicable mechanical parts
1 - 7	Low stiffness and low response	Belt, gear rack, reducer, cam
8 - 14	Medium stiffness and medium response	Screw
15 - 21	High stiffness and high response	Direct-coupled mechanical parts

P2.106	Automatic gain adjustment level	Address: 02D4H 02D5H		
Default:	2000	Control mode:	PT / PR	
Unit:	pulse	Setting range:	1 to 503316	648
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Use this parameter to adjust the maximum allowable overshoot when auto tuning. The overshoot range is set according to either the user's requirement or the machine characteristics. The higher the value, the greater the maximum overshoot allowed by auto tuning. However, the response is faster. The smaller the value, the smaller the maximum overshoot allowed by auto tuning. However, the response is slower.

P2.107	Rate of change for resonance su	Address: 02D6H 02D7H		
Default:	100	Control mode:	P/S	
Unit:	%	Setting range:	0 to 100	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Adjusts the rate of change for **the resonance suppression low-pass filter** (P2.025) according to the gain switching condition.

(This parameter is inversely proportional to the value of P2.025. The smaller the setting value of P2.017, the stronger the filtering effect.)

P2.108 - Reserved	
-------------------	--

8

P2.112 ▲	Special bit register 4			Address: 02E0H 02E1H
Default:	0x2018	Control mode:	PT/PR/S	/ Sz
Unit:	-	Setting range:	0x0000 to 0)x753F
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

Bit	7	6	5	4	3	2	1	0
Bit	15	14	13	12	11	10	9	8

Bit	Function	Description
Bit 0	Reserved	-
Bit 1	Enable or disable AL089	0: disable AL089 1: enable AL089
Bit 2	Reserved	-
Bit 3	Auto gain adjustment mode	0: reserved 1: cycle adjustment
Bit 4 - Bit 7	Reserved	-
Bit 8	Motor hard stop function selection	Motor hard stop 2 only supports absolute motors. 0: Motor hard stop 1 (refer to the settings of P1.057, P1.058, and P1.060.) 1: Motor hard stop 2 (refer to the settings of P1.105, P1.106, and P1.058.)
Bit 9 - Bit 12	Reserved	-
Bit 13	Regenerative braking method	0: method 1 1: method 2, which releases the capacitor voltage faster and reduces the load voltage of the capacitor.
Bit 14	Unit selection for internal Torque command / internal torque limit (P1.012 - P1.014).	0: 1% 1: 0.1%
Bit 15	Reserved	-

P2.113 - P2.120	Reserved

8

Parameters

P2.121	Special bit register 6			Address: 02E0H 02E1H
Default:	0x0000000	Control mode:	All	
Unit:	-	Setting range:	0x0000000	0 - 0x000001FF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Bit	7	6	5	4	3	2	1	0
Bit	15	14	13	12	11	10	9	8

Bit	Function	Description
Bit 0	Reserved	-
Bit 1	Behavior after homing in communication mode	after homing, execute absolute positioning to the position with the offset distance set in OD 607Ch. decelerate to a stop after homing.
Bit 2	Definition of the settings for Origin definition (P6.001) and Home offset (OD 607Ch) in communication mode	0: origin definition (P6.001) = - (setting of OD 607Ch) 1: origin definition (P6.001) = OD 607Ch
Bit 3 – Bit 4	Reserved	-
Bit 5	Unit selection for Homing speeds (OD 6099h), Homing acceleration (OD 609Ah), Profile acceleration (OD 6083h), and Profile deceleration (OD 6084h) in communication mode	0: the unit of OD 6099h is determined by the setting of P2.121 [Bit 3]. The unit of OD 609Ah, OD 6083h, and OD 6084h is ms (0 - 3000 rpm). When P2.121 [Bit 3] = 0, the unit of OD 6099h is 0.1 rpm. When P2.121 [Bit 3] = 1, the unit of OD 6099h is 1 rpm. 1: the unit of OD 6099h is PUU/sec. The unit of OD 609Ah, OD 6083h, and OD 6084h is PUU/sec².
Bit 6 – Bit 7	Reserved	-
Bit 8	Auto clearing of AL180 and AL185 after the state machine re-enters the Operational state in EtherCAT mode	0: no; you need to manually clear the alarms 1: yes
Bit 9 - Bit 15	Reserved	-

P2.122 - P2.124	Reserved

8

P2.125	Special bit register 7			Address: 02FAH 02FBH
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)xFFFF
Format:	HEX	Data size:	16-bit	
Model:	-E -L (does not support Bit 3 and Bit 7)			

Settings:

Bit	7	6	5	4	3	2	1	0
Bit	15	14	13	12	11	10	9	8

Bit	Function	Description
Bit 0	Filter frequency for the motor speed of the monitoring variable (P0.002 = 7)	0: 15 Hz 1: 1 Hz
Bit 1 - Bit 2	Reserved	-
Bit 3	Bandwidth response level reversion	Before using this function, set the gain adjustment mode to mode 1, mode 2, or mode 3. When the system limit is reached and the resonance cannot be suppressed, the servo automatically reverts to the response level where the resonance does not occur. 0: disable 1: enable
Bit 4 - Bit 6	Reserved	-
Bit 7	Smoothing function for Velocity offset (OD 60B1h) and Torque offset (OD 60B2h) in EtherCAT communication mode	0: disable 1: enable
Bit 8 - Bit 15	Reserved	-

P2.126	Bandwidth for speed loop respor	Address: 02FCH 02FDH		
Default:	40	Control mode:	PT/PR/S	/ Sz
Unit:	Hz	Setting range:	1 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The setting of P2.126 is effective only when you set P2.032 to 5 or 6.

Bandwidth	Stiffness and response	Applicable mechanical parts
1 - 100 Hz	Low stiffness and low response	Belt, gear rack, reducer, cam
101 - 250 Hz	Medium stiffness and medium response	Screw
251 Hz and above	High stiffness and high response	Direct-coupled mechanical parts

Note: the servo drive automatically sets the response of the position loop according to the setting of P2.126. The function of P2.126 is the same as that of P2-31 for the A2 series models.

P3.xxx Communication parameters

P3.000◆	Address			Address: 0300H 0301H
Default:	0x007F	Control mode:	All	
Unit:	-	Setting range:	0x0001 - 0x	007F
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

UZ	Reserved	YX	Communication address setting

The address setting required for using RS-232 or RS-485 communication. Make sure there are no duplicate addresses in the same communication circuit, or it may cause communication failure.

■ RS-232 or RS-485

When the master station sets the communication address to 0xFF, the address is always 0xFF in the response message.

■ EtherCAT

When P3.018.A = 1, the address refers to the setting of P3.000; when P3.018.A = 0, the address must be set by the controller.

P3.001●	Transmission speed			Address: 0302H 0303H
Default:	0x0033	Control mode:	All	
Unit:	-	Setting range:	0x0000 - 0x	(0055
Format:	HEX	Data size:	16-bit	
Model:	-L			

Settings:

Χ	RS-232 transmission speed	Z	Reserved
Υ	RS-485 transmission speed	U	Reserved

X: RS-232 transmission speed

0: 4800 bps	1: 9600 bps	2: 19200 bps
3: 38400 bps	4: 57600 bps	5: 115200 bps

■ Y: RS-485 transmission speed

0: 4800 bps	1: 9600 bps	2: 19200 bps
3: 38400 bps	4: 57600 bps	5: 115200 bps

8

8

P3.002	Modbus communication protocol			Address: 0304H 0305H
Default:	0x0006	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0	0x0008
Format:	HEX	Data size:	16-bit	
Model:	-L			

Settings:

Χ	RS-232 communication protocol	Z	Reserved
Υ	RS-485 communication protocol	U	Reserved

■ X: RS-232 communication protocol

0: 7, N, 2 (Modbus, ASCII)	1: 7, E, 1 (Modbus, ASCII)	2: 7, O, 1 (Modbus, ASCII)
3: 8, N, 2 (Modbus, ASCII)	4: 8, E, 1 (Modbus, ASCII)	5: 8, O, 1 (Modbus, ASCII)
6: 8, N, 2 (Modbus, RTU)	7: 8, E, 1 (Modbus, RTU)	8: 8, O, 1 (Modbus, RTU)

■ Y: RS-485 communication protocol

0: 7, N, 2 (Modbus, ASCII)	1: 7, E, 1 (Modbus, ASCII)	2: 7, O, 1 (Modbus, ASCII)
3: 8, N, 2 (Modbus, ASCII)	4: 8, E, 1 (Modbus, ASCII)	5: 8, O, 1 (Modbus, ASCII)
6: 8, N, 2 (Modbus, RTU)	7: 8, E, 1 (Modbus, RTU)	8: 8, O, 1 (Modbus, RTU)

P3.003	Modbus communication error handling			Address: 0306H 0307H
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0001
Format:	HEX	Data size:	16-bit	
Model:	-L			

Settings:

0: display AL020 and let the motor continue operating.

1: display AL020 and let the motor decelerate to a stop. Deceleration time is set in P5.003.B.

P3.004	Modbus communication timeout			Address: 0308H 0309H
Default:	0	Control mode:	All	
Unit:	sec	Setting range:	0 to 20	
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings

If the value is not 0, communication timeout is enabled immediately. To disable this function, set the value to 0.

)

P3.005	Modbus communication			Address: 030AH 030BH
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0112
Format:	HEX	Data size:	16-bit	
Model:	-L			

11 7 Y X

Х	Use RS-232 / RS-485 standard Modbus communication or connect to ASDA-Soft with RS-232	Z	Reserved
Υ	Reserved	U	Reserved

X: use RS-232 / RS-485 standard Modbus communication or connect to ASDA-Soft with RS-232

0: use RS-232 / RS-485 standard Modbus communication.

1: connect to ASDA-Soft with RS-232.

P3.006∎	Digital input (DI) control switch			Address: 030CH 030DH
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 0x0000 to 0)x1FFF (-E))x01FF(-L)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L	·	·	·

Settings:

Control switch for the source of DI. Each bit of this parameter determines the input source of one DI signal: Bit 0 - Bit 12 correspond to DI1 - DI13.

The setting for each bit is as follows:

0: DI status is controlled by the external terminal block.

1: DI status is controlled by P4.007.

For more information on DI functional planning, refer to the following:

DI1 - DI8: P2.010 - P2.017

DI9 - DI13: P2.036 - P2.040

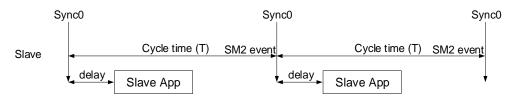
P3.007	Modbus communication respons	Address: 030EH 030FH		
Default:	1	Control mode:	All	
Unit:	0.5 ms	Setting range:	0 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

Delays the time of communication response from servo drive to controller.

P3.008 Reserved

P3.009	Communication synchronization			Address: 0312H 0313H
Default:	0x5055	Control mode:	EtherCAT	
Unit:	-	Setting range:	0x0000 - 0x	9AFF
Format:	HEX	Data size:	16-bit	
Model:	-E			


Settings:

The slave synchronizes with the master via SYNC. The definition is as follows:

Z: when the servo is operating in the DC-Synchronous mode, you can adjust the timing of the servo accessing the EtherCAT packets to ensure this timing is not in conflict with the timing of the controller sending the packets.

The delay time shown in the following figure is $(T/10) \times Z (\mu s)$.

P3.010 - P3.011

P3.012	Communication support setting	Address: 0318H 0319H		
Default:	0x1000	Control mode:	EtherCAT	
Unit:	-	Setting range:	0x0000 to 0)x1111
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

Х	Reserved	Z	Load in the EtherCAT parameter values
Υ	Reserved	U	Error clearing when the limit alarm occurs

- Z: load in the EtherCAT parameter values
 - 0: when the servo drive is power cycled or the communication is reset, parameters in the following table load the values of the EtherCAT parameters.
 - 1: when the servo drive is power cycled or the communication is reset, parameters in the following table retain the same settings and do not load the values of the EtherCAT parameters.

Relevant parameters for Z setting:

	P3.012 = 0x	(0100 (Z = 1)	P3.012 = 0x0000 (Z = 0)		
Parameter	Servo parameter	Default	OD address	Default	
Motor stop mode	P1.032	0x0000	605Bh	0	
S-curve acceleration constant	P1.034	200	6087h	200	
Zero speed range	P1.038	100 (0.1 rpm)	606Fh	100 (0.1 rpm)	
E-Gear ratio - numerator N1	P1.044	16777216	6093h sub1	1	
E-Gear ratio - denominator M	P1.045	100000	6093h sub2	1	
Speed reached (DO.SP_OK) range	P1.047	10 (1 rpm)	606Dh	100 (0.1 rpm)	
Accumulated time to reach desired speed	P1.049	0	606Eh	0	
Mayirayan angad limit		Depending on	607Fh	Depending on the motor (0.1 rpm)	
Maximum speed iimii	aximum speed limit P1.055 the motor (rpm)		6080h	Depending on the motor (rpm)	
Excessive deviation warning condition of Position command	P2.035	50331648	6065h	50331648	
Positive software limit (PP / CSP / CSV / CST mode)	P5.008	2147483647	607Dh sub2	2147483647	
Negative software limit (PP / CSP / CSV / CST mode)	P5.009	-2147483648	607Dh sub1	-2147483648	
Origin definition (HM mode)	P6.001	0	607Ch	0	

Methods to write parameters to EEPROM (non-volatile):

SDO: parameters are stored in EEPROM when written.

PDO: refer to the setting of P3.011.X.

P3.011.X = 1 indicates when written through PDOs, parameters are stored in EEPROM.

P3.011.X = 0 indicates when written through PDOs, parameters are not stored in EEPROM.

Note: when the function of OD 1010h (Store parameter) is enabled, the OD value is stored in non-volatile memory. When P3.012.Z = 0, the non-volatile value of OD is loaded as the initial content. Refer to the descriptions in CANopen Standard. When P3.012.Z = 1, the initial content refers to the preceding table.

- U: error clearing when the limit alarm occurs
 - 0: when the limit alarm (AL014 or AL015) occurs, it needs to be cleared before the servo reverses to move away from the limit.
 - 1: when the limit alarm (AL014 or AL015) occurs, it does not need to be cleared before the servo reverses to move away from the limit.

Note: determine whether the servo has reached the limit with the bit status of OD 6041h Statusword and OD 60FDh Digital inputs.

Positive limit: OD 6041h [Bit 14] is On & OD 60FDh [Bit 1] is On

Negative limit: OD 6041h [Bit 15] is On & OD 60FDh [Bit 0] is On

The status of other bits of OD 6041h (Fault / Warning / Quick stop) remains unchanged when the servo reaches the limit.

O

P3.013 - Reserved	
-------------------	--

P3.018	EtherCAT special function switch	Address: 0324H 0325H		
Default:	0x00002000	Control mode:	EtherCAT	
Unit:	-	Setting range:	0x0000000	0 - 0x01112211
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

А	Source setting for the content loaded to the EtherCAT Station Alias Register 0x0012 after the servo drive is powered on	Х	Unit selection for Target velocity (OD 60FFh) and Velocity actual value (OD 606Ch) when in the PV (Profile Velocity) mode or CSV (Cyclic
			Synchronous Velocity) mode
В	Reserved	Υ	Reserved
С	Unit selection for the maximum speed of OD 607Fh and OD 6080h	Z	AL185 communication disconnection detection setting
D	Reserved	U	Reserved

- X: unit selection for Target velocity (OD 60FFh) and Velocity actual value (OD 606Ch) when in the PV (Profile Velocity) mode or CSV (Cyclic Synchronous Velocity) mode.
 - 0: 0.1 rpm
 - 1: pulse/sec
- Z: AL185 communication disconnection detection setting
 - 0: disconnection detection starts after EtherCAT communication enters OP state.
 - 1: disconnection detection starts after EtherCAT communication enters Init state.
 - 2: disable disconnection detection.

Note: when using the ring topology connection, set P3.018.Z to 2 to disable the disconnection detection.

- A: source setting for the content loaded to the EtherCAT Station Alias Register 0x0012 after the servo drive is powered on.
 - 0: determined by the EtherCAT EEPROM station number field (ADR 0x0004) setting, which needs to be set by the controller.
 - 1: determined by the address set with servo parameter P3.000.
- C: unit selection for the maximum speed of OD 607Fh and OD 6080h
 - 0: 0.1 rpm for OD 607Fh and rpm for OD 6080h.
 - 1: pulse/sec for OD 607Fh and OD 6080h.

P3.019	Statusword display content			Address: 0326H 0327H
Default:	0x00000021	Control mode:	EtherCAT	
Unit:	-	Setting range:	0x0000000	0 - 0x0001FFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Α	Reserved	Х	Reserved
В	Reserved	Υ	Reserved
С	Reserved	Z	Display content of OD 6041h [Bit 14]
D	Reserved	U	Reserved

- Z: display content of OD 6041h [Bit 14]
 - 0: display the positive limit status.
 - 1: display the current synchronization status between the servo drive and controller. When the status displays On, it indicates that the synchronization is complete (SYNC_OK).

P3.022	EtherCAT PDO timeout setting			Address: 032CH 032DH
Default:	0xFF04	Control mode:	EtherCAT	
Unit:	-	Setting range:	0x0002 to 0	xFF14
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

When using the PDO to transmit data periodically, use this parameter to set the timeout setting. The following two sets of digits specify the trigger conditions for AL180 and AL3E3 respectively to ensure that the servo drive receives the PDO. When one of the alarm occurs, it means the allowable duration for packet loss exceeds the set range.

Digit	UZ	YX
Function	AL180 trigger condition	AL3E3 trigger condition
Range	0x00 (disabled) - 0xFF (default)	0x02 - 0x14

- YX: AL3E3 alarm condition (allowable cycle for elapsed time); applicable to CSP / CSV / CST mode. AL3E3 occurs when the servo drive does not receive the PDO within the set cycle.

 When the communication cycle is 4 ms and you set this parameter to 0x02 (allow two cycles), it means if the servo drive does not receive any PDO within 8 ms, AL3E3 occurs.
- UZ: AL180 trigger condition (allowable duration for elapsed time); applicable to all operation modes.

AL180 occurs when the servo drive does not receive the PDO within the set duration (unit: ms). For example, when you set P3.022.UZ to 0x01, the duration is 1 ms; when you set P3.022.UZ to 0x02, the duration is 2 ms; and when you set P3.022.UZ to 0xFF, the duration is 255 ms.

P3.023 -	
P3.038	

Reserved

ASDA-E3 Parameters

P4.xxx Diagnosis parameters

P4.000	Fault record (last)			Address: 0400H 0401H
Default:	0x0000000	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

The last abnormal status record.

Low word (LXXXX): the alarm number.

High word (hYYYY): the error code corresponding to EtherCAT.

For example, when the low word displays AL001, the high word displays the error code of AL001.

P4.001★	Fault record (second to the last)			Address: 0402H 0403H
Default:	0x0000000	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

The second to last abnormal status record.

Refer to the description of high / low word in P4.000.

P4.002★	Fault record (third to the last)			Address: 0404H 0405H
Default:	0x0000000	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

The third to last abnormal status record.

Refer to the description of high / low word in P4.000.

P4.003★	Fault record (fourth to the last)			Address: 0406H 0407H
Default:	0x0000000	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

The fourth to last abnormal status record.

Refer to the description of high / low word in P4.000.

8

P4.004★	Fault record (fifth to the last)			Address: 0408H 0409H
Default:	0x0000000	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

The fifth to last abnormal status record.

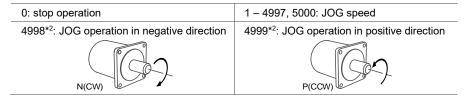
Refer to the description of high / low word in P4.000.

P4.005	Servo motor JOG control			Address: 040AH 040BH
Default:	20	Control mode:	All	
Unit:	rpm	Setting range:	0 - 5000	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

The control methods are as follows:

1. Panel control:


Set the P4.005 JOG speed with the panel and it displays the JOG symbol. Pressing the UP key controls the JOG operation in the positive direction; pressing the DOWN key controls the JOG operation in the negative direction. Release the key to stop the JOG operation. If there is any error in this setting, then the motor cannot operate.

2. DI control:

If you set the DIs to 0x37 (JOGU) and 0x38 (JOGD) (refer to Table 8.1), then the JOG operation in the positive or negative direction is controlled with the DIs.

3. Communication control:

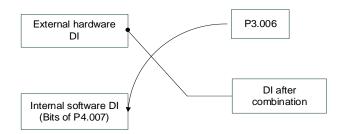
Set the JOG speed (1 - 4997, 5000) for operation to P4.005, and then set P4.005 to 4999 or 4998 for positive or negative direction. To stop the motor operation, set P4.005 to 0.

Note:

- 1. When using communication to write values frequently, set P2.030 to 5.
- 2. When you control the JOG operation with the panel, the operation direction (positive / negative) varies depending on the value of P1.001.Z.
- 3. This function supports the S-curve acceleration / deceleration settings in P1.034 P1.036.
- 4. When P1.001.X = C, JOG operation test is not supported.

7	Į
•	J

P4.006■	Software digital output register (Address: 040CH 040DH		
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0FFF
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			


bit 00: corresponds to DO code = 0x30	bit 08: corresponds to DO code = 0x38
bit 01: corresponds to DO code = 0x31	bit 09: corresponds to DO code = 0x39
bit 02: corresponds to DO code = 0x32	bit 10: corresponds to DO code = 0x3A
bit 03: corresponds to DO code = 0x33	bit 11: corresponds to DO code = 0x3B
bit 04: corresponds to DO code = 0x34	bit 12: corresponds to DO code = 0x3C
bit 05: corresponds to DO code = 0x35	bit 13: corresponds to DO code = 0x3D
bit 06: corresponds to DO code = 0x36	bit 14: corresponds to DO code = 0x3E
bit 07: corresponds to DO code = 0x37	bit 15: corresponds to DO code = 0x3F

If you set P2.018 to 0x0130, then the output of DO1 is the bit 00 status of P4.006, and so forth. Set the DO codes (0x30 - 0x3F) through communication DO, and then write to P4.006.

P4.007■	Multi-function for digital input			Address: 040EH 040FH
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0 0x0000 to 0	0x1FFF (-E) 0x01FF (-L)
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

The source of the DI input signal can be the external hardware terminal or the internal software DI (P4.007), which is determined by P3.006. If the corresponding bit of P3.006 is 1, it means the source is the software DI (P4.007); if the corresponding bit is 0, then the source is the hardware DI. See the following figure:

Read parameter: shows the DI status after combining external DI and software DI.

Write parameter: writes the software DI status. This function is the same whether you use the panel or communication to set the parameter.

For example: if the read value of P4.007 is 0x0011, it means DI1 and DI5 are on after combination; if the value written to P4.007 is 0x0011, it means the software DI1 and DI5 are on. Refer to P2.010 - P2.014 for more information on DI1 - DI5 functional planning.

P4.008★	Input status of servo drive panel (read-only)			Address: 0410H 0411H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Read-only	
Format:	HEX	Data size:	16-bit	
Model:	-E, -L	<u> </u>		

Settings:

Read this parameter through communication and check if the five keys (MODE, UP, DOWN, SHIFT, and SET) can function normally.

P4.009★	Digital output status (read-only)			Address: 0412H 0413H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x003F
Format:	HEX	Data size:	16-bit	
Model:	-E, -L			

Settings:

There is no difference either reading by panel or through communication.

P4.010 ▲ ■	Hardware calibration options			Address: 0414H 0415H
Default:	0	Control mode:	All	
Unit:	-	Setting range:	0 to 14	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

0: reserved	detector (W phase)
1: calibrate the hardware offset of the analog speed input	5: calibrate the hardware offset of options 1 - 4
2: calibrate the hardware offset of the analog torque input	6 - 14: reserved
3: calibrate the hardware offset of the current detector (V phase)	-

Note: the calibration function must be enabled by setting P2.008. When calibration, remove all external wirings for torque input and make sure the servo is in the Off state.

P4.011	Analog speed input 1 - hardware offset calibration			Address: 0416H 0417H
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	13926 to 18	3842
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

Manually calibrate the hardware offset. The function must be enabled by setting P2.008. Do not change the auxiliary calibration as this parameter cannot be reset.

P4.012	Analog speed input 2 - hardware offset calibration			Address: 0418H 0419H
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	13926 to 18	3842
Format:	DEC	Data size:	16-bit	
Model:	-L			

Refer to the description of P4.011.

P4.013	Analog torque input 1 - hardware	Address: 041AH 041BH		
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	13926 to 18	3842
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

Refer to the description of P4.011.

P4.014	Analog torque input 2 - hardware offset calibration		Address: 041CH 041DH	
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	13926 to 18	3842
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

Refer to the description of P4.011.

P4.015	Current detector (V1 phase) - hardware offset calibration			Address: 041EH 041FH
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	13926 to 18	3842
Format:	DEC	Data size:	16-bit	
Model:	-E, -L		·	

Settings:

Refer to the description of P4.011.

P4.016	Current detector (V2 phase) - hardware offset calibration			Address: 0420H 0421H
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	13926 to 18	3842
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P4.011.

P4.017 Current detector (W1 phase) - hardware offset calibration

Default: Factory setting

Unit:
Setting range: 13926 to 18842

Format: DEC

Data size: 16-bit

Model: -E, -L

Settings:

Refer to the description of P4.011.

P4.018	Current detector (W2 phase) - hardware offset calibration			Address: 0424H 0425H
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	13926 to 18	3842
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Refer to the description of P4.011.

P4.019	IGBT NTC calibration level (cannot reset)		Address: 0426H 0427H	
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	1 to 4	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

Cool down the drive to 25°C (77°F) before calibration. The function must be enabled by setting P2.008.

P4.020	Analog monitor output (Ch1) - offset compensation value			Address: 0428H 0429H
Default:	0	Control mode:	All	
Unit:	mV	Setting range:	-800 to +80	0
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

Manually adjust the compensation value for the offset (cannot reset). The function must be enabled by setting P2.008.

P4.021	Analog monitor output (Ch2) - offset compensation value			Address: 042AH 042BH
Default:	0	Control mode:	All	
Unit:	mV	Setting range:	-800 to +80	0
Format:	DEC	Data size:	16-bit	
Model:	-L			

Manually adjust the compensation value for the offset (cannot reset). The function must be enabled by setting P2.008.

P4.022	Analog speed input - offset compensation value			Address: 042CH 042DH
Default:	0	Control mode:	S	
Unit:	mV	Setting range:	-5000 to +5	000
Format:	DEC	Data size:	16-bit	
Model:	-L			

Settings:

Manually adjust the compensation value for the offset.

P4.023	Analog torque input - offset compensation value		Address: 042EH 042FH	
Default:	0	Control mode:	Т	
Unit:	mV	Setting range:	-5000 to +5	000
Format:	DEC	Data size:	16-bit	
Model:	-L		·	

Settings:

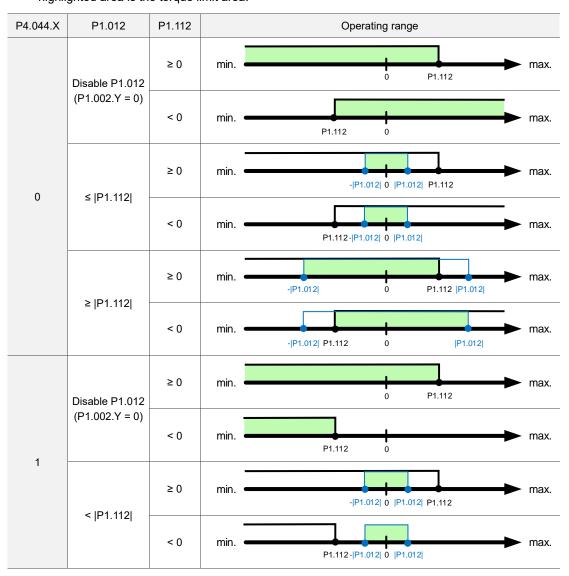
Manually adjust the compensation value for the offset.

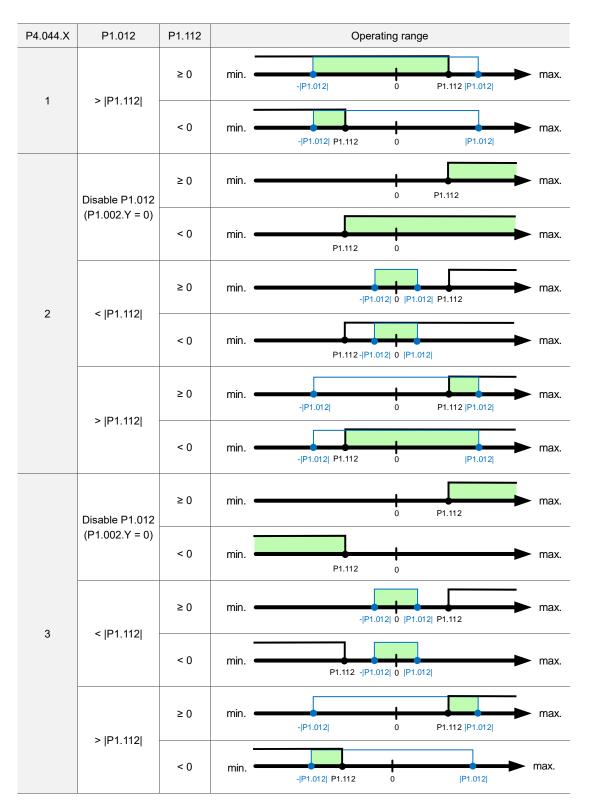
P4.024	Level of undervoltage error			Address: 0430H 0431H
Default:	160	Control mode:	All	
Unit:	V (rms)	Setting range:	140 to 380	
Format:	DEC	Data size:	16-bit	
Model:	-E, -L			

Settings:

When the voltage of the DC Bus is lower than P4.024 x $\sqrt{2}$, the undervoltage alarm (AL003) occurs.

P4.025 - P4.043	Reserved
1 7.075	


P4.044	Special bit register 5			Address: 0458H 0459H
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x0003
Format:	HEX	Data size:	16-bit	
Model:	-E			



Х	Single-direction torque limit setting	Z	Reserved
Υ	Reserved	U	Reserved

X: single-direction torque limit setting

This setting limits the torque of the motor, and is applicable to external analog commands and internal torque limits (P1.012 - P1.014). The following diagrams are illustrated based on P1.012; you can set parameters P1.012 - P1.014 according to the requirements. The light green highlighted area is the torque limit area.

P5.xxx Motion control parameters

P5.000★■	Firmware subversion			Address: 0500H 0501H
Default:	Factory setting	Control mode:	All	
Unit:	-	Setting range:	-	
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

The low word is the subversion of the firmware.

P5.001 - P5.002	Reserved
--------------------	----------

P5.003	Deceleration time for auto-protection			Address: 0506H 0507H
Default:	0xEEEFEEFF	Control mode:	Except PT	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E, -L			

Settings:

	Digit	D	С	В	Α	W	Z	Υ	X
F	unction	STP	PFQS	СТО	OVF	SNL	SPL	NL	PL
	Range	0 - F	0 - F	0 - F	0 - F	0 - F	0 - F	0 - F	0 - F

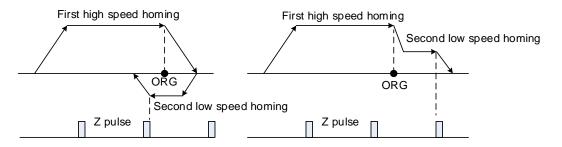
- OVF (DO: 0x12, Position command / feedback overflows), CTO (AL020 Serial communication timeout), SPL, SNL, PL, and NL are auto-protection functions.
- 2. STP is the stop function.
- 3. Use 0 F to index the deceleration time of P5.020 P5.035. For example: if you set P5.003.X to A, then the deceleration time of PL is determined by P5.030.

8

P5.004	Homing methods			Address: 0508H 0509H
Default:	0x0000	Control mode:	PR	
Unit:	-	Setting range:	0x0000 to 0)x012A
Format:	HEX	Data size:	16-bit	
Model:	-E			

Definition of each setting value:

U	Z	Y	X
Reserved	Limit setting	Z pulse setting	Homing method
	0 to 1	0 to 2	0 to A
			X = 0: homing in forward direction and define the positive limit as the homing origin
	Y = 0: reverse to Z pulse		X = 1: homing in reverse direction and define the negative limit as the homing origin
		Y = 1: go forward to Z pulse Y = 2: do not look for Z pulse	X = 2: homing in forward direction, ORG: OFF→ON as the homing origin
			X = 3: homing in reverse direction with ORG (when it switches from off to on state) as the homing origin
	- When reaching the limit:		X = 4: look for Z pulse in forward direction and define it as the homing origin
Z = 0: show error Z = 1: reverse direction	Z = 0: show error	-	X = 5: look for the Z pulse in reverse direction define it as the homing origin
		Y = 0: reverse to Z pulse Y = 1: go forward to Z pulse	X = 6: homing in forward direction with the ORG (when it switches from on to off state) as the homing origin
		Y = 2: do not look for Z pulse	X = 7: homing in reverse direction with ORG (when it switches from on to off state) as the homing origin
	-	-	X = 8: define current position as the origin
	When reaching the limit: Z = 0: show error	Y = 0: reverse to Z pulse	X = 9: torque homing in forward direction
	Z = 1: reverse direction	Y = 2: do not look for Z pulse	X = A: torque homing in reverse direction


8

8

P5.005	High speed homing (first speed setting)				Address: 050AH 050BH
Operation interface:	Panel / software	Communication	Control mode:	PR (set with	n P5.004)
Default:	100.0	1000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.1 to 2000.0	1 to 20000	-	-	
Format:	DEC	DEC	-	-	
Example:	1.5 = 1.5 rpm	15 = 1.5 rpm	-	-	
Model:	-E				

Settings:

The first speed setting for high speed homing.

P5.006	Low speed hon	Low speed homing (second speed setting)				
Operation interface:	Panel / software	Communication	Control mode:	PR (set with	n P5.004)	
Default:	20.0	200	Data size:	32-bit		
Unit:	1 rpm	0.1 rpm	-	-		
Setting range:	0.1 to 500.0	1 to 5000	-	-		
Format:	DEC	DEC	-	-		
Example:	1.5 = 1.5 rpm	15 = 1.5 rpm	-	-		
Model:	-E			·		

Settings:

The second speed setting for low speed homing.

P5.007∎	Trigger Position command (PR mode only)			Address: 050EH 050FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	0 to 1000	
Format:	DEC	Data size:	16-bit	
Model:	-E			

- Set P5.007 to 0 to start homing.
- Set P5.007 to 1 99 to execute the specified PR procedure, which is the same as using DI.CTRG
 + POSn. You cannot set P5.007 to 100 999 as the value exceeds the valid range.

Example: if you want to trigger PR#2

Method 1	Trigger by DI: Register Position command selection 1 - 99 Bit 1 (DI: 0x12) + Command triggered (DI: 0x08)
Method 2	Trigger by P5.007: Set P5.007 to 2 to start executing PR#2

- Set P5.007 to 1000 to execute the stop command which is the same as DI.STP.
- When reading P5.007, if the command is incomplete and DO.TPOS is off (the motor does not reach the target position), the drive reads the current command (1 99).

If the command is complete, the drive reads the current command +10000.

If the command is complete and DO.TPOS is on (the motor reaches the target position), the drive reads the current command +20000. Commands triggered by DI are also applicable.

Example:

If the value read is 3, it means PR#3 is being executed and not yet complete.

If the value read is 10003, it means PR#3 is complete, but the motor has not reached the target position yet.

If the value read is 20003, it means PR#3 is complete and the motor reached the target position.

P5.008	Positive software limit			Address: 0510H 0511H
Default:	2147483647	Control mode:	PR	
Unit:	PUU	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

In PR mode, if the motor moves in the positive direction and its feedback position exceeds the value of P5.008, AL283 occurs.

8

 P5.009
 Negative software limit
 Address: 0512H 0513H

 Default: -2147483648
 Control mode: PR

 Unit: PUU
 Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E

Settings:

In PR mode, if the motor moves in the negative direction and its feedback position exceeds the value of P5.009, AL285 occurs.

P5.010★■	Data array: data size			Address: 0514H 0515H
Default:	-	Control mode:	All	
Unit:	-	Setting range:	Read-only	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The total data size is N x 32 bits, where N indicates the number of data sets returned to the data array.

P5.011∎	Data array: address for reading a	Address: 0516H 0517H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	0 to (value	set by P5.010 minus 1)
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Specify the address to read or write the data array. Refer to Chapter 7 for detailed instructions.

P5.012∎	Data array: window #1 for reading	Address: 0518H 0519H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Window #1: when read with the panel, the value set by P5.011 does not add 1, but when read or written by other methods, it adds 1. Refer to Section 7.1.7 Data array for detailed instructions.

P5.013∎	Data array: window #2 for reading	Address: 051AH 051BH		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Window #2: when read with the panel or read and written through communication, the value set by P5.011 adds 1, but this parameter is not writable with the panel. Refer to Section 7.1.7 Data array for detailed instructions.

P5.014 Reserved

P5.015∎	PATH 1 - PATH 2 volatile setting			Address: 051EH 051FH
Default:	0x0000	Control mode:	PR	
Unit:	-	Setting range:	0x0000 to 0	x0011
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

This parameter allows you to write data to the target continuously through communication.

Χ	PATH 1 volatile setting	Z	Reserved
Υ	PATH 2 volatile setting	U	Reserved

- X: PATH 1 volatile setting
 - 0: non-volatile
 - 1: volatile
- Y: PATH 2 volatile setting
 - 0: non-volatile
 - 1: volatile

 P5.016■
 Axis position - main encoder
 Address: 0520H 0521H

 Default: 0
 Control mode: All

 Unit: PUU
 Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E, -L

Settings:

Read: feedback position of the main encoder, which is the monitoring variable 000 (00h) + offset value (value written in P5.016).

Write: writing any value to the parameter neither changes the monitoring variable 000 (00h) nor affects the positioning system. It adjusts the offset value only for easier observation.

P5.017 Reserved	P5.017
-----------------	--------

P5.018	Axis position - pulse command			Address: 0524H 0525H
Default:	0	Control mode:	All	
Unit:	pulse	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E, -L			

Settings:

Pulse count from the pulse command.

P5.019	Reserved		
P5.019	Reserveu		

P5.020	.020 Acceleration / deceleration time #0			Address: 0528H 0529H
Default:	200	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode, which is the time duration required for the motor to accelerate from 0 to 3,000 rpm or decelerate from 3,000 rpm to 0.

P5.021	Acceleration / deceleration time #1			Address: 052AH 052BH
Default:	300	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

Parameters

P5.022	P5.022 Acceleration / deceleration time #2			Address: 052CH 052DH
Default:	500	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.023	P5.023 Acceleration / deceleration time #3			Address: 052EH 052FH
Default:	600	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.024	Acceleration / deceleration time #4			Address: 0530H 0531H
Default:	800	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E	•		

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.025	Acceleration / deceleration time #5			Address: 0532H 0533H
Default:	900	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.026	Acceleration / deceleration time #6			Address: 0534H 0535H
Default:	1000	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

3

P5.027	Acceleration / deceleration time #7			Address: 0536H 0537H
Default:	1200	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.028	Acceleration / deceleration time #8			Address: 0538H 0539H
Default:	1500	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.029	Acceleration / deceleration time #9			Address: 053AH 053BH
Default:	2000	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.030	Acceleration / deceleration time #10			Address: 053CH 053DH
Default:	2500	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.031	Acceleration / deceleration time #11		Address: 053EH 053FH	
Default:	3000	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

)

P5.032	Acceleration / deceleration time #12		Address: 0540H 0541H	
Default:	5000	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.033	Acceleration / deceleration time #13			Address: 0542H 0543H
Default:	8000	Control mode:	PR	
Unit:	ms	Setting range:	1 to 65500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The time setting for acceleration or deceleration in PR mode. Refer to P5.020 for details.

P5.034	Acceleration / deceleration time #14		Address: 0544H 0545H	
Default:	50	Control mode:	PR	
Unit:	ms	Setting range:	1 to 1500	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The deceleration time setting for auto-protection. The default value is small for faster deceleration.

P5.035	Acceleration / deceleration time #15		Address: 0546H 0547H	
Default:	30	Control mode:	PR	
Unit:	ms	Setting range:	1 to 1200	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

The deceleration time setting for auto-protection. The default value is small for faster deceleration.

P5.036 - P5.039	Reserved
. 5.005	

P5.040

Delay time #0 after position reached

Control mode: PR

Unit: ms

Setting range: 0 to 32767

Format: DEC

Data size: 16-bit

Settings:

There are 16 sets of delay time (#0 - 15) in PR mode. This parameter is the delay time #0 in PR mode.

P5.041	Delay time #1 after position reached			Address: 0552H 0553H
Default:	100	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #1 in PR mode.

P5.042	Delay time #2 after position reached			Address: 0554H 0555H
Default:	200	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #2 in PR mode.

P5.043	043 Delay time #3 after position reached			Address: 0556H 0557H
Default:	400	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #3 in PR mode.

P5.044	Delay time #4 after position reached			Address: 0558H 0559H
Default:	500	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #4 in PR mode.

P5.045	Delay time #5 after position reached			Address: 055AH 055BH
Default:	800	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E	·		

Delay time #5 in PR mode.

P5.046	P5.046 Delay time #6 after position reached			Address: 055CH 055DH
Default:	1000	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #6 in PR mode.

P5.047	P5.047 Delay time #7 after position reached			Address: 055EH 055FH
Default:	1500	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #7 in PR mode.

P5.048	P5.048 Delay time #8 after position reached			Address: 0560H 0561H
Default:	2000	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #8 in PR mode.

P5.049	Delay time #9 after position reached			Address: 0562H 0563H
Default:	2500	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #9 in PR mode.

8

P5.050

Delay time #10 after position reached

Default: 3000

Control mode: PR

Unit: ms

Setting range: 0 to 32767

Format: DEC

Data size: 16-bit

Settings:

Delay time #10 in PR mode.

P5.051	Delay time #11 after position reached			Address: 0566H 0567H
Default:	3500	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #11 in PR mode.

P5.052	Delay time #12 after position reached			Address: 0568H 0569H
Default:	4000	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #12 in PR mode.

P5.053	3 Delay time #13 after position reached			Address: 056AH 056BH
Default:	4500	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #13 in PR mode.

P5.054	Delay time #14 after position read	Address: 056CH 056DH		
Default:	5000	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Settings:

Delay time #14 in PR mode.

P5.055	Delay time #15 after position read	Address: 056EH 056FH		
Default:	5500	Control mode:	PR	
Unit:	ms	Setting range:	0 to 32767	
Format:	DEC	Data size:	16-bit	
Model:	-E			

Delay time #15 in PR mode.

P5.056 - P5.059

P5.060	Target speed so	Address: 0578H 0579H			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	20.0	200	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #0 of PR mode.

P5.061	Target speed se	Address: 057AH 057BH			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	50.0	500	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	_	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #1 of PR mode.

8

8

P5.062	Target speed se	Address: 057CH 057DH			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	100.0	1000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	_	
Setting range:	0.0 to 7500.0	0 to 75000	-	_	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #2 of PR mode.

P5.063	Target speed so	Address: 057EH 057FH			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	200.0	2000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	_	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #3 of PR mode.

P5.064	Target speed so	Address: 0580H 0581H			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	300.0	3000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #4 of PR mode.

P5.065	Target speed se	Address: 0582H 0583H			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	500.0	5000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Target speed #5 of PR mode.

P5.066	Target speed se	Address: 0584H 0585H			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	600.0	6000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #6 of PR mode.

P5.067	Target speed so	Address: 0586H 0587H			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	800.0	8000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #7 of PR mode.

8

8

P5.068	Target speed se	Address: 0588H 0589H			
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	1000.0	10000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #8 of PR mode.

P5.069	Target speed setting #9				Address: 058AH 058BH
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	1300.0	13000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	_	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #9 of PR mode.

P5.070	Target speed setting #10				Address: 058CH 058DH
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	1500.0	15000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	_	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #10 of PR mode.

P5.071	Target speed setting #11				Address: 058EH 058FH
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	1800.0	18000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Target speed #11 of PR mode.

P5.072	Target speed setting #12			Address: 0590H 0591H	
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	2000.0	20000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #12 of PR mode.

P5.073	Target speed setting #13				Address: 0592H 0593H
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	2300.0	23000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E	·		·	·

Settings:

Target speed #13 of PR mode.

8

8

P5.074	Target speed setting #14				Address: 0594H 0595H
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	2500.0	25000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #14 of PR mode.

P5.075	Target speed setting #15			Address: 0596H 0597H	
Operation interface:	Panel / software	Communication	Control mode:	PR	
Default:	3000.0	30000	Data size:	32-bit	
Unit:	1 rpm	0.1 rpm	-	-	
Setting range:	0.0 to 7500.0	0 to 75000	-	-	
Format:	DEC	DEC	-	-	
Example:	15 = 15 rpm	150 = 15 rpm	-	-	
Model:	-E				

Settings:

Target speed #15 of PR mode.

P5.076 - P5.092	Reserved
--------------------	----------

P5.093	Motion control macro command: command parameter #4			Address: 05BAH 05BBH
Default:	0x0000000	Control mode:	All	
Unit:	-	Setting range:	0x0000000	0 to 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Before issuing the macro command, set the relevant parameters in advance. The function of the parameter is determined by the macro command code. Not every macro command requires this parameter.

)

P5.094	Motion control macro command: command parameter #3			Address: 05BCH 05BDH
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Refer to P5.093 for details.

P5.095	Motion control macro command:	Address: 05BEH 05BFH		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to P5.093 for details.

P5.096	Motion control macro command:	Address: 05C0H 05C1H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to P5.093 for details.

P5.097 ■	Motion control macro command: execution result	Address: 05C2H 05C3H		
Default:	0x0000	Control mode:	All	
Unit:	-	Setting range:	0x0000 to 0)x099F
Format:	HEX	Data size:	16-bit	
Model:	-E			

Settings:

Write to this parameter to issue a macro command; read this parameter to examine the execution result of a macro command.

When you write the command code 0x0003 to this parameter, 0x1003 is returned if successful; and 0xF03X if unsuccessful (depending on the command description). If you issue a command that is not supported, the failure code 0xF001 is returned.

The command codes are listed in the following tables:

	Parameter and data array protection: password setting, protection activation
Command code 0x0003	This function can only be executed prior to activating the parameter protection function. When the protection function is activated, the failure code is returned if this function is executed repeatedly.
Macro parameters	P5.093 = parameter write protection 0: disabled 1: enabled P5.094 = read protection range of parameter and data array (-1 to 8) -1: parameter groups 5, 6, 7 and data array are readable 0: parameter groups 5, 6, 7 and data array are unreadable 1: parameter groups 5, 6, 7 and data array #100 - 799 are unreadable 2: parameter groups 5, 6, 7 and data array #200 - 799 are unreadable 3: parameter groups 5, 6, 7 and data array #300 - 799 are unreadable 4: parameter groups 5, 6, 7 and data array #400 - 799 are unreadable 5: parameter groups 5, 6, 7 and data array #500 - 799 are unreadable 6: parameter groups 5, 6, 7 and data array #600 - 799 are unreadable 7: parameter groups 5, 6, 7 are unreadable, but data array is readable 8: all parameter groups (P0 - P7) are unreadable (only supported by E3-E) P5.095 = set new password (1 - 16777215) P5.096 = confirm new password (1 - 16777215)
	Success code 0x1003
Read the return value of	Failure code
P5.097 after executing the macro	0xF031: protection function is activated and cannot be set repeatedly
	0xF032: wrong password setting; P5.095 does not equal P5.096
	0xF033: password value exceeds the allowable range (1 - 16777215)
	0xF034: protection range P5.094 exceeds the allowable range (-1 to 8)
	0xF035: protection level P5.093 exceeds the allowable range (0 - 1)

	Parameter and data array protection: unlock protection			
Command code 0x0004	This function can only be executed when the protection function is activated. When the protection function is unlocked, the failure code is returned if this function is executed repeatedly. If the wrong password is entered, failure code 0xEnnn is returned. nnn indicates the remaining attempts to enter the password. The number decrements by 1 after each failed attempt. When the number displays 0, it indicates the maximum number of failed password attempts has been reached and this function is disabled. You can only reset all parameters (P2.008 = 10) to unlock.			
Macro parameter	P5.096 = enter password (1 - 16777215)			
	Success code			
	0x1004			
	Failure code			
	0xF041: protection function is unlocked and cannot be unlocked repeatedly			
Read the return value	0xF043: password value exceeds the allowable range (1 - 16777215)			
of P5.097 after executing the macro	0xF044: the maximum number of failed password attempts has been reached and it is locked. You can only unlock by resetting the parameters (P2.008 = 10), but this also resets all parameters to the default values.			
	0xEnnn: incorrect password setting; failed to unlock			
	nnn: remaining attempts to enter the password. The number decrements by 1 after each failed attempt. When the number displays 0, the function is disabled and does not allow further attempts.			

)

P5.098	PR number triggered by event ris	Address: 05C4H 05C5H			
Default:	0x0000	Control mode:	PR		
Unit:	-	Setting range:	0x0000 to 0	XDDDD	
Format:	HEX	Data size:	16-bit		
Model:	-E				

Х	The action when PR is EV1 rising-edge triggered	Z	The action when PR is EV3 rising-edge triggered
Υ	The action when PR is EV2 rising-edge triggered	U	The action when PR is EV4 rising-edge triggered

■ X: the action when EV1 is on

0: no action

1 - D: execute PR#51 - 63

■ Y: the action when EV2 is on

0: no action

1 - D: execute PR#51 - 63

■ Z: the action when EV3 is on

0: no action

1 - D: execute PR#51 - 63

■ U: the action when EV4 is on

0: no action

1 - D: execute PR#51 - 63

P5.099	PR number triggered by event fal	Address: 05C6H 05C7H			
Default:	0x0000	Control mode:	PR		
Unit:	-	Setting range:	0x0000 to 0)xDDDD	
Format:	HEX	Data size:	16-bit		
Model:	-E				

Х	The action when PR is EV1 falling-edge triggered	Z	The action when PR is EV3 falling-edge triggered
Υ	The action when PR is EV2 falling-edge triggered	U	The action when PR is EV4 falling-edge triggered

■ X: the action when EV1 is off

0: no action

1 - D: execute PR#51 - 63

■ Y: the action when EV2 is off

0: no action

1 - D: execute PR#51 - 63

■ Z: the action when EV3 is off

0: no action

1 - D: execute PR#51 - 63

■ U: the action when EV4 is off

0: no action

1 - D: execute PR#51 - 63

P5.100 ■	Data array: window #3 for rea	Address: 05C8H 05C9H		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-2147483648 to	o +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Window #3: when read or written by any method, the value set by P5.011 does not add 1.

Refer to Section 7.1.7 Data array for detailed instructions.

array: window #4 for reading and writing			Address: 05CAH 05CBH
	Control mode:	All	
	Setting range:	-214748364	18 to +2147483647
	Data size:	32-bit	

P5.101■

Default: 0
Unit: Format: DEC
Model: -E

Data a

Window #4: when read or written by any method, the value set by P5.011 does not add 1.

Refer to Section 7.1.7 Data array for detailed instructions.

P5.102∎	Data array: window #5 for reading	Address: 05CCH 05CDH		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Window #5: when read or written by any method, the value set by P5.011 does not add 1.

Refer to Section 7.1.7 Data array for detailed instructions.

P5.103∎	Data array: window #6 for reading	Address: 05CEH 05CFH		
Default:	0	Control mode:	All	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E	·	·	·

Settings:

Window #6: when read or written by any method, the value set by P5.011 does not add 1.

Refer to Section 7.1.7 Data array for detailed instructions.

8

Parameters

P6.xxx PR parameters

The -L model does not support the PR mode and thus cannot use the P6.xxx or P7.xxx parameters.

P6.000	Homing definition			Address: 0600H 0601H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFF6F
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Α	DEC2: deceleration time selection for second homing	YX	PATH: path type
В	DLY: select 0 - F for delay time	Z	ACC: select 0 - F for acceleration time
С	Reserved	U	DEC1: deceleration time selection for first homing
D	BOOT: whether to execute homing automatically when the drive is powered on	-	-

■ YX: PATH: path type

0x00: Stop: the servo stops after homing is complete

0x01 - 0x63: Auto: the servo executes the specified path (PR#1 – PR#99) after homing is complete

■ Z: ACC: select 0 - F for acceleration time

0 - F: correspond to P5.020 - P5.035

U: DEC1: deceleration time selection for first homing

0 - F: correspond to P5.020 - P5.035

A: DEC2: deceleration time selection for second homing

0 - F: correspond to P5.020 - P5.035

B: DLY: select 0 - F for delay time

0 - F: correspond to P5.040 - P5.055

■ D: BOOT: whether to execute homing automatically when the drive is powered on

0: do not execute homing

1: execute homing automatically (servo switches to on for the first time after power is applied)

Apart from the preceding definitions, the related settings for homing also include:

1. P5.004: homing methods.

2. P5.005 - P5.006: speed settings for homing.

3. P6.001: the origin definition (ORG_DEF) is the position of the origin and may not be 0. This function is used as a traversal of the position system.

Note:

1. After finding the origin (sensor or Z), the servo has to decelerate to a stop. The stop position exceeds the origin by a short distance:

If returning to the origin is not needed, set PATH to 0x00.

If returning to the origin is needed, set PATH to 0x01 - 0x63 and set the route as PABS = 0. Example:

When P6.000 = 0x0001, the servo automatically executes PR#1 after homing is complete. Set the route of PR#1 (setting P6.002 & P6.003) as moving to the absolute position of 0.

 If the origin (sensor or Z) is found and you want the servo to move an offset S and define the position after moving as P, then set PATH to 0x01 - 0x63 and set ORG_DEF to P minus S, and this absolute Position command = P.

P6.001	Origin definition			Address: 0602H 0603H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Origin definition.

P6.002	PATH 1 definition			Address: 0604H 0605H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Α	SPD, Target speed ^{Note}	Х	TYPE, Path type
В	DLY, Delay time	Υ	OPT, Option
С	AUTO ^{Note}	Z	ACC, Acceleration time ^{Note}
D	Reserved	U	DEC, Deceleration time ^{Note}

Definitions are as follows:

■ YX

-				
	Y: OP	T, Option		X: TYPE, Path type
Bit 3	Bit 2	Bit 1	Bit 0	7. TTFL, Faultype
-	UNIT	AUTO	INS	1: SPEED, constant speed control.
				2: SINGLE, positioning control. It stops when finished.
CMD		OVLP INS		3: AUTO, positioning control. It automatically loads the next path when finished.
-	-	-	INS	7: JUMP, jump to the specified path.
-	ROM	AUTO	INS	8: WRITE, write specified parameter to specified path.
D	IR	OVLP	INS	A: INDEX, rotary axis position control.

TYPE (path type): when 1, 2, or 3 is executed, the motor operation can be interrupted and stopped by DI.STP and software limits.

INS: interrupts the previous path when the current path is executed.

8

OVLP: allow overlapping of the next path. Overlapping is not allowed in Speed mode. When you set an Overlap function in Position mode, DLY has no function.

AUTO: once current PR path is finished, automatically load the next path.

CMD, DIR, ROM, and UNIT: refer to Section 7.1.3 Motion Control commands.

■ UZ

U: DEC, Deceleration time	Z: ACC, Acceleration time	Corresponding parameter	Default value (ms)
0	0	P5.020	200
1	1	P5.021	300
2	2	P5.022	500
3	3	P5.023	600
4	4	P5.024	800
5	5	P5.025	900
6	6	P5.026	1000
7	7	P5.027	1200
8	8	P5.028	1500
9	9	P5.029	2000
10	10	P5.030	2500
11	11	P5.031	3000
12	12	P5.032	5000
13	13	P5.033	8000
14	14	P5.034	50
15	15	P5.035	30

■ A: SPD, target speed

Α	Corresponding parameter	Default value (ms)
0	P5.060	20
1	P5.061	50
2	P5.062	100
3	P5.063	200
4	P5.064	300
5	P5.065	500
6	P5.066	600
7	P5.067	800
8	P5.068	1000
9	P5.069	1300
10	P5.070	1500
11	P5.071	1800
12	P5.072	2000
13	P5.073	2300
14	P5.074	2500
15	P5.075	3000

■ B: DLY, delay time

В	Corresponding parameter	Default value (ms)
0	P5.040	0
1	P5.041	100
2	P5.042	200
3	P5.043	400
4	P5.044	500
5	P5.045	800
6	P5.046	1000
7	P5.047	1500
8	P5.048	2000
9	P5.049	2500
10	P5.050	3000
11	P5.051	3500
12	P5.052	4000
13	P5.053	4500
14	P5.054	5000
15	P5.055	5500

■ C: AUTO: once current PR path is finished, automatically load the next path.

This function is enabled only when P6.002.X = A (rotary axis position control).

Description of each bit:

Bit	Function	Description
Bit 0 - Bit 1	Reserved	-
Bit 2	AUTO	0: disable auto function 1: once current PR path is finished, automatically load the next path

Note: the parameter format definition [C, A, U, Z] is different from the preceding table when P6.002.X = 8 (write specified parameter to specified path). Refer to Chapter 7 for detailed instructions.

P6.003	PATH 1 data			Address: 0606H 0607H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

P6.002 defines the property of the target point and P6.003 defines the target position of P6.002 or the target path for the Jump command.

P6.004	PATH 2 definition			Address: 0608H 0609H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

 P6.005
 PATH 2 data
 Address: 060AH 060BH

 Default: 0
 Control mode: PR

 Unit: Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E
 -E

Settings:

Refer to the description of P6.003.

P6.006	PATH 3 definition			Address: 060CH 060DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.007	PATH 3 data			Address: 060EH 060FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.008	PATH 4 definition			Address: 0610H 0611H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.009	PATH 4 data			Address: 0612H 0613H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

P6.010	PATH 5 definition			Address: 0614H 0615H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Refer to the description of P6.002.

P6.011	PATH 5 data			Address: 0616H 0617H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.012	PATH 6 definition			Address: 0618H 0619H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.013	PATH 6 data			Address: 061AH 061BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.014	PATH 7 definition			Address: 061CH 061DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

Ö

 P6.015
 PATH 7 data
 Address: 061EH 061FH

 Default: 0
 Control mode: PR

 Unit: Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E
 -E

Settings:

Refer to the description of P6.003.

P6.016	PATH 8 definition			Address: 0620H 0621H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.017	PATH 8 data			Address: 0622H 0623H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.018	PATH 9 definition			Address: 0624H 0625H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x00000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.019	PATH 9 data			Address: 0626H 0627H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P6.020	PATH 10 definition			Address: 0628H 0629H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.021	PATH 10 data			Address: 062AH 062BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.022	PATH 11 definition			Address: 062CH 062DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.023	PATH 11 data			Address: 062EH 062FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.024	PATH 12 definition			Address: 0630H 0631H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

 P6.025
 PATH 12 data
 Address: 0632H 0633H

 Default: 0
 Control mode: PR

 Unit: Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E
 Data size: 32-bit

Settings:

Refer to the description of P6.003.

P6.026	PATH 13 definition			Address: 0634H 0635H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.027	PATH 13 data			Address: 0636H 0637H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.003.

P6.028	PATH 14 definition			Address: 0638H 0639H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.029	PATH 14 data			Address: 063AH 063BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

P6.030	PATH 15 definition			Address: 063CH 063DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E	·	·	

Refer to the description of P6.002.

P6.031	PATH 15 data			Address: 063EH 063FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.032	PATH 16 definition			Address: 0640H 0641H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.033	PATH 16 data			Address: 0642H 0643H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.034	PATH 17 definition			Address: 0644H 0645H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

O

 P6.035
 PATH 17 data
 Address: 0646H 0647H

 Default: 0
 Control mode: PR

 Unit: Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E

Settings:

Refer to the description of P6.003.

P6.036	PATH 18 definition			Address: 0648H 0649H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.037	PATH 18 data			Address: 064AH 064BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.038	PATH 19 definition			Address: 064CH 064DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.039	PATH 19 data			Address: 064EH 064FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P6.040	PATH 20 definition			Address: 0650H 0651H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.041	PATH 20 data			Address: 0652H 0653H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.042	PATH 21 definition			Address: 0654H 0655H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.043	PATH 21 data			Address: 0656H 0657H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.044	PATH 22 definition			Address: 0658H 0659H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

8-161

 P6.045
 PATH 22 data
 Address: 065AH 065BH

 Default: 0
 Control mode: PR

 Unit: Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E
 Data size: 32-bit

Settings:

Refer to the description of P6.003.

P6.046	PATH 23 definition			Address: 065CH 065DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.002.

P6.047	PATH 23 data			Address: 065EH 065FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.003.

P6.048	PATH 24 definition			Address: 0660H 0661H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.049	PATH 24 data			Address: 0662H 0663H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P6.050	PATH 25 definition			Address: 0664H 0665H
Default:	0x00000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.051	PATH 25 data			Address: 0666H 0667H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.052	PATH 26 definition			Address: 0668H 0669H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.053	PATH 26 data			Address: 066AH 066BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.054	PATH 27 definition			Address: 066CH 066DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

2

P6.055	PATH 27 data			Address: 066EH 066FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.056	PATH 28 definition			Address: 0670H 0671H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.057	PATH 28 data			Address: 0672H 0673H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.003.

P6.058	PATH 29 definition			Address: 0674H 0675H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.059	PATH 29 data			Address: 0676H 0677H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

P6.060	PATH 30 definition			Address: 0678H 0679H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Refer to the description of P6.002.

P6.061	PATH 30 data			Address: 067AH 067BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.062	PATH 31 definition			Address: 067CH 067DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x00000000) - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.063	PATH 31 data			Address: 067EH 067FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.064	PATH 32 definition			Address: 0680H 0681H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

8

 P6.065
 PATH 32 data
 Address: 0682H 0683H

 Default: 0
 Control mode: PR

 Unit: Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E
 -E

Settings:

Refer to the description of P6.003.

P6.066	PATH 33 definition			Address: 0684H 0685H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.067	PATH 33 data			Address: 0686H 0687H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.068	PATH 34 definition			Address: 0688H 0689H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.069	PATH 34 data			Address: 068AH 068BH
Default:	0	Control mode:	PR	
Unit:	•	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P6.070	PATH 35 definition			Address: 068CH 068CH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.071	PATH 35 data			Address: 068EH 068FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.072	PATH 36 definition			Address: 0690H 0691H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.073	PATH 36 data			Address: 0692H 0693H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.074	PATH 37 definition			Address: 0694H 0695H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

 P6.075
 PATH 37 data
 Address: 0696H 0697H

 Default: 0
 Control mode: PR

 Unit: Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E
 Data size: 32-bit

Settings:

Refer to the description of P6.003.

P6.076	PATH 38 definition			Address: 0698H 0699H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.077	PATH 38 data			Address: 069AH 069BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.003.

P6.078	PATH 39 definition			Address: 069CH 069DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.079	PATH 39 data			Address: 069EH 069FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

P6.080	PATH 40 definition			Address: 06A0H 06A1H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Refer to the description of P6.002.

P6.081	PATH 40 data			Address: 06A2H 06A3H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.082	PATH 41 definition			Address: 06A4H 06A5H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.083	PATH 41 data			Address: 06A6H 06A7H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.084	PATH 42 definition			Address: 06A8H 06A9H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

8

Control mode: PR

Data size: 32-bit

Setting range: -2147483648 to +2147483647

Address: 06AAH

06ABH

Default: 0
Unit: Format: DEC
Model: -E

PATH 42 data

Settings:

P6.085

Refer to the description of P6.003.

P6.086	PATH 43 definition			Address: 06ACH 06ADH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.087	PATH 43 data			Address: 06AEH 06AFH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.088	PATH 44 definition			Address: 06B0H 06B1H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.089	PATH 44 data			Address: 06B2H 06B3H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

P6.090	PATH 45 definition			Address: 06B4H 06B5H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Refer to the description of P6.002.

P6.091	PATH 45 data			Address: 06B6H 06B7H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.092	PATH 46 definition			Address: 06B8H 06B9H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.093	PATH 46 data			Address: 06BAH 06BBH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.094	PATH 47 definition			Address: 06BCH 06BDH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

O

 P6.095
 PATH 47 data
 Address: 06BEH 06BFH

 Default: 0
 Control mode: PR

 Unit: Setting range: -2147483648 to +2147483647

 Format: DEC
 Data size: 32-bit

 Model: -E
 -E

Settings:

Refer to the description of P6.003.

P6.096	PATH 48 definition			Address: 06C0H 06C1H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.097	PATH 48 data			Address: 06C2H 06C3H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P6.098	PATH 49 definition			Address: 06C4H 06C5H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P6.099	PATH 49 data			Address: 0602H 0603H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

P7.xxx PR parameters

The -L model does not support the PR mode and thus cannot use the P6.xxx or P7.xxx parameters.

 P7.000
 PATH 50 definition
 Address: 0700H 0701H

 Default:
 0x00000000
 Control mode:
 PR

 Unit:
 Setting range:
 0x00000000 - 0xFFFFFFF

 Format:
 HEX
 Data size:
 32-bit

 Model:
 -E

Settings:

Refer to the description of P6.002.

P7.001	PATH 50 data			Address: 0702H 0703H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.002	PATH 51 definition			Address: 0704H 0705H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.003	PATH 51 data			Address: 0706H 0707H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

8

P7.004	PATH 52 definition			Address: 0708H 0709H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.005	PATH 52 data			Address: 070AH 070BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.006	PATH 53 definition			Address: 070CH 070DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.002.

P7.007	PATH 53 data			Address: 070EH 070FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.008	PATH 54 definition			Address: 0710H 0711H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P7.009	PATH 54 data			Address: 0712H 0713H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.010	PATH 55 definition			Address: 0714H 0715H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.011	PATH 55 data			Address: 0716H 0717H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.012	PATH 56 definition			Address: 0718H 0719H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.013	PATH 56 data			Address: 071AH 071BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

 P7.014
 PATH 57 definition
 Address: 071CH 071DH

 Default: 0x00000000
 Control mode: PR

 Unit: Setting range: 0x00000000 - 0xFFFFFFF

 Format: HEX
 Data size: 32-bit

 Model: -E
 -E

Settings:

Refer to the description of P6.002.

P7.015	PATH 57 data			Address: 071EH 071FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.016	PATH 58 definition			Address: 0720H 0721H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.017	PATH 58 data			Address: 0722H 0723H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.018	PATH 59 definition			Address: 0724H 0725H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P7.019	PATH 59 data			Address: 0726H 0727H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.020	PATH 60 definition			Address: 0728H 0729H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.021	PATH 60 data			Address: 072AH 072BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.022	PATH 61 definition			Address: 072CH 072DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.023	PATH 61 data			Address: 072EH 072FH
Default:	0	Control mode:	PR	
Unit:	•	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

 P7.024
 PATH 62 definition
 Address: 0730H 0731H

 Default: 0x00000000
 Control mode: PR

 Unit: Setting range: 0x00000000 - 0xFFFFFFF

 Format: HEX
 Data size: 32-bit

 Model: -E
 -E

Settings:

Refer to the description of P6.002.

P7.025	PATH 62 data			Address: 0732H 0733H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.026	PATH 63 definition			Address: 0734H 0735H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.027	PATH 63 data			Address: 0736H 0737H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.028	PATH 64 definition			Address: 0738H 0739H
Default:	0x0000000	Control mode:	PR	
Unit:	•	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

P7.029	PATH 64 data			Address: 073AH 073BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E	·	·	

Settings:

Refer to the description of P6.003.

P7.030	PATH 65 definition			Address: 073CH 073DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.002.

P7.031	PATH 65 data			Address: 073EH 073FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.032	PATH 66 definition			Address: 0740H 0741H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.033	PATH 66 data			Address: 0742H 0743H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

3

P7.034	PATH 67 definition			Address: 0744H 0745H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.035	PATH 67 data			Address: 0746H 0747H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.036	PATH 68 definition			Address: 0748H 0749H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.037	PATH 68 data			Address: 074AH 074BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.038	PATH 69 definition			Address: 074CH 074DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

P7.039	PATH 69 data			Address: 074EH 074FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E		·	

Settings:

Refer to the description of P6.003.

P7.040	PATH 70 definition			Address: 0750H 0751H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.041	PATH 70 data			Address: 0752H 0753H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.042	PATH 71 definition			Address: 0754H 0755H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.043	PATH 71 data			Address: 0756H 0757H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

 P7.044
 PATH 72 definition
 Address: 0758H 0759H

 Default: 0x00000000
 Control mode: PR

 Unit: Setting range: 0x00000000 - 0xFFFFFFF

 Format: HEX
 Data size: 32-bit

 Model: -E
 -E

Settings:

Refer to the description of P6.002.

P7.045	PATH 72 data			Address: 075AH 075BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.046	PATH 73 definition			Address: 075CH 075DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.047	PATH 73 data			Address: 075EH 075FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.048	PATH 74 definition			Address: 0760H 0761H
Default:	0x0000000	Control mode:	PR	
Unit:	•	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P7.049	PATH 74 data			Address: 0762H 0763H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.050	PATH 75 definition			Address: 0764H 0765H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.051	PATH 75 data			Address: 0766H 0767H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.052	PATH 76 definition			Address: 0768H 0769H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.053	PATH 76 data			Address: 076AH 076BH
Default:	0	Control mode:	PR	
Unit:	•	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

8

P7.054	PATH 77 definition			Address: 076CH 076DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.055	PATH 77 data			Address: 076EH 076FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.056	PATH 78 definition			Address: 0770H 0771H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.057	PATH 78 data			Address: 0772H 0773H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.058	PATH 79 definition			Address: 0774H 0775H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P7.059	PATH 79 data			Address: 0776H 0777H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.060	PATH 80 definition			Address: 0778H 0779H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.061	PATH 80 data			Address: 077AH 077BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.062	PATH 81 definition			Address: 077CH 077DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.063	PATH 81 data			Address: 077EH 077FH
Default:	0	Control mode:	PR	
Unit:	•	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

 P7.064
 PATH 82 definition
 Address: 0780H 0781H

 Default:
 0x000000000
 Control mode: PR

 Unit:
 Setting range: 0x00000000 - 0xFFFFFFF

 Format:
 HEX
 Data size: 32-bit

 Model:
 -E

Settings:

Refer to the description of P6.002.

P7.065	PATH 82 data			Address: 0782H 0783H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	48 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.066	PATH 83 definition			Address: 0784H 0785H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.067	PATH 83 data			Address: 0786H 0787H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.068	PATH 84 definition			Address: 0788H 0789H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

P7.069	PATH 84 data			Address: 078AH 078BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.070	PATH 85 definition			Address: 078CH 078DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.071	PATH 85 data			Address: 078EH 078FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.072	PATH 86 definition			Address: 0790H 0791H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.073	PATH 86 data			Address: 0792H 0793H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

O

8

P7.074	PATH 87 definition			Address: 0794H 0795H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.075	PATH 87 data			Address: 0796H 0797H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.076	PATH 88 definition			Address: 0798H 0799H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.077	PATH 88 data			Address: 079AH 079BH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.078	PATH 89 definition			Address: 079CH 079DH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

P7.079	PATH 89 data			Address: 079EH 079FH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.080	PATH 90 definition			Address: 07A0H 07A1H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.081	PATH 90 data			Address: 07A2H 07A3H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.082	PATH 91 definition			Address: 07A4H 07A5H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.083	PATH 91 data			Address: 07A6H 07A7H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

8

P7.084	PATH 92 definition			Address: 07A8H 07A9H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.085	PATH 92 data			Address: 07AAH 07ABH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.086	PATH 93 definition			Address: 07ACH 07ADH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.002.

P7.087	PATH 93 data			Address: 07AEH 07AFH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.088	PATH 94 definition			Address: 07B0H 07B1H
Default:	0x0000000	Control mode:	PR	
Unit:	•	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

P7.089	PATH 94 data			Address: 07B2H 07B3H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.090	PATH 95 definition			Address: 07B4H 07B5H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.002.

P7.091	PATH 95 data			Address: 07B6H 07B7H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.092	PATH 96 definition			Address: 07B8H 07B9H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.093	PATH 96 data			Address: 07BAH 07BBH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

Ö

8

P7.094	PATH 97 definition			Address: 07BCH 07BDH
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.002.

P7.095	PATH 97 data			Address: 07BEH 07BFH
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.096	PATH 98 definition			Address: 07C0H 07C1H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E		•	

Settings:

Refer to the description of P6.002.

P7.097	PATH 98 data			Address: 07C3H 07C4H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

P7.098	PATH 99 definition			Address: 07C4H 07C5H
Default:	0x0000000	Control mode:	PR	
Unit:	-	Setting range:	0x0000000	0 - 0xFFFFFFF
Format:	HEX	Data size:	32-bit	
Model:	-E			

Settings:

ASDA-E3 Parameters

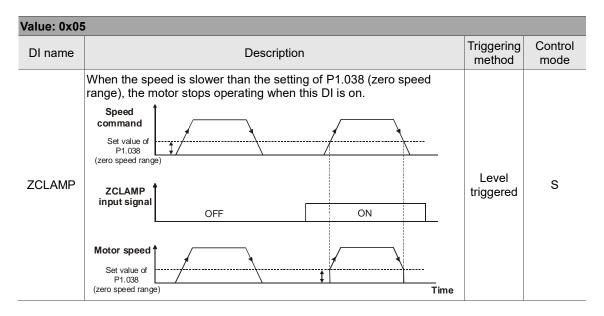
P7.099	PATH 99 data			Address: 07C6H 07C7H
Default:	0	Control mode:	PR	
Unit:	-	Setting range:	-214748364	18 to +2147483647
Format:	DEC	Data size:	32-bit	
Model:	-E			

Settings:

Refer to the description of P6.003.

Table 8.1 Digital input (DI) descriptions

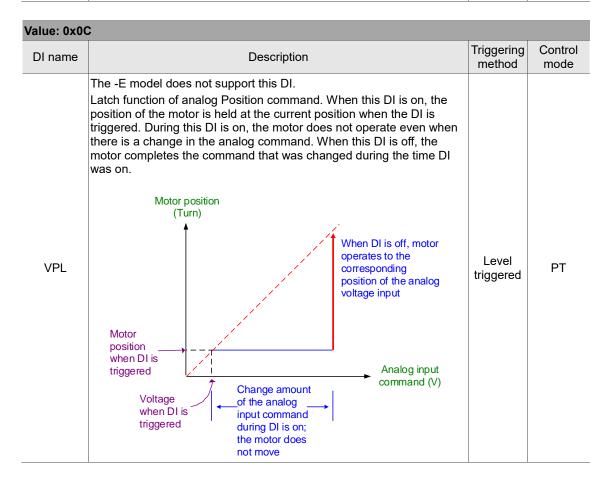
The -L model does not support PR mode and DI.ABSE (0x1D), DI.ABSC (0x1F), and DI.ABSQ.


The -E model does not support PT mode and DI.VPL (0x0C), DI.VPRS (0x0D), DI.SPDKVC (0x0F), and DI.INHP (0x45).

Value: 0x01			
DI name	Description	Triggering method	Control mode
SON	When this DI is on, servo is activated (Servo On).	Level triggered	All

Value: 0x02			
DI name	Description	Triggering method	Control mode
	After you troubleshoot the alarm, this DI is on and the alarm signal displayed by the servo drive is cleared.	Rising- edge triggered	All

Value: 0x03			
DI name	Description	Triggering method	Control mode
GAINUP	In Speed and Position modes, when this DI is on (P2.027 set to 0x0001), the gain value switches to the value which is the original gain multiplied by the rate of change.	Level triggered	PT, PR, S


Value: 0x04			
DI name	Description	Triggering method	Control mode
CCLR	Clear the pulse counter. Refer to P2.050 for the methods to clear the pulses. When this DI is on, the accumulative position pulse deviation of the drive (P0.002 = 33) is cleared to 0.	Rising- edge triggered, level triggered	PT, PR

Value: 0x06	3		
DI name	Description	Triggering method	Control mode
CMDINV	In Speed and Torque modes, the input command is reversed when this DI is on.	Level triggered	S, Sz, T, TZ

Value: 0x08			
DI name	Description	Triggering method	Control mode
	In PR mode, after the PR command (POS0 - 6) is selected, the motor operates according to the command issued by the register when this DI is on.	Rising- edge triggered	PR

Value: 0x09					
DI name	Description	Triggering method	Control mode		
TRQLM	In Speed and Position modes, motor torque is limited when this DI is on, and source of the Torque limit command is the internal register or analog voltage.	Level triggered	PT, PR, S		

Value: 0x0['alue: 0x0D					
DI name	Description	Triggering method	Control mode			
VPRS	The -E model does not support this DI. Clear function of analog Position command. When this DI is on, the position of the motor is held at the current position when DI is triggered. Despite the change in the analog command during DI is on, the motor remains at the current position even when the DI is off. However, the position that the motor remains at corresponds to the new analog command. Thus, the analog input command redefines the position system of the motor. Motor position (Turn) When DI is on, all input commands are cleared Analog input command (V) is triggered When DI is off, motor does not move, but the zero point of the position system is redefined	Level triggered	PT			

Value: 0x0F			
DI name	Description	Triggering method	Control mode
SPDKVC	The -E model does not support this DI. Switch between P1.040 (Maximum motor speed for analog Speed command 1) and P1.081 (Maximum motor speed for analog Speed command 2).	Level triggered	S

Value: 0x10								
DI name	Description	Triggering method	Control mode					
	In Torque mode, motor speed is limited when this DI is on, and source of the Speed limit command is the internal register or analog voltage.	Level triggered	Т					

Value: 0x11, 0x12, 0x13, 0x1A, 0x1B, 0x1C, 0x1E												
DI name	Description										Triggering method	Control mode
	PR command selection (0 - 99)											
	Position command	POS 6	POS 5	POS 4	POS 3	POS 2	POS 1	POS 0	CT RG	Corres- ponding para- meter		
DOCO	Homing	0	0	0	0	0	0	0 0	1	P6.000	Level triggered	
POS0 POS1		U	0	0	U	U	U			P6.001		
POS2	PR#1	0	0	0	0	0	0	1		P6.002		
POS3		-					-	·	ı	P6.003		
POS4												
POS5	DD#E0	DD#50 0	PR#50 0	1 1	0	0	1	0	↑	P6.098		
POS6	110#30		'	0	0	0 1	0	ı	P6.099	1		
F030	DD#54									P7.000		
	PR#51	0	1	1	0	0	1	1	I	P7.001		
									P7.098	1		
	PR#99	1	1	0	0	0	1	1		P7.099		

Value: 0x1[)		
DI name	Description	Triggering method	Control mode
ABSE	The -L model does not support this DI. When DI.ABSE is on, the servo is in absolute mode and can enable the functions of DI.ABSQ, DI.ABSC, DO.ABSR, and DO.ABSD at the same time. When DI.ABSE is on, the functions of DI4, DO2, and DO3 are no longer the ones assigned by the parameter. The DI4 function will be DI.ABSQ, DO2 will be DO.ABSR, and DO3 will be DO.ABSD. In addition, the DI point of DI.ABSC can be assigned by the parameter.	Level triggered	All

Value: 0x1F							
DI name	Description	Triggering method	Control mode				
ABSC	The -L model does not support this DI. When DI.ABSC is on, the current absolute position of the encoder is set as the origin definition (P6.001), but this DI is only valid when DI.ABSE is on. Note: in communication mode, the origin definition is the setting value of OD 607Ch multiplied by a negative sign.	Rising- edge triggered	All				

Value: when DI.ABSE is on, the DI.ABSQ from DI4 replaces the DI4 function from P2.013								
DI name	Description	Triggering method	Control mode					
(always	The -L model does not support this DI. During I/O transmission, the controller sends the handshaking signal. When DI.ABSQ is off, the controller issues the request; when DI.ABSQ is on, the controller has processed the ABSD signal. This DI is only valid when DI.ABSE is on. Refer to Figure 10.3.5.1.1 in Chapter 10 for a detailed description.	Rising- and falling- edge triggered	All					

Value: 0x14, 0x15									
DI name				Triggering method	Control mode				
	Register S	Speed co	omman	d sel	ection (1 - 4))			
	Speed command	DI signa	l of CN1	Cor	nmand source	Content	Panga		
SPD0	number	SPD1	SPD0	Cor	nmand source	Content	Range		
	S1	S1 0	64 0 0	0	S	External analog signal	Voltage difference between V_REF and GND	-10V to +10V	Level
SPD1			O	Sz	N/A	Speed command is 0	0	triggered	S, Sz
	S2	0	1			P1.009	+/- 7500 rpm		
	S3	1	0		ernal register parameter)	P1.010	+/- 7500 rpm		
	S4	1	1			P1.011	+/- 7500 rpm		

Value: 0x16, 0x17									
DI name			Triggering method	Control mode					
	Register T	orque c	omman	d sel	ection (1 - 4))			
	Torque command	DI signa	l of CN1	Command source		Content	D		
	number	TCM1	TCM0	Con	illianu source	Content	Range		
TCM0	T1	T1 0 0	0 0	Т	External analog signal	Voltage difference between T_REF and GND	-10V to +10V	Level	T, Tz
TCM1				Tz	N/A	Torque command is 0	0	triggered	1, 12
	T2	0	1			P1.012	+/- 500%		
	Т3	1	0	l	ernal register parameter)	P1.013	+/- 500%		
	T4	1	1			P1.014	+/- 500%		

Value: 0x18								
DI name	Description	Triggering method	Control mode					
S-P	In S-P dual / multi-mode, when this DI is off, the drive is in Speed mode; when this DI is on, the drive is in Position mode. Select PT or PR with DI.PT-PR (0x2B).	Level triggered	Dual / multi- mode					

Value: 0x19			
DI name	Description	Triggering method	Control mode
	In S-T dual mode, when this DI is off, the drive is in Speed mode; when this DI is on, the drive is in Torque mode.	Level triggered	Dual / multi- mode

Value: 0x20	Value: 0x20								
DI name	Description	Triggering method	Control mode						
	In T-P dual / multi-mode, when this DI is off, the drive is in Torque mode; when this DI is on, the drive is in Position mode. Select PT or PR with DI.PT-PR (0x2B).	Level triggered	Dual / multi- mode						

)
5

Value: 0x21							
DI name	Description	Triggering method	Control mode				
EMGS	When this DI is on, the motor stops immediately.	Level triggered	All				

Value: 0x22				
DI name	Description	Triggering method	Control mode	
NL (CWL)	Negative inhibit limit (normally closed contact).	Level triggered	All	

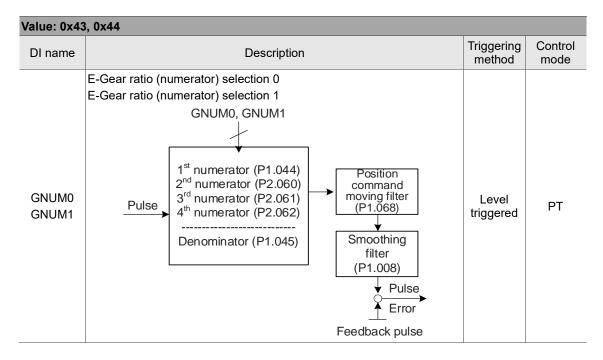
Value: 0x23				
DI name	Description	Triggering method	Control mode	
PL (CCWL)	Positive inhibit limit (normally closed contact).	Level triggered	All	

Value: 0x24				
DI name	Description	Triggering method	Control mode	
ORGP	During homing, when this DI is on, the servo regards this position as the origin. Refer to the setting of P5.004.	Rising- and falling- edge triggered	PR	

Value: 0x27				
DI name	Description	Triggering method	Control mode	
SHOM	During homing, when this DI is on, the servo starts to search for the origin. Refer to the setting of P5.004.	Rising- edge triggered	PR	

Value: 0x2B				
DI name	Description	Triggering method	Control mode	
	Use this DI to select the command source in PT-PR dual mode or PT-PR-S multi-mode. When this DI is off, the drive is in PT mode; when this DI is on, the drive is in PR mode.	Level triggered	Dual / multi- mode	

Value: 0x3	7		
DI name	Description	Triggering method	Control mode
JOGU	When this DI is on, the motor jogs in the positive direction.	Level triggered	All


Value: 0x38				
DI name	Description	Triggering method	Control mode	
JOGD	When this DI is on, the motor jogs in the negative direction.	Level triggered	All	

Value: 0x39				
DI name	Description	Triggering method	Control mode	
EV1	Event trigger command 1. Refer to the setting of P5.098 and P5.099.	Rising- and falling- edge triggered	PR	

Value: 0x3A				
DI name	Description	Triggering method	Control mode	
EV2	Event trigger command 2. Refer to the setting of P5.098 and P5.099.	Rising- and falling- edge triggered	PR	

Value: 0x3E	3		
DI name	Description	Triggering method	Control mode
EV3	Event trigger command 3. Refer to the setting of P5.098 and P5.099.	Rising- and falling- edge triggered	PR

Value: 0x3C				
DI name	Description	Triggering method	Control mode	
EV4	Event trigger command 4. Refer to the setting of P5.098 and P5.099.	Rising- and falling- edge triggered	PR	

Value: 0x45				
DI name	Description	Triggering method	Control mode	
INHP	The -E model does not support this DI. In Position mode, the external pulse input command has no function when this DI is on. Important: this function has to be set to DI8 to ensure immediate pulse inhibition.	Level triggered	PT	

Value: 0x46	3		
DI name	Description	Triggering method	Control mode
STP	Motor stops.	Rising- edge triggered	PR

Value: 0x47	•		
DI name	Description	Triggering method	Control mode
PFQS	Use this DI to set the emergency stop for P5.003 (deceleration time for auto-protection). When this DI is on, AL35F occurs and the motor starts decelerating. When the speed reaches 0, AL3CF occurs and servo is switched to Servo Off.	Rising- edge triggered	PT, PR, T, S

Note: the digital input function is disabled when P2.010 - P2.017 and P2.036 - P2.040 are set to 0x0100.

Table 8.2 Digital output (DO) descriptions

The -L model does not support PR mode and DO.ABSW (0x0D), DO.IDXD (0x0E), DO.Zon2 (0x2D), DO.Zon3 (0x2E), DO.Zon4 (0x2F), DO.ABSR, and DO.ABSD.

The -E model does not support PT mode.

Value: 0x01			
DO name	Description	Triggering method	Control mode
SRDY	When the power is applied to the drive, this DO is on if no alarm occurs.	Level triggered	All

Value: 0x02				
DO name	Description	Triggering method	Control mode	
SON	When the servo is activated (Servo On), this DO is on if no alarm occurs. The time difference between DO.SRDY and DO.SON being on when the servo is on as soon as power is applied ON DO.SRDY OFF ON Approx. 300 ns	Level triggered	All	

Value: 0x03			
DO name	Description	Triggering method	Control mode
ZSPD	When the motor speed is slower than the zero speed setting (P1.038), this DO is on.	Level triggered	All

Value: 0x04			
DO name	Description	Triggering method	Control mode
	When the motor speed is faster than the target speed setting (P1.039), this DO is on.	Level triggered	All

Value: 0x05			
DO name	Description	Triggering method	Control mode
TPOS	When the pulse number error is smaller than the position range setting (P1.054), this DO is on.	Level triggered	PT, PR

Value: 0x06			
DO name	Description	Triggering method	Control mode
TQL	When the torque limit is activated, this DO is on.	Level triggered	All (except for T and Tz)

ĺ	Value: 0x07			
	DO name	Description	Triggering method	Control mode
		When a servo alarm occurs, this DO is on. (Except for positive / negative limit, communication error, and undervoltage.)	Level triggered	All

Value: 0x08					
DO name	Description	Triggering method	Control mode		
	Output signal of the magnetic brake control. Set P1.042 and P1.043 to adjust the delay time before and after the magnetic brake control function is activated and deactivated. ON				
	OFF OFF				
BRKR	OFF ON [1*] [2*]	Level triggered	All		
	Motor speed (P1.042) (P1.043)				
	(P1.038) ZSPD [1*]				
	Note: refer to the note in P1.042.				

Value: 0x09			
DO name	Description	Triggering method	Control mode
НОМЕ	When homing is complete, it means the position system and position counter are defined and this DO is on. When power is applied for the first time, this DO is off; when homing is complete, this DO is on. During operation, this DO is on until the position counter overflows (including commands or feedback). Then, this DO turns off. When the homing command is triggered, this DO is off; after homing is complete, this DO is on.		PR

Value: 0x0D			
DO name	Description	Triggering method	Control mode
ABSW	The -L model does not support this DO. When an absolute encoder alarm occurs, this DO is on.	-	All

Value: 0x0E			
DO name	Description	Triggering method	Control mode
	The -L model does not support this DO. When this DI is on, it means the rotary axis position is defined. When homing is complete, the rotary axis position is defined as well.	-	PR

Value: 0x10				
DO name	Description	Triggering method	Control mode	
OLW	This DO is on when the overload accumulative time exceeds tol. However, if the overload accumulative time exceeds the overload allowable time of the servo, the servo sends the overload alarms AL006 and AL023. tole Overload allowable time of the servo x setting value of P1.056 (Motor output overload warning level) For example: P1.056 = 60 (unit: %). When the output average load of the servo drive is 200% and the output time exceeds 8 seconds, the overload alarms (AL006 and AL023) occur. tole = 8 sec x 60% = 4.8 sec That is, when the output average load of the servo drive is 200% for over tole = 4.8 seconds, DO.OLW (DO code: 0x10) is on. If the duration exceeds 8 seconds, the servo drive sends AL006 (overload) and AL023 (early overload warning).	Level triggered	All	

Value: 0x11			
DO name	Description	Triggering method	Control mode
WARN	Warning outputs (positive / negative limit, communication error, and undervoltage).	Level triggered	All

Value: 0x12			
DO name	Description	Triggering method	Control mode
OVF	Position command / feedback overflows.	Level triggered	PT, PR

Value: 0x13			
DO name	Description	Triggering method	Control mode
SNL (SCWL)	Software limit (negative limit).	Level triggered	PR

Value: 0x14			
DO name	Description	Triggering method	Control mode
SPL (SCCWL)	Software limit (positive limit).	Level triggered	PR

Value: 0x15			
DO name	Description	Triggering method	Control mode
Cmd_OK	When the Position command is complete and the drive enters Position mode, this DO is on. When the Position command is executing, this DO is off; after the command is complete, this DO is on. This DO only indicates that the command is complete, but the motor positioning may not be complete yet. Refer to DO.TPOS.	Level triggered	PR

Value: 0x17			
DO name	Description	Triggering method	Control mode
MC_OK	When DO.Cmd_OK and DO.TPOS are both on, then this DO is on; otherwise, it is off. Refer to P1.048.	Level triggered	PR

Value: 0x19			
DO name	Description	Triggering method	Control mode
SP_OK	Motor speed reaches the target speed: in Speed mode, when the error between the speed feedback and the command is smaller than the value of P1.047, this DO is on.	Level triggered	S, Sz

Value: 0x2C			
DO name	Description	Triggering method	Control mode
Zon1	First set of general range comparison: when the value of the item monitored by P0.009 ranges between the values of P0.054 and P0.055, then this DO is on.	-	All

Value: 0x2D			
DO name	Description	Triggering method	Control mode
20112	The -L model does not support this DO. Second set of general range comparison: when the value of the item monitored by P0.010 ranges between the values of P0.056 and P0.057, then this DO is on.	-	All

Value: 0x2E				
DO name	Description	Triggering method	Control mode	
	The -L model does not support this DO. Third set of general range comparison: when the value of the item monitored by P0.011 ranges between the values of P0.058 and P0.059, then this DO is on.	-	All	

Value: 0x2F			
DO name	Description	Triggering method	Control mode
20114	The -L model does not support this DO. Fourth set of general range comparison: when the value of the item monitored by P0.012 ranges between the values of P0.060 and P0.061, then this DO is on.	-	All

Value: 0x30			
DO name	Description	Triggering method	Control mode
SPO_0	Output bit 00 of P4.006.	Level triggered	All

Value: 0x31			
DO name	Description	Triggering method	Control mode
SPO_1	Output bit 01 of P4.006.	Level triggered	All

Value: 0x32			
DO name	Description	Triggering method	Control mode
SPO_2	Output bit 02 of P4.006.	Level triggered	All
W.L. 0.00			
Value: 0x33		Triggering	Control
DO name	Description	method	mode
SPO_3	Output bit 03 of P4.006.	Level triggered	All
Value: 0x34			
DO name	Description	Triggering method	Control mode
SPO_4	Output bit 04 of P4.006.	Level triggered	All
Value: 0x35			
DO name	Description	Triggering method	Control mode
SPO_5	Output bit 05 of P4.006.	Level triggered	All
Value 0v20			
Value: 0x36		Triggering	Control
DO name	Description	method	mode
SPO_6	Output bit 06 of P4.006.	Level triggered	All
Value: 0x37			
DO name	Description	Triggering method	Control mode
SPO_7	Output bit 07 of P4.006.	Level triggered	All
Value: 0x38			
DO name	Description	Triggering method	Control mode
SPO_8	Output bit 08 of P4.006.	Level triggered	All
V-1 000			
Value: 0x39		Triggering	Control
DO name	Description	method	mode
SPO_9	Output bit 09 of P4.006.	Level triggered	All
Value: 0x3A			
DO name	Description	Triggering method	Control mode
SPO_A	Output bit 10 of P4.006.	Level triggered	All

Value: 0x3B			
DO name	Description	Triggering method	Control mode
SPO_B	Output bit 11 of P4.006.	Level triggered	All

Value: 0x3C			
DO name	Description	Triggering method	Control mode
SPO_C	Output bit 12 of P4.006.	Level triggered	All

Value: 0x3D			
DO name	Description	Triggering method	Control mode
SPO_D	Output bit 13 of P4.006.	Level triggered	All

Value: 0x3E			
DO name	Description	Triggering method	Control mode
SPO_E	Output bit 14 of P4.006.	Level triggered	All

Value: 0x3F			
DO name	Description	Triggering method	Control mode
SPO_F	Output bit 15 of P4.006.	Level triggered	All

Value: when DI.ABSE is on, DO.ABSR triggered by DO2 will replace the DO2 assigned by P2.019				
DO name	Description	Triggering method	Control mode	
ABSR (always output by DO2)	The -L model does not support this DO. When DO.ABSR is off, it indicates the servo drive can receive request issued by DI.ABSQ. When DO.ABSR is on, it indicates after the request is received, the data has been prepared and the ABSD data is valid for the controller to access. This DO is only valid when DI.ABSE is on. Refer to Figure 10.3.5.1.1 in Chapter 10 for a detailed description.	Level triggered	All	

Value: when DI.ABSE is on, DO.ABSD triggered by DO3 will replace the DO3 assigned by P2.020				
DO name	Description	Triggering method	Control mode	
	The -L model does not support this DO. The DO for ABS data. This DO is only valid when DI.ABSE and DO.ABSR are both on. Refer to Figure 10.3.5.1.1 in Chapter 10 for a detailed description.	Level triggered	All	

Note: the digital output function is disabled when P2.018 - P2.022 and P2.041 are set to 0x0100.

Parameters ASDA-E3

Table 8.3 Monitoring variables descriptions

Description of monitoring variables:

Item	Description		
Monitoring code	Each monitoring variable has a code, and you can use P0.002 to set the code for monitoring the variable.		
Format	Each monitoring variable is stored in the 32-bit format (long integer) in the servo drive.		
Category	 Basic variables / extension variables: Basic variables: the variables displayed on the panel within the loop of pressing the UP / DOWN keys in Monitoring mode. Extension variables: the variables other than basic variables. 		
Monitoring method	Panel display / mapping: 1. Panel display: monitor with the panel 2. Mapping: monitor the variables or parameters by mapping parameters		
Panel display	 Use the MODE key to switch to the Monitoring mode and press the UP / DOWN keys to select the variable to monitor. Input the code of the variable to be monitored into P0.002 and start monitoring. Press the SHIFT key on the panel to switch between high and low word display; press the SET key on the panel to switch between decimal and hexadecimal display. 		
Mapping	 Parameters that support monitoring variable mapping: P0.009 - P0.013. Refer to Section 8.3 Parameter descriptions. Read the monitoring variables through communication using mapping parameters. The values of the mapping parameters (P0.009 - P0.013) are the content of the basic variables (17h, 18h, 19h, and 1Ah). To monitor P0.009, set P0.017 to the value to read (refer to P0.002). When reading the data through communication, you can directly read the data specified by P0.017; when monitoring the data with the panel (set P0.002 to 23), the panel displays "VAR-1" and then the content value of P0.009. 		

The property code of each monitoring variable is described in the following table:

Property	Description
В	BASE: basic variables. Select the variables with the UP / DOWN keys on the panel.
D1 D2	Decimal place displayed on the panel. D1 indicates 1 decimal place and D2 indicates 2 decimal places.
Dec	Only decimal display is available on the panel, and you cannot switch to hexadecimal display by pressing the SET key.
Hex	Only hexadecimal display is available on the panel, and you cannot switch to decimal display by pressing the SET key.

The monitoring variables are described in the following table by the code sequence:

Code	Variable name / property	Description
000 (00h)	Feedback position (PUU) B	Current feedback position of the motor encoder. Unit: Pulse of User Unit (PUU).
001 (01h)	Position command (PUU) B	Current position of the Position command. Unit: Pulse of User Unit (PUU). PT mode: number of pulse commands received by the servo drive. PR mode: absolute position of the Position command.
002 (02h)	Following error (PUU)	Difference between the Position command before filtered and the feedback position. Unit: Pulse of User Unit (PUU).
003 (03h)	Feedback position (pulse) B	Current feedback position of the motor encoder. Unit: encoder unit (pulse).
004 (04h)	Position command (pulse) B	Current position of the Position command. Unit: encoder unit (pulse).
005 (05h)	Following error (pulse)	Difference between the Position command before filtered and the feedback position. Unit: encoder unit (pulse).
006 (06h)	Pulse command frequency B	Frequency of the pulse command received by the drive. Unit: Kpps. Applicable to PT and PR modes.
007 (07h)	Speed feedback B D1 Dec	Current motor speed. Unit: 0.1 rpm. This is the speed processed by the low-pass filter, which makes it more stable.
008 (08h)	Speed command (analog) B D2 Dec	Speed command from the analog channel. Unit: 0.01 Volt.
009 (09h)	Speed command (integrated) B	Integrated Speed command. Unit: 0.1 rpm. Source includes analog, register, or position loop.
010 (0Ah)	Torque command (analog) B D2 Dec	Torque command from the analog channel. Unit: 0.01 Volt.
011 (0Bh)	Torque command (integrated) B	Integrated Torque command. Unit: percentage (%). Source includes analog, register, or speed loop.
012 (0Ch)	Average load rate	Average load rate (moving average every 20 ms) from the servo drive. Unit: percentage (%).
013 (0Dh)	Peak load rate B	Maximum load rate from the drive. Unit: percentage (%).
014 (0Eh)	DC Bus voltage B	Rectified capacitor voltage. Unit: Volt.
015 (0Fh)	Load inertia ratio B D1 Dec	Ratio of the load inertia to the motor inertia. Unit: 0.1 times.
016 (10h)	IGBT temperature B	Temperature of IGBT. Unit: °C.

Code	Variable name / property	Description
		Resonance frequency of the system, consisting of two sets of frequencies: F1 and F2
017 (11h)	Resonance frequency	When monitoring from the panel, press the SHIFT key to switch between F1 and F2:
(,	B Dec	F2 displays zero decimal places; F1 displays 1 decimal place. When reading by communication (mapping parameter):
		Low word returns frequency F2.
		High word returns frequency F1.
018 (12h)	Z phase offset	Offset value between motor position and Z phase; range: -4999 to +5000.
010 (1211)	B Dec	When the motor position overlaps with Z phase, the value is 0; the greater the absolute value of this variable, the greater the offset.
019 (13h)	Mapping parameter content #1 B	Returns the value of P0.025 which is mapped by P0.035.
020 (14h)	Mapping parameter content #2 B	Returns the value of P0.026 which is mapped by P0.036.
021 (15h)	Mapping parameter content #3 B	Returns the value of P0.027 which is mapped by P0.037.
022 (16h)	Mapping parameter content #4 B	Returns the value of P0.028 which is mapped by P0.038.
023 (17h)	Mapping monitoring variable #1 B	Returns the value of P0.009 which is mapped by P0.017.
024 (18h)	Mapping monitoring variable #2	Returns the value of P0.010 which is mapped by P0.018.
025 (19h)	Mapping monitoring variable #3	Returns the value of P0.011 which is mapped by P0.019.
026 (1Ah)	Mapping monitoring variable #4 B	Returns the value of P0.012 which is mapped by P0.020.
027 (1Bh)	Z phase offset B	Offset value between motor position and Z phase. (Only available for Delta CNC controllers.)
028 (1Ch)	Alarm code Dec B	The alarm code (in decimal). The value being converted to the hexadecimal notation is identical to the alarm code displayed in P0.001 and the error code of communication model.
032 (20h)	Position error (PUU)	Difference between the Position command after filtered and the feedback position. Unit: Pulse of User Unit (PUU).
033 (21h)	Position error (pulse)	Difference between the Position command after filtered and the feedback position. Unit: encoder unit (pulse).
035 (23h)	Rotary axis position command	Rotary axis position command at present. Unit: Pulse of User Unit (PUU).
038 (26h)	Voltage level of the battery	Voltage level of the battery in an absolute encoder. To display the voltage level, enable the absolute encoder setting (P2.069).

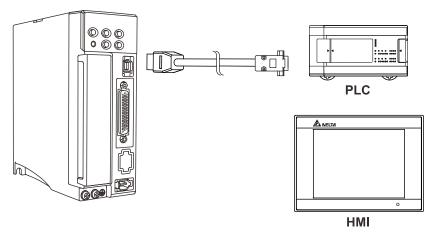
)
)

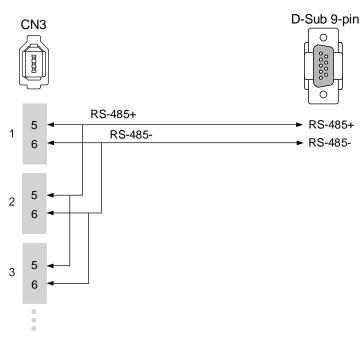
Code	Variable name / property	Description
039 (27h)	DI status (integrated) Hex	Integrated DI status of the drive. Each bit corresponds to one DI channel. Source includes hardware channel or P4.007, which is determined by P3.006.
040 (28h)	DO status (hardware) Hex	Actual status from the DO hardware. Each bit corresponds to one DO channel.
041 (29h)	Status of the drive	Returns the value of P0.046. Refer to the description of P0.046.
042 (2Ah)	PR number in execution	Displays the number of the PR command being executed.
049 (31h)	Pulse command CNT	Pulse counts from the pulse command (CN1).
051 (33h)	Speed feedback (immediate) D1 Dec	Actual motor speed at present. Unit: 0.1 rpm.
053 (35h)	Torque command (integrated) D1 Dec	Integrated Torque command. Unit: 0.1%. Source includes analog, register, or speed loop.
054 (36h)	Torque feedback D1 Dec	Actual motor torque at present. Unit: 0.1%.
055 (37h)	Current feedback D2 Dec	Actual motor current at present. Unit: 0.01 ampere (Amp).
056 (38h)	DC Bus voltage D1 Dec	Rectified capacitor voltage. Unit: 0.1 Volt.
064 (40h)	Register of PR command endpoint	In PR mode, the endpoint of the Position command (Cmd_E).
065 (41h)	Register of PR command output	In PR mode, the accumulative output of the Position command after filtered.
067 (43h)	PR target speed	Target speed specified in the PR path. Unit: PPS (pulse per second).
072 (48h)	Speed command (analog) B D1 Dec	Speed command from the analog channel. Unit: 0.1 rpm.
082 (52h)	PR number in execution	Provides the number of the PR command currently executed by the servo drive to the HMC.
091 (5Bh)	Rotary axis position feedback	Immediate feedback of the rotary axis position. Unit: Pulse of User Unit (PUU).
		Includes 2 versions: DSP and CPLD.
096 (60h)	Drive firmware version Dec	When monitoring from the panel, press the SHIFT key to switch between DSP and CPLD: DSP displays zero decimal places; CPLD displays 1 decimal place.
		When reading by communication (mapping parameter): Low word returns the DSP version number.
		High word returns the CPLD version number.
111 (6Fh)	Error code of the servo drive	Error code from the servo drive: control loop of the servo only, not including the motion controller.
119 (77h)	EtherCAT state machine	1: Init 2: Pre-Operational (Pre-OP) 4: Safe-Operational (Safe-OP) 8: Operational (OP)
120 (78h)	Communication error rate	When this value continues to increase, it indicates that there is communication interference. In an interference-free environment, this value should not increase. (Not available on -L models)

Code	Variable name / property	Description		
123 (7Bh)	Value returned when monitoring by panel	Monitoring value displayed when returned to the monitoring panel.		
124 (7Ch)	EtherCAT network and connection status	Panel display: U Z Y X X network status for OUT port Z EtherCAT error status Y network status for IN port U EtherCAT connection status X: network status for OUT port 0: connection is not established 1: connection is established 1: connection is not established 1: connection is not established 1: connection is not established 1: connection is established 2: EtherCAT error status 0: no error has occurred 1: error occurs in the controller or servo drive U: EtherCAT connection status 0: Init 1: Pre-Operational (Pre-OP) 2: Safe-Operational (Safe-OP) 3: Operational (OP)		
-80	Encoder communication error rate	When this value continues to increase, it indicates that there is communication interference. In an interference-free environment, this value should not change.		
-91	Overload (AL006) protection counter	Displays the motor load during operation. When the value reaches 100%, AL006 occurs.		
-111	Regeneration error (AL005) protection counter	When the value of the regeneration counter reaches 100%, AL005 occurs.		
-124	Encoder temperature	Monitor the encoder temperature.		
-169	Regenerative resistor overload (AL086) protection counter	This variable monitors the average power consumed by the regenerative resistor (unit: %) when the energy of the servo drive capacitor is released to the regenerative resistor. When the value reaches 100%, AL086 occurs.		
-202	Motor electrical angle	The current electrical angle multiplied by 4.		
-207	Regenerative resistor power consumption	The power consumption (unit: %) of the regenerative resistor at the time when the energy of the servo drive capacitor is released to the regenerative resistor.		

9

Modbus Communication

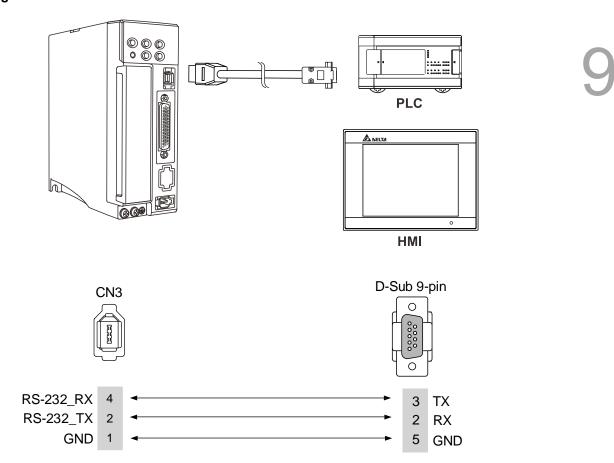

This chapter describes the Modbus communication which you use for reading and writing general parameters. For fieldbus control, refer to the related EtherCAT documentation. The details of ASCII and RTU modes are also provided in this chapter.


9.1	Modbus communication interface (hardware)	- 9-2
9.2	Modbus communication parameters ·····	- 9-4
9.3	Modbus communication protocol·····	- 9-4
9.4	Writing and reading communication parameters	9-14
9.5	RS-485 communication specification	9-15

9.1 Modbus communication interface (hardware)

The servo drive supports RS-485 and RS-232 serial communication that you can use to access and change the parameters of the servo system.

Wiring for RS-485



Note:

- The cable length can be up to 100 meters when the servo drive is installed in a quiet environment. If the required transmission speed is over 38,400 bps, a cable with the length of 15 meters or less is recommended to ensure data transmission accuracy.
- 2. The gray-shaded numbers in the preceding figure represent the pin number of the connectors.
- 3. Supply 12 V_{DC} (or higher) power for the controller.
- 4. When using RS-485, you may connect up to 32 servo drives. Install a repeater to connect more servo drives (the maximum is 127 stations).
- When using RS-485 Modbus communication to connect two or more servo drives in series, the interval between each communication command should be at least 160 ms.
- 6. Refer to Wiring for the CN3 connector in Chapter 3.

Wiring for RS-232

Note:

- The cable length can be up to 15 meters when the servo drive is installed in a quiet environment. If the required transmission speed is over 38,400 bps, a cable with the length of 3 meters or less is recommended to ensure data transmission accuracy.
- 2. The gray-shaded numbers in the preceding figure represent the pin number of the connectors.
- 3. When using RS-232, it only supports connecting one device to one servo drive at a time.

9.2 Modbus communication parameters

The servo drive requires setting these parameters for using Modbus communication: P3.000 (Address), P3.001 (Transmission speed), P3.002 (Modbus communication protocol), and P3.005 (Modbus communication). On the other hand, P3.003 (Modbus communication error handling), P3.004 (Modbus communication timeout), P3.006 (Digital input (DI) control switch), and P3.007 (Modbus communication response delay time) are optional parameters. Refer to Chapter 8 for detailed descriptions of the relevant parameters.

9.3 Modbus communication protocol

There are two modes of Modbus network communication: ASCII (American Standard Code for Information Interchange) and RTU (Remote Terminal Unit). You can set the communication protocol (ASCII or RTU) with P3.002 according to your requirements. The servo drive also supports these functions: reading multiple words (03H), writing single word (06H), and writing multiple words (10H). Refer to the following descriptions.

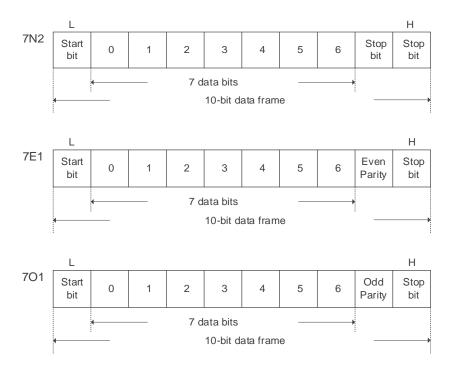
Code description

ASCII mode:

In ASCII mode, data is transmitted in ASCII (American Standard Code for Information Interchange) format. For instance, to transmit "64H" between the master and slave, the ASCII codes "36H" and "34H" are sent to represent "6" and "4" respectively.

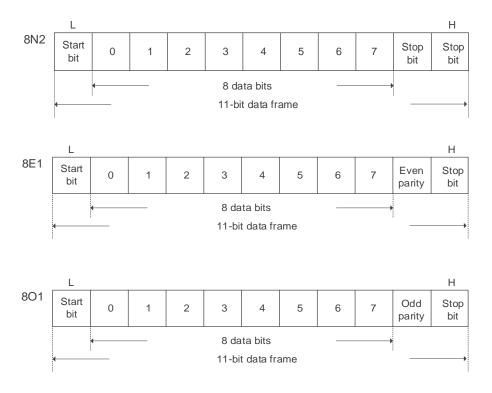
The corresponding ASCII codes for the numbers 0 to 9 and the characters A to F are as follows:

Symbol	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30H	31H	32H	33H	34H	35H	36H	37H
Symbol	'8'	'9'	'A'	'B'	,C,	'D'	'E'	'F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H


RTU mode:

In RTU mode, each data frame consists of an 8-bit character (hexadecimal), which is more efficient than ASCII mode for data transmission because it can be done without code interchange. For instance, when transmitting "64H" between the master and slave, simply send "64H".

Characters are encoded into the following frames and transmitted in series. The methods for checking each type of frame are as follows.


ASCII mode:

10-bit data frame (for 7-bit character)

RTU mode:

11-bit data frame (for 8-bit character)

Communication data structure

Definitions for the data frames in the two modes are as follows:

ASCII mode:

Start	Start character ':' (3AH)
Slave Address	Communication address: 1 byte, consists of 2 ASCII codes (ADR)
Function	Function code: 1 byte, consists of 2 ASCII codes (CMD)
Data (n-1)	
	Data content: n word(s) = 2n bytes (consists of 4n ASCII codes), n ≤ 10
Data (0)	
LRC	Error checking: 1 byte, consists of 2 ASCII codes
End 1	End code 1: (0DH)(CR)
End 0	End code 0: (0AH)(LF)

RTU mode:

Start	A silent interval of more than 10 ms
Slave Address	Communication address: 1 byte
Function	Function code: 1 byte
Data (n-1)	
	Data content: n word(s) = 2n bytes, n ≤ 10
Data (0)	
CRC	Error checking: 2 bytes
End 1	A silent interval of more than 10 ms

ASCII mode:

Command Message (Master):

Start

Slave Address

Function

Start Data Address

Data Quantity (in words)

LRC

End 1

End 0

Example 1: function code 03H, reading multiple words

In the following example, the master issues a read command to the first slave.

٠.,

'0'

'1'

'0'

'3'

'0'

'2'

'0'

'0'

'O'

'O'

'0'

'2'

'F'

'8'

(0DH)(CR)

(0AH)(LF)

The slave reads two continuous words starting from the start data address 0200H. In the response message from the slave, the content of the start data address 0200H is 00B1H and the content of the second data address 0201H is 1F40H. The maximum allowable number of data for one single read action is 10 words.

Response Message (Slave): ٠., Start '0' Slave Address '1' '0' **Function** '3' '0' **Data Quantity** (in bytes) '4' '0' '0' Content of Start Data Address 0200H 'B' '1' '1' 'F' Content of the 2nd Data Address 0201H '4' '0' 'Ε' LRC '8' End 1 (0DH)(CR) End 0 (0AH)(LF)

RTU mode:

Command Message (Master):

Slave Address	01H
Function	03H
Start Data Address	02H (High)
Start Data Address	00H (Low)
Data Quantity	00H
(in words)	02H
CRC (Check Low)	C5H (Low)
CRC (Check High)	B3H (High)

Response Message (Slave):

Slave Address	01H	
Function	03H	
Data Quantity (in bytes)	04H	
Content of Start Data Address 0200H	00H (High)	
	B1H (Low)	
Content of the 2 nd Data Address 0201H	1FH (High)	
	40H (Low)	
CRC (Check Low)	A3H (Low)	
CRC (Check High)	D4H (High)	

Note: a silent interval of 10 ms is required before and after each transmission in RTU mode.

In the following example, the master issues a write command to the first slave.

The slave writes data 0064H to the start data address 0200H and sends a response message to the master after the writing is complete.

ASCII mode:

Command Message (Master):

Start	· · ·	
Olava Adda a	'0'	
Slave Address	'1'	
	'0'	
Function	'6'	
Start Data Address	'0'	
	'2'	
	'0'	
	'0'	
Data Content	'0'	
	'0'	
	'6'	
	'4'	
LRC	·9·	
	'3'	
End 1	(0DH)(CR)	
End 0	(0AH)(LF)	

Response Message (Slave):

Start	·.··
Clave Address	'0'
Slave Address	'1'
F "	'0'
Function	'6'
Start Data Address	'0'
	'2'
	'0'
	'0'
	'0'
Data Contant	'0'
Data Content	'6'
	'4'
. 50	'9'
LRC	'3'
End 1	(0DH)(CR)
End 0	(0AH)(LF)

RTU mode:

Command Message (Master):

Slave Address	01H
Function	06H
Start Data Address	02H (High)
	00H (Low)
Data Content	00H (High)
	64H (Low)
CRC (Check Low)	89H (Low)
CRC (Check High)	99H (High)

Response Message (Slave):

Slave Address	01H
Function	06H
Start Data Address	02H (High)
	00H (Low)
Data Content	00H (High)
	64H (Low)
CRC (Check Low)	89H (Low)
CRC (Check High)	99H (High)

Note: a silent interval of 10 ms is required before and after each transmission in RTU mode.

Example 3: function code 10H, writing multiple words

In the following example, the master issues a write command to the first slave.

The slave writes two words 0BB8H and 0000H starting from the start data address 0112H. In other words, 0BB8H is written into 0112H and 0000H is written into 0113H. The maximum allowable number of data for one single write action is 8 words. The slave sends a response message to the master after the writing is complete.

ASCII mode:

Command Message (Master):

Start	
Olava Adda a	'0'
Slave Address	'1'
F	'1'
Function	'0'
	'0'
Start Data Address	'1'
Start Data Address	'1'
	'2'
	'0'
Data Quantity	'0'
(in words)	'0'
	'2'
Data Quantity	'0'
(in bytes)	'4'
	'0'
Content of the	'B'
1 st Data Frame	'B'
	'8'
	'0'
Content of the 2 nd Data Frame	'0'
	'0'
	'0'
100	'1'
LRC	'3'
End 1	(0DH)(CR)
End 0	(0AH)(LF)

Response Message (Slave):

Start	·.,	
Olava Addasa	'0'	
Slave Address	'1'	
Function	'1'	
	'0'	
Start Data Address	'0'	
	'1'	
	'1'	
	'2'	
Data Quantity (in words)	'0'	
	'0'	
	'0'	
	'2'	
1.00	'D'	
LRC	'A'	
End 1	(0DH)(CR) (0AH)(LF)	
End 0		

RTU mode:

Command Message (Master):

Slave Address	01H	
Function	10H	
01 15 1 4 1	01H (High)	
Start Data Address	12H (Low)	
Data Quantity (in words)	00H (High)	
	02H (Low)	
Data Quantity (in bytes)	04H	
Content of the 1 st Data Frame	0BH (High)	
	B8H (Low)	
Content of the 2 nd Data Frame	00H (High)	
	00H (Low)	
CRC (Check Low)	FCH (Low)	
CRC (Check High)	EBH (High)	

Response Message (Slave):

Slave Address	01H
Function	10H
Start Data Address	01H (High)
	12H (Low)
Data Quantity (in words)	00H (High)
	02H (Low)
CRC (Check Low)	E0H (Low)
CRC (Check High)	31H (High)

Note: a silent interval of 10 ms is required before and after each transmission in RTU mode.

LRC and CRC transmission error checking

In ASCII mode, the error checking method is LRC (Longitudinal Redundancy Check). In RTU mode, the error checking method is CRC (Cyclic Redundancy Check). See the following details.

LRC (ASCII mode):

Start	·.·
Clave Address	'7'
Slave Address	'F'
Function	,0,
Function	'3'
Start Data Address	,0,
	'5'
	,C,
	'4'
Data Quantity (in words)	' 0'
	' 0'
	' 0'
	'1'
LRC	'B'
LRC	'4'
End 1	(0DH)(CR)
End 0	(0AH)(LF)

The LRC value is calculated by adding all the bytes, rounding down the carry, and taking the two's complement.

In the preceding example:

7FH + 03H + 05H + C4H + 00H + 01H = 14CH, round down the carry 1 and take 4CH.

The two's complement of 4CH is B4H.

CRC (RTU mode):

To calculate the CRC value:

- Step 1: load a 16-bit register with the content of FFFFH, which is called the CRC register.
- Step 2: perform (The low byte of the CRC register) XOR (The first byte of the command), and save the result in the CRC register.
- Step 3: check the least significant bit (LSB) of the CRC register. If the bit is 0, shift the register one bit to the right. If the bit is 1, shift the register one bit to the right and perform (CRC register) XOR (A001H). Repeat this step 8 times.
- Step 4: repeat Steps 2 and 3 until all bytes have been processed. The content of the CRC register is the CRC value.

After calculating the CRC value, fill in the low byte of the CRC value in the command message, and then the high byte. For example, if the result of CRC calculation is 3794H, put 94H in the message and then 37H as shown in the following table.

ADR	01H
CMD	03H
Start Data Address	01H (High)
	01H (Low)
Data Quantity (in words)	00H (High)
	02H (Low)
CRC (Check Low)	94H (Low)
CRC (Check High)	37H (High)

CRC example code:

This function calculates the CRC value in the C language. It needs two parameters:

```
unsigned char* data;
unsigned char length
//The function returns the CRC value in unsigned integer.
unsigned int crc_chk(unsigned char* data, unsigned char length) {
     int j;
     unsigned int reg_crc=0xFFFF;
     while( length-- ) {
         reg_crc^= *data++;
         for (j=0; j<8; j++ ) {</pre>
              if( reg_crc & 0x01 ) { /*LSB(bit 0 ) = 1 */
                   reg crc = (reg crc \Rightarrow 1)^0xA001;
              } else {
                   reg_crc = (reg_crc>>1);
              }
         }
     return reg_crc;
}
```

Example of a PC communication program:

```
#include<stdio.h>
#include<dos.h>
#include<conio.h>
#includecess.h>
#define PORT 0x03F8 /* the address of COM 1 */
#define THR 0x0000
#define RDR 0x0000
#define BRDL 0x0000
#define IER 0x0001
#define BRDH 0x0001
#define LCR 0x0003
#define MCR 0x0004
#define LSR 0x0005
#define MSR 0x0006
unsigned char rdat[60];
/* read 2 data from address 0200H of ASD with address 1 */
unsigned char
tdat[60]={´:','0','1','0','3','0','2','0','0','0','0','0','2','F','8','\r','\
n'};
void main() {
int I;
outportb(PORT+LCR,( inportb(PORT+LCR) | 0x80 ) );
/* the BRDL/BRDH can be access as LCR.b7 == 1 */
outportb(PORT+BRDL,12);
outportb(PORT+BRDH,0x00);
outportb(PORT+LCR,0x06);
                          /* set protocol
                                 \langle 7, E, 1 \rangle = 1AH,
                                                    \langle 7, 0, 1 \rangle = 0 \text{AH}
                                 \langle 8, N, 2 \rangle = 07H
                                                     \langle 8, E, 1 \rangle = 1BH
                                 \langle 8, 0, 1 \rangle = 0BH
for( I = 0; I<=16; I++ ) {</pre>
    while( !(inportb(PORT+LSR) \& 0x20) ); /* wait until THR empty */
    I = 0;
while( !kbhit() ) {
    if( inportb(PORT+LSR)&0x01 ) { /* b0==1, data is read */
        rdat[I++] = inportb(PORT+RDR); /* read data from RDR */
    }
}
}
```

9.4 Writing and reading communication parameters

Refer to Chapter 8 for the descriptions of the parameters. The parameters that you can write or read through communication are described as follows.

The servo drive parameters are divided into eight groups: Group 0 (Monitoring parameters), Group 1 (Basic parameters), Group 2 (Extension parameters), Group 3 (Communication parameters), Group 4 (Diagnosis parameters), Group 5 (Motion control parameters), and Group 6 and Group 7 (PR parameters). Except for the read-only parameters, all parameters can be set through communication. And you can read the values of all Group 0 to Group 7 parameters through communication.

Note the following additional details:

- P3.001: when a new transmission speed is set, the next data is written at the new transmission speed.
- P3.002: when a new communication protocol is set, the next data is written with the new communication protocol.
- P4.005: servo motor JOG control. Refer to Chapter 8 for detailed descriptions.
- P4.006: force digital output (DO) contact control. You can use this parameter to test the DO contacts. First set P2.008 to 406, and then set P4.006 to 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, and 0x0020 to test DO1, DO2, DO3, DO4, DO5, and DO6 respectively. Afterwards, set P4.006 to 0x0000 to complete the test.
- P4.010: hardware calibration options. First set P2.008 to 20 (14H in hexadecimal format) to enable this function.
- P4.011 P4.021: hardware offset calibration. The parameters were adjusted before delivery, so changing the parameter settings is not recommended. If you need to modify these parameters, first set P2.008 to 22 (16H in hexadecimal format) to enable this function.

9.5 RS-485 communication specification

Compared with RS-232, the RS-485 communication can carry out one-to-many transmission and has better anti-interference ability. RS-485 uses a balanced transmission line for signal reception and transmission. The transmitter converts the TTL signal into a differential signal and then sends it to the receiver. The receiver receives the differential signal and then converts it back to the TTL signal. Since the transmission process uses the differential signal, it has better anti-interference ability. However, there are still restrictions on the use of RS-485 communication, so note the following when wiring.

Number of stations

CN3 supports up to 32 servo drives. Install a repeater to connect more servo drives (the current maximum is 127 stations).

Transmission distance

The longer the transmission distance, the slower the transmission speed. The cable length can be up to 100 meters when the servo drive is installed in a quiet environment. If the required transmission speed is over 38,400 bps, a cable with the length of 15 meters or less is recommended to ensure data transmission accuracy.

Transmission line

The quality of the transmission line affects the signal transmission process. If there is interference during the transmission process, it may result in data loss. It is suggested that you use a shielded twisted-pair cable as it has metal shield and a grounding wire, which ensures better anti-interference ability.

Topology

For topology, the closer to the master station, the more stable the transmitted signal. RS-485 supports bus topology. The transmission line must connect from the first station to the second station, and then from the second station to the third station, and so on until the last station. RS-485 does not support star and ring topologies.

Terminal resistor

In the communication transmission process, if the impedance is not continuous, it causes signal reflection and signal distortion. This usually happens to the device that is configured at the end of the transmission line. If the impedance is small or even $0~\Omega$, the signal will be reflected. To solve this problem, add a resistor of the same characteristic impedance as the cable at the end of the transmission line, which is called a terminal resistor. In general, the transmission line used in the RS-485 signal transmission circuit is a twisted-pair cable, and its characteristic impedance is about $120~\Omega$, so the impedance of the terminal resistor is also $120~\Omega$.

Modbus Communication ASDA-E3

Anti-interference measures

In the signal transmission process, if there is interference, it may result in signal distortion.

Therefore, it is important to eliminate interference. The elimination methods are as follows:

- 1. Add a terminal resistor.
- 2. Check if the servo drive is installed in a high magnetic field environment. If so, keep it as far away as possible.
- 3. Use a shielded twisted-pair cable for the transmission line.
- 4. When wiring, isolate the high voltage power cable from the signal line.
- 5. Use a ferrite ring at the power input.
- 6. Add IEC 60384-14 certified X capacitor and Y capacitor at the power input.

Absolute System

This chapter introduces the absolute servo system, including the wiring and installation of the absolute encoder, the steps to set up the system, and the procedures for initializing and operating the system for the first time.

10.1	Bat	tery t	pox and absolute encoder cable ······ 10-3
10	.1.1	Batt	tery specifications10-3
10	.1.2	Batt	tery box dimensions ······ 10-5
10	.1.3	Cor	nection cable for the absolute encoder······ 10-6
10	.1.4	Batt	tery box cable10-9
10.2	Inst	allati	on10-10
10	.2.1	Inst	alling the battery box in the servo system ······10-10
10	.2.2	Inst	alling and replacing a battery······10-12
10.3	Sys	tem	initialization and operating procedures·······10-14
10	.3.1	Sys	tem initialization······10-14
10	.3.2	Puls	se number······10-15
10	.3.3	PUl	J number10-16
10	.3.4	Esta	ablish the absolute origin position10-17
	10.3	4.1	Establishing the absolute origin position with DI/DO10-17
	10.3	4.2	Establishing the absolute origin position with parameters 10-18
	10.3	4.3	Establishing the absolute origin position with the
			PR homing function10-18
10	.3.5	Rea	nd the absolute position······10-18
	10.3	5.1	Reading the absolute position with DI/DO10-18
	10.3.	5.2	Reading the absolute position with communication 10-22
10.4	Par	amet	ers, DI/DO, and alarms related to absolute function······10-23

Important

10

An absolute servo system includes a servo drive, an absolute motor, and a battery box. The backup battery supplies power to the system so that the encoder continues operating when the main power to the servo drive is off. In addition, the absolute encoder can continuously record the motor's actual position at any time, even when the motor shaft is rotated after the power is off. The absolute servo system must be used with an absolute motor. If the servo is set up with an incremental motor and the absolute function is enabled (P2.069.X = 1), AL069 occurs.

When using an absolute motor, make sure the motor speed is lower than 250 rpm at the moment when power is on. When the encoder is operating under battery power, make sure the maximum speed of the motor does not exceed 200 rpm.

To determine whether you use an absolute motor, check the model number as shown in the following:

ECM-E3 series servo motor

Install the battery correctly to the encoder. One servo drive uses one single battery box; two servo drives can share one dual battery box. Use Delta's encoder cable to connect to the battery box. See the following sections for the specifications of the battery box and accessories.

10.1 Battery box and absolute encoder cable

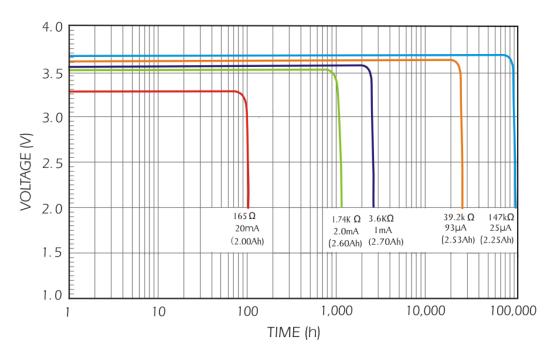
10.1.1 Battery specifications

Precautions

Carefully read and follow these safety precautions. Use batteries in accordance with the specifications to avoid damage or dangerous conditions.

- Make sure the installation location is free of water vapor and corrosive and inflammable gas.
- Do not scatter the batteries as this may result in short-circuiting.

- Do not short-circuit the positive and negative electrodes of the battery, and do not install the batteries in reverse direction.
- Do not mix new and used batteries to avoid losing power or shortening the life of the new batteries. Replacing all batteries with new ones is recommended.
- Follow the instructions in the manual when installing and wiring the battery box to avoid dangerous conditions.
- Do not place the battery in a high-temperature environment over 100°C (212°F) or in the fire, as this may cause a fire or an explosion.


- The batteries are non-rechargeable. Do not charge the batteries as this may result in an explosion.
- Do not directly weld on the surface of the battery.

Battery specifications

Item	Li/SOCI2 Cylindrical Battery		
Mode numberl	ER14505		
Delta model number	ASD-CLBT0100		
International standard size	AA		
Nominal voltage	3.6V		
Nominal capacity	2700 mAh		
Maximum continuous discharge current	100 mA		
Maximum pulse current	200 mA		
Dimensions (D x H)	14.5 x 50.5 mm		
Weight	Approx. 19 g		
Operating temperature	-40°C to +85°C (-40°F to +185°F)		
Supplier	EVE Energy Co., Ltd		
Part number for the battery with wires	0991023281		

Battery life

10

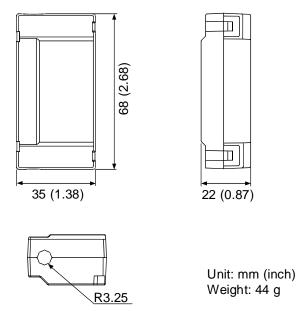
Source: EVE Energy Co. ER14505 Discharge Characteristics

(1) The preceding figure illustrates the discharge current curves measured in the constant current test. According to the five curves, if the battery voltage is kept at 3V or higher, the expected battery life is as shown in the following table. Therefore, 3.1V is defined as low battery voltage for an absolute encoder.

Motor	Current consumption*2 (µA) when the encoder operates under battery power	Battery life expectancy (month)	
ECM-E3D-DADDDDDDD	30	87.5	
ECM-E3P	30	07.5	

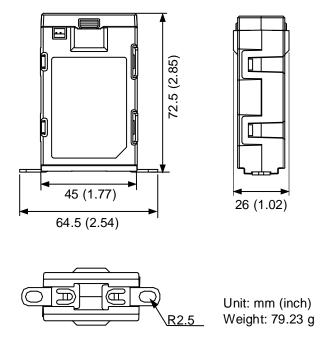
(2) The battery voltage remains above 3.6V up to 5 years when the battery is stored in a dry place at room temperature.

Note:

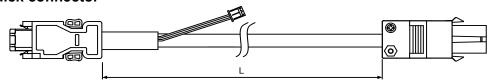

- 1. The battery life expectancy is measured with a test using a servo drive, a motor, and a single battery.
- 2. The current consumption is close to 0 before the absolute origin position is established. Once the absolute origin position is established, the battery starts draining. To avoid battery power consumption when the machine is in transport, it is recommended that you disconnect the battery from the servo drive or do not establish the absolute origin position.

ASDA-E3 Absolute System

10.1.2 Battery box dimensions


Single battery box

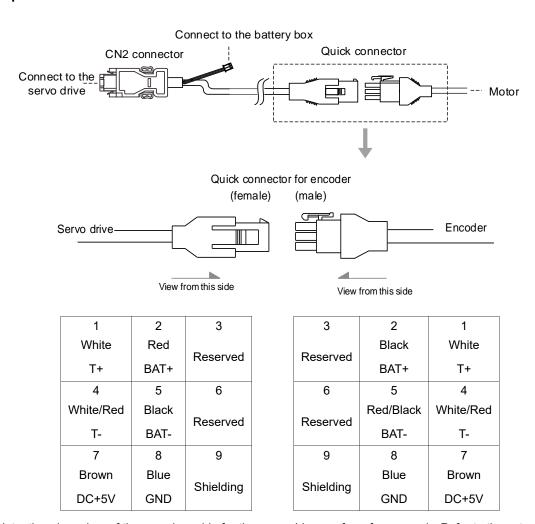
Delta model number: ASD-MDBT0100


Dual battery box

Delta model number: ASD-MDBT0200

10.1.3 Connection cable for the absolute encoder

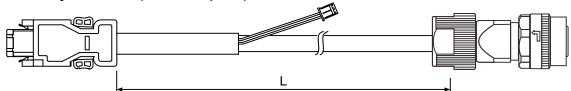
A. Quick connector



Model number of absolute encoder cable	L		
	mm	inch	
ACS3-CAE□0103	3000 ± 50	118 ± 2	
ACS3-CAE□0105	5000 ± 50	197 ± 2	
ACS3-CAE□0110	10000 ± 100	394 ± 4	
ACS3-CAE□0120	20000 ± 100	787 ± 4	

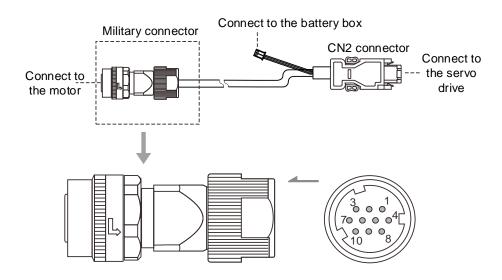
Note: select cables according to the $\ \square$ in the model number. B represents flexible cables and A represents standard cables.

Connection method:


Caution Follow these instructions when wiring. Incorrect wiring may cause battery explosion.

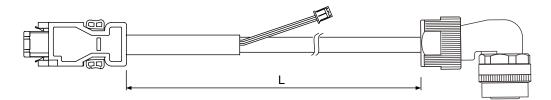
Note: the wire colors of the encoder cable for the servo drive are for reference only. Refer to the actual product.

ASDA-E3 Absolute System



Model number of absolute	Model number of	L	_
encoder cable	connector	mm	inch
ACS3-CAE□A103	CMV1-SP10S	3000 ± 50	118 ± 2
ACS3-CAE□A105	CMV1-SP10S	5000 ± 50	197 ± 2
ACS3-CAE□A110	CMV1-SP10S	10000 ± 100	394 ± 4
ACS3-CAE□A120	CMV1-SP10S	20000 ± 100	787 ± 4

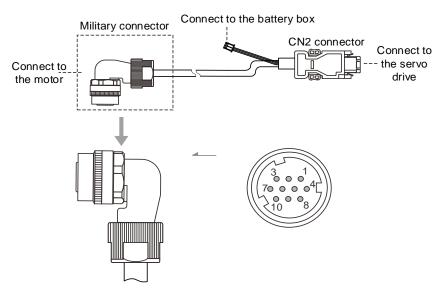
Note: select cables according to the $\ \square$ in the model number. B represents flexible cables and A represents standard cables.


Connection method:

Caution Follow these instructions when wiring. Incorrect wiring may cause battery explosion.

Pin No.	Terminal	Wire color
1	T+	White
2	T-	White/Red
3	-	-
4	DC+5V	Brown
5	BAT-	Black
6	BAT+	Red
7, 8	-	-
9	GND	Blue
10	Shielding	-

10

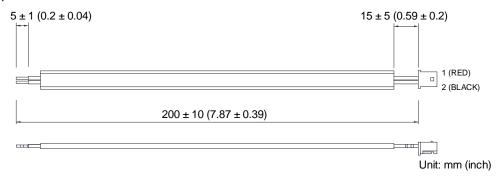


Model number of absolute	Model number of	L		
encoder cable	connector	mm	inch	
ACS3-CRE□A103	CMV1-AP10S	3000 ± 50	118 ± 2	
ACS3-CRE□A105	CMV1-AP10S	5000 ± 50	197 ± 2	
ACS3-CRE□A110	CMV1-AP10S	10000 ± 100	394 ± 4	
ACS3-CRE□A120	CMV1-AP10S	20000 ± 100	787 ± 4	

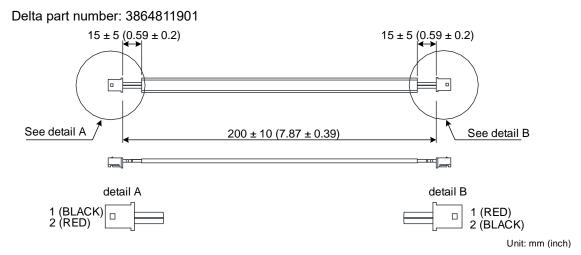
Note: select cables according to the $\ \square$ in the model number. B represents flexible cables and A represents standard cables.

Connection method:

Caution Follow these instructions when wiring. Incorrect wiring may cause battery explosion.

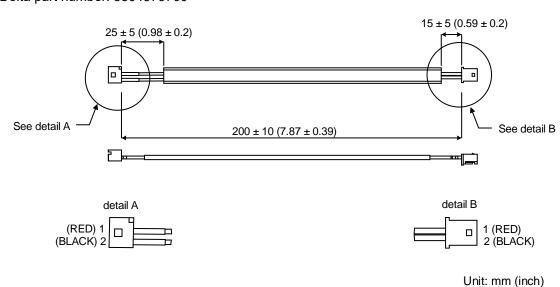

Pin No.	Terminal	Wire color
1	T+	White
2	T-	White/Red
3	-	-
4	DC+5V	Brown
5	BAT-	Black
6	BAT+	Red
7, 8	-	-
9	GND	Blue
10	Shielding	-

ASDA-E3 Absolute System


10.1.4 Battery box cable

Battery box cable for customized wiring

Delta part number: 3864850600



Battery box cable that connects to the encoder cable (male to male)

Battery box cable that connects to the encoder cable (male to female)

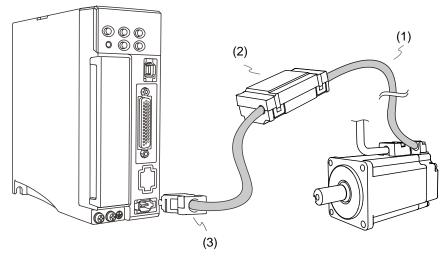
Delta part number: 3864573700

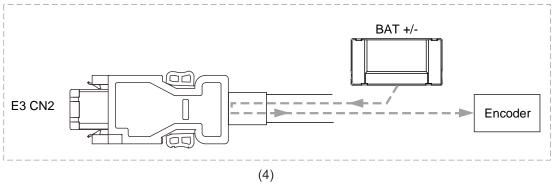
10-9

10.2 Installation

circuit.

10.2.1 Installing the battery box in the servo system


10


■ DO NOT connect to Pin 3 and Pin 4 of the servo drive CN2 connector. These pins are for internal use only. Wiring them will cause damage to the internal

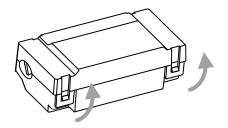
When an absolute encoder is used, the battery supplies power directly to the encoder, so wiring the battery wires to the CN2 connector of the servo drive is not required.

Wiring example: single battery box (standard wiring)

- (1) Encoder cable from the motor side; (2) Single battery box;
 - (3) CN2 connector; (4) Battery box wiring

ASDA-E3 Absolute System

Pin assignment of CN2 connector:

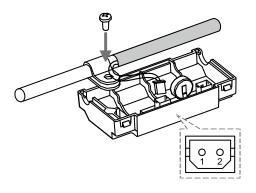

Encoder	cable connector	(female)			N2 of servo drive	
Quick connector	B3 military connector	Color	Pin No.	Signal	Description	
7	4	Brown	1	DC+5V	+5V power supply	
8	9	Blue	2	GND	Power ground	
-	-	-	3	-	Do not connect this pin. For internal use only.	
-	-	-	4	-	Do not connect this pin. For internal use only.	
1	1	White	5	T+	Serial communication signal (+)	
4	2	White/Red	6	T-	Serial communication signal (-)	
9	10	-	Case	Shielding	Shielding	
2	6	Red	-	-	+3.6V battery	
5	5	Black	-	-	Battery ground	

Note: for the wiring details of the absolute encoder connector, refer to Section 3.1.5 Specification for the encoder cable and connector.

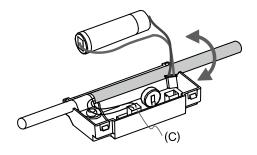
10.2.2 Installing and replacing a battery


Single battery box

10


Step 1:

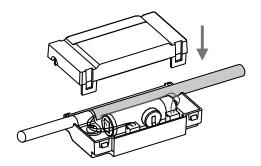
Release the snap-fit tabs on both sides and remove the battery box cover.


Step 2:

Position the (A) cable clamp to the encoder cable. Note that the cable clamp should be placed close to the (B) heat shrink.

Step 3:

Plug in the battery box cable and secure the cable clamp to the battery box with a screw.


Step 4:

Install a new battery and plug in the battery connection wire.

(C) Replace the battery only when the main power from the servo drive is still on. Do not remove the battery box cable which connects to the servo drive, or else the system may lose data.

ASDA-E3 Absolute System

(continued)

Step 5: Place the battery connection wire into the box and fit the cover.

10

Note:

To avoid data loss, replace the battery when any of the following circumstances occurs:

- 1. The servo drive shows AL061 which means the voltage is too low. Refer to Chapter 12 for more information.
- 2. The battery voltage is displayed as 31 when read with P0.002 (monitoring variable 26h), meaning the voltage is below 3.1V.

Important

When the encoder operates under battery power and the battery voltage is below 2.7V, the motor's position record may be lost, and you need to re-establish the absolute origin position after installing new batteries. It is suggested that you replace the batteries when the main power from the servo drive is on to avoid loss of absolute position data.

10.3 System initialization and operating procedures

10.3.1 System initialization

When the servo system resumes operation after power cycling, the controller can acquire the motor's current absolute position with either communication or DI/DO. Delta's absolute system provides the position value in pulse and in PUU.

AL06A occurs when you initialize the absolute system for the first time because the position system has not been established. Clear the alarm by setting up the position system.

AL060 occurs when position data is lost because of low battery voltage or an interruption in the battery power.

In the absolute system, the position data has to be within a specific range. AL062 occurs when the number of motor revolutions exceeds the range of -32,768 to +32,767. AL289 occurs when the position value in PUU exceeds the range of -2,147,483,648 to +2,147,483,647.

AL062 and AL289 are enabled by default. You can use P2.070 [Bit 2] to set whether to show these two alarms when the absolute position system overflows (the number of revolutions or the PUU number exceeds the range specified in the preceding paragraph). This function is for systems which use incremental commands to operate in a single direction.

Steps for system initialization:

- Establish the absolute origin position with DI/DO, parameters, or the PR homing function.
 When the position setting is complete, AL06A or AL060 is automatically cleared. The controller can establish the absolute origin position in pulse or in PUU.
- 2. When the system is power cycled, the controller can access the motor's absolute position with either DI/DO or communication. Based on the setting of P2.070, the controller can read the number of revolutions plus the pulse number within single turn (refer to Section 10.3.2) or the position value in PUU (refer to Section 10.3.3).

ASDA-E3 Absolute System

10.3.2 Pulse number

When the motor is running in the clockwise direction, the number of revolutions is defined as a negative value. When the motor is running in the counterclockwise direction, the number of revolutions is defined as a positive value. The range of the countable number of revolutions is between -32,768 and +32,767. AL062 occurs once the number of revolutions overflows (which means the number exceeds the range). To clear the alarm, re-establish the absolute origin position. If P2.070 [Bit 2] has been set to 1 (no overflow warning), then the system ignores the overflow of number of revolutions.

When the motor is running in the counterclockwise direction and the number of revolutions reaches +32,767, the value jumps to -32,768 once the motor reaches the target position in the next turn, and the value keeps increasing from -32,768 to +32,767 if the motor keeps running. The value changes the other way when the motor is running in the clockwise direction.

There are 16,777,216 pulses in one motor revolution. That is, the pulse number within single turn ranges from 0 to 16,777,215. Pay attention to the motor's running direction and read the number of revolutions plus the pulse number within single turn with either communication or DI/DO.

Total pulse number = m (number of revolutions) \times 16,777,216 + pulse number within single turn (0 to 16,777,215).

The conversions between pulse number and PUU are as follows:

When P1.001.Z = 0: the PUU number when power on = pulse number $x \frac{P1.045}{P1.044} + P6.001$. When P1.001.Z = 1: the PUU number when power on = (-1) x pulse number $x \frac{P1.045}{P1.044} + P6.001$.

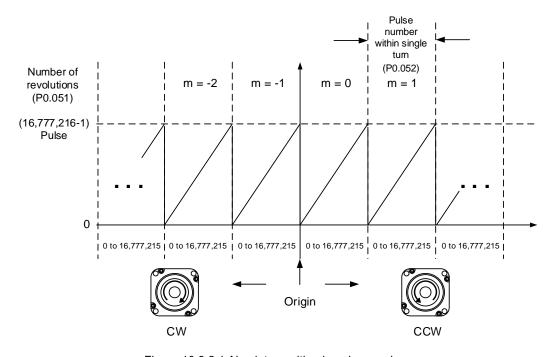


Figure 10.3.2.1 Absolute position in pulse number

Absolute System ASDA-E3

10.3.3 PUU number

The PUU number is a 32-bit absolute position data with a positive or negative sign. When the motor is running in the positive direction, the PUU number increases; when the motor is running in the negative direction, the PUU number decreases. The motor operation direction (positive / negative) is defined by P1.001.Z; operation in the clockwise direction does not necessarily mean the motor is operating in the positive direction.

If the motor keeps running in the same direction and the number of revolutions exceeds the range of -32,768 to +32,767, the servo drive generates AL062 (Number of revolutions of the absolute encoder overflows (issued by encoder)). If the motor's PUU number exceeds the range of -2,147,483,648 to +2,147,483,647, the servo drive generates AL289 (Position counter overflows). When an overflow issue of the absolute encoder (AL062 or AL289) occurs, re-establish the absolute origin position to clear the alarm. Set P2.070 [Bit 2] to determine whether the servo drive generates the alarms AL062 and AL289 when an overflow occurs.

When the motor is running in the positive direction and the PUU number reaches +2,147,483,647, the next PUU number jumps to -2,147,483,648 and keeps increasing from -2147483648 to 2,147,483,647 if the motor keeps running. The value changes the other way when the motor is running in the negative direction.

See the following examples:

Example 1:

When P1.044 = 16,777,216 and P1.045 = 100,000, the motor needs 100,000 PUU to run one revolution. $2,147,483,647 \div 100,000 = 21,474.8$, so once the motor runs over 21,474.8 (< 32,767) revolutions in the positive direction, AL289 occurs.

Example 2:

When P1.044 = 16,777,216 and P1.045 = 10,000, the motor needs 10,000 PUU to run one revolution. $2,147,483,647 \div 10,000 = 214,748.4$, so once the motor runs over 32,767 (< 214,748.4) revolutions in the positive direction, AL062 occurs.

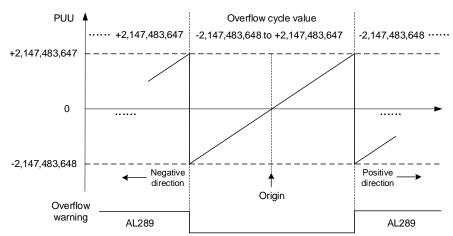


Figure 10.3.3.1 Absolute position in PUU number

Note: after the absolute origin position is established, any modification to P1.001.Z or E-Gear ratio (P1.044 and P1.045) changes the original setting of the absolute origin position. If these parameters are modified, re-establish the absolute origin position.

ASDA-E3 Absolute System

10.3.4 Establish the absolute origin position

When the absolute position is lost, the servo drive provides three methods to establish the absolute origin position: DI/DO, parameter setting, or the PR homing function. The following provides more details for each method.

10

10.3.4.1 Establishing the absolute origin position with DI/DO

When the servo system is controlled by the controller, you can establish the absolute origin position with DI/DO. Once the absolute position is established, the pulse number is reset to 0 and the PUU number is reset to the setting value of P6.001. Refer to the following diagram for detailed descriptions.

Description:

- 1. When the controller triggers DI.ABSE, it has to wait for the T_S delay time before proceeding to the next step.
- 2. After reaching T_S , the controller starts to establish the absolute origin position. When DI.ABSC is triggered and remains on for the T_Q delay time, the pulse number is reset to 0 and the PUU number is reset to the setting value of P6.001.

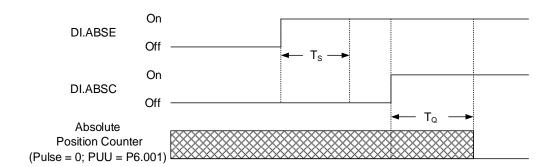


Figure 10.3.4.1.1 Timing diagram for establishing the absolute origin position with DI/DO

The following table describes the T_S and T_Q delay time after DI.ABSE and DI.ABSC are switched to On.

	Ts (ms)	T _Q (ms)		
Min.	P2.009 + 2			
Max.	P2.009 + 10			

Absolute System ASDA-E3

10.3.4.2 Establishing the absolute origin position with parameters

Set P2.071 to 0x0001 through the panel or with communication to establish the absolute origin position. Since P2.071 is write-protected by P2.008, you must set P2.008 to 271 first, and then set P2.071 to 0x0001. As soon as P2.071 is set to 0x0001, the absolute position system resets.

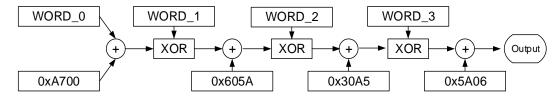
10.3.4.3 Establishing the absolute origin position with the PR homing function

You can use the 11 homing modes in the PR mode to establish the absolute origin position. For more details, refer to Section 7.1.3.1 Homing methods.

10.3.5 Read the absolute position

10.3.5.1 Reading the absolute position with DI/DO

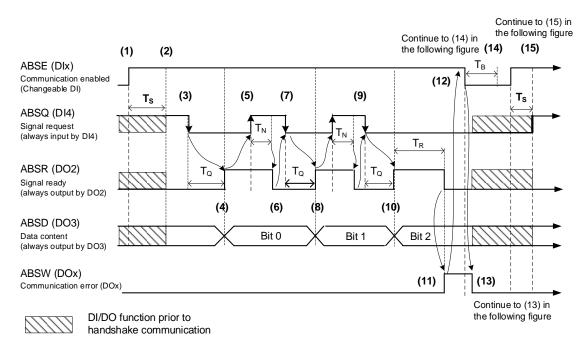
Set P2.070 [Bit 0] to 0 so that you can read the PUU number with DI/DO. See the following descriptions.


Bit 79 - Bit 64	Bit 63 - Bit 32		Bit 31 - Bit 16	Bit 15 - Bit 0
-	WORD_3 WORD_2		WORD_1	WORD_0
Check Sum	Encoder PUU -2,147,483,648 to +2,147,483,647		0	Encoder status (P0.050)

Set P2.070 [Bit 0] to 1 so that you can read the pulse number with DI/DO. See the following descriptions.

Bit 79 - Bit 64	Bit 63 - Bit 32		Bit 31 - Bit 16	Bit 15 - Bit 0
-	WORD_3 WORD_2		WORD_1	WORD_0
Check Sum	Encoder pulse number within single turn 0 to 16,777,215 (= 16,777,216 - 1)		Number of encoder revolution -32,768 to +32,767	Encoder status (P0.050)

Example: reading the pulse number with DI/DO


Check Sum = ((((((((WORD_0 + 0xA700) XOR WORD_1) + 0x605A) XOR WORD_2) + 0x30A5) XOR WORD_3) + 0x5A06)

Note:

- 1. This algorithm has no positive or negative sign.
- 2. 0xA700, 0x605A, 0x30A5, and 0x5A06 are constants in hexadecimal format.

You can set P2.070 [Bit 0] to read the position value in units of pulse or PUU with DI/DO. See the following timing diagram.

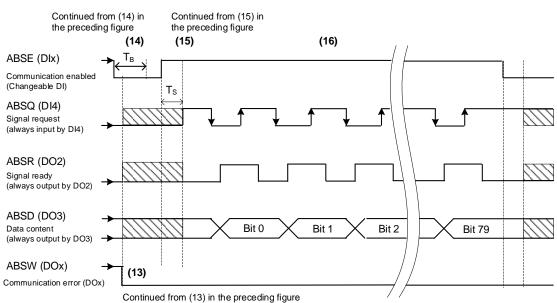


Figure 10.3.5.1.1 Timing diagram for reading the absolute position with DI/DO

The following table describes the delay time when you read the absolute position with DI/DO.

	T _R (ms)	T _S (ms)	T _Q (ms)	T _N (ms)	T _B (ms)
Min.	-	P2.009 + 2			
Max.	200	P2.009 + 10			

Absolute System ASDA-E3

Descriptions:

When the handshake communication starts, the ABSE signal is triggered.

(2) After the T_s delay time (to make sure the ABSE signal is On), the functions for DI4, DO2, and DO3 are switched to ABSQ, ABSR, and ABSD respectively. If DI4 was in the high-level state before switching, it remains in the high-level state when switched to ABSQ (logic high-level signal). DI4, DO2, and DO3 are dual-function DI/DOs, which means the original functions for DI4, DO2, and DO3 share the same DI/DOs with ABSQ, ABSR, and ABSD. Pay special attention when switching their functions before, during, and after the signal handshake. To set these three DI/DOs as single function, set them to 0 before switching the functions.

- (3) If DI4 was in the high-level state and its function was switched to ABSQ after the T_S delay time, when the controller resets this signal to low level, the new signal is interpreted as the request for data access.
- (4) After the T_Q delay time, the handshake data is ready and sent to ABSD. Now the servo drive triggers the ABSR signal and the controller can access the data. If the controller cannot detect that the ABSR state has changed to high level after the maximum T_Q time, there may be a communication error such as communication cable disconnection.
- (5) Once detecting the ABSR signal state as high level, the controller accesses the data, and sets the ABSQ signal to high level to notify the servo drive that the data was read.
- (6) When ABSQ is at high level for the T_N time, ABSR is set to low level in order to send the data for the next bit communication.
- (7) When detecting the ABSR signal state as low level, the controller sets ABSQ to low level and sends a request to the servo drive for the next bit communication.
- (8) Repeat steps 3 and 4. Send the absolute position to ABSD for the next bit communication.
- (9) Repeat steps 5 to 7. The controller reads the data and notifies the servo drive that it has received the data.
- (10) The third bit data is ready.
- (11) After the T_R waiting time, if the controller has not read the data and triggered the ABSQ signal, the servo drive sends the ABSW signal (communication error) and stops the handshake communication.
- (12) When the controller receives the ABSW signal, it sets ABSE to low level and prepares to restart the handshake communication.
- (13) ABSW resumes to low level after the controller sets the ABSE signal to low level.
- (14) The controller restarts the communication after the T_B time.
- (15) Repeat step 1.

ASDA-E3 Absolute System

(16) If no error occurs, the controller completes 80 bits (Bit 0 - 79) of the handshake communication with the servo drive. DI4, DO2, and DO3 then restore to their original functions.

Note: if ABSE is set to low level first and then changed to high level, but ABSW does not return to low level and the communication remains in the error state, it means some other errors have also occurred, such as AL060 (absolute position is lost), AL061 (encoder undervoltage), or AL062 (number of revolutions of the absolute encoder overflows (issued by encoder)). The communication can only be restarted after the errors have been cleared.

Absolute System ASDA-E3

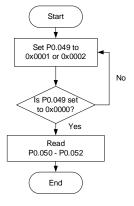
10.3.5.2 Reading the absolute position with communication

You can access the data of the absolute encoder with two communication methods: instant access or register access.

Instant access

Instant access refers to reading the motor's feedback position as soon as power is supplied to the servo. Setting P0.017 to 0 means to access the motor's feedback position through P0.009 (Status monitoring register 1).

Register access


Register access means the motor's position is temporarily stored in the register and the read value does not change with the motor's movement. Once you set P0.049 through communication, the encoder status and motor absolute position (number of revolutions, pulse number within single turn or PUU) are stored in P0.050, P0.051, and P0.052 respectively. Set to read the value of P0.052 in units of pulse or PUU with P2.070 [Bit 1].

- When P0.049 is set to 0x0001, the drive does not clear the position error when reading the position value.
- When P0.049 is set to 0x0002, the drive clears the position error at the same time when reading the position value.

After the motor is enabled, it moves slightly forward and backward to correct its position even when it is stopped. To avoid the difference between the actual and read motor positions, set P0.049 to 0x0002 to have the motor's actual position updated to the servo drive, which clears the position error.

For example, when the read motor position is 20000, the actual position can be between 19999 and 20001. If you send a command to read the motor's position when it stops at 20001, the read value is 20001. Meanwhile, 20001 is updated to the servo drive, meaning the position error is cleared. If the servo drive does not update the read position, a command error occurs.

- After all positions are updated to P0.050 P0.052, P0.049 is automatically reset to 0x0000. At this point, the controller can access the values of P0.050 P0.052.
- P0.050 shows the status of the absolute encoder. When P0.050 [Bit 0] = 1 (absolute position lost) or P0.050 [Bit 2] = 1 (absolute number of revolutions overflows), it means the read absolute position is invalid, and you must re-establish the absolute origin position.

ASDA-E3 Absolute System

10.4 Parameters, DI/DO, and alarms related to absolute function

Relevant parameters (refer to Chapter 8 for detailed information):

Parameter	Function	
P0.002	Drive status	
P0.049	9 Update encoder absolute position	
P0.050	Absolute position system status	
P0.051	Encoder absolute position - number of revolutions	
P0.052	Encoder absolute position - pulse number within single turn or PUU	
P2.069	Absolute encoder	
P2.070	Read data selection	
P2.071	Absolute position homing	

Relevant DI/DOs (refer to Table 8.1 and Table 8.2 in Chapter 8 for detailed information):

DI name	Setting value
ABSE	0x1D
ABSC	0x1F
ABSQ (always input by DI4)	When DI.ABSE is on, the DI.ABSQ from DI4 replaces the DI4 function from P2.013

DO name	Setting value
ABSW	0x0D
ABSR (always output by DO2)	When DI.ABSE is on, DO.ABSR triggered by DO2 will replace the DO2 assigned by P2.019
ABSD (always output by DO3)	When DI.ABSE is on, DO.ABSD triggered by DO3 will replace the DO3 assigned by P2.020

Absolute System ASDA-E3

Relevant alarms (refer to Chapter 12 for detailed information):

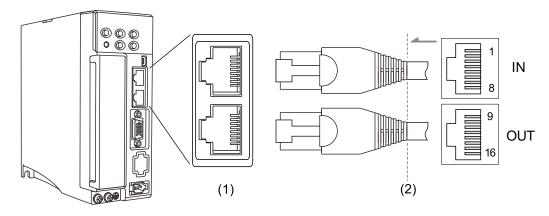
Display	Alarm name	
AL060	Absolute position is lost	
AL061	Encoder undervoltage	
AL062	Number of revolutions of the absolute encoder overflows (issued by encoder)	
AL069	Wrong motor type	
AL06A	Absolute position is lost	
AL072	Encoder overspeed	
AL073	Encoder memory error	
AL074	Encoder single-turn absolute position is in error	
AL075	Encoder absolute number of revolutions is in error	
AL077	Encoder internal error	
AL079	Encoder parameter setting incomplete	
AL07A	Encoder Z phase position is lost	
AL07B	Encoder memory is busy	
AL07C	Command to clear the absolute position is issued when the motor speed is over 200 rpm	
AL07D	Motor stops operating when servo drive power is cycled before AL07C is cleared	
AL07E	Error occurs when the encoder clears the procedure	
AL289	Position counter overflows	

EtherCAT Mode

11

This chapter provides details for the required parameter settings when the servo communicates with the controller through the EtherCAT communication function.

11.1	Bas	ic co	onfiguration ·····	11-3
11	1.1.1	Har	dware configuration ·····	11-3
11	1.1.2	ESI	file import	11-6
11	1.1.3	Para	ameter settings of EtherCAT mode·····	11-7
11.2	Cor	nmur	nication function ······ 1	1-11
11	1.2.1	Spe	ecifications1	1-11
11	1.2.2	Syn	chronization mode······1	1-13
	11.2.	2.1	Synchronization modes of the servo drive1	1-13
	11.2.	2.2	Select Synchronization mode1	1-14
	11.2.	2.3	Distributed clocks setting ······1	1-14
11	1.2.3	Ethe	erCAT State Machine ······1	1-15
11	1.2.4	PDO	O mapping configuration······1	1-17
	11.2.	4.1	Default PDO mapping configuration1	1-17
	11.2.	4.2	Set PDO mapping1	1-19
	11.2.	4.3	PDO mapping object·····1	1-20
	11.2.	4.4	SDO abort codes ·····1	1-21
11.3	Ethe	erCA	T operation modes ······1	1-22
11	1.3.1	Prof	file Position mode······1	1-22
11	1.3.2	Prof	file Velocity mode ······1	1-27
11	1.3.3	Prof	file Torque mode······1	1-29
11	1.3.4	Hon	ning mode······1	1-31
11	1.3.5	Сус	clic Synchronous Position mode · · · · · · · 1	1-33
11	1.3.6	Сус	clic Synchronous Velocity mode······1	1-35
11	1.3.7	Сус	clic Synchronous Torque mode······1	1-37
11	1.3.8	Tou	ch Probe function and Touch Probe status ······1	1-39
11.4	Obj	ect d	lictionary······1	1-44
11	1.4.1	Spe	ecifications for objects ······1	1-44
11	1.4.2	List	of objects1	1-45
11	1.4.3	Deta	ails of objects ······1	1-47
	11.4.	3.1	OD 1XXXh communication object group1	1-47
	11.4.	3.2	OD 2XXXh servo parameter group······1	1-53


		11.4.	3.3 OD 6XXXh communication object group	11-54
		11.5 Diag	pnostics and troubleshooting······	11-94
4	4	11.5.1	EtherCAT Diagnosis ·····	11-94
1	1	11.5.2	Alarm list	11-95
ш	1			

11.1 Basic configuration

11.1.1 Hardware configuration

The pin assignments of the two ports of the EtherCAT connector (CN6) are the same. Note that the IN port is for connecting the controller or the previous servo drive, and the OUT port is for connecting the next servo drive or not connecting to other devices. Incorrect wiring will lead to communication error.

11

(1) CN6 connector (female); (2) CN6 connector (male)

Pin assignment:

Transmission port	Pin No.	Signal	Function description
	1	TX+	Transmit +
	2	TX-	Transmit -
	3	RX+	Receive +
INI	4	-	Reserved
IN	5	-	Reserved
	6	RX-	Receive -
	7	-	Reserved
	8	-	Reserved
	9	TX+	Transmit +
	10	TX-	Transmit -
	11	RX+	Receive +
OUT	12	-	Reserved
OUT	13	-	Reserved
	14	RX-	Receive -
	15	-	Reserved
	16	-	Reserved

Set P0.002 to 124 for monitoring the EtherCAT network and connection status with the panel:

X & Y: network status for OUT and IN ports

X & Y	Status	Description
0	No connection	Network connection is not established.
1	Network is connected	Network connection is established.

Z: EtherCAT error status

Z	Status	Description	
0	No error	No error has occurred.	
1	Error	Error occurs in the controller or servo drive.	

■ U: EtherCAT connection status

U	Status	Description
0	Init	After power cycling and the initialization of the servo drive is complete, the communication has not yet started, but the controller can access the servo drive's register.
1	Operational	SDO, TxPDO, and RxPDO data packets can be transmitted.
2	Pre-Operational	The controller can exchange data through the mailbox.
3	Safe-Operational	The servo drive can use the SDO and TxPDO data packets to exchange data with the controller.

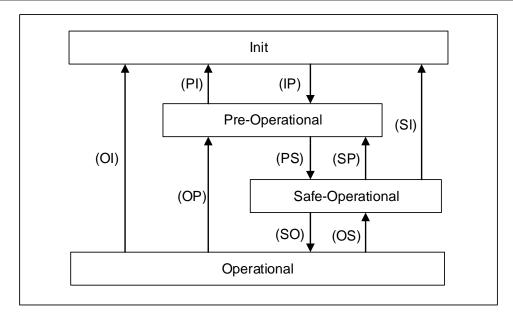
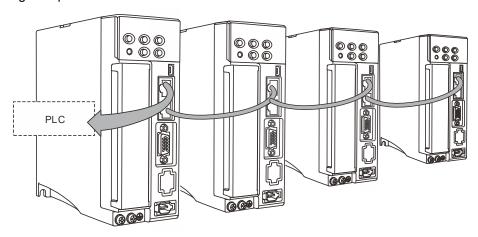



Figure 11.1.1.1 EtherCAT State Machine

Connecting multiple servo drives:

11

Note:

- When multiple servo drives are connected, the maximum distance between each drive is 50 m (164.04 inches).
- 2. Use CAT5e STP cable.
- 3. It is suggested that you use a Beckhoff cable (model number: ZB9020).
- 4. The IN port is for connecting the controller or the previous servo drive, and the OUT port is for connecting the next servo drive or not connecting to other devices. Incorrect wiring will lead to communication error.

11.1.2 ESI file import

11

EtherCAT is an open motion control bus that requires using the ESI (EtherCAT Slave Information) file to configure the functions and related object properties for each slave device. Generally, the ESI file is an XML file.

Delta controller

No need to import ESI files.

Non-Delta controller

Import the ESI file of the slave device to the controller software, so the controller can recognize and control each slave device according to the configuration in the ESI file. An ESI file may contain data of multiple devices. Delta's A3-E, B3-E and E3-E servo drives share the same ESI file. To import ESI files to non-Delta controllers, refer to the manufacturer's instruction manual.

Download the dedicated ESI file for the A3-E, B3-E and E3-E servo drives from the <u>Download</u> <u>Center of Delta's website.</u>

The storage paths of ESI files for the non-Delta controllers are as follows:

Beckhoff TwinCAT

TwinCAT 2: C:\TwinCAT\IO\EtherCAT

TwinCAT 3: C:\TwinCAT\3.1\Config\lo\EtherCAT

Omron Sysmac Studio

C:\Program Files (x86)\OMRON\Sysmac Studio\IODeviceProfiles\EsiFiles\UserEsiFiles

Note: refer to the manufacturer's instruction manual of each controller for the actual storage path.

11.1.3 Parameter settings of EtherCAT mode

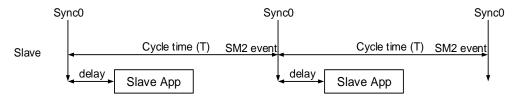
Follow these instructions to connect the EtherCAT controller and the servo drive:

- 1. Set to EtherCAT mode: set P1.001.YX to 0C.
- 2. Set the slave address: set P3.000 to 0x0001 0x007F.
- 3. It is suggested that you change the setting value of P3.012.Z from 0 (default) to 1 to enable the non-volatile setting for the parameter. Note that the default E-Gear ratio varies with the set value of P3.012.Z.

	P3.012 = 0x0100 (Z = 1)		P3.012 = 0x0000 (Z = 0)	
Settings	Servo parameter	Default	OD address	Default
Motor stop mode	P1.032	0x0000	605Bh	0
S-curve acceleration constant	P1.034	200	6087h	200
Zero speed range	P1.038	100 (0.1 rpm)	606Fh	100 (0.1 rpm)
E-Gear ratio - numerator N1	P1.044	16777216	6093h sub1	1
E-Gear ratio - denominator M	P1.045	100000	6093h sub2	1
Speed reached (DO.SP_OK) range	P1.047	10 (rpm)	606Dh	100 (0.1 rpm)
Accumulated time to reach desired speed	P1.049	0	606Eh	0
Maximum anad limit	D4 055	Depending on the motor	607Fh	Depending on the motor (0.1 rpm)
maximum speed iiiiii		(rpm)	6080h	Depending on the motor (rpm)
Excessive deviation warning condition of Position command	P2.035	50331648	6065h	50331648
Positive software limit (PP / CSP / CSV / CST mode)	P5.008	2147483647	607Dh sub2	2147483647
Negative software limit (PP / CSP / CSV / CST mode)	P5.009	-2147483648	607Dh sub1	-2147483648
Origin definition (HM mode)	P6.001	0	607Ch	0

11

P3.009	Communication synchronization		Address: 0312H 0313H	
Default:	0x5055	Control mode:	EtherCAT	
Unit:	-	Setting range:	0x0000 - 0x	9AFF
Format:	HEX	Data size:	16-bit	


Settings:

The slave synchronizes with the master via SYNC. The definition is as follows:

Z: when the servo is operating in the DC-Synchronous mode, you can adjust the timing of the servo accessing the EtherCAT packets to ensure this timing is not in conflict with the timing of the controller sending the packets.

The delay time shown in the following figure is $(T/10) \times Z (\mu s)$.

P3.018	EtherCAT special function switch	1		Address: 0324H 0325H
Default:	0x00002000	Control mode:	EtherCAT	
Unit:	-	Setting range:	0x0000000	0 - 0x00112211
Format:	HEX	Data size:	32-bit	

Settings:

А	Source setting for the content loaded to the EtherCAT Station Alias Register 0x0012 after the servo drive is powered on	×	Unit selection for Target velocity (OD 60FFh) and Velocity actual value (OD 606Ch) when in the PV (Profile Velocity) mode or CSV (Cyclic Synchronous Velocity) mode
В	Reserved	Y	Reserved
С	Unit selection for the maximum speed of OD 607Fh and OD 6080h	Z	AL185 communication disconnection detection setting
D	Reserved	U	Reserved

- X: unit selection for Target velocity (OD 60FFh) and Velocity actual value (OD 606Ch) when in the
 PV (Profile Velocity) mode or CSV (Cyclic Synchronous Velocity) mode
 - 0: 0.1 rpm
 - 1: pulse/sec

- Z: AL185 communication disconnection detection setting
 - 0: disconnection detection starts after EtherCAT communication enters OP state.
 - 1: disconnection detection starts after EtherCAT communication enters Init state.
 - 2: disable disconnection detection.

Note: when using the ring topology connection, set P3.018.Z to 2 to disable the disconnection detection.

- A: source setting for the content loaded to the EtherCAT Station Alias Register 0x0012 after the servo drive is powered on.
 - 0: determined by the EtherCAT EEPROM station number field (ADR 0x0004) setting, which needs to be set by the controller.
 - 1: determined by the address set with servo parameter P3.000.
- C: unit selection for the maximum speed of OD 607Fh and OD 6080h
 - 0: 0.1 rpm for OD 607Fh and rpm for OD 6080h.
 - 1: pulse/sec for OD 607Fh and OD 6080h.

P3.022	EtherCAT PDO timeout setting			Address: 032CH 032DH
Default:	0xFF04	Control mode:	EtherCAT	
Unit:	-	Setting range:	0x0002 - 0x	FF14
Format:	HEX	Data size:	16-bit	

Settings:

When using the PDO to transmit data periodically, use this parameter to set the timeout setting. The following two sets of digits specify the trigger conditions for AL180 and AL3E3 respectively to ensure that the servo drive receives the PDO. When one of the alarm occurs, it means the allowable duration for packet loss exceeds the set range.

Digit	UZ	YX
Function	AL180 trigger condition	AL3E3 trigger condition
Range	0x00 (disabled) - 0xFF (default)	0x02 - 0x14

 YX: AL3E3 trigger condition (allowable cycle for elapsed time); applicable to CSP / CSV / CST mode.

AL3E3 occurs when the servo drive does not receive the PDO within the set cycle.

When the communication cycle is 4 ms and you set this parameter to 0x02 (allow two cycles), it means if the servo drive does not receive any PDO within 8 ms, AL3E3 occurs.

 UZ: AL180 trigger condition (allowable duration for elapsed time); applicable to all operation modes.

AL180 occurs when the servo drive does not receive the PDO within the set duration (unit: ms). For example, when you set P3.022.UZ to 0x01, the duration is 1 ms; when you set P3.022.UZ to 0x02, the duration is 2 ms; and when you set P3.022.UZ to 0xFF, the duration is 255 ms.

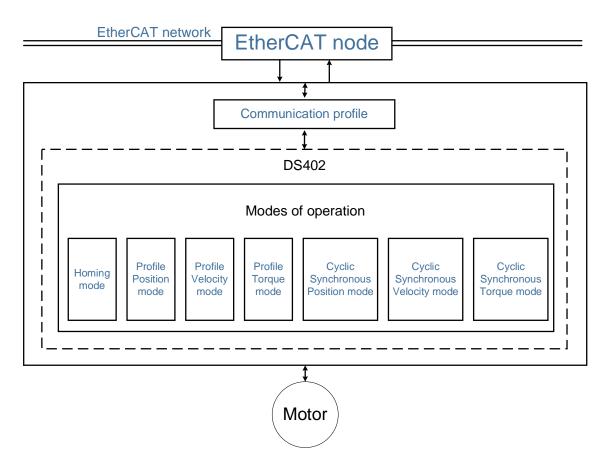
11

P0.002	Drive status			Address: 0004H 0005H
Default:	1	Control mode:	All	
Unit:	-	Setting range:	-300 to +12	7
Format:	DEC	Data size:	16-bit	

Settings:

Input the monitoring code to P0.002 to view changes to the variable on the panel. For the list of monitoring variables, refer to Chapter 8 for Table 8.3 Monitoring variables descriptions.

Monitoring variables related to EtherCAT communication are as follows.


Code	Variable name	Description
119 (77h)	EtherCAT State Machine	1: Init 2: Pre-Operational (Pre-OP) 4: Safe-Operational (Safe-OP) 8: Operational (OP)
120 (78h)	Communication error rate	When this value continues to increase, it indicates that there is communication interference. In an interference-free environment, this value should not increase. (Not available on -L models)
124 (7Ch)	EtherCAT network and connection status	Panel display: U Z Y X X network status for OUT port U EtherCAT error status Y network status for IN port U EtherCAT connection status X: network status for OUT port 0: connection is not established 1: connection is established 1: connection is not established 1: connection is not established 1: connection is established 1: error occurs in the controller or servo drive U: EtherCAT connection status 0: Init 1: Pre-Operational (Pre-OP) 2: Safe-Operational (Safe-OP) 3: Operational (OP)

11.2 Communication function

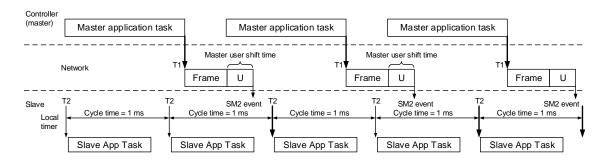
11.2.1 Specifications

	Physical layer	100BASE-TX		
	Communication connector	RJ45 × 2		
	Network topology	Line connection		
	Baud rate	2 x 100 Mbps (full duplex)		
	Data frame length	Maximum 1,484 bytes		
	SyncManager	SM0: mailbox output SM1: mailbox input SM2: process data output SM3: process data input		
EtherCAT communication functions	Fieldbus Memory Management Units (FMMU)	FMMU0: process data output area FMMU1: process data input area FMMU2: mailbox status area		
	Application layer protocol	CoE: CANopen over EtherCAT		
	Synchronization mode	DC-Synchronous mode (SYNC0) Asynchronous mode (Free Run)		
	Communication object	SDO: Service data object PDO: Process data object EMCY: Emergency object		
	LED indicator	No LED indicators. Refer to Section 11.1.1 for the panel display of EtherCAT network and connection status.		
	Application layer specifications	IEC 61800-7 CiA DS402 Drive Profile		
Supported CiA DS402 operation modes		 Profile Position (PP) mode Profile Velocity (PV) mode Profile Torque (PT) mode Homing (HM) mode Cyclic Synchronous Position (CSP) mode Cyclic Synchronous Velocity (CSV) mode Cyclic Synchronous Torque (CST) mode 		

The EtherCAT architecture of the servo drive is as follows:

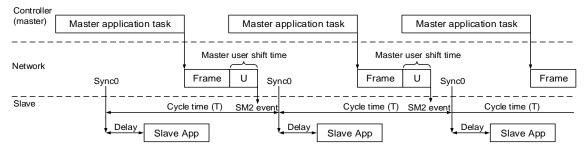
- Communication profile: this protocol includes the communication objects (PDO, SDO, SYNC, and Emergency object) and related communication object dictionary.
- DS402 is the device profile for drives and motion control. It defines the behavior of each operation mode and the required object index settings for execution.

11.2.2 Synchronization mode


11.2.2.1 Synchronization modes of the servo drive

The servo drive supports two synchronization modes: Free Run mode and DC-Synchronous mode. Note that the Free Run mode is defined as a synchronous mode in the EtherCAT specification established by the EtherCAT Technology Group (ETG).

11


Free Run mode (Asynchronous)

Actually, the master and slave stations run asynchronously in the Free Run mode. The clock of the slave runs independently of the clock of the master. In other words, the clocks are not synchronized. The command and feedback transmissions between the master and slave are based on a sequential order instead of a precise time synchronization. For example, the master sends a PDO at the time T1, and the slave receives the PDO at the time T2 after the SM2 event.

DC-Synchronous mode (SYNC0 synchronization)

There is precise time synchronization between the master and slave stations in the DC-Synchronous mode. The master periodically executes the control program and sends PDO packets to transmit the command to the slave at a fixed time according to the distributed clocks (DC), and then receives the feedback from the slave. The slave receives and updates the PDO data at a fixed time according to the distributed clocks.

Note: Delay = $P3.009.Z * (T/10) (\mu s)$

11.2.2.2 Select Synchronization mode

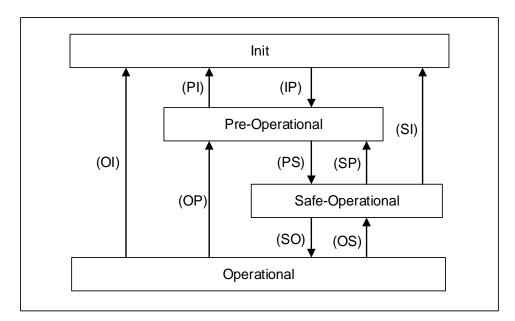
Follow these steps to select DC-Synchronous or Free Run mode.

 Select Drive 4 (ASDA-E3-E CoE Drive) in the left column of the TwinCAT System Manager window.

Under the DC tab in the right column, select DC-Synchronous or Free Run as the Operation Mode.

11.2.2.3 Distributed clocks setting

Follow these steps to set the data exchange cycle.


- 1. Select NC-Task 1 SAF in the left column.
- Set the data exchange cycle in the Cycle ticks field under the Task tab in the right column.

The SYNC0 cycle is used to define the PDO cycle time. The minimum unit of the SYNC0 cycle for A3-E, B3-E and E3-E is 125 μ s. The SYNC0 cycles within 1 ms are 125 μ s, 250 μ s, and 500 μ s in sequence. The SYNC0 cycles above 1 ms are accumulated at intervals of 1 ms, such as 1 ms, 2 ms, 3 ms...10 ms. If the configuration includes an A2-E servo drive, the unit of the SYNC0 cycle refers to the minimum unit of A2-E (1 ms).

11.2.3 EtherCAT State Machine

In EtherCAT communication, the servo drive's state machine can be in the following states. The controller (master) controls the servo (slave) based on the actual state. The controller needs to configure the servo drive according to the designated flow in the following figure. After the controller completes the initialization of the communication, the servo (slave) is in the Operational state and waits for the user's command to perform motion control. Use the monitoring variable P0.002 = 119 to monitor the current state of the EtherCAT State Machine.

Value displayed on the panel when P0.002 = 119	State	Description
1	Init	The servo drive successfully completes initialization after being powered on without errors occurring. The packets cannot yet be transmitted in this state.
2	Pre-Operational (Pre-OP)	Data can be exchanged with SDOs. If an alarm occurs in the servo drive, an emergency message is sent to notify the controller.
4	Safe-Operational (Safe-OP)	The servo drive can use SDO and TxPDO data packets to exchange data with the controller.
8	Operational (OP)	All data exchanges including SDOs and PDOs (TxPDO and RxPDO) are allowed.

The controller (master) issues corresponding commands to the servo (slave) according to the state transition.

State transition	Description
IP	 The master confirms the VendorID, ProductCode and RevisionNumber of the slave. The master calibrates the distributed clocks of the slave (DC-Synchronous mode). The master defines the slave address as well as the SyncManager 0 and 1 (SM0 and SM1) registers and establishes the mailbox communication. The master issues the command and confirms that the slave switches to the Pre-Operational state.
PS	 The master uses the SDOs to set the PDO mapping and DC related parameters. The master defines the FMMU as well as the SyncManager 2 and 3 (SM2 and SM3) registers, and the slave continues to transmit PDO (TxPDO) packets to the master. The master issues the command and confirms that the slave switches to the Safe-Operational state.
SO	 The master starts transmitting PDOs (RxPDOs). The DC synchronization process between the master and slave is started.
PI, SI, OI	 The slave disables all communication functions, including the SDOs and PDOs. The slave switches to the Init state.
SP, OP	The slave disables the PDO function.The slave switches to the Pre-Operational state.
os	The master stops transmitting PDOs (RxPDOs).The slave switches to the Safe-Operational state.

11.2.4 PDO mapping configuration

The PDO mapping objects are allocated from OD 1600h to OD 1603h for RxPDOs and OD 1A00h to OD 1A03h for TxPDOs in the object dictionary. Each group of RxPDO and TxPDO supports updating the PDO data for up to 8 sets of 32-bit objects.

11

11.2.4.1 Default PDO mapping configuration

The following tables show the default PDO mapping configuration of the EtherCAT servo drive for data exchange. This is also defined in the XML file of the EtherCAT slave. You can modify the PDO mapping configuration according to the requirements. The fourth group of RxPDO and TxPDO is the suggested configuration for Omron controllers.

In Delta ASDA-x3-E rev0.04.xml, the first to fourth groups of PDO configuration are shown as follows:

First group of RxPDO mapping

RxPDO (OD 1600h)	Controlword (OD 6040h)	Target position (OD 607Ah)	Target velocity (OD 60FFh)	Touch probe function (OD 60B8h)
---------------------	---------------------------	-------------------------------	-------------------------------	---------------------------------------

First group of TxPDO mapping

TxPDO (OD 1A00h)	Statusword (OD 6041h)	Position actual value (OD 6064h)	Velocity actual value (OD 606Ch)	Touch probe status (OD 60B9h)
	Touch probe pos1 pos value (OD 60BAh)	Digital inputs (OD 60FDh)		

Second group of RxPDO mapping (default)

RxPDO	Controlword	Target position	Target velocity	Target torque
(OD 1601h)	(OD 6040h)	(OD 607Ah)	(OD 60FFh)	(OD 6071h)
	Touch probe function (OD 60B8h)			

Second group of TxPDO mapping (default)

TxPDO (OD 1A01h)	Statusword (OD 6041h)	Position actual value (OD 6064h)	Velocity actual value (OD 606Ch)	Torque actual value (OD 6077h)
	Touch probe status (OD 60B9h)	Touch probe pos1 pos value (OD 60BAh)	Digital inputs (OD 60FDh)	

Third group of RxPDO mapping

11

RxPDO	Controlword	Target position	Target velocity	Target torque
(OD 1602h)	(OD 6040h)	(OD 607Ah)	(OD 60FFh)	(OD 6071h)
	Modes of operation (OD 6060h)	Touch probe function (OD 60B8h)		

Third group of TxPDO mapping

TxPDO (OD 1A02h)	Statusword (OD 6041h)	Position actual value (OD 6064h)	Velocity actual value (OD 606Ch)	Torque actual value (OD 6077h)
	Modes of operation display (OD 6061h)	Touch probe status (OD 60B9h)	Touch probe pos1 pos value (OD 60BAh)	Digital inputs (OD 60FDh)

Fourth group of RxPDO mapping (for Omron controllers)

RxPDO	Controlword	Target position	Target velocity	Target torque
(OD 1603h)	(OD 6040h)	(OD 607Ah)	(OD 60FFh)	(OD 6071h)
	Modes of operation (OD 6060h)		Negative torque limit (OD 60E1h)	Touch probe function (OD 60B8h)

Fourth group of TxPDO mapping (for Omron controllers)

(TxPDO OD 1A03h)	Statusword (OD 6041h)	Position actual value (OD 6064h)	Torque actual value (OD 6077h)	Modes of operation display (OD 6061h)
		Touch probe status (OD 60B9h)	Touch probe pos1 pos value (OD 60BAh)	Error code (OD 603Fh)	Digital inputs (OD 60FDh)

11.2.4.2 Set PDO mapping

Take the second group of PDO configuration OD 1601h and OD 1A01h as an example, and the settings are as follows:

0 11

- Disable the PDO configuration: set OD 1C12h sub0 to 0 (RxPDO) and OD 1C13h sub0 to 0 (TxPDO).
- 2. Disable the PDO mapping setting: set OD 1600h sub0 to 0 (RxPDO) and OD 1A01h sub0 to 0 (TxPDO).
- 3. Set OD 1601h sub1 sub5 for the RxPDO mapping content, and set OD 1601h sub0 to 5 for the RxPDO mapping number.

Mapping parameter setting for RxPDO		Data		Description
OD 1601h sub1	6040h	00h	10h	Controlword (6040h); data length is 16-bit.
OD 1601h sub2	607Ah	00h	20h	Target position (607Ah); data length is 32-bit.
OD 1601h sub3	60FFh	00h	20h	Target velocity (60FFh); data length is 32-bit.
OD 1601h sub4	6071h	00h	10h	Target torque (6071h); data length is 16-bit.
OD 1601h sub5	60B8h	00h	10h	Touch probe function (60B8h); data length is 16-bit.
OD 1601h sub0		5		Set 5 for the RxPDO mapping number.

4. Set OD 1A01h sub1 - sub7 for the TxPDO mapping content, and set OD 1A01h sub0 to 7 for the TxPDO mapping number.

Mapping parameter setting for TxPDO		Data		Description
OD 1A01h sub1	6041h	00h	10h	Statusword (6041h); data length is 16-bit.
OD 1A01h sub2	6064h	00h	20h	Position actual value (6064h); data length is 32-bit.
OD 1A01h sub3	606Ch	00h	20h	Velocity actual value (606Ch); data length is 32-bit.
OD 1A01h sub4	6077h	00h	10h	Torque actual value (6077h); data length is 16-bit.
OD 1A01h sub5	60B9h	00h	10h	Touch probe status (60B9h); data length is 16-bit.
OD 1A01h sub6	60BAh	00h	20h	Touch probe pos1 pos value (60BAh); data length is 32-bit.
OD 1A01h sub7	60FDh	00h	20h	Digital inputs (60FDh); data length is 32-bit.
OD 1A01h sub0		7		Set 7 for the TxPDO mapping number.

- 5. Set the PDO mapping configuration: set OD 1C12h sub1 to 0x1601 (RxPDO) and OD 1C13h sub1 to 0x1A01 (TxPDO).
- 6. Enable the PDO configuration: set OD 1C12h sub0 to 1 (RxPDO) and OD 1C13h sub0 to 1 (TxPDO).

11.2.4.3 PDO mapping object

Real-time data transmission can be achieved with the process data objects (PDOs). There are two types of PDOs: transmit PDOs (TxPDOs) and receive PDOs (RxPDOs). This definition is from the perspective of the servo drive; for example, TxPDO refers to the object that the servo drive sends to the controller. Set the mapping parameters as shown in the following table to use the PDOs.

Communication object	Mapping object index
RxPDO1	1600h
RxPDO2	1601h
RxPDO3	1602h
RxPDO4	1603h

Communication object	Mapping object index
TxPDO1	1A00h
TxPDO2	1A01h
TxPDO3	1A02h
TxPDO4	1A03h

The format of PDO mapping parameter is:

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

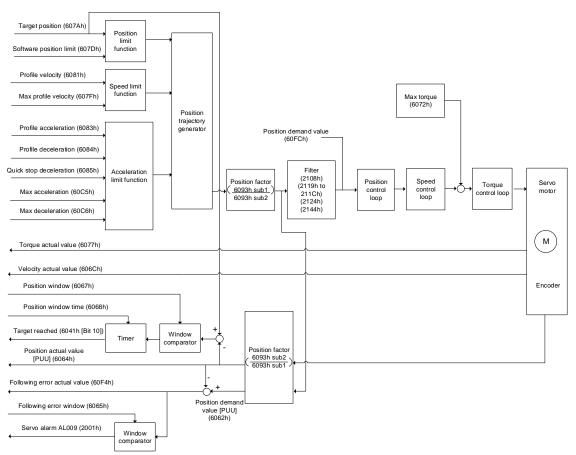
Bit	Function
Bit 0 - Bit 7	Object data length
Bit 8 - Bit 15	Object sub-index
Bit 16 - Bit 31	Object index

11.2.4.4 SDO abort codes

The abort codes are as follows:

Abort code	Description					
05040001h	Client / server command is invalid or does not exist.					
06010002h	Attempt to write a read-only object.					
06020000h	Object does not exist in the object dictionary.					
06040041h	Unable to map the object to the PDO.					
06040042h	The number and length of mapped objects exceed the PDO length.					
06060000h	Access failed due to hardware error (storage or restore error).					
06070010h	Data type does not match; parameter length does not match.					
06090011h	Sub-index does not exist.					
06090030h	The written parameter value is out of range.					
08000000h	General error.					
080000a1h	An error occurred when an object is read from EEPROM.					
080000a2h	An error occurred when an object is written to EEPROM.					
080000a3h	Invalid range when accessing EEPROM.					
080000a4h	EEPROM data content error occurred when EEPROM is accessed.					
080000a5h	The entered password is incorrect when data is written to the encryption area.					
08000020h	Unable to transfer data or save data to the application.					
08000021h	Unable to transfer data or save data to the application due to restrictions (storage or restore in the wrong state).					
08000022h	Object is in use.					

11.3 EtherCAT operation modes


This section describes the modes of operation specified by CiA DS402 when the servo is in the EtherCAT mode. The content includes basic operation settings and related object descriptions.

11.3.1 Profile Position mode

After receiving the position command transmitted from the controller, the servo drive controls the servo motor to reach the target position.

In Profile Position (PP) mode, the controller only informs the servo drive of the target position, speed command, and acceleration / deceleration settings at the beginning. The motion planning from command triggering to the arrival of the target position is performed by the trajectory generator in the servo drive.

The following figure shows the Profile Position mode architecture of the servo drive:

Operation steps:

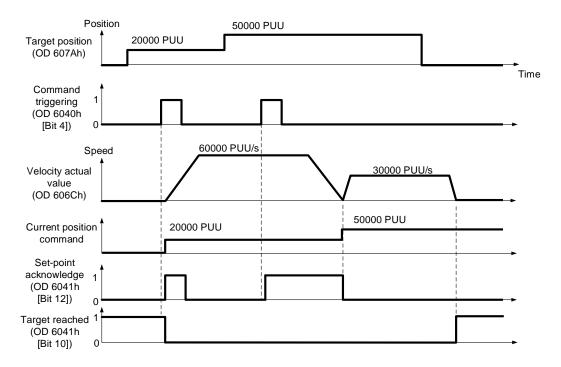
- 1. Set OD 6060h to 01h to set the mode as Profile Position mode.
- 2. Set OD 607Ah for the target position (unit: PUU).
- 3. Set OD 6081h for the profile velocity (unit: PUU/sec).
- 4. Set OD 6083h for the profile acceleration (unit: ms).
- 5. Set OD 6084h for the profile deceleration (unit: ms).
- 6. Set the Controlword (OD 6040h). Follow these steps for operation. Steps 6.1 and 6.2 are to bring the servo drive's state machine into the ready state. For the description of the state machine, refer to the OD 6040h description in Section 11.4.3.3.

Step	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
6.1	0	0	1	1	0	Shutdown.
6.2	0	0	1	1	1	Switch on (ready for Servo On).
6.3	0	1	1	1	1	Enable operation (Servo On).
6.4	1	1	1	1	1	Command triggering (rising-edge triggered)

- 7. After completing the first motion command, the servo sets the target position, speed, and other conditions to execute the next motion command.
- 8. Set the Controlword (OD 6040h). Since the command is rising-edge triggered, switch Bit 4 to Off first and then to On.

Step	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
8.1	0	1	1	1	1	Enable operation (Servo On).
8.2	1	1	1	1	1	Command triggering (rising-edge triggered)

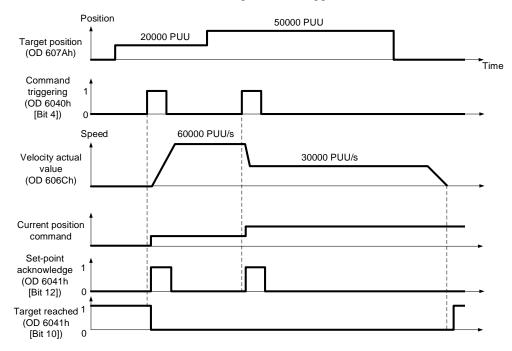
Read the servo drive information:


- 1. Read OD 6064h to obtain the actual value of the motor position at present.
- 2. Read OD 6041h to obtain the servo drive status, including the following error and notifications for set-point acknowledge and target reached.

Function for the command to take immediate effect

In Profile Position mode, set the command to take effect immediately or not with OD 6040h [Bit 5].

■ OD 6040h [Bit 5] = 0: the command does not take immediate effect


If the command is not enabled to take immediate effect, when the current motion command is in execution (not yet complete), the servo continues to execute the current motion command even if a new command is triggered. The new command is acknowledged and executed only after the current command is complete.

■ OD 6040h [Bit 5] = 1: the command takes immediate effect (only valid in Profile Position mode).

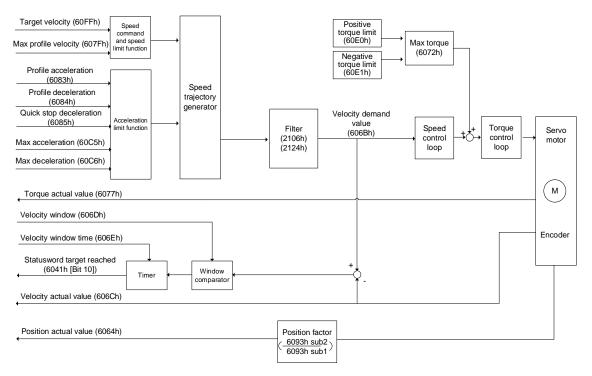
If the command is enabled to take immediate effect, when the current motion command is in execution (not yet complete), the servo immediately interrupts the current command and executes the new command once receiving the new triggered command.

11

Relevant object list

Index	Name	Data type	Access
6040h	Controlword	UNSIGNED16	RW
6041h	Statusword	UNSIGNED16	RO
6060h	Modes of operation	INTEGER8	RW
6061h	Modes of operation display	INTEGER8	RO
6062h	Position demand value [PUU]	INTEGER32	RO
6063h	Position actual internal value [Pulse]	INTEGER32	RO
6064h	Position actual value [PUU]	INTEGER32	RO
6065h	Following error window	UNSIGNED32	RW
6067h	Position window	UNSIGNED32	RW
6068h	Position window time	UNSIGNED16	RW
606Ch	Velocity actual value	INTEGER32	RO
6072h	Max torque	UNSIGNED16	RW
6077h	Torque actual value	INTEGER16	RO
607Ah	Target position	INTEGER32	RW
607Dh	Software position limit	INTEGER32	RW
607Fh	Max profile velocity	UNSIGNED32	RW
6081h	Profile velocity	UNSIGNED32	RW
6083h	Profile acceleration	UNSIGNED32	RW
6084h	Profile deceleration	UNSIGNED32	RW
6085h	Quick stop deceleration	UNSIGNED32	RW
6093h	Position factor	UNSIGNED32	RW

1	4
1	


Index	Name	Data type	Access
60C5h	Max acceleration	UNSIGNED32	RW
60C6h	Max deceleration	UNSIGNED32	RW
60F4h	Following error actual value	INTEGER32	RO
60FCh	Position demand value	INTEGER32	RO

Note: for more details, refer to Section 11.4.3 Details of objects.

11.3.2 Profile Velocity mode

In Profile Velocity (PV) mode, the controller specifies the speed command and acceleration / deceleration conditions, and then the trajectory generator of the servo drive plans the motion path according to these conditions.

11

Operation steps:

- 1. Set OD 6060h to 03h to set the mode as Profile Velocity mode.
- 2. Set OD 6083h for the profile acceleration.
- 3. Set OD 6084h for the profile deceleration.
- 4. Set the target velocity (OD 60FFh) to 0. In Profile Velocity mode, the servo motor starts operating once the servo drive is switched to Servo On (Step 5). Therefore, setting the target velocity (OD 60FFh) to 0 is to ensure that the motor maintains at 0 rpm at the moment of Servo On.
- 5. Set the Controlword (OD 6040h). Follow these steps for operation. Steps 5.1 and 5.2 are to bring the servo drive's state machine into the ready state. For more details of the state machine, refer to the OD 6040h description in Section 11.4.3.3.

Step	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
5.1	0	0	1	1	0	Shutdown.
5.2	0	0	1	1	1	Switch on (ready for Servo On).
5.3	0	1	1	1	1	Enable operation (Servo On).

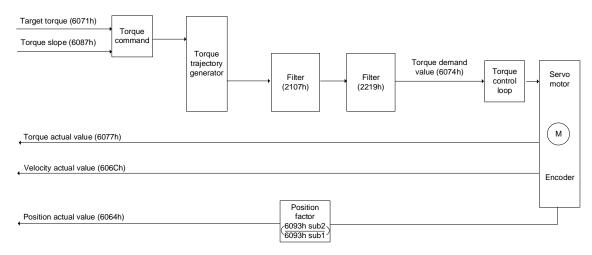
6. Set OD 60FFh for the target velocity.

Read the servo drive information:

1. Read OD 6041h to obtain the servo drive status.

2. Read OD 606Ch to obtain the current velocity actual value.

Relevant object list


Index	Name	Data type	Access
6040h	Controlword	UNSIGNED16	RW
6041h	Statusword	UNSIGNED16	RO
6060h	Modes of operation	INTEGER8	RW
6061h	Modes of operation display	INTEGER8	RO
6064h	Position actual value [PUU]	INTEGER32	RO
606Bh	Velocity demand value	INTEGER32	RO
606Ch	Velocity actual value	INTEGER32	RO
606Dh	Velocity window	UNSIGNED16	RW
606Eh	Velocity window time	UNSIGNED16	RW
606Fh	Velocity threshold	UNSIGNED16	RW
6072h	Max torque	UNSIGNED16	RW
6077h	Torque actual value	INTEGER16	RO
607Fh	Max profile velocity	UNSIGNED32	RW
6083h	Profile acceleration	UNSIGNED32	RW
6084h	Profile deceleration	UNSIGNED32	RW
6085h	Quick stop deceleration	UNSIGNED32	RW
6093h	Position factor	UNSIGNED32	RW
60C5h	Max acceleration	UNSIGNED32	RW
60C6h	Max deceleration	UNSIGNED32	RW
60E0h	Positive torque limit	UNSIGNED16	RW
60E1h	Negative torque limit	UNSIGNED16	RW
60FFh	Target velocity	INTEGER32	RW

Note: for more details, refer to Section 11.4.3 Details of objects.

11.3.3 Profile Torque mode

In Profile Torque (PT) mode, the controller specifies the torque command and filtering conditions, and then the trajectory generator of the servo drive plans the torque slope according to these conditions.

11

Operation steps:

- 1. Set OD 6060h to 04h to set the mode as Profile Torque mode.
- 2. Set OD 6087h for the torque slope.
- 3. Set the target torque (OD 6071h) to 0. In Profile Torque mode, the servo target torque takes effect once the servo drive is switched to Servo On (Step 4). Therefore, set the target torque (OD 6071h) to 0 for safety reasons.
- 4. Set the Controlword (OD 6040h). Follow these steps for operation. Steps 4.1 and 4.2 are to bring the servo drive's state machine into the ready state. For more details of the state machine, refer to the OD 6040h description in Section 11.4.3.3.

Step	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
4.1	0	0	1	1	0	Shutdown.
4.2	0	0	1	1	1	Switch on (ready for Servo On).
4.3	0	1	1	1	1	Enable operation (Servo On).

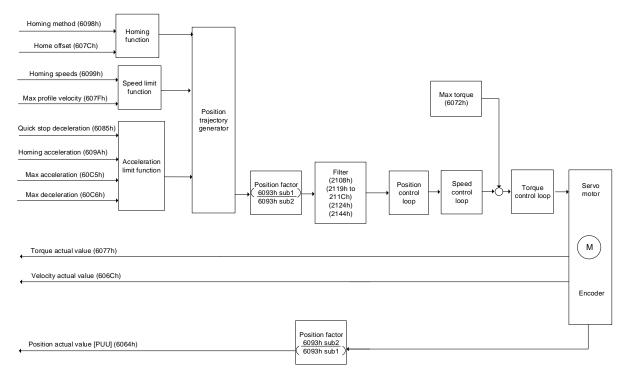
5. Set OD 6071h for the target torque.

Read the servo drive information:

1. Read OD 6041h to obtain the servo drive status.

2. Read OD 6077h to obtain the current torque actual value.

Relevant object list


Index	Name	Data type	Access
6040h	Controlword	UNSIGNED16	RW
6041h	Statusword	UNSIGNED16	RO
6060h	Modes of operation	INTEGER8	RW
6061h	Modes of operation display	INTEGER8	RO
6064h	Position actual value [PUU]	INTEGER32	RO
606Ch	Velocity actual value	INTEGER32	RO
6071h	Target torque	INTEGER16	RW
6074h	Torque demand value	INTEGER16	RO
6075h	Motor rated current	UNSIGNED32	RO
6077h	Torque actual value	INTEGER16	RO
6078h	Current actual value	INTEGER16	RO
6087h	Torque slope	UNSIGNED32	RW
6093h	Position factor	UNSIGNED32	RW

Note: for more details, refer to Section 11.4.3 Details of objects.

11.3.4 Homing mode

After homing is complete, the position system of the servo drive is established and the drive can start executing the position command issued by the controller. The Delta servo drive offers 39 homing methods, including homing on the home switch, positive or negative limit, motor Z pulse, and hard stop.

11

Operation steps:

- 1. Set OD 6060h to 06h to set the mode as Homing mode.
- Set OD 607Ch for the home offset.
- 3. Set OD 6098h for the homing method.
- 4. Set OD 6099h sub1 for the speed when searching for the home switch.
- 5. Set OD 6099h sub2 for the speed when searching for the Z pulse.
- 6. Set OD 609Ah for the homing acceleration.
- 7. Set the Controlword (OD 6040h). Follow these steps for operation. Steps 7.1 and 7.2 are to bring the servo drive's state machine into the ready state. For more details of the state machine, refer to the OD 6040h description in Section 11.4.3.3.

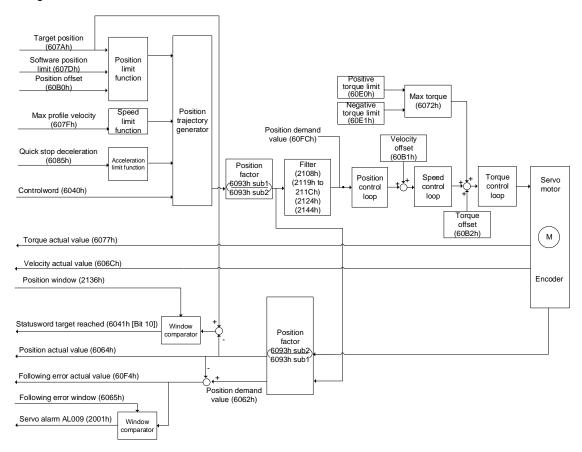
Step	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description			
7.1	0	0	1	1	0	0 Shutdown.			
7.2	0	0	1	1	1	Switch on (ready for Servo On).			
7.3	0	1	1	1	1	Enable operation (Servo On).			
7.4	1	1	1	1	1	Homing (rising-edge triggered).			

Read the servo drive information:

1. Read OD 6041h to obtain the servo drive status.

2. Read OD 6064h to obtain the actual value of the motor position at present.

Relevant object list


Index	Name	Data type	Access
6040h	Controlword	UNSIGNED16	RW
6041h	Statusword	UNSIGNED16	RO
6060h	Modes of operation	INTEGER8	RW
6061h	Modes of operation display	INTEGER8	RO
6064h	Position actual value [PUU]	INTEGER32	RO
606Ch	Velocity actual value	INTEGER32	RO
6072h	Max torque	UNSIGNED16	RW
6077h	Torque actual value	INTEGER16	RO
607Ch	Home offset	INTEGER32	RW
607Fh	Max profile velocity	UNSIGNED32	RW
6085h	Quick stop deceleration	UNSIGNED32	RW
6093h	Position factor	UNSIGNED32	RW
6098h	Homing method	INTEGER8	RW
6099h	Homing speeds	UNSIGNED32	RW
609Ah	Homing acceleration	UNSIGNED32	RW
60C5h	Max acceleration	UNSIGNED32	RW
60C6h	Max deceleration	UNSIGNED32	RW

Note: for more details, refer to Section 11.4.3 Details of objects.

11.3.5 Cyclic Synchronous Position mode

The controller plans the path and transmits PDOs to the servo drive periodically in Cyclic Synchronous Position (CSP) mode. In this mode, when the controller transmits each PDO, it simultaneously transmits the target position and Controlword data to the servo drive. The velocity offset and torque offset can be used as the velocity and torque feed forward control setting.

11

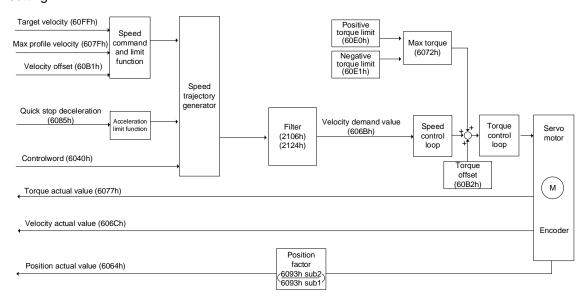
Operation steps:

- 1. Set OD 6060h to 08h to set the mode as Cyclic Synchronous Position mode.
- 2. Set OD 607Ah for the target position (unit: PUU).
- Set the Controlword (OD 6040h). Follow these steps for operation. Steps 3.1 and 3.2 are to bring the servo drive's state machine into the ready state. For the description of the state machine, refer to the OD 6040h description in Section 11.4.3.3.

Step	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
3.1	0	0	1	1	0	Shutdown.
3.2	0	0	1	1	1	Switch on (ready for Servo On).
3.3	0	1	1	1	1	Enable operation (Servo On).

Relevant object list

11


Index	Name	Data type	Access
6040h	Controlword	UNSIGNED16	RW
6041h	Statusword	UNSIGNED16	RO
6060h	Modes of operation	INTEGER8	RW
6061h	Modes of operation display	INTEGER8	RO
6062h	Position demand value [PUU]	INTEGER32	RO
6064h	Position actual value [PUU]	INTEGER32	RO
6065h	Following error window	UNSIGNED32	RW
606Ch	Velocity actual value	INTEGER32	RO
6072h	Max torque	UNSIGNED16	RW
6077h	Torque actual value	INTEGER16	RO
607Ah	Target position	INTEGER32	RW
607Dh	Software position limit	INTEGER32	RW
607Fh	Max profile velocity	UNSIGNED32	RW
6085h	Quick stop deceleration	UNSIGNED32	RW
6093h	Position factor	UNSIGNED32	RW
60B0h	Position offset	INTEGER32	RW
60B1h	Velocity offset	INTEGER32	RW
60B2h	Torque offset	INTEGER16	RW
60E0h	Positive torque limit	UNSIGNED16	RW
60E1h	Negative torque limit	UNSIGNED16	RW
60F4h	Following error actual value	INTEGER32	RO
60FCh	Position demand value	INTEGER32	RO

Note: for more details, refer to Section 11.4.3 Details of objects.

11.3.6 Cyclic Synchronous Velocity mode

The controller plans the speed and transmits PDOs to the servo drive periodically in Cyclic Synchronous Velocity (CSV) mode. In this mode, when the controller transmits each PDO, it simultaneously transmits the target velocity and Controlword data to the servo drive. The velocity offset and torque offset can be used as the velocity and torque feed forward control setting.

11

Operation steps:

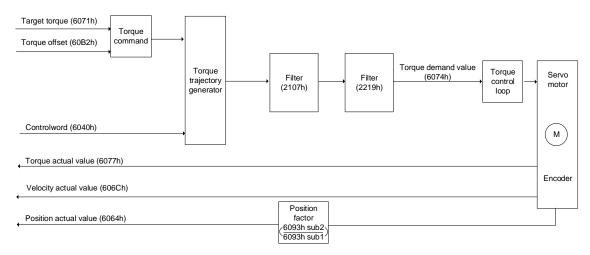
- 1. Set OD 6060h to 09h to set the mode as Cyclic Synchronous Velocity mode.
- 2. Set the target velocity (OD 60FFh) to 0. In Cyclic Synchronous Velocity mode, the servo motor starts operating once the servo drive is switched to Servo On (Step 3). Therefore, setting the target velocity (OD 60FFh) to 0 is to ensure that the motor maintains at 0 rpm at the moment of Servo On.
- Set the Controlword (OD 6040h). Follow these steps for operation. Steps 3.1 and 3.2 are to bring the servo drive's state machine into the ready state. For the description of the state machine, refer to the OD 6040h description in Section 11.4.3.3.

Step	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
3.1	0	0	1	1	0	Shutdown.
3.2	0	0	1	1	1	Switch on (ready for Servo On).
3.3	0	1	1	1	1	Enable operation (Servo On).

4. Set OD 60FFh for the target velocity.

Relevant object list

11


Name	Data type	Access
Controlword	UNSIGNED16	RW
Statusword	UNSIGNED16	RO
Modes of operation	INTEGER8	RW
Modes of operation display	INTEGER8	RO
Position actual value [PUU]	INTEGER32	RO
Velocity demand value	INTEGER32	RO
Velocity actual value	INTEGER32	RO
Max torque	UNSIGNED16	RW
Torque actual value	INTEGER16	RO
Max profile velocity	UNSIGNED32	RW
Quick stop deceleration	UNSIGNED32	RW
Position factor	UNSIGNED32	RW
Velocity offset	INTEGER32	RW
Torque offset	INTEGER16	RW
Positive torque limit	UNSIGNED16	RW
Negative torque limit	UNSIGNED16	RW
Target velocity	INTEGER32	RW
	Controlword Statusword Modes of operation Modes of operation display Position actual value [PUU] Velocity demand value Velocity actual value Max torque Torque actual value Max profile velocity Quick stop deceleration Position factor Velocity offset Torque offset Positive torque limit Negative torque limit	Controlword UNSIGNED16 Statusword UNSIGNED16 Modes of operation INTEGER8 Modes of operation display INTEGER8 Position actual value [PUU] INTEGER32 Velocity demand value INTEGER32 Velocity actual value INTEGER32 Max torque UNSIGNED16 Torque actual value INTEGER16 Max profile velocity UNSIGNED32 Quick stop deceleration UNSIGNED32 Position factor UNSIGNED32 Velocity offset INTEGER32 Torque offset INTEGER36 Positive torque limit UNSIGNED16 Negative torque limit UNSIGNED16

Note: for more details, refer to Section 11.4.3 Details of objects.

11.3.7 Cyclic Synchronous Torque mode

The controller plans the torque transmits PDOs to the servo drive periodically in Cyclic Synchronous Torque (CST) mode. In this mode, when the controller transmits each PDO, it simultaneously transmits the target torque and Controlword data to the servo drive. The torque offset can be used as the torque feed forward control setting.

11

Operation steps:

- 1. Set OD 6060h to 0Ah to set the mode as Cyclic Synchronous Torque mode.
- Set the target torque (OD 6071h) to 0. In Cyclic Synchronous Torque mode, the setting of servo target torque is effective once the servo drive is switched to Servo On (Step 3).
 Therefore, set the target torque (OD 6071h) to 0 for safety reasons.
- 3. Set the Controlword (OD 6040h). Follow these steps for operation. Steps 3.1 and 3.2 are to bring the servo drive's state machine into the ready state. For more details of the state machine, refer to the OD 6040h description in Section 11.4.3.3.

Step	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
3.1	0	0	1	1	0	Shutdown.
3.2	0	0	1	1	1	Switch on (ready for Servo On).
3.3	0	1	1	1	1	Enable operation (Servo On).

4. Set OD 6071h for the target torque.

Relevant object list

11

Index	Name	Data type	Access
6040h	Controlword	UNSIGNED16	RW
6041h	Statusword	UNSIGNED16	RO
6060h	Modes of operation	INTEGER8	RW
6061h	Modes of operation display	INTEGER8	RO
6064h	Position actual value [PUU]	INTEGER32	RO
606Ch	Velocity actual value	INTEGER32	RO
6071h	Target torque	INTEGER16	RW
6074h	Torque demand value	INTEGER16	RO
6077h	Torque actual value	INTEGER16	RO
6093h	Position factor	UNSIGNED32	RW
60B2h	Torque offset	INTEGER16	RW

Note: for more details, refer to Section 11.4.3 Details of objects.

11.3.8 Touch Probe function and Touch Probe status

The Touch Probe function can be triggered by high-speed digital inputs (only DI1 and DI2) or by the motor Z pulse. This function is used for high-speed measurement or packaging applications.

If the capture source is the motor Z pulse or DI of CN1, note the following:

When the capture source is set to the motor Z pulse, you can only use Touch Probe 1.
 Regardless of the settings of OD 60B8h [Bit 4] and [Bit 5], the command is rising-edge triggered and the data is stored in OD 60BAh.

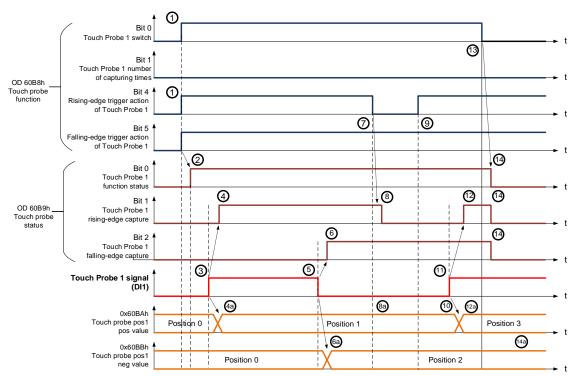
2. When the capture source is set to the DI of CN1, the previously set function code for the DI is changed to 0x0100 so one DI does not have two functions.

Set the Touch Probe function with OD 60B8h. The definition of each bit is as follows.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-						1						l				

Bit	Function	Description
Bit 0	Touch Probe 1 switch	0: disable Touch Probe 1. 1: enable Touch Probe 1.
Bit 1	Touch Probe 1 number of capturing times	O: capture one time. If the Touch Probe 1 signal is set to be both rising-edge and falling-edge triggered, the data is captured once for each triggering. 1: capture multiple times.
Bit 2	Touch Probe 1 capture source	0: DI1 of CN1 1: motor Z pulse
Bit 3	Reserved	-
Bit 4	Rising-edge trigger action of Touch Probe 1	O: N/A 1: start capturing when the Touch Probe 1 signal is rising-edge triggered and store the data in OD 60BAh.
Bit 5	Falling-edge trigger action of Touch Probe 1	N/A start capturing when the Touch Probe signal is falling-edge triggered and store the data in OD 60BBh.
Bit 6 - Bit 7	Reserved	-
Bit 8	Touch Probe 2 switch	0: disable Touch Probe 2. 1: enable Touch Probe 2.
Bit 9	Touch Probe 2 number of capturing times	O: capture one time. If the Touch Probe 2 signal is set to be both rising-edge and falling-edge triggered, the data is captured once for each triggering. 1: capture multiple times.
Bit 10	Touch Probe 2 capture source	0: DI2 of CN1
Bit 11	Reserved	-
Bit 12	Rising-edge trigger action of Touch Probe 2	N/A start capturing when the Touch Probe signal is rising-edge triggered and store the data in OD 60BCh.

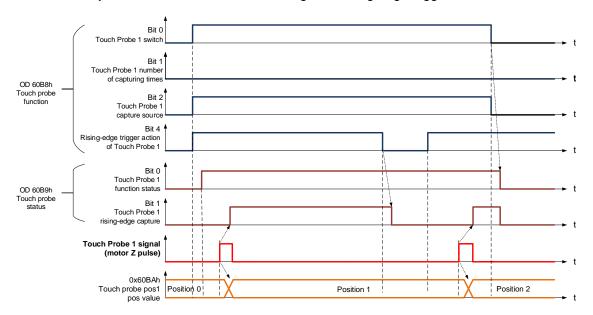
11

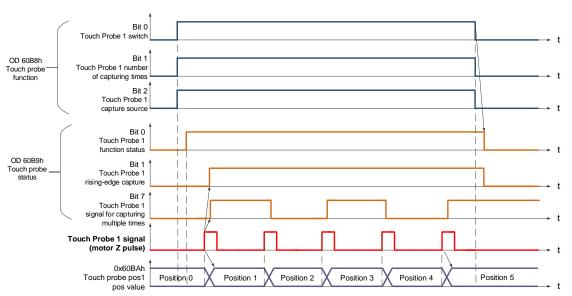

Bit	Function	Description
Bit 13	Falling-edge trigger action of Touch Probe 2	N/A start capturing when the Touch Probe signal is falling-edge triggered and store the data in OD 60BDh.
Bit 14 - Bit 15	Reserved	-

You can access the Touch Probe status with OD 60B9h. The definition of each bit is as follows.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								l .								

Bit	Function	Description
Bit 0	Touch Probe 1 function status	0: Touch Probe 1 disabled. 1: Touch Probe 1 enabled.
Bit 1	Touch Probe 1 rising-edge capture	capturing is not triggered. the Touch Probe 1 signal is rising-edge triggered and the data is successfully captured.
Bit 2	Touch Probe 1 falling-edge capture	0: capturing is not triggered. 1: the Touch Probe 1 signal is falling-edge triggered and the data is successfully captured.
Bit 3 - Bit 5	Reserved	-
Bit 6	Touch Probe 1 capture source	0: DI1 of CN1 1: motor Z pulse
Bit 7	Touch Probe 1 signal for capturing multiple times (Available when the function of OD 60B8h [Bit 1] Number of capturing times is enabled)	The status is reversed once the capturing succeeds. Refer to the timing diagram in Example 3.
Bit 8	Touch Probe 2 function status	0: Touch Probe 2 disabled. 1: Touch Probe 2 enabled.
Bit 9	Touch Probe 2 rising-edge capture	0: capturing is not triggered 1: the Touch Probe 2 signal is rising-edge triggered and the data is successfully captured.
Bit 10	Touch Probe 2 falling-edge capture	0: capturing is not triggered 1: the Touch Probe 2 signal is falling-edge triggered and the data is successfully captured.
Bit 11 - Bit 13	Reserved	-
Bit 14	Touch Probe 2 capture source	0: DI2 of CN1
Bit 15	Touch Probe 2 signal for capturing multiple times (Available when the function of OD 60B8h [Bit 9] Number of capturing times is enabled)	The status is reversed once the capturing succeeds.


Example 1: the following is the timing diagram for the Touch Probe 1 function. In this example, the Touch Probe 1 function is triggered by the external DI. When OD 60B8h [Bit 1] is set to 0 and OD 60B8h [Bit 4] & [Bit 5] are set to 1, the Touch Probe 1 signal is triggered on both rising and falling edges, and the data is captured once for each triggering.


Status	Function	Description
	OD 60B8h [Bit 0] = 1	Enable Touch Probe 1.
	OD 60B8h [Bit 1] = 0	Capture one time.
(1)	OD 60B8h [Bit 4] = 1	Start capturing when the Touch Probe 1 signal is rising-edge triggered.
	OD 60B8h [Bit 5] = 1	Start capturing when the Touch Probe 1 signal is falling-edge triggered.
(2)	OD 60B9h [Bit 0] = 1	Touch Probe status: Touch Probe 1 function enabled.
(3)	-	Touch Probe 1 is rising-edge triggered by external signal.
(4)	OD 60B9h [Bit 1] = 1	Touch Probe status: Touch Probe 1 is rising-edge triggered and the data is successfully captured.
(4a)	OD 60BAh	Store the captured data in OD 60BAh when the Touch Probe 1 signal is rising-edge triggered.
(5)	-	Touch Probe 1 is falling-edge triggered by external signal.
(6)	OD 60B9h [Bit 2] = 1	Touch Probe status: Touch Probe 1 signal is falling-edge triggered and the data is successfully captured.
(6a)	OD 60BBh	Store the captured data in OD 60BBh when the Touch Probe 1 signal is falling-edge triggered.
(7)	OD 60B8h [Bit 4] = 0	Disable the rising-edge trigger action of Touch Probe 1.
(8)	OD 60B9h [Bit 1] = 0	Touch Probe status: reset the rising-edge capture status to non-triggered.
(8a)	OD 60BAh	Data at the rising-edge remains the same.
(9)	OD 60B8h [Bit 4] = 1	Start capturing when the Touch Probe 1 signal is rising-edge triggered.

Status	Function	Description
(10)	OD 60BAh	Data at the rising-edge remains the same.
(11)	-	Touch Probe 1 is rising-edge triggered by external signal.
(12)	OD 60B9h [Bit 1] = 1	Touch Probe status: Touch Probe 1 signal is rising-edge triggered and the data is successfully captured.
(12a)	OD 60BAh	Store the captured data in OD 60BAh when the Touch Probe 1 signal is rising-edge triggered.
(13)	OD 60B8h [Bit 0] = 0	Disable Touch Probe 1.
(14)	OD 60B9h [Bit 0] = 0 OD 60B9h [Bit 1] = 0 OD 60B9h [Bit 2] = 0	Reset Touch Probe 1 status.
(14a)	OD 60BAh	The previously captured data remains the same.

Example 2: the following is the timing diagram for the Touch Probe 1 function. In this example, the Touch Probe 1 function is triggered by the motor Z pulse. The data is captured only once when the Touch Probe 1 signal is rising-edge triggered.

Example 3: the following is the timing diagram for the Touch Probe 1 function. In this example, the Touch Probe 1 function is triggered by the motor Z pulse. The data is captured **multiple times** when the Touch Probe 1 signal is rising-edge triggered.

Relevant object list

Index	Name	Data type	Access
60B8h	Touch probe function	UNSIGNED16	RW
60B9h	Touch probe status	UNSIGNED16	RO
60BAh	Touch probe pos1 pos value	INTEGER32	RO
60BBh	Touch probe pos1 neg value	INTEGER32	RO
60BCh	Touch probe pos2 pos value	INTEGER32	RO
60BDh	Touch probe pos2 neg value	INTEGER32	RO

Note: for more details, refer to Section 11.4.3 Details of objects.

11.4 Object dictionary

This section details the EtherCAT objects supported by the servo. The contents include object index, name, data type, data length, and read / write permissions (access).

11.4.1 Specifications for objects

Object code

Object code	Description
VAR	A single value, such as an UNSIGNED8, Boolean, float, and INTEGER16.
ARRAY	An object of multiple data fields consisting of multiple variables of the same data type, such as an UNSIGNED16 array. The sub-index 0 data type is UNSIGNED8, so it is not an ARRAY data.
RECORD	An object of multiple data fields consisting of multiple variables of different data types. The sub-index 0 data type is UNSIGNED8, so it is not a RECORD data.

Data type

Refer to CANopen DS301.

11.4.2 List of objects

OD 1XXXh communication object group

Index	Object code	Name	Data type	Access
1000h	VAR	Device type	UNSIGNED32	RO
1001h	VAR	Error register	UNSIGNED8	RO
1003h	ARRAY	Pre-defined error field	UNSIGNED32	RW
1006h	VAR	Communication cycle period	UNSIGNED32	RW
1600h - 1603h	RECORD	Receive PDO mapping parameter	UNSIGNED32	RW
1A00h - 1A03h	RECORD	Transmit PDO mapping parameter	UNSIGNED32	RW
1C12h	ARRAY	RxPDO assign	UNSIGNED16	RW
1C13h	ARRAY	TxPDO assign	UNSIGNED16	RW

Note: only 1001h can be mapped to PDO.

OD 2XXXh servo parameter group

	Index	Object code	Name	Data type	Access	Mappable
2	2XXXh	VAR	Parameter mapping	INTEGER16/32	RW	Υ

OD 6XXXh communication object group

Index	Object code	Name	Data type	Access	Mappable
603Fh	VAR	Error code	UNSIGNED16	RO	Υ
6040h	VAR	Controlword	UNSIGNED16	RW	Y
6041h	VAR	Statusword	UNSIGNED16	RO	Υ
605Bh	VAR	Shutdown option code	INTEGER16	RW	Y
6060h	VAR	Modes of operation	INTEGER8	RW	Y
6061h	VAR	Modes of operation display	INTEGER8	RO	Y
6062h	VAR	Position demand value [PUU]	INTEGER32	RO	Y
6063h	VAR	Position actual internal value [Pulse]	INTEGER32	RO	Y
6064h	VAR	Position actual value [PUU]	INTEGER32	RO	Y
6065h	VAR	Following error window	UNSIGNED32	RW	Υ
6067h	VAR	Position window	UNSIGNED32	RW	Υ
6068h	VAR	Position window time	UNSIGNED16	RW	Y
606Bh	VAR	Velocity demand value	INTEGER32	RO	Y
606Ch	VAR	Velocity actual value	INTEGER32	RO	Y
606Dh	VAR	Velocity window	UNSIGNED16	RW	Y
606Eh	VAR	Velocity window time	UNSIGNED16	RW	Y
606Fh	VAR	Velocity threshold	UNSIGNED16	RW	Y
6071h	VAR	Target torque	INTEGER16	RW	Y
6072h	VAR	Max torque	UNSIGNED16	RW	Y
6074h	VAR	Torque demand value	INTEGER16	RO	Υ
6075h	VAR	Motor rated current	UNSIGNED32	RO	Υ
6076h	VAR	Motor rated torque	UNSIGNED32	RO	Υ
6077h	VAR	Torque actual value	INTEGER16	RO	Y
6078h	VAR	Current actual value	INTEGER16	RO	Y
607Ah	VAR	Target position	INTEGER32	RW	Υ
607Ch	VAR	Home offset	INTEGER32	RW	Y

Index	Object code	Name	Data type	Access	Mappable
607Dh	ARRAY	Software position limit	INTEGER32	RW	Υ
607Fh	VAR	Max profile velocity	UNSIGNED32	RW	Υ
6080h	VAR	Max motor speed	UNSIGNED32	RW	Υ
6081h	VAR	Profile velocity	UNSIGNED32	RW	Υ
6083h	VAR	Profile acceleration	UNSIGNED32	RW	Υ
6084h	VAR	Profile deceleration	UNSIGNED32	RW	Υ
6085h	VAR	Quick stop deceleration	UNSIGNED32	RW	Y
6086h	VAR	Motion profile type	INTEGER16	RO	Y
6087h	VAR	Torque slope	UNSIGNED32	RW	Y
6093h	ARRAY	Position factor	UNSIGNED32	RW	Y
6098h	VAR	Homing method	INTEGER8	RW	Υ
6099h	ARRAY	Homing speeds	UNSIGNED32	RW	Υ
609Ah	VAR	Homing acceleration	UNSIGNED32	RW	Υ
60B0h	VAR	Position offset	INTEGER32	RW	Υ
60B1h	VAR	Velocity offset	INTEGER32	RW	Υ
60B2h	VAR	Torque offset	INTEGER16	RW	Υ
60B8h	VAR	Touch probe function	UNSIGNED16	RW	Υ
60B9h	VAR	Touch probe status	UNSIGNED16	RO	Υ
60BAh	VAR	Touch probe pos1 pos value	INTEGER32	RO	Υ
60BBh	VAR	Touch probe pos1 neg value	INTEGER32	RO	Υ
60BCh	VAR	Touch probe pos2 pos value	INTEGER32	RO	Υ
60BDh	VAR	Touch probe pos2 neg value	INTEGER32	RO	Υ
60C5h	VAR	Max acceleration	UNSIGNED32	RW	Υ
60C6h	VAR	Max deceleration	UNSIGNED32	RW	Υ
60E0h	VAR	Positive torque limit	UNSIGNED16	RW	Υ
60E1h	VAR	Negative torque limit	UNSIGNED16	RW	Υ
60F4h	VAR	Following error actual value	INTEGER32	RO	Υ
60FCh	VAR	Position demand value	INTEGER32	RO	Υ
60FDh	VAR	Digital inputs	UNSIGNED32	RO	Y
60FEh	ARRAY	Digital outputs	UNSIGNED32	RW	Y
60FFh	VAR	Target velocity	INTEGER32	RW	Y
6502h	VAR	Supported drive modes	UNSIGNED32	RO	Y

11.4.3 Details of objects

11.4.3.1 OD 1XXXh communication object group

Object 1000h: Device type

Index	1000h
Name	Device type
Object code	VAR
Data type	UNSIGNED32
Access	RO
PDO mapping	No
Setting range	UNSIGNED32

Format of this object: (High word h) DCBA; (Low word L) UZYX

Α		Х	
В	Bit 16 - Bit 31	Υ	Bit 0 - Bit 15
С	Model type	Z	Device profile number
D		U	

Definitions are as follows:

■ UZYX: device profile number (servo drive: 0192)

■ DCBA: model type

DCBA	Model type
0402	A2
0602	M
0702	A3
0B02	В3
1002	E3

Object 1001h: Error register

Index	1001h
Name	Error register
Object code	VAR
Data type	UNSIGNED8
Access	RO
PDO mapping	Yes
Setting range	UNSIGNED8
Default	0

Object function:

The bits and corresponding functions are as follows:

11

Bit	7	6	5	4	3	2	1	0

Bit	Function	
Bit 0	Generic error	
Bit 1	Current	
Bit 2	Voltage	
Bit 3	Temperature	
Bit 4	Communication error	
Bit 5 - Bit 7	Reserved	

Object 1003h: Pre-defined error field

Index	1003h
Name	Pre-defined error field
Object code	ARRAY
Data type	UNSIGNED32
Access	RW
PDO mapping	No

Sub-index	0
Description	Number of errors
Data type	UNSIGNED8
Access	RW
PDO mapping	No
Setting range	0 - 5
Default	0

Sub-index	1 - 5
Description	Standard error field
Data type	UNSIGNED32
Access	RO
PDO mapping	No
Setting range	UNSIGNED32
Default	0

Format of this object: (High word h) DCBA; (Low word L) UZYX

Α		Х	
В	Bit 16 - Bit 31	Υ	Bit 0 - Bit 15
С	Delta servo alarm	Z	Error code
D		U	

11

Definitions are as follows:

- UZYX: error code. Refer to the error code definition in DS402.
- DCBA: Delta servo alarm. Refer to Chapter 12 Troubleshooting.

Example:

When you operate the servo, if the encoder cable is not correctly connected, the servo drive panel displays AL011 and its error code is stored in the OD 1003h array. The display is as follows:

Byte:	High word	Low word	
	Delta servo alarm (UINT16)	Error code (UINT16)	
	0x0011	0x7305	

AL011 is defined as "CN2 communication failed" based on the Delta servo alarm.

Error code: 0x7305 is defined as "Incremental sensor 1 fault" according to DS402.

Object 1006h: Communication cycle period

Index	1006h
Name	Communication cycle period
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	No
Setting range	UNSIGNED32
Default	0
Unit	μs

Object function:

This object is to set the communication cycle, which is the interval between two SYNCs. If you are not using SYNC, set this object to 0.

Objects 1600h - 1603h: Receive PDO mapping parameter

Index	1600h, 1601h, 1602h, 1603h
Name	Receive PDO mapping parameter
Object code	RECORD
Data type	PDO mapping
Access	RW
Note	The total length of objects in a group of PDO cannot exceed 64 bits.

Sub-index	0
Description	Number of PDO mappings
Data type	UNSIGNED8
Access	RW
PDO mapping	No
Setting range	0: disable 1 - 8: set the number of PDO mapping and enable the function
Default	0

Sub-index	1 - 8
Description	Specify the 1 st to 8 th objects and the contents to be mapped
Data type	UNSIGNED32
Access	RW
PDO mapping	No
Setting range	UNSIGNED32
Default	0

The format of this object is as follows:

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit	Function
Bit 0 - Bit 7	Object data length
Bit 8 - Bit 15	Object sub-index
Bit 16 - Bit 31	Object index

Example:

To set the three PDOs, OD 6040h, OD 607Ah, and OD 6060h, in the first group of PDO, the setting is as follows.

Mapping parameter setting for RxPDO		Data		Description
OD 1600h sub0	3			Set 3 PDO mappings.
OD 1600h sub1	6040h	6040h 00h 10h		Mapping the Controlword (OD 6040h); data length is 16-bit
OD 1600h sub2	607Ah	00h	20h	Mapping the target position (OD 607Ah); data length is 32-bit
OD 1600h sub3	6060h	00h	08h	Mapping the operation mode (OD 6060h); data length is 8-bit
Note	The total 64-bit.	length is	38h (56-l	bit) which meets the specification of less than

Objects 1A00h - 1A03h: Transmit PDO mapping parameter

Index	1A00h, 1A01h, 1A02h, 1A03h
Name	Transmit PDO mapping parameter
Object code	RECORD
Data type	PDO mapping
Access	RW
Note	The total length of objects in a group of PDO cannot exceed 64 bits.

Sub-index	0
Description	Number of PDO mappings
Data type	UNSIGNED8
Access	RW
PDO mapping	No
Setting range	disable 1 - 8: set the number of PDO mapping and enable the function
Default	0

Sub-index	1 - 8
Description	Specify the 1 st to 8 th objects and the contents to be mapped
Data type	UNSIGNED32
Access	RW
PDO mapping	No
Setting range	UNSIGNED32
Default	0

Format of this object: (High word h) DCBA; (Low word L) UZYX

DCBA	Bit 16 - Bit 31 Object index	YX	Bit 0 - Bit 7 Object data length
DCBA		UZ	Bit 8 - Bit 15 Object sub-index

Object 1C12h: RxPDO assign

Index	1C12h
Name	RxPDO assign
Object code	ARRAY
Data type	UNSIGNED16
Access	RW
PDO mapping	No

Sub-index	0
Description	Number of sub-index
Data type	UNSIGNED8
Access	RW
PDO mapping	No
Setting range	0 - 1
Default	1

Sub-index	0	
Description	Specify the RxPDO index to be used	
Data type	UNSIGNED16	
Access	RW	
PDO mapping	No	
Setting range	0x1600, 0x1601, 0x1602, 0x1603	
Default	0x1601	

Object 1C13h: TxPDO assign

Index	1C13h
Name	TxPDO assign
Object code	ARRAY
Data type	UNSIGNED16
Access	RW
PDO mapping	No

Sub-index	0
Description	Number of sub-index
Data type	UNSIGNED8
Access	RW
PDO mapping	No
Setting range	0 - 1
Default	1

Sub-index	0	
Description	Specify the TxPDO index to be used	
Data type	UNSIGNED16	
Access	RW	
PDO mapping	No	
Setting range	0x1A00, 0x1A01, 0x1A02, 0x1A03	
Default	0x1A01	

11.4.3.2 OD 2XXXh servo parameter group

Object 2XXXh: Parameter mapping

Index	2XXXh
Name	Parameter mapping
Object code	VAR
Data type	INTEGER16 / INTEGER32
Access	RW
PDO mapping	Yes
Setting range	INTEGER16 / INTEGER32
Default	N/A

11

Object function:

Access the corresponding servo parameters with the OD 2XXXh group. The conversion between the parameter number and object index is as follows:

Object index	Servo parameter	Description
2 aBC h	Pa.bcd	"BC" is the hexadecimal format of "bcd".

You can read the object index first to get the information of the parameter length, and then use SDO or PDO to change the data.

Example 1:

Object 2300h: Node-ID [P3.000]

Index	2300h
Name	Node-ID
Object code	VAR
Data type	INTEGER16
Access	RW
PDO mapping	Yes
Setting range	INTEGER16
Default	7F

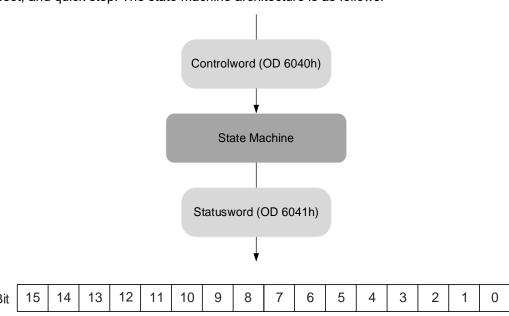
Example 2:

Object 212Ch: Electronic gear [P1.044]

Index	212Ch
Name	Electronic gear
Object code	VAR
Data type	INTEGER32
Access	RW
PDO mapping	Yes
Setting range	INTEGER32
Default	1

11.4.3.3 OD 6XXXh communication object group

Object 603Fh: Error code (CANopen defined)


Index	603Fh
Name	Error code
Object code	VAR
Data type	UNSIGNED16
Access	RO
PDO mapping	Yes
Setting range	UNSIGNED16
Default	0

Object 6040h: Controlword

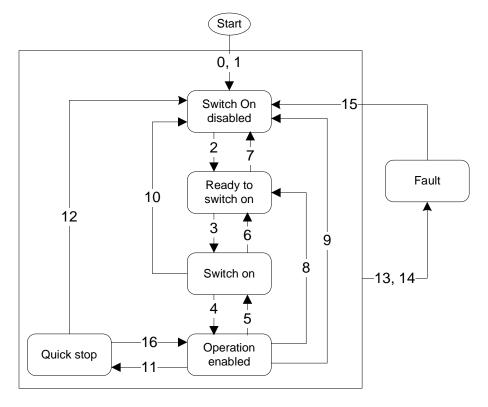
Index	6040h
Name	Controlword
Object code	VAR
Data type	UNSIGNED16
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED16
Default	0x0004

Object function:

The Controlword contains many functions, such as Servo On, command triggering, fault reset, and quick stop. The state machine architecture is as follows:

Bit	Function	Description
Bit 0	Switch on	Ready for Servo On.
Bit 1	Enable voltage	-
Bit 2	Quick stop (B contact (NC))	-
Bit 3	Enable operation	Servo On.

Bit	Function	Description
Bit 4 - Bit 6	Defined in each operation mode	These bits are individually defined according to the operation mode, as shown in the following table.
Bit 7	Fault reset	-
Bit 8	Halt	-
Bit 9 - Bit 15	Reserved	-


11

Bits 4 - 6 are individually defined according to the operation mode, as shown in the following table:

Bit	D	Definition in each operation mode							
DIL	PP	PV / PT	Homing	CSP	CSV	CST			
Bit 4	Command triggering (rising-edge triggered)	-	Homing (rising-edge triggered)	-	-	-			
Bit 5	Function for the command to take immediate effect	-	-	-	-	-			
Bit 6	0: absolute position command 1: relative position command	-	-	-	-	-			

Note: - indicates the bit is invalid.

Finite state machine (as shown in the following diagram) defines the behavior of a servo drive system. Each state represents an internal or external behavior. For example, the servo drive can execute point-to-point motion only in the "Operation enabled" state.

11

The state transition is defined as follows:

Transition	Event	Action		
0, 1	Automatic transition after power-on	Device boot and initialization		
2	Shutdown command	N/A		
3	Switch on command	Servo is ready for Servo On		
4	Enable operation command	Servo switches to Servo On and enters the mode in which the controller is allowed to issue a motion command		
5	Disable operation command	Servo switches to Servo Off		
6	Shutdown command	N/A		
7	Disable voltage or quick stop command	N/A		
8	Shutdown command	Servo switches to Servo Off		
9	Disable voltage command	Servo switches to Servo Off		
10	Disable voltage or quick stop command	N/A		
11	Quick stop command The following two errors belong to this quick stop type: 1. Positive / negative limit switch triggered 2. Quick stop triggered by the Controlword (OD 6040h [Bit 2] = 0)	Quick stop function is enabled. The time setting for deceleration to a stop is different for the two errors. 1. OD 2503h (P5.003) 2. OD 6085h		
12	Disable voltage command (OD 6040h = 0000 0110 or OD 6040h [Bit 1] = 0)	Servo switches to Servo Off		
13, 14	Alarm occurs	Servo switches to Servo Off		
15	Fault reset	N/A		
16	Enable operation command; no alarm	Motion operation restart. The restart action is mode-dependent.		

State transition can be achieved by issuing commands with the Controlword (OD 6040h). The settings of OD 6040h for different commands are as follows:

	(DD 6040	h		Command	Transition	
Bit 7	Bit 3	Bit 2	Bit 1	Bit 0	Command	Hansilion	
0	Х	1	1	0	Shutdown	2, 6, 8	
0	0	1	1	1	Switch on	3	
0	1	1	1	1	Switch on + Enable operation	3 + 4	
0	Х	Х	0	Х	Disable voltage	7, 9, 10, 12	
0	Х	0	1	Х	Quick stop	7, 10, 11	
0	0	1	1	1	Disable operation	5	
0	1	1	1	1	Enable operation	4, 16	
	X	X	X	Х	Fault reset	15	

Object 6041h: Statusword

Index	6041h
Name	Statusword
Object code	VAR
Data type	UNSIGNED16
Access	RO
PDO mapping	Yes
Setting range	UNSIGNED16
Default	0

11

Object function:

The Statusword contains many statuses, such as Servo On, command statuses, fault signal, and quick stop. The state machine architecture is as follows:

Rit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ווט	. •							_		_	_		_	_		

Bit	Sta	atus	Description		
Bit 0	Ready to switch on	Ready to be activated			
Bit 1	Switched on	Servo ready			
Bit 2	Operation enabled	Servo On	Current status of the servo drive		
Bit 3	Fault	Fault signal	(see the following table for		
Bit 4	Voltage enabled	Servo is powered on	details).		
Bit 5	Quick stop	Quick stop			
Bit 6	Switch on disabled	Servo disabled			
Bit 7	Warning	Warning signal	When outputting the warning signal, the servo keeps outputting the Servo On signal.		
Bit 8	Reserved	-	-		
Bit 9	Remote	Remote control	-		
Bit 10	Target reached	Target reached	-		
Bit 11	Reserved	-	-		
Bit 12 - Bit 13	-	-	These bits are individually defined according to the operation mode, as shown in the following table.		
Bit 14	Positive limit	Positive limit	-		
Bit 15	Negative limit	Negative limit	-		

Bit 0 - Bit 6: current status of the servo drive.

Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
0	-	-	0	0	0	0	Not ready to switch on.
1	-	-	0	0	0	0	Switch on disabled.
0	1	-	0	0	0	1	Ready to switch on.
0	1	-	0	0	1	1	Switched on.
0	1	-	0	1	1	1	Operation enabled (Servo On).
0	0	-	0	1	1	1	Quick stop active.
0	-	-	1	1	1	1	Fault reaction active.
0	-	-	1	0	0	0	Servo fault (servo switches to Servo Off).

Note: 0 indicates the bit is off, 1 indicates the bit is on, and - indicates the bit is invalid.

Bit 12 - Bit 13 are individually defined according to the operation mode, as shown in the following table:

D:t			Definition in each operation mode						
Bit	PP	PV	PT	Homing	CSP	CSV	CST		
Bit 12	Set-point acknowledge (servo received the command signal)	Zero speed	-	Homing is complete	Mode is in effect	Mode is in effect	Mode is in effect		
Bit 13	Following error	-	-	Homing error	Following error	-	-		

Note: - indicates the bit is invalid.

Object 605Bh: Shutdown option code

Index	605Bh
Name	Shutdown option code
Object code	VAR
Data type	INTEGER16
Access	RW
PDO mapping	Yes
Setting range	INTEGER16
Default	0

Object function:

OD 605Bh = 0: when Servo Off, the dynamic brake has no effect, so the motor runs freely and the machine stops only by friction.

OD 605Bh = -1: when Servo Off, the servo stops with the operation of the dynamic brake.

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 6060h: Modes of operation

Index	6060h
Name	Modes of operation
Object code	VAR
Data type	INTEGER8
Access	RW
PDO mapping	Yes
Setting range	INTEGER8
Default	0

Object function:

This object sets the mode for operation.

Setting value	Mode
0	Reserved
1	Profile Position mode
2	Reserved
3	Profile Velocity mode
4	Profile Torque mode
5	Reserved
6	Homing mode
7	Reserved
8	Cyclic Synchronous Position mode
9	Cyclic Synchronous Velocity mode
10	Cyclic Synchronous Torque mode

Object 6061h: Modes of operation display

Index	6061h
Name	Modes of operation display
Object code	VAR
Data type	INTEGER8
Access	RO
PDO mapping	Yes
Setting range	INTEGER8
Default	0

Object function:

This object displays the current operation mode. Refer to the table in OD 6060h.

Object 6062h: Position demand value (PUU)

Index	6062h
Name	Position demand value
Object code	VAR
Data type	INTEGER32
Access	RO
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	PUU

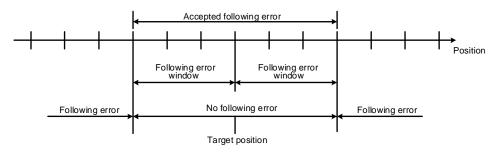
Object function:

This position demand value is the interpolation command calculated by the servo internal interpolator. This command is processed by the servo internal filter. For its detailed location, refer to the servo architecture diagram of each mode.

Object 6063h: Position actual internal value (Pulse)

Index	6063h
Name	Position actual internal value
Object code	VAR
Data type	INTEGER32
Access	RO
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	Pulse (unit for encoder pulse resolution) The ASDA-A2 servo drive generates 1,280,000 pulses per motor revolution. The ASDA-A3 / ASDA-B3 / ASDA-E3 servo drive generates 16,777,216 pulses per motor revolution.

Object 6064h: Position actual value (PUU)


Index	6064h
Name	Position actual value
Object code	VAR
Data type	INTEGER32
Access	RO
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	PUU

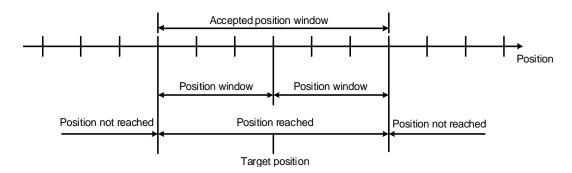
Object 6065h: Following error window

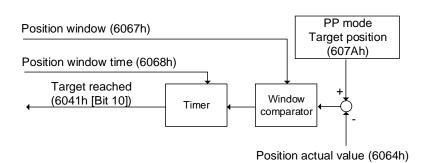
Index	6065h
Name	Following error window
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED32
Default	50331648
Unit	PUU

Object function:

When the following error actual value (OD 60F4h) exceeds this setting range, AL009 (Excessive deviation of Position command) is triggered.

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

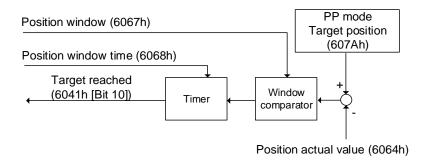

Object 6067h: Position window


Index	6067h
Name	Position window
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED32
Default	100
Unit	PUU

11

Object function:

When the difference (absolute value) between the target position (PP mode: OD 607Ah) and the position actual value (OD 6064h) is within the range set in OD 6067h (Position window), and the duration of this condition is longer than the time set in OD 6068h (Position window time), OD 6041h [Bit 10] (Target reached) is output.


Object 6068h: Position window time

4	1
1	ı
	ı

Index	6068h
Name	Position window time
Object code	VAR
Data type	UNSIGNED16
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED16
Default	0
Unit	ms

Object function:

When the difference (absolute value) between the target position (PP mode: OD 607Ah) and the position actual value (OD 6064h) is within the range set in OD 6067h (Position window), and the duration of this condition is longer than the time set in OD 6068h (Position window time), OD 6041h [Bit 10] (Target reached) is output.

Object 606Bh: Velocity demand value

Index	606Bh
Name	Velocity demand value
Object code	VAR
Data type	INTEGER32
Access	RO
PDO mapping	Yes
Setting range	INTEGER32
Unit	0.1 rpm

Object function:

The velocity demand value is a command generated by the speed trajectory generator and filtered by the command filter of the drive. This object only works in Profile Velocity mode and Cyclic Synchronous Velocity mode.

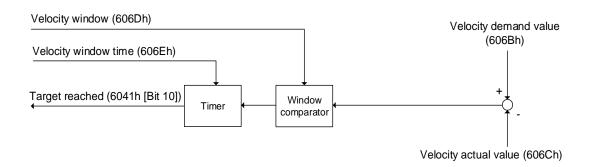
Object 606Ch: Velocity actual value

Index	606Ch
Name	Velocity actual value
Object code	VAR
Data type	INTEGER32
Access	RO
PDO mapping	Yes
Setting range	INTEGER32
Unit	0.1 rpm

11

Object function:

Returns the motor speed at present for monitoring.


Object 606Dh: Velocity window

Index	606Dh
Name	Velocity window
Object code	VAR
Data type	UNSIGNED16
Access	RW
PDO mapping	Yes
Setting range	0 - 3000
Default	100
Unit	0.1 rpm

Object function:

The window comparator compares the speed difference with the velocity window (OD 606Dh). When the difference (absolute value) is within the range set in the velocity window and the duration of this condition is longer than the time set in the velocity window time (OD 606Eh), OD 6041h [Bit 10] (Target reached) is output. This object only works in Profile Velocity mode.

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 606Eh: Velocity window time

Index	606Eh
Name	Velocity window time
Object code	VAR
Data type	UNSIGNED16
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED16
Default	0
Unit	ms

Object function:

Refer to OD 606Dh for the description of this object.

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 606Fh: Velocity threshold

Index	606Fh
Name	Velocity threshold
Object code	VAR
Data type	UNSIGNED16
Access	RW
PDO mapping	Yes
Setting range	0 - 2000
Default	100
Unit	0.1 rpm

Object function:

This object sets the range for the zero-speed signal output. When the forward or reverse speed (absolute value) of the motor is lower than the setting value of OD 606Fh, OD 6041h [Bit 12] (zero-speed signal) outputs 1.

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 6071h: Target torque

Index	6071h
Name	Target torque
Object code	VAR
Data type	INTEGER16
Access	RW
PDO mapping	Yes
Setting range	-3500 to +3500
Default	0
Unit	0.1%

Object function:

This object sets the target torque in Profile Torque mode and Cyclic Synchronous Torque mode. If OD 6071h = 1000 (100.0%), it corresponds to the motor rated torque.

Object 6072h: Max torque

Index	6072h
Name	Max torque
Object code	VAR
Data type	UNSIGNED16
Access	RW
PDO mapping	Yes
Setting range	0 - 3500
Default	3500
Unit	0.1%

11

Object function:

This object sets the maximum torque in Profile Torque mode and Cyclic Synchronous Torque mode.

Object 6074h: Torque demand value

Index	6074h
Name	Torque demand value
Object code	VAR
Data type	INTEGER16
Access	RO
PDO mapping	Yes
Setting range	INTEGER16
Default	0
Unit	0.1%

Object function:

The torque demand value is the command generated by the speed trajectory generator and filtered by the command filter of the drive. This object only works in Profile Torque mode and Cyclic Synchronous Torque mode.

Object 6075h: Motor rated current

Index	6075h
Name	Motor rated current
Object code	VAR
Data type	UNSIGNED32
Access	RO
PDO mapping	Yes
Setting range	UNSIGNED32
Default	0
Unit	mA

Object function:

This object displays the rated current specified on the motor nameplate.

Object 6076h: Motor rated torque

Index	6076h
Name	Motor rated torque
Object code	VAR
Data type	UNSIGNED32
Access	RO
PDO mapping	Yes
Setting range	UNSIGNED32
Default	0
Unit	0.001 N-m

Object function:

This object displays the rated torque specified on the motor nameplate.

Object 6077h: Torque actual value

Index	6077h
Name	Torque actual value
Object code	VAR
Data type	INTEGER16
Access	RO
PDO mapping	Yes
Setting range	INTEGER16
Default	0
Unit	0.1%

Object function:

This object is the motor torque feedback in percentage at present.

Object 6078h: Current actual value

Index	6078h
Name	Current actual value
Object code	VAR
Data type	INTEGER16
Access	RO
PDO mapping	Yes
Setting range	INTEGER16
Default	0
Unit	0.1%

Object function:

This object is the motor current feedback in percentage at present.

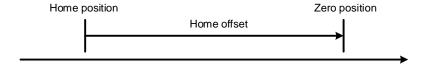
Object 607Ah: Target position

Index	607Ah
Name	Target position
Object code	VAR
Data type	INTEGER32
Access	RW
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	PUU

11

Object function:

This object only works in Profile Position mode and Cyclic Synchronous Position mode. For more details, refer to Sections 11.3.1 and 11.3.5.


Object 607Ch: Home offset

Index	607Ch
Name	Home offset
Object code	VAR
Data type	INTEGER32
Access	RW
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	PUU

Object function:

The origin reference point which the system looks for during the homing procedure is Home position, such as the origin sensor and Z pulse. When the origin reference point is found, the position offset from this point is the user-defined origin (Zero position), and the offset value is Home offset.

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 607Dh: Software position limit

Index	607Dh
Name	Software position limit
Object code	ARRAY
Data type	INTEGER32
Access	RW

11

Sub-index	0
Description	Number of entries
Data type	UNSIGNED8
Access	RO
PDO mapping	Yes
Setting range	2
Default	2

Sub-index	1
Description	Min position limit
Data type	INTEGER32
Access	RW
PDO mapping	Yes
Setting range	-2147483648 to +2147483647
Default	-2147483648
Unit	PUU

Sub-index	2
Description	Max position limit
Data type	INTEGER32
Access	RW
PDO mapping	Yes
Setting range	-2147483648 to +2147483647
Default	+2147483647
Unit	PUU

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 607Fh: Max profile velocity

Index	607Fh
Name	Max profile velocity
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED32
Default	Varies depending on the motor model
Unit	0.1 rpm

Object function:

The setting value of OD 607Fh (unit: 0.1 rpm) multiplied by 10 is equivalent to the setting value of P1.055 (Maximum speed limit; unit: 1 rpm).

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 6080h: Max motor speed

Index	6080h
Name	Max motor speed
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED32
Default	Varies depending on the motor model
Unit	rpm

11

Object function:

OD 6080h is equivalent to P1.055 (Maximum speed limit).

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 6081h: Profile velocity

Index	6081h
Name	Profile velocity
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED32
Default	10000
Unit	PUU/s

Object function:

This object only works in Profile Position mode. For more details, refer to Section 11.3.1.

Object 6083h: Profile acceleration

Index	6083h
Name	Profile acceleration
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	1 - 65500
Default	200
Unit	ms

Object function:

The time slope set by this object is the time required for the motor to accelerate from 0 rpm to 3,000 rpm. This object only works in Profile Position mode and Profile Velocity mode.

Object 6084h: Profile deceleration

Index	6084h
IIIGCX	000-11

11

Name	Profile deceleration
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	1 - 65500
Default	200
Unit	ms

Object function:

The time slope set by this object is the time required for the motor to decelerate from 3,000 rpm to 0 rpm. This object only works in Profile Position mode and Profile Velocity mode.

Object 6085h: Quick stop deceleration

Index	6085h
Name	Quick stop deceleration
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	1 - 65500
Default	200
Unit	ms

Object function:

The time slope set by this object is the time required for the motor to decelerate from 3,000 rpm to 0 rpm using the quick stop function.

Object 6086h: Motion profile type

Index	6086h
Name	Motion profile type
Object code	VAR
Data type	INTEGER16
Access	RO
PDO mapping	Yes
Setting range	0
Default	0

Object function:

This object sets the type of motion profile for operation. Currently, only linear ramp (trapezoidal profile) is available.

Setting value	Туре
0	Linear ramp (trapezoidal profile)

Object 6087h: Torque slope

Index	6087h	
	333	

Name	Torque slope
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	0 - 65500
Default	200
Unit	ms

11

Object function:

The time slope set by this object is the time required for the motor to change from 0% to 100% of the rated torque.

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

Object 6093h: Position factor

Index	6093h
Name	Position factor
Object code	ARRAY
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Corresponding servo parameter	P1.044 and P1.045
Note	Position factor = Numerator / Feed_constant

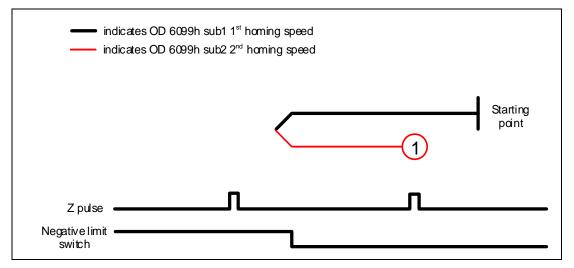
Sub-index	0
Description	Number of sub-index
Data type	UNSIGNED8
Access	RO
PDO mapping	No
Setting range	2
Default	2

Sub-index	1
Description	E-Gear ratio numerator
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Default	1
Corresponding servo parameter	P1.044
Note	For the E-Gear ratio setting, refer to Section 6.2.5.

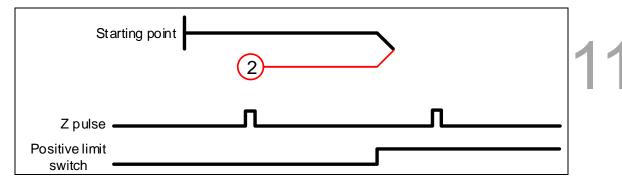
11

Sub-index	2
Description	E-Gear ratio denominator
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Default	1
Corresponding servo parameter	P1.045
Note	For the E-Gear ratio setting, refer to Section 6.2.5.

Note: when P3.012.Z is set to 1, the non-volatile setting for this object is enabled.

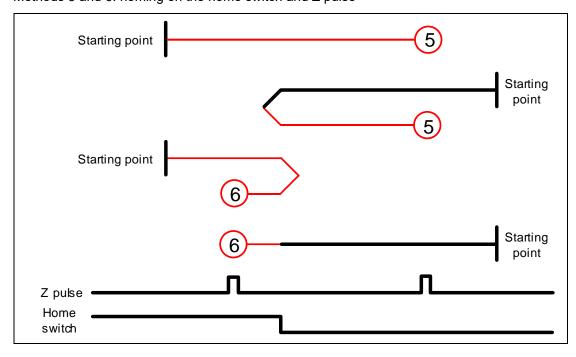

Object 6098h: Homing method

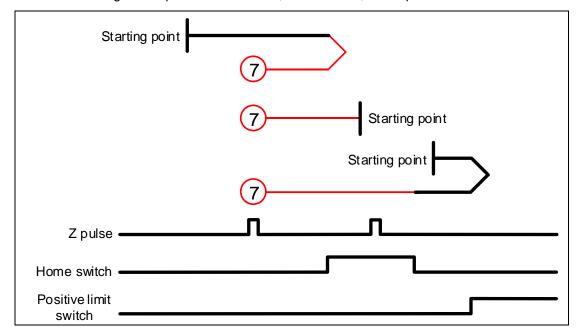
Index	6098h
Name	Homing method
Object code	VAR
Data type	INTEGER8
Access	RW
PDO mapping	Yes
Setting range	-4 to 35
Default	0

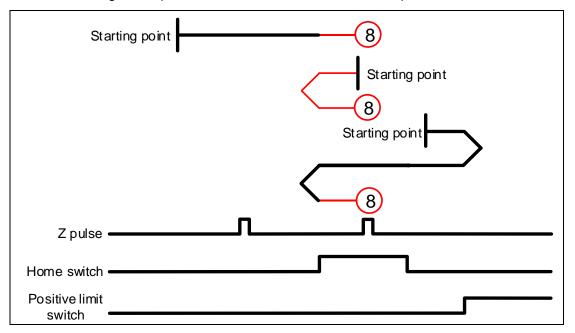

Object function:

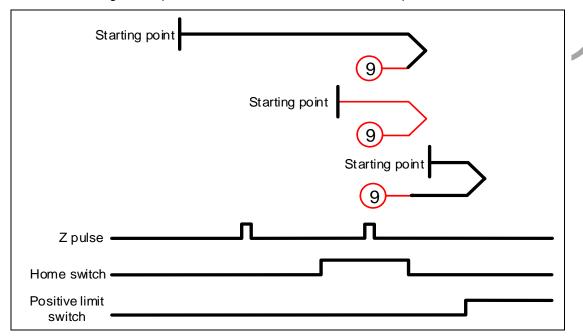
The homing methods include looking for the Z pulse (Methods 1 - 14, 33, 34, 36, 37), not looking for the Z pulse (Methods 17 - 30), defining the current position as the origin (Method 35), and looking for the hard stop (Methods 36 - 39). Methods 15, 16, 31, and 32 are reserved. To use Methods 1 to 35, set OD 6098h to 1 to 35. To use Methods 36 to 39, set OD 6098h to -1 to -4.

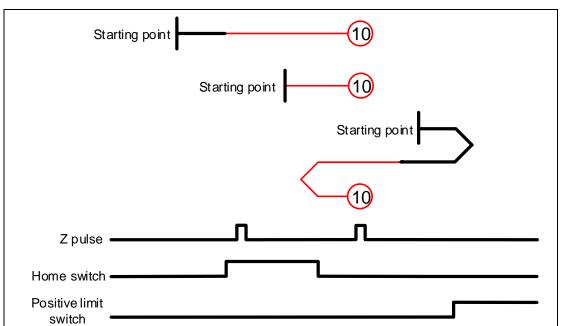
Method 1: homing on the negative limit switch and Z pulse

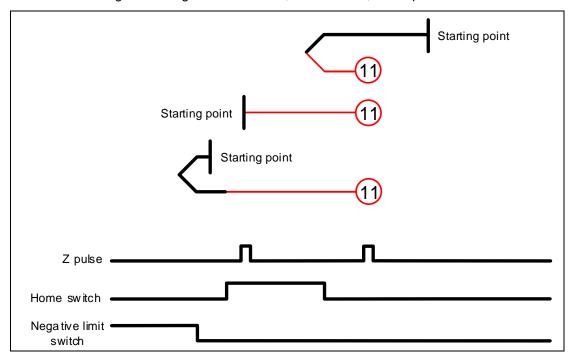

Method 2: homing on the positive limit switch and Z pulse

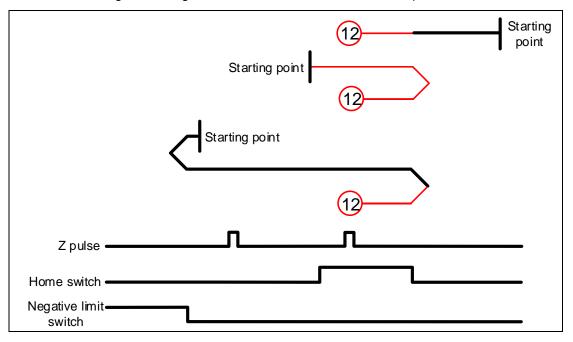

Methods 3 and 4: homing on the home switch and Z pulse

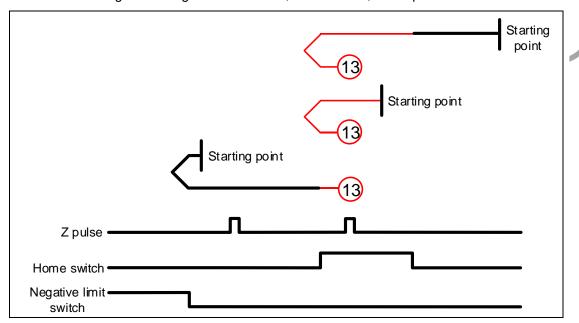

Methods 5 and 6: homing on the home switch and Z pulse

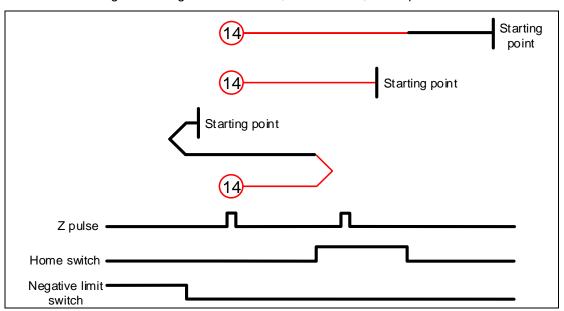

Method 7: homing on the positive limit switch, home switch, and Z pulse


Method 8: homing on the positive limit switch, home switch, and Z pulse

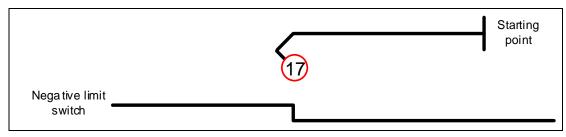

Method 9: homing on the positive limit switch, home switch, and Z pulse


Method 10: homing on the positive limit switch, home switch, and Z pulse

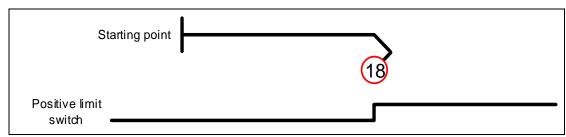

Method 11: homing on the negative limit switch, home switch, and Z pulse


Method 12: homing on the negative limit switch, home switch, and Z pulse

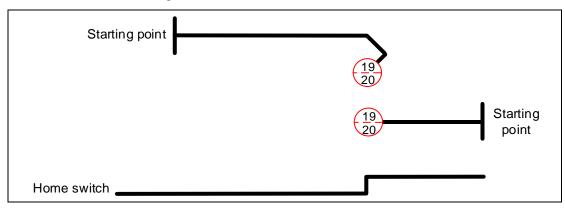
Method 13: homing on the negative limit switch, home switch, and Z pulse

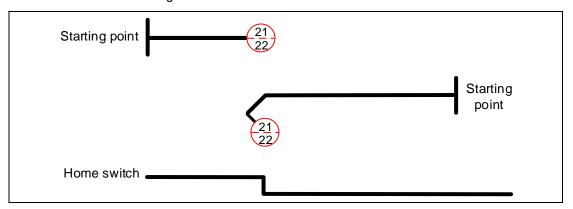


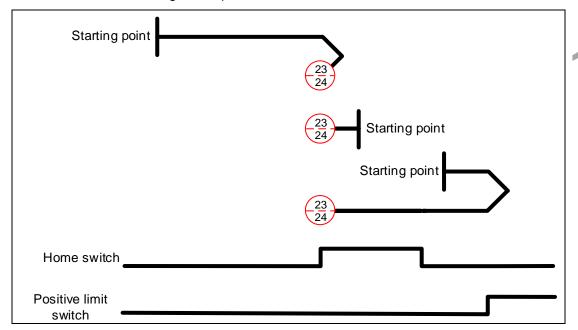
Method 14: homing on the negative limit switch, home switch, and Z pulse

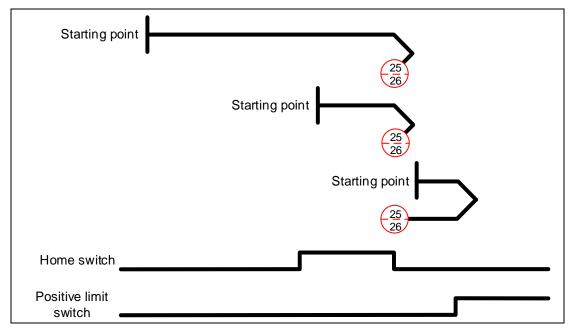


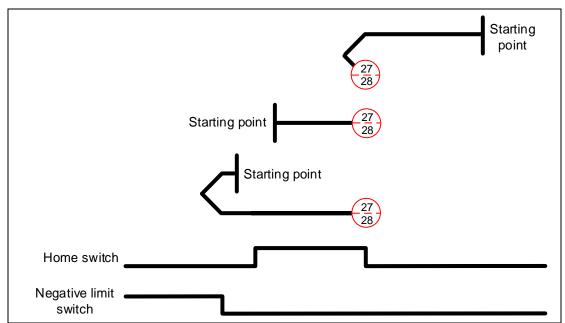
Methods 15 and 16: reserved

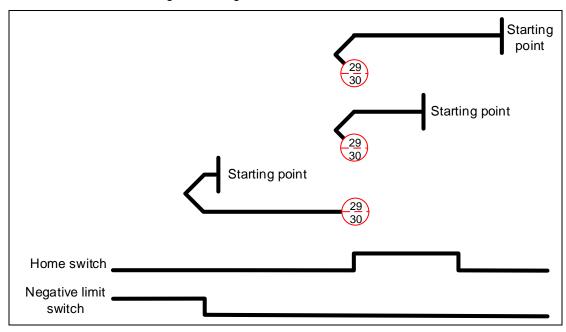

Method 17: homing on the negative limit switch


Method 18: homing on the positive limit switch

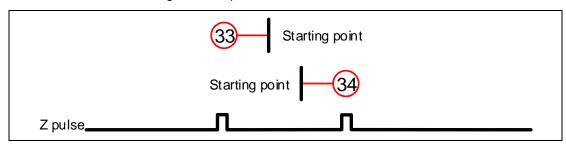

Methods 19 and 20: homing on the home switch


Methods 21 and 22: homing on the home switch


Methods 23 and 24: homing on the positive limit switch and home switch

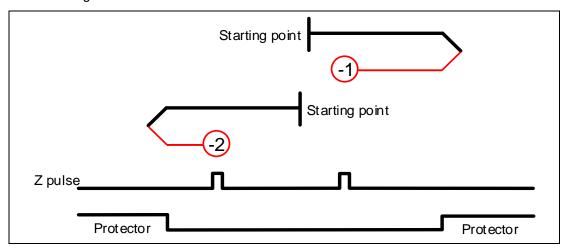

Methods 25 and 26: homing on the positive limit switch and home switch

Methods 27 and 28: homing on the negative limit switch and home switch

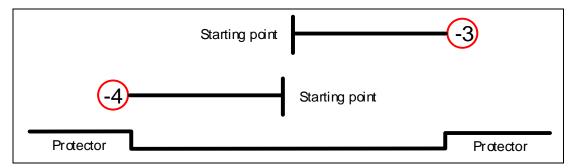


Methods 29 and 30: homing on the negative limit switch and home switch

Methods 31 and 32: reserved


Methods 33 and 34: homing on the Z pulse

Method 35: defines the current feedback position as the origin


Methods 36 and 37:

When OD 6098h is set to -1 or -2: homing on the hard stop and Z pulse. Set the servo parameters P1.087 (torque level detection) and P1.088 (level reached timer) when using these homing methods.

Methods 38 and 39:

When OD 6098h is set to -3 or -4: homing on the hard stop. Set the servo parameters P1.087 (torque level detection) and P1.088 (level reached timer) when using these homing methods.

Object 6099h: Homing speeds

Index	6099h
Name	Homing speeds
Object code	ARRAY
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes

Sub-index	0
Description	Number of sub-index
Data type	UNSIGNED8
Access	RO
PDO mapping	Yes
Setting range	2
Default	2

Sub-index	1
Description	Speed during search for switch
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	1 - 20000
Default	100
Unit	0.1 rpm

Sub-index	2
Description	Speed during search for zero
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	1 - 5000
Default	20
Unit	0.1 rpm

Object 609Ah: Homing acceleration

Index	609Ah
Name	Homing acceleration
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED32
Default	100
Unit	ms

11

Object function:

The time slope set by this object is the time required for the motor to accelerate from 0 rpm to 3,000 rpm and decelerate from 3,000 rpm to 0 rpm. This object only works in Homing mode.

Object 60B0h: Position offset

Index	60B0h
Name	Position offset
Object code	VAR
Data type	INTEGER32
Access	RW
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	PUU

Object function:

This object sets the position offset. For more details, refer to Section 11.3.5 Cyclic Synchronous Position mode.

Object 60B1h: Velocity offset

Index	60B1h
Name	Velocity offset
Object code	VAR
Data type	INTEGER32
Access	RW
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	0.1 rpm

Object function:

This object sets the velocity offset. For more details, refer to Section 11.3.6 Cyclic Synchronous Velocity mode.

Object 60B2h: Torque offset

Index	60B2h
Name	Torque offset
Object code	VAR
Data type	INTEGER16
Access	RW
PDO mapping	Yes
Setting range	-3500 to +3500
Default	0
Unit	0.1%

Object function:

This object sets the torque offset. For more details, refer to Section 11.3.7 Cyclic Synchronous Torque mode.

Object 60B8h: Touch probe function

Index	60B8h
Name	Touch probe function
Object code	VAR
Data type	UNSIGNED16
Access	RW
PDO mapping	Yes
Setting range	UNSIGNED16
Default	0

Object function:

This object sets the Touch Probe related function settings. For the operation details, refer to Section 11.3.8 for the description of Touch Probe.

Bit	Function	Description
Bit 0	Touch Probe 1 switch	0: disable Touch Probe 1. 1: enable Touch Probe 1.
Bit 1	Touch Probe 1 number of capturing times	O: capture one time. If the Touch Probe 1 signal is set to be both rising-edge and falling-edge triggered, the data is captured once for each triggering. 1: capture multiple times.
Bit 2	Touch Probe 1 capture source	0: DI1 of CN1 1: motor Z pulse
Bit 3	Reserved	-
Bit 4	Rising-edge trigger action of Touch Probe 1	O: N/A Start capturing when the Touch Probe Store the data in OD 60BAh.
Bit 5	Falling-edge trigger action of Touch Probe 1	O: N/A 1: start capturing when the Touch Probe 1 signal is falling-edge triggered and store the data in OD 60BBh.

Bit	Function	Description
Bit 6 - Bit 7	Reserved	-
Bit 8	Touch Probe 2 switch	0: disable Touch Probe 2.
Dit 0	Todal 1 Toda 2 Switch	1: enable Touch Probe 2.
Bit 9	Touch Probe 2 number of capturing times	capture one time. If the Touch Probe 2 signal is set to be both rising-edge and falling-edge triggered, the data is captured once for each triggering.
		1: capture multiple times.
Bit 10	Touch Probe 2 capture source	0: DI2 of CN1
Bit 11	Reserved	-
		0: N/A
Bit 12	Rising-edge trigger action of Touch Probe 2	start capturing when the Touch Probe signal is rising-edge triggered and store the data in OD 60BCh.
		0: N/A
Bit 13	Falling-edge trigger action of Touch Probe 2	start capturing when the Touch Probe signal is falling-edge triggered and store the data in OD 60BDh.
Bit 14 - Bit 15	Reserved	-

Object 60B9h: Touch probe status

Index	60B9h
Name	Touch probe status
Object code	VAR
Data type	UNSIGNED16
Access	RO
PDO mapping	Yes
Setting range	UNSIGNED16
Default	0

Object function:

You can access the Touch Probe status with this object. For the operation details, refer to Section 11.3.8 for the description of Touch Probe.

Bit	Function	Description
Bit 0	Touch Probe 1 function status	0: Touch Probe 1 disabled.
		1: Touch Probe 1 enabled.
		0: capturing is not triggered.
Bit 1	Touch Probe 1 rising-edge capture	the Touch Probe 1 signal is rising-edge triggered and the data is successfully captured.
		0: capturing is not triggered.
Bit 2	Touch Probe 1 falling-edge capture	the Touch Probe 1 signal is falling-edge triggered and the data is successfully captured.
Bit 3 - Bit 5	Reserved	-
Bit 6	Touch Probe 1 capture source	0: DI1 of CN1
		1: motor Z pulse

11

Bit	Function	Description
Bit 7	Touch Probe 1 signal for capturing multiple times (Available when the function of OD 60B8h [Bit 1] Number of capturing times is enabled)	The status is reversed once the capturing succeeds. Refer to Section 11.3.8 for the timing diagram in Example 3.
Bit 8	Touch Probe 2 function status	0: Touch Probe 2 disabled. 1: Touch Probe 2 enabled.
Bit 9	Touch Probe 2 rising-edge capture	capturing is not triggered. the Touch Probe 2 signal is rising-edge triggered and the data is successfully captured.
Bit 10	Touch Probe 2 falling-edge capture	capturing is not triggered. the Touch Probe 2 signal is falling-edge triggered and the data is successfully captured.
Bit 11 - Bit 13	Reserved	-
Bit 14	Touch Probe 2 capture source	0: DI2 of CN1
Bit 15	Touch Probe 2 signal for capturing multiple times (Available when the function of OD 60B8h [Bit 9] Number of capturing times is enabled)	The status is reversed once the capturing succeeds.

Object 60BAh: Touch probe pos1 pos value

Index	60BAh
Name	Touch probe pos1 pos value
Object code	VAR
Data type	INTEGER32
Access	RO
PDO mapping	Yes
Setting range	INTEGER32
Default	0

Object function:

For the function of this object, refer to Section 11.3.8 for the description of Touch Probe.

Object 60BBh: Touch probe pos1 neg value

	_	
Index	60BBh	
Name	Touch probe pos1 neg value	
Object code	VAR	
Data type	INTEGER32	
Access	RO	
PDO mapping	Yes	
Setting range	INTEGER32	
Default	0	

Object function:

For the function of this object, refer to Section 11.3.8 for the description of Touch Probe.

Object 60BCh: Touch probe pos2 pos value

Index	60BCh	
Name	Touch probe pos2 pos value	
Object code	VAR	
Data type	INTEGER32	
Access	RO	
PDO mapping	Yes	
Setting range	INTEGER32	
Default	0	

11

Object function:

For the function of this object, refer to Section 11.3.8 for the description of Touch Probe.

Object 60BDh: Touch probe pos2 neg value

Index	60BDh	
Name	Touch probe pos2 neg value	
Object code	VAR	
Data type	INTEGER32	
Access	RO	
PDO mapping	Yes	
Setting range	INTEGER32	
Default	0	

Object function:

For the function of this object, refer to Section 11.3.8 for the description of Touch Probe.

Object 60C5h: Max acceleration

Index	60C5h
Name	Max acceleration
Object code	VAR
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	1 - 65500
Default	1
Unit	ms

Object function:

The time slope set by this object is the time required for the motor to accelerate from 0 rpm to 3,000 rpm.

Object 60C6h: Max deceleration

Index	60C6h	
Name	Max deceleration	
Object code	VAR	
Data type	UNSIGNED32	
Access	RW	
PDO mapping	Yes	
Setting range	1 - 65500	
Default	1	
Unit	ms	

Object function:

The time slope set by this object is the time required for the motor to decelerate from 3,000 rpm to 0 rpm.

Object 60E0h: Positive torque limit

Index	60E0h	
Name	Positive torque limit	
Object code	VAR	
Data type	UNSIGNED16	
Access	RW	
PDO mapping	Yes	
Setting range	0 - 3000	
Default	3000	
Unit	0.1%	

Object function:

This object sets the positive torque limit.

Object 60E1h: Negative torque limit

Index	60E1h
Name	Negative torque limit
Object code	VAR
Data type	UNSIGNED16
Access	RW
PDO mapping	Yes
Setting range	0 - 3000
Default	3000
Unit	0.1%

Object function:

This object sets the negative torque limit.

Object 60F4h: Following error actual value

Index	60F4h	
Name	Following error actual value	
Object code	VAR	
Data type	INTEGER32	
Access	RO	
PDO mapping	Yes	
Setting range	INTEGER32	
Default	0	
Unit	PUU	

11

Object function:

The following error actual value is the difference between the position demand value (OD 6062h) and position actual value (OD 6064h). For more details, refer to the architecture diagrams in Section 11.3.

Object 60FCh: Position demand value

Index	60FCh
Name	Position demand value
Object code	VAR
Data type	INTEGER32
Access	RO
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	pulse

Object function:

This command is generated after being processed by the servo drive filter. For more details, refer to the architecture diagrams in Section 11.3.

Object 60FDh: Digital inputs

Index	60FDh	
Name	Digital inputs	
Object code	VAR	
Data type	UNSIGNED32	
Access	RO	
PDO mapping	Yes	
Setting range	UNSIGNED32	
Default	0	
Unit	-	

Object function:

31	16 15		3	2	1	0	
Manufacturer- specific	-	Reserved		Home switch	Positive limit switch	Negative limit switch	
MSB						LSB	

Bit	Function
Bit 0	Negative limit signal
Bit 1	Positive limit signal
Bit 2	Homing signal
Bit 3 - Bit 15	Reserved
Bit 16	DI1
Bit 17	DI2
Bit 18	DI3
Bit 19	DI4
Bit 20 - Bit 31	Reserved

Object 60FEh: Digital outputs

Index	60FEh
Name	Digital outputs
Object code	ARRAY
Data type	UNSIGNED32
Access	RW

11

Sub-Index	0
Description	Number of sub-index
Data type	UNSIGNED8
Access	RO
PDO mapping	Yes
Setting range	2
Default	2

Sub-Index	1
Description	Physical outputs
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	0x00000000 to 0xFFFFFFF
Default	0

Sub-Index	2
Description	Bit mask
Data type	UNSIGNED32
Access	RW
PDO mapping	Yes
Setting range	0x00000000 to 0xFFFFFFF
Default	0

Object function:

OD 60FEh sub1 (Physical outputs)

Bit	DO	Description
0 - 15	-	Reserved
16	DO1	0: off; 1: on
17	DO2	0: off; 1: on
18	DO3	0: off; 1: on
19	DO4	0: off; 1: on
20 - 31	-	Reserved

OD 60FEh sub2 (Bit mask)

Bit	DO	Description		
0 - 15	-	Reserved		
16	DO1	0: disable physical outputs; 1: enable		
17	DO2	0: disable physical outputs; 1: enable		
18	DO3	0: disable physical outputs; 1: enable		
19	DO4	0: disable physical outputs; 1: enable		
20 - 31	-	Reserved		

■ To use the software to control the DO output, you must first set the corresponding DO function code.

When P2.018 = 0x0130, the output of DO1 is controlled by the software.

When P2.019 = 0x0131, the output of DO2 is controlled by the software.

When P2.020 = 0x0132, the output of DO3 is controlled by the software.

When P2.021 = 0x0133, the output of DO4 is controlled by the software.

DO output settings

When the corresponding OD 60FEh sub2 bit of the DO is set to 1, the output status of this DO is determined by the corresponding bit of OD 60FEh sub1.

When the corresponding OD 60FEh sub2 bit of the DO is set to 0, the output status of this DO is determined by P4.006.

Example

- 1. Set P2.018 to 0x0130, which means the output of DO1 is controlled by the software.
- 2. When OD 60FEh sub2 [Bit 16] is 1, the output of DO1 is determined by 0x60FE sub1 [Bit 16]. When OD 60FEh sub2 [Bit 16] is 0, the output of DO1 is determined by P4.006 [Bit 0].

Object 60FFh: Target velocity

Index	60FFh
Name	Target velocity
Object code	VAR
Data type	INTEGER32
Access	RW
PDO mapping	Yes
Setting range	INTEGER32
Default	0
Unit	0.1 rpm

Object function:

This object sets the target velocity. This object only works in Profile Velocity mode and Cyclic Synchronous Velocity mode.

Object 6502h: Supported drive modes

Index	6502h
Name	Supported drive modes
Object code	VAR
Data type	UNSIGNED32
Access	RO
PDO mapping	Yes
Setting range	UNSIGNED32
Default	03ADh

11

Object function:

This object is read-only and provides the operation modes supported by Delta servo drives in EtherCAT mode.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit	Function
Bit 0	Profile Position mode
Bit 1	Reserved
Bit 2	Profile Velocity mode
Bit 3	Profile Torque mode
Bit 4	Reserved
Bit 5	Homing mode
Bit 6	Reserved
Bit 7	Cyclic Synchronous Position mode
Bit 8	Cyclic Synchronous Velocity mode
Bit 9	Cyclic Synchronous Torque mode
Bit 10 - Bit 31	Reserved

11.5 Diagnostics and troubleshooting

This section provides diagnostics and troubleshooting information related to communication with the controller or interference elimination. For information about the servo drive alarms, refer to Chapter 12 Troubleshooting.

1. The SYNC communication cycle of the controller and servo drive is different Since the jitter of each controller is different, the time the servo drive receives the SYNC differs from the SYNC communication cycle time. When this happens, adjust the value of P3.009.U to increase the error range and let the servo drive automatically correct the internal timer so it is consistent with the communication cycle of the controller.

2. Eliminate interference

Packets are particularly sensitive to interference in high-speed network communication applications. To achieve fast and high-precision control, the selection of the wire is extremely important. Use shielded cables for the communication wiring, and make sure that the shielded connector is firmly connected to the servo drive communication port. Also, ensure the ground wire is properly connected and grounded.

11.5.1 EtherCAT Diagnosis

The EtherCAT automatic error diagnostic function must be used with the ASDA-Soft software of version 6.1.2.0 or above. To use this function, activate **EtherCAT Diagnosis** in ASDA-Soft and press **Diagnosis** to get the following EtherCAT connection information for error detection.

- 1. Check if the servo parameter P1.001.YX is set to 0C for communication mode.
- 2. Port hardware detection (check if Port0 or Port1 is connected).
- 3. Time synchronization status (Cycle time and DC time).
- 4. Physical address (Config ID) and logical address (P3.000) information.
- 5. Check the content of PDO mapping to determine if the configuration is correct.
- SM0 SM3: the channels used by the SDO & PDO and the channel length information.
- 7. FMMU0 FMMU3 configuration information.
- 8. EtherCAT State Machine display (Init → Pre-OP → Safe-OP → OP).
- Status display for EtherCAT communication initialization application layer (Application Layer Error Code).
- 10. EtherCAT communication error rate display.
- 11. Controlword (OD 6040h) and Statusword (OD 6041h) display.
- 12. EtherCAT operation mode status display (OD 6060h, 6061h, 6071h, 6072h, 6080h, 60FFh, 60E0h, 60E1h, and 607Ah)

Note: refer to the latest version of the ASDA-Soft software for the updated functions of **EtherCAT Diagnosis**.

11.5.2 Alarm list

Display	Alarm name	16-bit error code
AL001	Overcurrent	2310h
AL002	Overvoltage	3110h
AL003	Undervoltage	3120h
AL004	Motor combination error	7122h
AL005	Regeneration error	3210h
AL006	Overload	3230h
AL007	Excessive deviation of Speed command	8400h
AL008	Abnormal pulse command	8600h
AL009	Excessive deviation of Position command	8611h
AL010	Voltage error during regeneration	3210h
AL011	CN2 communication failed	7305h
AL012	Calibration error	6320h
AL013	Emergency stop	5441h
AL014	Negative limit error	5443h
AL015	Positive limit error	5442h
AL016	Abnormal IGBT temperature	4210h
AL017	EEPROM error	5330h
AL018	OA, OB output error	7306h
AL020	Serial communication timeout	7520h
AL022	RST power error	3130h
AL023	Early overload warning	3231h
AL024	Encoder initial magnetic field error	7305h
AL025	Encoder internal error	7305h
AL026	Encoder unreliable internal data	7305h
AL027	Encoder internal reset error	7305h
AL028	Battery voltage error or encoder internal error	7305h
AL029	Gray code error	7305h
AL02A	Number of revolutions of the encoder is in error	7305h
AL02B	Motor data error	7305h
AL02F	Blocked rotor protection	0000h
AL030	Motor collision error	7121h
AL031	Motor power cable wiring error	3300h
AL032	Abnormal encoder vibration	7305h
AL033	Motor is in error	7305h
AL034	Encoder internal communication error	7305h
AL035	Encoder temperature exceeds the protective range	7305h
AL035	Encoder alarm status error	7305h
AL042	Voltage input for analog Speed command is too high	FF01h
AL044	Servo function operational warning	6100h
AL045	E-Gear ratio value error	6320h
AL048	OA and OB output error	7036h
AL053	Motor parameter error	0000h
AL056	Excessive motor speed	0000h
AL05C	Motor position feedback error	0000h
AL060	Absolute position is lost	7305h
AL061	Encoder undervoltage	7305h

Display	Alarm name	16-bit error code
AL062	Number of revolutions of the absolute encoder overflows (issued by encoder)	7305h
AL064	Encoder vibration warning	7305h
AL066	Number of revolutions of the absolute encoder overflows (issued by servo drive)	7305h
AL067	Encoder temperature warning	7305h
AL068	Absolute data transmitted by I/O is in error	7305h
AL069	Wrong motor type	0000h
AL06A	Absolute position is lost	7305h
AL06B	The error between the servo drive internal position and the encoder position is too large	7305h
AL06E	Encoder type is unidentifiable	7305h
AL06F	The absolute position is not established	7305h
AL070	Encoder did not complete the read / write procedure	7305h
AL071	Number of revolutions of the encoder is in error	7305h
AL072	Encoder overspeed	7305h
AL073	Encoder memory error	7305h
AL074	Encoder single-turn absolute position is in error	7305h
AL075	Encoder absolute number of revolutions is in error	7305h
AL077	Encoder internal error	7305h
AL079	Encoder parameter setting incomplete	7305h
AL07A	Encoder Z phase position is lost	7305h
AL07B	Encoder memory is busy	7305h
AL07C	Command to clear the absolute position is issued when the motor speed is over 200 rpm	7305h
AL07D	Motor stops operating when servo drive power is cycled before AL07C is cleared	7305h
AL07E	Error occurs when the encoder clears the procedure	7305h
AL07F	Encoder version error	7305h
AL083	Servo drive outputs excessive current	2310h
AL085	Regeneration setting error	3210h
AL086	Regenerative resistor overload	3110h
AL088	Servo function operational alarm	0000h
AL089	Current detection interference	6100h
AL08A	Auto tuning function - command error	7305h
AL08B	Auto tuning function - dwell time is too short	7305h
AL08C	Auto tuning function - inertia estimation error	7305h
AL095	Regenerative resistor is disconnected or regenerative circuit error	-
AL099	DSP firmware error	5500h
AL09C	Parameter reset failed	5500h
AL0A6	Absolute positions of the servo drive and motor do not match	7305h
AL111	Buffer overflow occurs when SDO is received	8110h
AL112	Buffer overflow occurs when PDO is received	8110h
AL113	TxPDO transmission failed	8110h
AL121	Object's index does not exist when PDO is accessed	8200h
AL122	Object's sub-index does not exist when PDO is accessed	8200h
AL123	Data length error occurs when PDO is accessed	8200h
AL124	Data range error occurs when PDO is accessed	8200h

Display	Alarm name	16-bit error code
AL125	PDO object is read-only and write-protected	8200h
AL126	Specified object does not support PDO mapping	8200h
AL127	PDO object is write-protected when servo drive is on	8200h
AL128	Error occurs when PDO object is read from EEPROM	8200h
AL129	Error occurs when PDO object is written to EEPROM	8200h
AL130	Accessing address of EEPROM is out of range	8200h
AL131	EEPROM CRC calculation error	8200h
AL132	Parameter is write-protected	8200h
AL170	Bus communication timeout	8130h
AL180	Bus communication timeout	8130h
AL185	Bus hardware error	8120h
AL186	Bus data transmission error	8100h
AL201	Initialization error of object dictionary data	6310h
AL207	Parameter group of Type [8] PR is out of range	0207h
AL209	Parameter number of Type [8] PR is out of range	0209h
AL203	Parameter format setting of Type [8] PR is in error	0211h
AL211	Parameter setting of Type [8] PR is in error	0211h
AL215 AL215	Parameter written by Type [8] PR is read-only	0215h
ALZTO		021311
AL217	Parameter written by Type [8] PR is write-protected when Servo On	0217h
AL219	Parameter written by Type [8] PR is write-protected	0219h
AL231	Monitoring variable code specified by Type [8] PR is out of range	0231h
AL235	Position counter overflow warning	0235h
AL237	Rotary axis position is undefined	0237h
AL245	PR positioning timeout	0245h
AL249	PR path number is out of range	0249h
AL283	Software positive limit	5444h
AL285	Software negative limit	5445h
AL289	Position counter overflows	7305h
AL305	SYNC period error	6200h
AL35F	Emergency stop during deceleration	6200h
AL380	Position offset alarm for DO.MC_OK	6200h
AL3CF	Emergency stop	6200h
AL3E2	Communication synchronization signal is sent too soon	6200h
AL3F1	Absolute position command of the communication type servo drive is in error	6200h
AL400	Rotary axis position setting error	FF05h
AL401	NMT reset command is received when servo is on	0000h
AL404	PR special filter setting value is too great	FF07h
AL422	Write-in failed caused by power supply cut-off	0000h
AL510	Internal parameter update program of the servo drive is abnormal	0000h
AL520	Calculation program timeout	0000h
AL521	Vibration elimination parameter error	6100h
AL555	System failure	-
		- 0000h
AL809	PR motion setting error or command decoding error	
ALCOR	Motor power cable disconnection	3300h
ALCDB	Servo drive model type error	0000h

(This page is intentionally left blank.)

Troubleshooting

This chapter provides alarm descriptions and the corrective actions you can use for troubleshooting.

12.1	Alarm list	12-3
	General type ·····	12-3
	Motion control type ·····	12-5
	Communication type	12-6
12.2	Causes and corrective actions	12-7

There are three types of alarms: General, Motion control, and Communication. The detailed information is as follows.

General type: alarms caused by hardware or encoder signal errors.

Motion control type: alarms caused by motion control command (in PR mode) errors.

Communication type: alarms caused by EtherCAT communication errors.

AL.nnn is the alarm format on the 7-segment display, as shown in the following figure.

If the recommended alarm clearing method is DI.ARST, set DI.ARST (alarm reset) to On or P0.001 to 0 for clearing the alarm.

12.1 Alarm list

General type

Dianlay	Alarm nama	Error	type	Servo	Servo state	
Display	Alarm name	ALM	WARN	ON	OFF	
AL001	Overcurrent	0			0	
AL002	Overvoltage	0			0	
AL003	Undervoltage		0		0	
AL004	Motor combination error	0			0	
AL005	Regeneration error	0			0	
AL006	Overload	0			0	
AL007	Excessive deviation of Speed command	0			0	
AL008	Abnormal pulse command	0			0	
AL009	Excessive deviation of Position command	0			0	
AL010	Voltage error during regeneration	0			0	
AL011	CN2 communication failed	0			0	
AL012	Calibration error	0			0	
AL013	Emergency stop		0		0	
AL014	Negative limit error		0	0		
AL015	Positive limit error		0	0		
AL016	Abnormal IGBT temperature	0			0	
AL017	EEPROM error	0			0	
AL018	OA and OB output error	0			0	
AL020	Serial communication timeout		0	0		
AL022	RST power error		0		0	
AL023	Early overload warning		0	0		
AL024	Encoder initial magnetic field error	0			0	
AL025	Encoder internal error	0			0	
AL026	Encoder unreliable internal data	0			0	
AL027	Encoder internal reset error	0			0	
AL028	Battery voltage error or encoder internal error	0			0	
AL029	Gray code error	0			0	
AL02A	Number of revolutions of the encoder is in error	0			0	
AL02B	Motor data error	0			0	
AL02F	Blocked rotor protection	0			0	
AL030	Motor collision error	0			0	
AL031	Motor power cable wiring error	0			0	
AL032	Abnormal encoder vibration	0			0	
AL033	Motor is in error	0			0	
AL034	Encoder internal communication error	0			0	
AL035	Encoder temperature exceeds the protective range	0			0	
AL036	Encoder alarm status error	0			0	
AL042	Voltage input for analog Speed command is too high	0			0	
AL044	Servo function operational warning		0	0		
AL045	E-Gear ratio value error	0			0	
AL048	OA and OB output error	0			0	
AL053	Motor parameter error	0			0	
AL056	Excessive motor speed	0			0	
AL05C	Motor position feedback error	0			0	

D: 1		Error type		Servo state	
Display	Alarm name	ALM	WARN	ON	OFF
AL060	Absolute position is lost		0	0	
AL061	Encoder undervoltage		0	0	
AL062	Number of revolutions of the absolute encoder overflows (issued by encoder)		0	0	
AL064	Encoder vibration warning		0	0	
AL066	Number of revolutions of the absolute encoder overflows (issued by servo drive)		0	0	
AL067	Encoder temperature warning		0	0	
AL068	Absolute data transmitted by I/O is in error		0	0	
AL069	Wrong motor type	0			0
AL06A	Absolute position is lost		0	0	
AL06B	The error between the servo drive internal position and the encoder position is too large		0	0	
AL06E	Encoder type is unidentifiable	0			0
AL06F	The absolute position is not established		0	0	
AL070	Encoder did not complete the read / write procedure		0	0	
AL071	Number of revolutions of the encoder is in error	0			0
AL072	Encoder overspeed	0			0
AL073	Encoder memory error	0			0
AL074	Encoder single-turn absolute position is in error	0			0
AL075	Encoder absolute number of revolutions is in error	0			0
AL077	Encoder internal error	0			0
AL079	Encoder parameter setting incomplete	0			0
AL07A	Encoder Z phase position is lost	0			0
AL07B	Encoder memory is busy Command to clear the absolute position is issued	0			0
AL07C	when the motor speed is over 200 rpm		0	0	
AL07D	Motor stops operating when servo drive power is cycled before AL07C is cleared	0			0
AL07E	Error occurs when the encoder clears the procedure	0			0
AL07F	Encoder version error	0			0
AL083	Servo drive outputs excessive current	0			0
AL085	Regeneration setting error	0			0
AL 086	Regenerative resistor overload	0			0
AL088 AL089	Servo function operational alarm Current detection interference	0	0		0
AL089	Auto tuning function - command error		0	0	
AL08B	Auto tuning function - dwell time is too short		0	0	
AL08C	Auto tuning function - inertia estimation error		0	0	
AL095	Regenerative resistor is disconnected or regenerative circuit is in error		0	0	
AL099	DSP firmware error	0			0
AL09C	Parameter reset failed	0			0
AL0A6	Absolute positions of the servo drive and motor do not match		0	0	
AL35F	Emergency stop during deceleration		0	0	
AL3CF	Emergency stop		0	1	0
AL422	Write-in failed caused by power supply cut-off	0			0
AL521	Vibration elimination parameter error	0			0
-			1		1

Display	Alarm name	Error type		Servo state	
Display		ALM	WARN	ON	OFF
ALC31	Motor power cable disconnection	0			0
ALCDB	Servo drive model type error	0			0

Note: if the servo drive shows an alarm that is not in this table, contact the local distributor or technician.

Motion control type

Diaplay	Alarm name	Error	Error type		Servo state	
Display	Alailli liaille	ALM	WARN	ON	OFF	
AL207	Parameter group of Type [8] PR is out of range		0	0		
AL209	Parameter number of Type [8] PR is out of range		0	0		
AL211	Parameter format setting of Type [8] PR is in error		0	0		
AL213	Parameter setting of Type [8] PR is in error		0	0		
AL215	Parameter written by Type [8] PR is read-only		0	0		
AL217	Parameter written by Type [8] PR is write-protected when Servo On		0	0		
AL219	Parameter written by Type [8] PR is write-protected		0	0		
AL231	Monitoring variable code specified by Type [8] PR is out of range		0	0		
AL235	Position counter overflow warning		0	0		
AL237	Rotary axis position is undefined		0	0		
AL245	PR positioning timeout	0			0	
AL249	PR path number is out of range	0			0	
AL283	Software positive limit		0	0		
AL285	Software negative limit		0	0		
AL289	Position counter overflows		0	0		
AL380	Position offset alarm for DO.MC_OK		0	0		
AL3F1	Absolute position command of the communication type servo drive is in error	0			0	
AL400	Rotary axis position setting error	0			0	
AL404	PR special filter setting value is too great	0			0	
AL510	Internal parameter update program of the servo drive is abnormal		0	0		
AL520	Calculation program timeout	0			0	
AL555	System failure	0			0	
AL809	PR motion setting error or command decoding error	0			0	

Note: if the servo drive shows an alarm that is not in this table, contact the local distributor or technician.

Communication type

Diamler	Alarm name	Error	Error type		Servo state	
Display	Alammame		WARN	ON	OFF	
AL111	Buffer overflow occurs when SDO is received	0		0		
AL112	Buffer overflow occurs when PDO is received	0		0		
AL113	TxPDO transmission failed	0		0		
AL121	Object's index does not exist when PDO is accessed	0		0		
AL122	Object's sub-index does not exist when PDO is accessed	0		0		
AL123	Data length error occurs when PDO is accessed	0		0		
AL124	Data range error occurs when PDO is accessed	0		0		
AL125	PDO object is read-only and write-protected	0		0		
AL126	Specified object does not support PDO mapping	0		0		
AL127	PDO object is write-protected when servo drive is on	0		0		
AL128	Error occurs when PDO object is read from EEPROM	0		0		
AL129	Error occurs when PDO object is written to EEPROM	0		0		
AL130	Accessing address of EEPROM is out of range	0		0		
AL131	EEPROM CRC calculation error	0		0		
AL132	Parameter is write-protected	0		0		
AL170	Bus communication timeout	0		0		
AL180	Bus communication timeout	0			0	
AL185	Bus hardware error	0			0	
AL186	Bus data transmission error	0		0		
AL201	Initialization error of object dictionary data	0			0	
AL305	SYNC period error		0	0		
AL3E2	Communication synchronization signal is sent too soon		0	0		
AL401	NMT reset command is received when servo is on	0			0	

Note: if the servo drive shows an alarm that is not in this table, contact the local distributor or technician.

ASDA-E3 Troubleshooting

12.2 Causes and corrective actions

AL001 Overcur	rent
	Condition: main circuit current is greater than 1.5 times the maximum
	instantaneous current of the servo drive.
Trigger condition	Cause:
and cause	1. The servo drive output is short-circuited.
	2. Motor wiring is in error.
	3. IGBT is abnormal.
	Check the connection between the motor and servo drive and make sure that
	the wire is not short-circuited. Do not expose the metal part of the wiring.
	Check if you have followed the wiring sequence described in this manual for
Checking method	connecting the motor to the servo drive.
and corrective action	2. If the temperature of the heat sink is abnormal, send your servo drive back to
	the distributor or contact Delta. Check if the value of the internal parameter is
	much greater than the default. It is recommended that you reset the parameter
	to the factory default setting and then modify the setting gradually.
How to clear the alarm?	DI.ARST

	Condition: main circuit voltage exceeds the rated value.
(Cause:
Trigger condition	1. The input voltage of the main circuit is higher than the allowable rated value.
and cause	2. Incorrect power input (incorrect power system).
;	3. Malfunction of the servo drive hardware.
	4. Incorrect selection of or no connection to an external regenerative resistor.
,	1. Use a voltmeter to check if the input voltage of the main circuit is within the
	allowable range (refer to Appendix A Specifications) and if the power system
	complies with the specifications. Use the correct power source or connect the
	transformer and regulator in series to keep the voltage within the range.
Checking method and corrective action	2. If the alarm occurs when the input voltage of the main circuit measured by the
	voltmeter is within the allowable rated value, send your servo drive back to the
	distributor or contact Delta.
(3. Check the connection for the regenerative resistor and re-calculate the
	resistance value. Correctly set the values of P1.052 and P1.053.
How to clear the alarm?	DI.ARST

12

AL003 Undervoltage				
	Condition:			
	1. Main circuit voltage is below the rated value. The error type of AL003 is a			
	warning by default. To set AL003 as an alarm, you can set P2.066 [Bit 9] to 1.			
Trigger condition	2. DC Bus voltage is below P4.024 $\times \sqrt{2}$.			
and cause	Cause:			
	1. The input voltage of the main circuit is lower than the allowable rated value.			
	2. No voltage input to the main circuit.			
	3. Incorrect power input (incorrect power system).			
	Check if the wiring of power supply is correct and the wiring of input power			
	supply for the main circuit is normal.			
Checking method	2. Check the switch of the power supply and use a voltmeter to check the main			
and corrective action	circuit voltage.			
	3. Use a voltmeter to check if the power system complies with the specifications.			
	If not, use the correct power source or connect the transformer in series.			
	Clear AL003 according to the setting of P2.066 [Bit 2]:			
	1. If P2.066 [Bit 2] is set to 0, use DI.ARST to clear the alarm after the voltage is			
How to clear the alarm?	back in the normal range.			
	2. If P2.066 [Bit 2] is set to 1, the alarm is automatically cleared after the voltage			
	is back in the normal range.			

AL004 Motor combination error Condition: an incorrect motor is used with the servo drive. Cause: Trigger condition Motor combination error (the wrong motor is connected to the servo drive). and cause 2. The encoder connector is loose. 3. The encoder is damaged. 1. Use the right motor. Checking method 2. Check and re-install the encoder connector. and corrective action 3. If the encoder is not operating properly, replace the motor. How to clear the Cycle power on the servo drive. alarm?

AL005 Regene	ration error
	Condition: an error occurs during regeneration.
	Cause:
Trigger condition	1. Incorrect selection of or no connection to an external regenerative resistor.
and cause	2. P1.053 (Regenerative resistor capacity) is not set to 0 when a regenerative
	resistor is not connected.
	3. Incorrect parameter settings for P1.052 and P1.053.
	Check the connection for the regenerative resistor and re-calculate the
	resistance value. Correctly set the values of P1.052 and P1.053. If the issue
Checking method	persists, send your servo drive back to Delta.
and corrective action	2. Set P1.053 to 0 if not using a regenerative resistor.
	3. Correctly set the regenerative resistor value (P1.052) and the regenerative
	resistor capacity (P1.053).
How to clear the alarm?	DI.ARST

AL006 Overloa	d
	Condition: overload of motor and servo drive.
	Cause:
	1. The load is over the rated range and the servo drive is in a continuous
Trigger condition and cause	overload condition.
aa caacc	2. Improper settings for the parameters of the control system.
	3. Motor wiring error.
	4. Encoder error.
	Set P0.002 to 12 for monitoring if the average load rate [%] is continuously
	over 100%. If so, increase the motor capacity or reduce the load. Refer to
	Appendix A for Graph of load and operating time.
Checking method and corrective action	2. Check if there is any mechanical vibration or the setting for acceleration or
and corrective deticn	deceleration is too drastic.
	3. Check if the wiring of the motor power cable and the encoder cable is correct.
	4. Send your servo motor back to the distributor or contact Delta.
How to clear the alarm?	DI.ARST

12

AL007 Excessi	ve deviation of Speed command
	Condition: difference between the command speed and the feedback speed
	exceeds the allowable range set by P2.034.
	Cause:
Trigger condition and cause	A drastic change in the input Speed command.
	2. Improper setting of P2.034 (Excessive deviation warning condition of Speed
	command).
	3. Incorrect wiring of the motor power cable and the encoder cable.
	Use the signal detector to check if the input analog voltage signal is normal.
	If not, adjust the rate of change for input signals or enable the filter function.
Checking method and corrective action	2. Check if the value of P2.034 (Excessive deviation warning condition of Speed
	command) is set properly.
	3. Check if the wiring of the motor power cable and the encoder cable is correct.
How to clear the alarm?	DI.ARST

AL008 Abnorm	AL008 Abnormal pulse command		
Trigger condition and cause	Condition: the input frequency of the pulse command is over the allowable value for the hardware interface.		
	Cause: the pulse command frequency is higher than the rated input frequency.		
Checking method	Use the scope to check if the input frequency is higher than the rated input		
and corrective action	frequency and input the pulse with the correct frequency.		
How to clear the alarm?	DI.ARST		

AL009 Excessive deviation of Position command

Condition: difference between the command position and the feedback position exceeds the allowable range set by P2.035. Cause: The maximum allowable position deviation is set too low. 2. Gain value is set too low. Trigger condition and cause 3. Torque limit or speed limit is set too low. 4. Excessive external load. 5. Improper setting for the E-Gear ratio. 6. The power cable is loose. 7. The maximum speed limit is set too low.

ASDA-E3 Troubleshooting

AL009 Excessive deviation of Position command		
	1.	Check the set value of P2.035 (Excessive deviation of Position command
		warning). If the value is too low, set a higher value.
	2.	Check if the gain value is appropriate for the application.
	3.	When the speed and torque limit functions are not needed, disable P1.002;
		otherwise, check if the internal speed limit (P1.009 - P1.011) and internal
Checking method		torque limit (P1.012 - P1.014) are set correctly.
and corrective action	4.	Check the external load. Reduce the external load or re-evaluate the motor
		capacity if necessary.
	5.	Check if the settings of P1.044 and P1.045 are appropriate for the application.
		If not, set them to proper values.
	6.	Check if the power cable is loose.
	7.	Check if the set value of P1.055 (Maximum speed limit) is too low.
How to clear the alarm?	DI.	ARST

AL010 Voltage error during regeneration		
Trigger condition and cause	Condition: an error occurs during regeneration.	
	Cause:	
	1. The regenerative voltage remains at 400V for a period of time during	
	regeneration. This may be caused by using an incorrect regenerative resistor	
	or not connecting an external regenerative resistor to the servo drive.	
	2. P1.053 (Regenerative resistor capacity) is not set to 0 when a regenerative	
	resistor is not connected.	
Checking method and corrective action	1. Check the connection for the regenerative resistor and re-calculate the	
	resistance value. Correctly set the values of P1.052 and P1.053. If the issue	
	persists, send your servo drive back to Delta.	
	2. Set P1.053 to 0 if not using a regenerative resistor.	
How to clear the alarm?	DI.ARST	

AL011 CN2 communication failed		
	Condition: encoder communication is in error.	
	Cause:	
	CN2 wiring is incorrect.	
Trigger condition	2. CN2 connector is loose.	
and cause	3. CN2 wiring is poor.	
	4. Encoder communication is disconnected due to interference.	
	5. The encoder is damaged.	
	6. The motor is not supported by this servo drive series.	
	Check if the wiring follows the instructions in the user manual. If not, connect	
	the wire correctly.	
	2. Check if the CN2 connector is properly connected to the CN2 port on the	
	servo drive. If the connector is loose, reconnect it to the servo drive.	
	3. Check for the cable and connector which connect the motor and CN2 of the	
	servo drive to see if there is any poor wiring or damaged wires. If so, replace	
	the connector and cable.	
	4. Check the communication error rate by setting P0.002 to -80. If the error rate	
	increases continuously, it means there is interference. Check the following	
Checking method	items:	
and corrective action	(a) Check if the motor is properly grounded. Make sure the ground end (yellow /	
	green) of the power cable is grounded to the servo drive heat sink.	
	(b) Check if the connection for the encoder signal cable is normal. Make sure	
	the encoder signal cable is separated from the power supply or any	
	high-current cables to avoid interference.	
	(c) Use shielded cable for the encoder cable. Pull out the wire mesh and	
	have it correctly grounded.	
	5. If you took all corrective actions but the issue persists, replace the motor.	
	6. Contact the distributor for the supported motor models or the communication	
	specifications of the encoders.	
How to clear the alarm?	Cycle power on the servo drive.	

Troubleshooting

AL012 Calibration error		
	Condition: the calibration value exceeds the allowable value during electrical	
	calibration.	
Trigger condition and cause	Cause:	
	1. The analog input contact is not correctly returned to zero.	
	2. The detection device is damaged.	
Checking method and corrective action	Check if the voltage level at the analog input contact is the same as the	
	ground potential.	
	2. Cycle power and execute the calibration again. If the issue persists after	
	power cycling, send your servo drive back to the distributor or contact Delta.	
How to clear the alarm?	Remove the connection cable for CN1 and then execute auto calibration.	

AL013 Emergency stop	
Trigger condition and cause	The emergency stop button is pressed.
Checking method and corrective action	Make sure the emergency stop button is off.
How to clear the alarm?	Set DI.EMGS to off to clear the alarm.

AL014 Negative limit error		
Trigger condition and cause	Condition: negative limit switch is triggered.	
	Cause:	
	Negative limit switch is triggered.	
	2. Servo system is unstable.	
Checking method and corrective action	Make sure the negative limit switch is off.	
	2. Check the parameter setting or re-estimate the motor capacity.	
How to clear the alarm?	The alarm is automatically cleared after the motor moves away from the limit.	

AL015 Positive limit error		
Trigger condition and cause	Condition: positive limit switch is triggered.	
	Cause:	
	Positive limit switch is triggered.	
	2. Servo system is unstable.	
Checking method and corrective action	Make sure the positive limit switch is off.	
	2. Check the parameter setting or re-estimate the motor capacity.	
How to clear the alarm?	The alarm is automatically cleared after the motor moves away from the limit.	

AL016 Abnormal IGBT temperature		
Trigger condition and cause	Condition: temperature of IGBT is abnormal.	
	Cause:	
	1. The load is over the rated range and the servo drive is in a continuous	
	overload condition.	
	2. The servo drive output is short-circuited.	
Checking method and corrective action	Check for servo drive overload or motor overcurrent. If so, try increasing the	
	motor's capacity or reducing the load.	
	2. Check if the wiring of servo drive output is correct.	
How to clear the alarm?	DI.ARST	

AL017 EEPROM error		
	Condition: error occurs when DSP accesses EEPROM.	
	Cause:	
Trigger condition and cause	Parameter writing error or the value exceeds the allowable range.	
	2. When power is supplied to the servo drive, the data in ROM is damaged or	
	there is no data in ROM.	
	Press the SHIFT key and the panel displays "EXGAB".	
	X = 1, 2, 3	
	G = Group number of the parameter	
	AB = Parameter number in hexadecimal format	
	If the panel displays "E320A", it indicates parameter P2.010. If the panel displays	
	"E3610", it indicates parameter P6.016. Check the value for the corresponding	
	parameter.	
Checking method and corrective action	1. The panel displays the parameter code. If this alarm occurs when power is	
and corrective action	supplied to the drive, it means a parameter value has exceeded the range.	
	Modify the value and then cycle power on the servo drive. If the alarm occurs	
	during normal operation, it means an error occurred when the parameter is	
	written. Use DI.ARST to clear this alarm.	
	2. The panel displays "E100X" or "E0001". If this alarm occurs when power is	
	supplied to the drive, it is usually because the data in ROM is damaged or	
	there is no data in ROM. Send your servo drive back to the distributor or	
	contact Delta.	
How to clear the	If this alarm occurs when power is supplied to the drive, reset the parameters and	
alarm?	then cycle the power. If the alarm occurs during operation, set DI.ARST to on.	

AL018 OA and	OB output error
Trigger condition and cause	Condition: the output frequency of the OA and OB pulses is higher than the maximum output frequency of the hardware. Cause: 1. The resolution of the OA and OB pulses is set too high. 2. There is interference or damage to the encoder signal cable, causing communication error. 3. Encoder error.
Checking method and corrective action	 Correctly set the parameters. The settings of P1.076 and P1.046 should follow these requirements: P1.076 > motor speed and Motor speed × P1.046 × 4 < 19.8 × 10⁶ Check the communication error rate by setting P0.002 to -80. If the error rate increases continuously, it means there is interference. Check the following items: (a) Check if the motor is properly grounded. Make sure the ground end (yellow / green) of the power cable is grounded to the servo drive heat sink. (b) Check if the connection for the encoder signal cable is normal. Make sure the encoder signal cable is separated from the power supply or any high-current cables to avoid interference. (c) Use shielded cable for the encoder cable. Pull out the wire mesh and have it correctly grounded. Check the fault record (P4.000 - P4.004) and see if an alarm has occurred (AL011, AL024, AL025, or AL026). Use the corresponding checking methods and corrective actions to clear the alarm if any of them occurs. If you do not need to use the OA and OB pulses, set P2.065 [Bit 13] to 1 to disable the detection function for OA and OB output error (AL018 / AL048).
How to clear the alarm?	 DI.ARST Contact the distributor.

AL020 Serial communication timeout		
Trigger condition and cause	Condition: RS-485 communication error.	
	Cause:	
	Improper setting for P3.004 (Modbus communication timeout).	
	2. The servo drive has not received the communication command for a long time	
	and has timed out (refer to P3.004).	
	1. Check and correctly set the value for the communication timeout parameter.	
Checking method and corrective action	2. Check if the communication cable is loose or disconnected and make sure it is	
	correctly wired.	
How to clear the alarm?	DI.ARST	

AL022 RST power error	
Trigger condition and cause	Condition: RST power cable is loose or there is no power. The error type of AL022
	is a warning by default. To set AL022 as an alarm, you can set P2.066 [Bit 12] to 1.
	Cause: RST power error.
Checking method and corrective action	Check if the RST power cable is loose or there is no power. For 1.5 kW (or below)
	servo drives, this alarm occurs when all three phases are not connected to the
	power supply. For 2 kW (or above) servo drives, this alarm occurs when one single
	phase is not connected to the power supply. Correctly connect the power to the
	servo drive. If the issue persists, send your servo drive back to the distributor or
	contact Delta.
How to clear the alarm?	DI.ARST

AL023 Early overload warning	
Trigger condition and cause	Early overload warning.
Checking method and corrective action	 Check if the motor is overloaded and refer to the corrective actions of AL006 for troubleshooting. Check if the value of P1.056 (Motor output overload warning level) is set too low. If so, set the value higher, or set the value greater than 100 to disable the warning function.
How to clear the alarm?	DI.ARST

ASDA-E3 Troubleshooting

AL024 Encoder initial magnetic field error	
Trigger condition and cause	Condition: the magnetic field of the encoder U, V, W signal is in error. Cause: the initial magnetic field of the encoder is in error (magnetic field of the encoder U, V, W signal is in error.)
Checking method and corrective action	 Check if the motor is properly grounded. Make sure the ground end (yellow / green) of the power cable is grounded to the servo drive heat sink. Check if the connection for the encoder signal cable is normal. Make sure the encoder signal cable is separated from the power supply or any high-current cables to avoid interference. Use shielded cable for the encoder cable. Pull out the wire mesh and have it correctly grounded. If the issue persists, send your servo motor back to the distributor or contact Delta.
How to clear the alarm?	Cycle power on the servo drive.

AL025 Encode	r internal error
Trigger condition	Condition: internal memory and counter of the encoder are in error.
	Cause:
	Encoder internal error (internal memory and counter are in error).
	2. When power is applied, the motor rotates because of the inertia of the
	mechanical parts or other causes.
	If there is interference, check the following items:
	(a) Check if the motor is properly grounded. Make sure the ground end (yellow /
	green) of the power cable is grounded to the servo drive heat sink.
Checking method	(b) Check if the connection for the encoder signal cable is normal. Make sure
and corrective action	the encoder signal cable is separated from the power supply or any
	high-current cables to avoid interference.
	(c) Use shielded cable for the encoder cable. Pull out the wire mesh and
	have it correctly grounded.
	2. Make sure the motor shaft does not move when power is turned on.
How to clear the alarm?	Cycle power on the servo drive.

AL026 Encoder unreliable internal data	
Trigger condition and cause	Condition: internal data error occurs three consecutive times.
	Cause:
	External interference.
	2. Malfunction of the encoder hardware.
	If there is interference, check the following items:
	1. Check if the motor is properly grounded. Make sure the ground end (yellow /
	green) of the power cable is grounded to the servo drive heat sink.
	2. Check if the connection for the encoder signal cable is normal. Make sure the
	encoder signal cable is separated from the power supply or any high-current
Checking method	cables to avoid interference.
and corrective action	3. Use shielded cable for the encoder cable. Pull out the wire mesh and have it
	correctly grounded.
	4. Check the communication error rate by setting P0.002 to -80. If the error rate
	is greater than 0 and increases continuously, check the previous three items
	again. If the error rate is 0, send your servo motor back to the distributor or
	contact Delta.
How to clear the alarm?	Cycle power on the servo drive.

AL027 Encoder internal reset error	
Trigger condition and cause	Condition: encoder reset error.
	Cause: encoder reset.
Checking method and corrective action	1. Check if there is poor connection for the encoder signal cable.
	2. Check if the power supply for the encoder is stable and make sure to use
	shielded cable.
	3. Check if the operating temperature is over 95°C (203°F). Identify the cause for
	the high temperature and do not restart the operation before the temperature
	falls within the allowable range.
	If the issue persists, send your servo motor back to the distributor or contact Delta.
How to clear the alarm?	Cycle power on the servo drive.

AL028 Battery voltage error or encoder internal error		
Trigger condition and cause	Condition: battery voltage is higher than the specification (> 3.8V) or the encoder signal is in error.	
	Cause:	
	Voltage level of the battery is too high.	
	2. Encoder internal error.	
Checking method and corrective action	 Check if there is a charging circuit. Avoid incorrect wiring. If Pin 1 (5V) of CN2 is connected to BAT+ of the encoder connector, it means the 5V power of the servo drive is being charged to the battery. Check if the battery is correctly installed. (voltage > 3.8V) Check if the motor is properly grounded. Make sure the ground end (yellow / green) of the power cable is grounded to the servo drive heat sink. Check if the connection for the encoder signal cable is normal. Make sure the encoder signal cable is separated from the power supply or any high-current cables to avoid interference. Use shielded cable for the encoder cable. Pull out the wire mesh and have it correctly grounded. If the issue persists, send your servo drive and motor back to the distributor or contact Delta. 	
How to clear the	Cycle power on the servo drive.	
alarm?		

AL029 Gray code error	
Trigger condition and cause	Absolute position within a single revolution is in error.
Checking method and corrective action	Cycle power on the servo drive to operate the motor. Then, check if the alarm occurs again. If the issue persists, replace the encoder.
How to clear the alarm?	Cycle power on the servo drive.

AL02A Number of revolutions of the encoder is in error	
Trigger condition and cause	Condition: the number of revolutions of the encoder is in error.
	Cause: the internal signal of the encoder is abnormal, causing error in the number
	of revolutions.
Checking method and corrective action	Send your servo motor back to the distributor or contact Delta.
How to clear the alarm?	N/A

AL02B Motor data error	
Trigger condition and cause	Accessing the internal data of the motor is in error.
Checking method and corrective action	Send your servo motor back to Delta.
How to clear the alarm?	N/A

AL02F Blocked rotor protection		
	Condition: the servo drive is overloaded, and the motor speed keeps at 10 rpm (or	
	below) or the rotor is blocked.	
	Cause:	
Trigger condition and cause	1. The motor or the connected mechanical part is locked, causing the motor not	
	to rotate.	
	2. The motor is running at an extremely low speed or the rotor is blocked for a	
	long time.	
Checking method and corrective action	Set the motor speed higher to shorten the duration of the occurrence of	
	blocked rotor.	
	2. Check if the mechanical part connected to the motor is working normally.	
	3. Check if the wiring of the motor power cable and the encoder cable is correct.	
	4. Send your servo motor back to the distributor or contact Delta.	
How to clear the alarm?	DI.ARST	

AL030 Motor collision error Condition: the motor hits the device, reaching the torque value set by P1.057 for the duration of the time set by P1.058. Cause: 1. Check if the protection function of motor hard stop (P1.057) is enabled. If so, Trigger condition set P1.057 to 0. and cause 2. Check if the value set by P1.057 is too low and the time set by P1.058 is too short. Set P1.057 according to the actual torque. If P1.057 is set too low, it may lead to malfunction; if P1.057 is set too high, it may lose the protection function. Cycle power on the servo drive to operate the motor. Then, check if the alarm Checking method and corrective action occurs again. If the issue persists, replace the encoder. How to clear the **DI.ARST** alarm?

AL031 Motor power cable wiring error	
Trigger condition and cause	Condition: incorrect wiring of the motor power cable (U, V, W) and ground (GND).
	Cause: incorrect wiring of the motor power cable (U, V, W) and ground (GND). The
	switch for wiring error detection is set by P2.065 [Bit 8], which is enabled by
	default.
Checking method and corrective action	Check if the wiring of the motor power cable (U, V, W) and ground (GND) is
	correct. Follow the instructions in this user manual for correct wiring and proper
	grounding.
How to clear the alarm?	Cycle power on the servo drive.

AL032 Abnormal encoder vibration	
Trigger condition and cause	Condition: abnormal vibration occurred in the encoder. Cause: the internal signal or mechanical part of the encoder is abnormal, so the encoder returns an error signal.
Checking method and corrective action	Check if the motor vibration range exceeds the specification of 2.5 G. If the vibration is within the range but the alarm still occurs, send your servo motor back to the distributor or contact Delta.
How to clear the alarm?	DI.ARST or cycle power on the servo drive.

AL033 Motor is in error		
Trigger condition and cause	The encoder signal is in error.	
Checking method and corrective action	1. Check if the encoder 5V power is lower than 4.3V.	
	2. Check if the cable complies with the specifications.	
	3. Check if the connection for the encoder signal cable is normal. Make sure the	
	encoder signal cable is separated from the power supply or any high-current	
	cables to avoid interference.	
How to clear the alarm?	If the issue persists, send your servo motor back to the distributor or contact Delta.	

AL034 Encoder internal communication error			
Trigger condition and cause	Condition:		
	Internal communication error for the absolute encoder.		
	2. Other types of encoder internal error.		
	Cause: encoder internal communication error.		
Checking method and corrective action	Check if the battery wiring is correct or loose. If it is loose, wire it again and		
	cycle power on the system.		
	2. Check if the battery voltage is within the normal range.		
	3. Internal communication error for the absolute encoder occurs. Replace the		
	motor.		
How to clear the alarm?	Cycle power on the servo drive.		

AL035 Encoder temperature exceeds the protective range	
Trigger condition and cause	Condition: encoder temperature is over the upper lmit of 100°C (212°F).
	Cause: encoder temperature is over 100°C.
Checking method and corrective action	Set P0.002 to -124 to read the temperature and check if it is below 100°C. If the
	encoder temperature is higher than 100°C, improve the heat dissipation to lower
	the temperature. If the temperature difference between the encoder and motor is
	over 30°C (86°F), send your servo motor back to Delta.
How to clear the alarm?	After the temperature becomes lower than 100°C, cycle power on the servo drive.

AL036 Encoder alarm status error					
Trigger condition and cause	Condition: abnormal state occurred in the encoder.				
	Cause: the encoder sends out an alarm signal, but the alarm status of the encoder				
	read by the servo drive shows no error.				
	1. Check if the motor is properly grounded. Make sure the power cable (yellow /				
	green end) is grounded to the servo drive heat sink.				
	2. Check if the connection for the encoder signal cable is normal. Make sure the				
	encoder signal cable is separated from the power supply or any high-current				
Checking method and corrective action	cables to avoid interference.				
	3. Use shielded cable for the encoder cable. Pull out the wire mesh and have it				
	correctly grounded.				
	4. Check the motor speed and make sure it is within the rated range.				
	If the issue persists, send your servo motor back to the distributor or contact Delta.				
How to clear the alarm?	DI.ARST or cycle power on the servo drive.				

AL042 Voltage input for analog Speed command is too high	
Trigger condition and cause	Voltage input for the analog Speed command is higher than the level specified by P1.083.
Checking method and corrective action	Check and make sure the voltage source for the analog Speed command is correct. Check the value of P1.083, and if this function not required, set it to 0.
How to clear the alarm?	DI.ARST

AL044 Servo function operational warning			
Trigger condition and cause	Condition: too many motor control functions on the servo drive are enabled.		
	Cause: servo function operational alarm.		
Checking method and corrective action	1. If using a filter, see if using this filter is necessary.		
	2. Set P2.066 [Bit 4] to 1 to disable this alarm.		
How to clear the alarm?	Disable the filter if it is not required, such as the low-pass filter (P1.006 -		
	P1.008), moving filter (P1.068), low-frequency vibration suppression (P1.025 -		
	P1.028), vibration elimination (P1.089 - P1.094), Notch filter (1st to 5th sets),		
	percentage of friction compensation (P1.062), and motor hard stop - torque		
	percentage (P1.057).		
	2. Set P2.066 [Bit 4] to 1 and cycle power on the servo drive.		

AL045 E-Gear ratio value error	
Trigger condition and cause	Condition: when the value of the E-Gear ratio exceeds the range (1 - 262144), this
	alarm occurs once power is cycled on the servo drive.
	Cause: E-Gear ratio value is found to be in error after the servo drive is powered
	on.
Checking method and corrective action	Check if the value of the E-Gear ratio is within the allowable range (1 - 262144). If
	not, correct the value and then cycle power to the servo drive.
How to clear the alarm?	Cycle power on the servo drive after correcting the value.

AL048 OA and OB output error Condition: the output frequency of the OA and OB pulses is higher than the maximum output frequency of the hardware. Cause: 1. The resolution of the OA and OB pulses is set too high. 2. There is interference or damage to the encoder signal cable, causing communication error. 3. Encoder error.

12

AL048 OA and OB output error			
	1.	Cor	rectly set the parameters. The settings of P1.076 and P1.046 should follow
		thes	se requirements:
			P1.076 > motor speed and $\frac{\text{Motor speed}}{60} \times \text{P1.046} \times 4 < 19.8 \times 10^6$
	2.	Che	eck the communication error rate by setting P0.002 to -80. If the error rate
		incr	eases continuously, it means there is interference. Check the following
		item	ns:
		(a)	Check if the motor is properly grounded. Make sure the ground end
			(yellow / green) of the power cable is grounded to the servo drive heat
			sink.
Checking method and corrective action		(b)	Check if the connection for the encoder signal cable is normal. Make
			sure the encoder signal cable is separated from the power supply or any
			high-current cables to avoid interference.
		(c)	Use shielded cable for the encoder cable. Pull out the wire mesh and
			have it correctly grounded.
	3.	Che	eck the fault record (P4.000 - P4.004) and see if an alarm has occurred
		(AL	011, AL024, AL025, or AL026). Use the corresponding checking methods
		and	corrective actions to clear the alarm if any of them occurs.
	4.	If yo	ou do not need to use the OA and OB pulses, set P2.065 [Bit 13] to 1 to
		disa	able the detection function for OA and OB output error (AL018 / AL048).
How to clear the	1.	DI.A	ARST

AL053 Motor parameter error	
Trigger condition and cause	Motor parameter is in error.
Checking method and corrective action	Check the motor barcode in the Device Information screen of the ASDA-Soft or replace the motor.
How to clear the alarm?	Cycle power on the servo drive.

2. Contact the distributor.

AL056 Excessive motor speed		
Trigger condition and cause	Condition: when the filtered motor speed exceeds the setting of P1.111, the servo drive immediately switches to the Servo Off state and displays this alarm. Cause: this alarm is to remind the user that the motor speed has reached the maximum limit (setting value of P1.111).	
Checking method and corrective action	Check the reason for the high motor speed, such as the set value of P1.111 is too small or the bandwidth is not set properly.	

alarm?

ASDA-E3 Troubleshooting

AL056 Excessive motor speed	
	2. Evaluate the motor speed and the condition of the mechanical parts. If
	allowable, increase the speed and the set value of P1.111.
How to clear the alarm?	DI.ARST

12

AL05C Motor position feedback error			
Trigger condition	Condition: sudden jumps occur to the motor position feedback.		
	Cause:		
and cause	Encoder feedback is abnormal or the encoder is damaged.		
	2. Encoder feedback is interfered.		
	Check if the feedback signal is abnormal. Use the Scope function of ASDA-		
	Soft and select Feedback position [PUU] as the input signal for the channel		
	and sample at 16 kHz or 20 kHz, and then operate the motor manually to		
	monitor whether the feedback value has discontinuous sudden jumps.		
Checking method and corrective action	2. Check if the feedback signal is interfered, causing sudden jumps to the motor		
	position feedback.		
	3. Check if the communication error rate increases due to interference. For		
	example, check the communication error rate by setting P0.017 to -80 and		
	monitor whether the value of P0.009 is not 0 and continuously increases.		
How to clear the alarm?	Cycle power on the servo drive.		

AL060 Absolute position is lost Condition: losing the recorded number of revolutions because of low battery voltage or power loss. Cause: 1. Voltage level of the battery is too low. 2. The battery is replaced when the power of the servo drive is off. 3. The battery is not installed when the absolute function is enabled. 4. Poor connection or disconnection of the battery power circuit.

AL060 Absolute position is lost		
Checking method and corrective action	 Check if the battery voltage is below 2.9V. Re-establish the absolute origin position after replacing the battery. 	
	2. Do not replace or remove the battery when the power of the servo drive is off.	
	3. Follow these instructions:	
	(a) Install the battery.	
	(b) Check the wiring between the battery box and the servo drive.	
	(c) Check the encoder wiring.	
	4. Ensure the wiring is correct so that the battery power is supplied to the	
	encoder and then re-establish the absolute origin position.	
	Connect or reconnect the wiring so that the battery power is supplied to the	
How to clear the alarm?	encoder and then re-establish the absolute origin position. For establishing the	
	absolute origin position, refer to Section 10.3.4 for more details.	

AL061 Encoder undervoltage		
Trigger condition and cause	Condition: battery voltage of the absolute encoder is lower than the rated value (3.1V).	
	Cause: voltage level of the battery is too low.	
Checking method and corrective action	Check if the battery voltage is below 3.1V with the monitoring variable 26h.	
	2. Measure the battery voltage to see if it is below 3.1V.	
	If the voltage is too low, replace the battery when the servo drive's power is On.	
How to clear the alarm?	The alarm is cleared automatically when the battery voltage is higher than 3.1V.	

AL062 Number of revolutions of the absolute encoder overflows (issued by encoder)	
	Condition: the number of revolutions of the absolute motor exceeds the range of
Trigger condition and cause	-32768 to +32767.
	Cause: motor's rotation cycle exceeds the allowable range.
Checking method and corrective action	Check if the number of revolutions of the motor during operation is within the range
	of -32768 to +32767. If not, re-establish the absolute origin position.
How to clear the alarm?	Cycle power on the servo drive.

AL064 Encoder vibration warning	
Trigger condition and cause	Condition: abnormal vibration occurred in the encoder.
	Cause: the internal signal or mechanical part of the encoder is abnormal, so the
	encoder returns a warning signal.
Checking method and corrective action	Check if the motor vibration range is within the warning range (2.0 to 2.5 G). If the
	vibration is below the warning range but the alarm still occurs, send you servo
	motor back to the distributor or contact Delta.
How to clear the alarm?	DI.ARST or cycle power on the servo drive.

AL066 Number of revolutions of the absolute encoder overflows (issued by servo drive)			
	Condition:		
Trigger condition and cause	1. The number of revolutions of the absolute motor (P0.051) exceeds half the		
	number of revolutions of the encoder resolution.		
	2. The number of revolutions of a Delta motor is -32768 to +32767.		
	Cause: motor's rotation cycle exceeds the allowable range.		
Checking method and corrective action	Check if the number of motor revolutions during operation is within the		
	specified range. If not, re-establish the absolute origin position.		
	2. Make sure you have enabled the function for preventing rotary axis position		
	loss when an overflow occurs. If it is disabled, set P2.069.Z to 1 to enable the		
	function.		
How to clear the alarm?	Re-establish the absolute origin position.		

AL067 Encoder temperature warning		
Trigger condition and cause	Condition: the encoder temperature is over the warning level of 85°C (185°F), but still under 100°C (212°F), which is within the protective range. Cause: encoder temperature warning (85°C to 100°C).	
Checking method and corrective action	Set P0.002 to -124 to read the encoder temperature and check if it matches the motor temperature. If the temperature is too high, improve the heat dissipation or decrease the operating temperature. If the temperature difference between the encoder and motor is over 30°C (86°F), send your servo motor back to Delta.	
How to clear the alarm?	Cycle power on the servo drive.	

AL068 Absolute data transmitted by I/O is in error			
	Condition: the time sequence is wrong when the absolute position is read by DI/O.		
Trigger condition	Cause:		
and cause	1. Time sequence is wrong.		
	2. Reading timeout.		
	Correct the time sequence for reading the data with DI/O:		
	(a) DI.ABSQ switches to off after DO.ABSR is off.		
	(b) DI.ABSQ switches to on after DO.ABSR is on.		
Checking method	2. Check the duration from when DO.ABSR switches on to the time when		
and corrective action	DI.ABSQ switches on and see if this duration is over 200 ms. The correct		
	procedure should be: when DO.ABSR switches on and after the bit data of		
	absolute position is ready, read DO.ABSD within 200 ms, switch DI.ABSQ on,		
	and then inform the servo drive that data reading is complete.		
How to clear the alarm?	Cycle power on the servo drive.		

AL069 Wrong motor type		
Trigger condition and cause	Incremental motor does not support the absolute function.	
	1. Check whether your servo motor has an incremental or absolute encoder.	
Checking method and corrective action	2. Check the setting of P2.069 and correctly set the value. Set P2.069.X to 0 if	
	desiring to operate the absolute motor as an incremental motor.	
How to clear the alarm?	Set P2.069.X to 0 and then cycle power on the servo drive.	

ASDA-E3 Troubleshooting

AL06A Absolute position is lost

There are two conditions that may cause the loss of absolute position. In the first condition, the absolute position is not established. Thus, the origin is lost. In the other condition, an error occurred. After the absolute origin position is established, AL06A still occurs after power cycling of the servo drive.

Absolute position is not established.

Condition:

- The servo drive is used for the first time.
- 2. The battery is drained and the power of the servo drive is cut off.
- When the bus communication type (EtherCAT) servo drive is used with an absolute motor, the user issues an absolute position command after the first use or modification of the E-Gear ratio.

Cause:

- The servo drive is used for the first time, so the absolute origin position is not established.
- Retaining the absolute position requires power supply, so when the battery is drained and the power supply of the servo drive is cut off, the absolute position of the servo is lost.

Trigger condition and cause

- After the E-Gear ratio is modified, the position system of the communication type servo drive needs to be re-established.
- An error occurred.

Condition:

- 1. The encoder cable is damaged, including the exterior and internal wiring.
- 2. There is a momentary power failure in the battery power supply.
- 3. The absolute motor is in error.
- 4. The battery box is used with J1 and J2 reversely connected.
- 5. The voltage level of the battery is lower than 2.9V.

Cause:

- 1. Power supply is unstable due to damage of the encoder cable.
- The reason for the momentary power failure may be that the battery box connector is loose or excessive machine vibration.
- 3. The absolute encoder of this motor is in error.
- 4. If J1 and J2 are connected reversely, the battery cannot charge the capacitor. The capacitor functions as a buffer to supply power when the power supply of the servo drive power is switched to the battery due to a main power failure.

AL06A Absolute position is lost		
	1.	Check if the absolute origin position is established (refer to Section 10.3.1 for more information).
	2.	Avoid replacing the battery when the servo drive is powered off. It is
		suggested that you replace the battery when the servo drive is powered on, so
Checking method		the absolute encoder has continuous power supply.
	3.	Re-establish the absolute origin position.
and corrective action	4.	Replace the encoder cable. Use the X-ray to check if the internal wiring is
		damaged.
	5.	Check if the wiring is loose. If the wiring is fine, replace the battery box for
		cross-testing.
	6.	Replace the servo motor.
	7.	Ensure J1 is connected to the battery and J2 is connected to the servo drive.
How to clear the alarm?	Thi	s alarm is automatically cleared after you establish the absolute origin position.

AL06B The error between the servo drive internal position and the encoder position is too large		
Trigger condition and cause	Condition: when the absolute motor is powered by the battery, the number of motor rotations exceeds half the number of revolutions of the encoder. Cause: the error between the servo drive internal position and the encoder position is too large.	
Checking method and corrective action	The mechanical parts are not properly fastened when the machine is being transported, causing rotation of the motor.	
How to clear the alarm?	Re-establish the absolute origin position.	

AL06E Encoder type is unidentifiable	
Trigger condition and cause	The servo drive cannot identify the encoder type.
Checking method and corrective action	N/A
How to clear the alarm?	Replace the motor immediately.

AL06F The absolute position is not established	
Trigger condition and cause	Condition: the establishment of the absolute position has timed out. Cause: the process for establishing the absolute position of the servo drive is in error.
Checking method and corrective action	If the issue persists after you cycle power on the servo drive and re-establish the absolute origin position, contact your local distributor or technician.

AL06F The absolute position is not established	
How to clear the alarm?	Cycle power on the servo drive and re-establish the absolute origin position.

AL070 Encoder did not complete the read / write procedure		
Trigger condition and cause	Reading and writing commands are not complete.	
Checking method and corrective action	Check if the wiring is correct and firmly connected. If not, correctly connect the wire again. Contact Delta if this error persists.	
How to clear the alarm?	Cycle power on the servo drive.	

AL071 Number of revolutions of the encoder is in error	
Trigger condition and cause	Condition: the number of revolutions of the encoder is in error.
	Cause: the internal signal of the encoder is abnormal, causing error in the number
	of revolutions of the encoder.
Checking method and corrective action	If you executed DI.ARST but the issue persists, send your servo motor back to the
	distributor or contact Delta.
How to clear the alarm?	DI.ARST

AL072 Encoder overspeed		
Trigger condition and cause	1. Encoder speed is over 8,800 rpm when powered by the servo drive.	
	2. Encoder speed is over 10,000 rpm when powered by the battery.	
	3. Battery voltage is too low.	
	Check if the motor is properly grounded. Make sure the ground end (yellow /	
	green) of the power cable is grounded to the servo drive heat sink.	
	2. Check if the connection for the encoder signal cable is normal. Make sure the	
	encoder signal cable is separated from the power supply or any high-current	
	cables to avoid interference.	
Checking method and corrective action	3. Use shielded cable for the encoder cable. Pull out the wire mesh and have it	
and confoure deadi	correctly grounded.	
	4. Check the motor speed and make sure it is within the rated range.	
	5. Measure the battery voltage to see if it is below 3.1V.	
	6. Check if the battery wiring has poor contact.	
	If the issue persists, send your servo motor back to the distributor or contact Delta.	
How to clear the alarm?	Cycle power on the servo drive.	

AL073 Encoder memory error		
Trigger condition and cause	An error occurs when the encoder is reading data from or writing data to EEPROM.	
Checking method and corrective action	 Check if the motor is properly grounded. Make sure the ground end (yellow / green) of the power cable is grounded to the servo drive heat sink. Check if the connection for the encoder signal cable is normal. Make sure the encoder signal cable is separated from the power supply or any high-current cables to avoid interference. Use shielded cable for the encoder cable. Pull out the wire mesh and have it correctly grounded. Check the motor speed and make sure it is within the rated range. If the issue persists, send your servo motor back to the distributor or contact Delta. 	
How to clear the alarm?	Cycle power on the servo drive.	

AL074 Encoder single-turn absolute position is in error		
Trigger condition and cause	The single-turn position in the encoder is in error.	
	1. Check if the motor is properly grounded. Make sure the ground end (yellow /	
	green) of the power cable is grounded to the servo drive heat sink.	
	2. Check if the connection for the encoder signal cable is normal. Make sure the	
	encoder signal cable is separated from the power supply or any high-current	
Checking method and corrective action	cables to avoid interference.	
and corrective action	3. Use shielded cable for the encoder cable. Pull out the wire mesh and have it	
	correctly grounded.	
	4. Check the motor speed and make sure it is within the rated range.	
	If the issue persists, send your servo motor back to the distributor or contact Delta.	
How to clear the alarm?	Cycle power on the servo drive.	

AL075 Encoder absolute number of revolutions is in error		
Trigger condition and cause	The absolute number of revolutions in the encoder is in error.	
Checking method and corrective action	 Check if the motor is properly grounded. Make sure the ground end (yellow / green) of the power cable is grounded to the servo drive heat sink. Check if the connection for the encoder signal cable is normal. Make sure the encoder signal cable is separated from the power supply or any high-current cables to avoid interference. Use shielded cable for the encoder cable. Pull out the wire mesh and have it correctly grounded. Check the motor speed and make sure it is within the rated range. If the issue persists, send your servo motor back to the distributor or contact Delta. 	
How to clear the alarm?	Cycle power on the servo drive.	

AL077 Encoder internal error		
Trigger condition and cause	Encoder internal error (internal computing error).	
Checking method and corrective action	 Check if the motor is properly grounded. Make sure the ground end (yellow / green) of the power cable is grounded to the servo drive heat sink. Check if the connection for the encoder signal cable is normal. Make sure the encoder signal cable is separated from the power supply or any high-current cables to avoid interference. Use shielded cable for the encoder cable. Pull out the wire mesh and have it correctly grounded. Check the motor speed and make sure it is within the rated range. If the issue persists, send your servo motor back to the distributor or contact Delta. 	
How to clear the alarm?	Cycle power on the servo drive.	

AL079 Encoder parameter setting incomplete	
Trigger condition and cause	The servo drive is not cycled after the encoder parameter is written to the encoder,
	so the parameter value is not updated.
Checking method and corrective action	Check if the encoder parameter is written. If so, cycle power to have the parameter
	setting take effect.
How to clear the alarm?	Cycle power on the servo drive.

	AL07A Encode	r Z phase position is lost
	Trigger condition and cause	Encoder Z phase position is in error.
12	Checking method and corrective action	Send your servo motor back to the distributor or contact Delta.
	How to clear the alarm?	N/A

AL07B Encoder memory is busy		
Trigger condition and cause	The encoder memory is busy.	
Checking method and corrective action	 Check if the motor is properly grounded. Make sure the ground end (yellow / green) of the power cable is grounded to the servo drive heat sink. Check if the connection for the encoder signal cable is normal. Make sure the encoder signal cable is separated from the power supply or any high-current cables to avoid interference. 	
	 3. Use shielded cable for the encoder cable. Pull out the wire mesh and have it correctly grounded. 4. Check the motor speed and make sure it is within the rated range. If the issue persists, send your servo motor back to the distributor or contact Delta. 	
How to clear the alarm?	Cycle power on the servo drive.	

AL07C Command to clear the absolute position is issued when the motor speed is over 200 rpm		
Trigger condition and cause	The command to clear the absolute position is issued when the motor speed is over 200 rpm.	
Checking method and corrective action	 Check if a command to clear the absolute position is issued when the motor speed is over 200 rpm. If so, reduce the motor speed to 200 rpm or lower, a then follow the procedure for clearing the absolute position to clear this alar Do not issue a command to clear the absolute position when the motor speed is over 200 rpm. 	
How to clear the alarm?	DI.ARST or cycle power on the servo drive.	

AL07D Motor stops operating when servo drive power is cycled before AL07C is cleared	
Trigger condition and cause	AL07C occurs and is not cleared before the power is cycled on the servo drive, and the motor stops operating.
Checking method and corrective action	Use DI.ARST to clear the alarm. Once this alarm is cleared, AL07C occurs. Follow the checking method and corrective action to clear AL07C.
How to clear the alarm?	DI.ARST or cycle power on the servo drive.

AL07E Error occurs when the encoder clears the procedure	
Trigger condition and cause	The number of retry attempts for the encoder to clear the procedure exceeds 11 times.
Checking method and corrective action	If the issue persists, set P0.002 to -80 to check the communication quality of the encoder. If the communication is normal, use DI.ARST to clear this alarm.
How to clear the alarm?	DI.ARST or cycle power on the servo drive.

AL07F Encoder version error	
Trigger condition and cause	The encoder version read by the servo drive is in error.
Checking method and corrective action	N/A
How to clear the alarm?	Replace the motor immediately.

AL083 Servo drive outputs excessive current

Trigger condition and cause	Condition: during general operation, this alarm occurs when the servo drive
	outputs current that is over the allowable level specified by the firmware. This
	alarm protects IGBT from overheating or burning because of the high current.
	Cause:
	UVW of the servo drive is short-circuited.
	2. Motor wiring is in error.
	3. The GND for analog signal of the servo drive is interfered.
Checking method and corrective action	Check the motor power cable and power connector. If metal wire is exposed
	or the wire is torn, the UVW can short-circuit. In this case, replace the power
	cable to avoid a short circuit.
	2. Refer to Chapter 3 Wiring and check the following items:
	(a) If you do not use the Delta standard power cable, make sure the UVW
	wiring sequence is correct.
	(b) Make sure the UVW wiring between the servo drive and motor is correctly
	connected.

12

AL083 Servo drive outputs excessive current	
	3. Check if the GND for analog signal is mistakenly connected to another ground
	signal (incorrect connection can cause interference). Do not share the GND
	for analog signal with other signal source. Follow the wiring instructions in
	Chapter 3.
How to clear the alarm?	DI.ARST

AL085 Regeneration setting error	
Trigger condition and cause	Condition: regeneration control error. Cause: regenerative resistor is not operating, but the regenerative voltage remains at 400V for a period of time.
Checking method and corrective action	Check the connection for the regenerative resistor and re-calculate the resistance value. Correctly set the values of P1.052 and P1.053. If the issue persists, send your servo drive back to Delta.
How to clear the alarm?	DI.ARST

AL086 Regenerative resistor overload Condition: excessive energy in the capacitor of the servo drive is released to the regenerative resistor, causing overload of the resistor. Cause: Incorrect selection of or no connection to an external regenerative resistor. Trigger condition and cause 2. Incorrect parameter settings for P1.052 and P1.053. Other energy (such as interference) is input to the servo drive or the input 3. voltage is higher than the allowable rated voltage. 4. Malfunction of the servo drive hardware. Check the connection for the regenerative resistor and correctly set the values 1. of P1.052 and P1.053. 2. Re-assess whether the regenerative energy exceeds the value of P1.053. If so, replace the regenerative resistor with one that has a higher capacity. Use a voltmeter to measure if the input voltage of the power supply is within Checking method the allowable rated voltage (refer to Appendix A Specifications). If not, remove and corrective action the interference source. Measure the voltage between P3 and terminals. If it does not match the displayed DC Bus voltage when you set P0.002 to 14, the servo drive may be malfunctioning. Send your servo drive back to the distributor or contact Delta. If you took the preceding actions and the issue persists, use a scope with a

AL086 Regenerative resistor overload	
	differential probe to measure whether the input voltage has high-frequency
	signal interference. If there is interference, remove the interference source,
	and use the correct power source or connect the regulator in series.
How to clear the alarm?	DI.ARST

AL088 Servo function operational alarm	
Trigger condition and cause	Condition: too many motor control functions on the servo drive are enabled.
	Cause: servo function operational alarm.
Checking method and corrective action	If using a filter, see if using this filter is necessary.
How to clear the alarm?	Disable the filter if it is not required, such as the low-pass filter (P1.006 - P1.008),
	moving filter (P1.068), low-frequency vibration suppression (P1.025 - P1.028),
	vibration elimination (P1.089 - P1.094), Notch filter (1st to 5th sets), percentage of
	friction compensation (P1.062), and motor hard stop - torque percentage (P1.057).

AL089 Current detection interference	
Trigger condition and cause	Condition: current detection interference.
	Cause: current detection in the servo drive is affected by an external interference
	source.
Checking method and corrective action	Check the environment around the servo drive to see if there is any interference
	source.
How to clear the alarm?	Remove the interference source or move the servo drive away from the
	interference source.
	2. Set P2.112 [Bit 1] to 0 to disable AL089.
	3. If the issue persists, send your servo drive back to the distributor or contact
	Delta.

AL08A Auto tuning function - command error Condition: no command is issued within 15 seconds after the servo drive starts the auto tuning procedure. Cause: 1. When the command source is the controller, neither the controller nor the position register issued the command. 2. When the command source is the servo drive, Position 1 and Position 2 specify the same position. 3. The signal cable is not connected or incorrectly connected so that the servo drive cannot receive the command.

Troubleshooting ASDA-E3

12

AL08A Auto tuning function - command error 1. Make sure a command is being issued. 2. Set Position 1 and Position 2 again. 3. Make sure the wiring between the controller and servo drive is correct. How to clear the alarm? DI.ARST

AL08B Auto tuning function - dwell time is too short	
Trigger condition and cause	Condition: the dwell time is too short when the command source is the controller in
	the auto tuning procedure. The auto tuning algorithm requires a certain amount of
	time to perform the calculation. The tuning result is affected if the dwell time is too
	short.
	Cause: dwell time in the cycle is too short.
Checking method and corrective action	For a reciprocating motion between two points, pausing is required on the
	return, which has to be longer than 1 second.
	2. For rotation in a single direction, pause time is required when the motor
	rotates a certain number of cycles (> 2 cycles).
How to clear the alarm?	DI.ARST

AL08C Auto tuning function - inertia estimation error Condition: inertia estimation error occurs when the servo drive starts the auto tuning procedure. Cause: Trigger condition 1. Acceleration or deceleration time is too long. and cause 2. Rotation speed is too low. Load inertia of the machine is too large. 3. 4. Variation of the machine inertia is too drastic. 1. The time for the motor to accelerate from 0 rpm to 3,000 rpm or decelerate from 3,000 rpm to 0 rpm must be within 1.5 seconds. The lowest speed should be no less than 200 rpm. It is suggested that you set Checking method and corrective action the speed to 500 rpm or higher. The load inertia should be less than 50 times the motor inertia. 3. Avoid applications that require drastic variation in the inertia. How to clear the **DI.ARST** alarm?

AL095 Regenerative resistor is disconnected or regenerative circuit is in error	
Trigger condition and cause	 The value of P1.053 (Regenerative resistor capacity) is greater than 0, but no external regenerative resistor is connected. The regenerative circuit is in error.
	Ensure to connect the regenerative resistor to the servo drive and check if the
Checking method and corrective action	value of P1.053 is correct.
	2. If the servo drive does not have a built-in regenerative resistor and does not
	need an external regenerative resistor, set P1.053 to 0.
	3. Check if the regenerative resistor is disconnected.
	If the issue persists, send your servo drive back to the distributor or contact Delta.
How to clear the alarm?	DI.ARST

AL099 DSP firmware error	
Trigger condition and cause	EEPROM is not reset after DSP firmware is updated.
Checking method and corrective action	Check if the firmware is updated. If so, set P2.008 to 30, 28, and then cycle power on the servo drive. Contact Delta if this error persists.
How to clear the alarm?	Set P2.008 to 30, 28, and then cycle power on the servo drive.

AL09C Parameter reset failed	
Trigger condition and cause	Condition: the parameter reset process is not complete.
	Cause: an error occurred during the parameter reset process, so the reset process
	could not be completed.
Checking method and corrective action	Check if the power is cut off during the reset process. Check the power wiring and
	switch.
How to clear the alarm?	Set P2.008 to 30, 28, and then cycle power on the servo drive.

AL0A6 Absolute positions of the servo drive and motor do not match	
Trigger condition and cause	Condition: suppose there are servo drive A, servo motor A, servo drive B, and
	servo motor B. Servo drive A and servo drive B have established the absolute
	origin positions with servo motor A and servo motor B respectively. In this case, if
	you operate servo drive A with servo motor B, AL0A6 will be triggered.
	Cause: replace the servo drive or servo motor.
Checking method and corrective action	Re-establish the absolute origin position.
How to clear the alarm?	Re-establish the absolute origin position.

AL111 Buffer overflow occurs when SDO is received	
Trigger condition and cause	SDO Rx Buffer overflows (more than two SDOs are received within 1 ms).
Checking method and corrective action	Check if the servo drive or the master receives or sends more than one SDO within 1 ms.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL112 Buffer overflow occurs when PDO is received	
Trigger condition and cause	PDO Rx Buffer overflows (more than two PDOs of the same COB-ID are received within 1 ms).
Checking method and corrective action	Check if the servo drive or the master receives or sends more than one PDO of the same COB-ID within 1 ms.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL113 TxPDO transmission failed	
Trigger condition and cause	PDO packet cannot be successfully sent.
Checking method and corrective action	Check if the communication circuit of the servo drive works normally.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL121 Object's index does not exist when PDO is accessed	
Trigger condition and cause	When the servo drive receives the PDO from the controller, the specified object's
	index number is incorrect, so the servo drive cannot identify it.
Checking method and corrective action	1. Check if the object's index number for PDO mapping of the controller is
	correct.
	2. If the index number is correct, it means this specified object is not supported
	by the servo drive. Check if it is necessary to use this object or if you can
	substitute it with a different object.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL122 Object's sub-index does not exist when PDO is accessed	
Trigger condition and cause	When the servo drive receives the PDO from the controller, the specified object's
	sub-index number is incorrect, so the servo drive cannot identify it.
Checking method and corrective action	1. Check if the object's sub-index number for PDO mapping of the controller is
	correct.
	2. If the sub-index number is correct, it means this specified object is not
	supported by the servo drive. Check if it is necessary to use this object or if
	you can substitute it with a different object.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL123 Data length error occurs when PDO is accessed	
Trigger condition and cause	Data length in the message does not match the length of the specified object.
Checking method and corrective action	Check if the data length of PDO mapping entry is changed when the servo drive
	receives or sends the PDO.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL124 Data range error occurs when PDO is accessed	
Trigger condition and cause	The data value in the message exceeds the range of the specified object.
Checking method and corrective action	Check if the written data is within range when the servo drive receives or sends the PDO.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL125 PDO object is read-only and write-protected	
Trigger condition and cause	The specified object in the message is read-only and write-protected.
Checking method and corrective action	Check if the object for PDO mapping is read-only.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL126 Specified object does not support PDO mapping	
Trigger condition and cause	The specified object does not support PDO mapping.
Checking method and corrective action	Check if the specified object supports PDO mapping when the servo drive receives
	or sends the PDO.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL127 PDO object is write-protected when servo drive is on	
Trigger condition and cause	PDO object is write-protected (unchangeable) when the servo drive is on.
Checking method and corrective action	Make sure no specified object is written when the servo drive receives or sends
	the PDO in the Servo On state.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL128 Error occurs when PDO object is read from EEPROM		
Trigger condition and cause	An error occurs when the default value is loaded from ROM at start-up. All objects are automatically restored to default values.	
Checking method and corrective action	Check if an error occurs because the specified object is read from EEPROM when the servo drive receives or sends the PDO.	
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.	

AL129 Error occurs when PDO object is written to EEPROM	
Trigger condition and cause	An error occurs when the PDO object is written to EEPROM.
Checking method and corrective action	Check if an error occurs because the specified object is written to EEPROM when
	the servo drive receives or sends the PDO.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL130 Accessing address of EEPROM is out of range	
Trigger condition and cause	The amount of data in the ROM exceeds the allowable capacity specified by the
	firmware. It is probably because the firmware has been updated, but the data in
	the ROM was stored by the previous firmware version.
Checking method and corrective action	Check if the specified object causes the accessing address in EEPROM exceeds
	the range when the servo drive receives or sends the PDO.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL131 EEPROM CRC calculation error	
Trigger condition and cause	The data in ROM is damaged. All objects are automatically restored to default values.
Checking method and corrective action	Check if the specified object causes a CRC calculation error in EEPROM when the servo drive receives or sends the PDO. Usually, this alarm is caused by an error in DSP.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL132 Parameter is write-protected	
Trigger condition and cause	When data is written to the parameter using bus communication, the parameter is
	currently write-protected.
Checking method and corrective action	Refer to the corresponding parameter description to write data to the parameter.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL170 Bus communication timeout		
Trigger condition and cause	The servo drive does not receive any PDO data within the set communication cycle time.	
Checking method and corrective action	 Check if the communication is normal. Check if the wiring is correctly connected. 	
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.	

AL180 Bus communication timeout	
Trigger condition and cause	The servo drive does not receive any PDO data within the set communication
	cycle time.
Checking method and corrective action	Check if the communication is normal.
	2. Check if the wiring is correctly connected.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL185 Bus hardware error	
Trigger condition and cause	Condition: bus communication is cut off.
	Cause: abnormal communication hardware.
Checking method and corrective action	1. Check if the communication cable is intact and firmly connected.
	2. Check the communication quality; it is suggested that you use common
	grounding and shielded cable.
	3. For communication type models, check if the value of monitoring variable 120
	increases continuously.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL186 Bus data transmission error	
Trigger condition and cause	Bus data transmission error.
Checking method and corrective action	 Check if the communication cable is properly connected and whether there is any noise interference. Replace the communication cable or eliminate the noise if necessary. There are an excessive number of slave stations and the communication cycle time is too short. Lengthen the communication cycle.
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.

AL201 Initialization error of object dictionary data	
Trigger condition and cause	Condition: an error has occurred when the servo drive loads data from EEPROM.
	Cause: initialization error of CANopen data.
	If the alarm is cleared after power cycling of the servo drive, it means the error
	occurred at the moment when the servo drive reads the data.
	2. If the issue persists after power cycling of the servo drive, it means the data in
	the EEPROM is damaged and you need to write the correct values again. See
Checking method	the following methods:
and corrective action	(a) To write the default value, set P2.008 to 30 and then 28, or use the
	CANopen object OD 1011h to complete the setting.
	(b) To write the current value, set the CANopen object OD 1010h.
	3. If you took the corrective actions but the issue persists, it means the data
	array is incorrect. Set P2.008 to 10 to reset the parameters.
How to clear the alarm?	OD 6040h [Bit 7] (Fault reset), DI.ARST, or OD 1011h.

AL207 Parameter group of Type [8] PR is out of range	
Trigger condition and cause	Condition: when Type [8] PR command specifies parameter as the data source,
	the parameter group is out of range.
	Cause: parameter group exceeds the range.
Checking method and corrective action	Write parameter using PR procedure: when the data source is parameter and the
	group setting exceeds the range, check the setting range of the group for the
	written parameters.
How to clear the alarm?	DI.ARST

AL209 Parameter number of Type [8] PR is out of range	
Trigger condition and cause	Condition: when Type [8] PR command specifies parameter as the data source, the parameter number is out of range. Cause: parameter number exceeds the range.
Checking method and corrective action	Write parameter using PR procedure: when the data source is parameter and the parameter number setting exceeds the range, check the setting range of the number for the written parameters.
How to clear the alarm?	DI.ARST

AL211 Parameter format setting of Type [8] PR is in error	
Trigger condition and cause	Condition: parameter format setting of Type [8] PR command is in error.
	Cause:
	Incorrect parameter format.
	2. The ASDA-Soft software version and the firmware version are not compatible.
Checking method and corrective action	Check if the parameter format is correct.
	2. Check if you are using the latest version of ASDA-Soft.
	If you took the corrective actions but the issue persists, contact the local distributor
	or technician.
How to clear the alarm?	DI.ARST

AL213 Parameter setting of Type [8] PR is in error	
Trigger condition and cause	Condition: when you use Type [8] PR command to write the parameter, the parameter value is incorrect. Cause: an error occurs when you write the parameter with Type [8] PR command.
Checking method and corrective action	Make sure the parameter value is within the correct range.
How to clear the alarm?	DI.ARST

AL215 Parameter written by Type [8] PR is read-only	
Trigger condition and cause	Condition: the read-only parameter is written by Type [8] PR command.
	Cause: an error occurs when you write the parameter with Type [8] PR command.
Checking method and corrective action	The specified parameter is read-only.
How to clear the alarm?	DI.ARST

AL217 Parameter written by Type [8] PR is write-protected when Servo On	
Trigger condition and cause	Condition: when you use Type [8] PR command to write the parameter, the parameter is write-protected when the servo drive is On or the parameter value exceeds the range. Cause: an error occurs when you write the parameter with Type [8] PR command.
Checking method and corrective action	Write the parameters when the servo drive is Off and make sure the parameter value is within the range.
How to clear the alarm?	Modify the PR command and the parameter.

AL219 Parameter written by Type [8] PR is write-protected	
Trigger condition and cause	Condition: the parameter written by Type [8] PR command is write-protected.
	Cause: the parameter write-protected function is enabled.
Checking method and corrective action	Check if the parameter and data array protection function (P5.097) is enabled.
How to clear the alarm?	Disable the parameter and data array protection function or reset the parameters.

AL231 Monitoring variable code specified by Type [8] PR is out of range	
Trigger condition and cause	Condition: when Type [8] PR command specifies monitoring variable as the data source, the monitoring variable code is out of range. Cause: the monitoring variable code is out of range.
Checking method and corrective action	Write parameter using PR procedure: when the data source is monitoring variable and the code exceeds the range, check the setting range of the code for the monitoring variable.
How to clear the alarm?	DI.ARST

ASDA-E3 Troubleshooting

AL235 Position	n counter overflow warning
Trigger condition and cause	Condition: a positioning command is executed after the position command counter overflows. Cause: the position command counter overflows.
Checking method and corrective action	Incremental system: When the motor keeps operating in one direction, this leads to overflow of the position feedback register (FB_PUU), and the position system cannot display the correct position. Executing a positioning command after the overflow results in AL235. Use the scope to check if the feedback position has overflowed and then execute the homing procedure. Absolute system: AL235 occurs when the absolute positioning command is issued in the following conditions: 1. Feedback position register (FB_PUU) overflows. 2. Absolute origin position is not established after the setting of P1.001.Z is changed. 3. Absolute origin position is not established after the E-Gear ratio (P1.044 and P1.045) is changed. 4. The absolute origin position is established, but the homing procedure is incomplete. 5. When AL060 and AL062 occur, use the scope to check if the feedback position has overflowed. Check whether the preceding conditions have occurred and then establish the absolute origin position.
How to clear the alarm?	Incremental system: perform homing procedure after using DI.ARST to clear the alarm. Absolute system: establish the absolute origin position.

AL237 Rotary axis position is undefined	
Trigger condition and cause	The starting point of the rotary axis position is not defined before you operate the rotary axis position control and execute the rotary axis positioning command. This alarm occurs because the servo drive cannot identify the rotary axis position system.
Checking method and corrective action	Check if the rotary axis position is undefined: perform the homing procedure before using the rotary axis position control to avoid triggering this alarm.
How to clear the alarm?	DI.ARST

AL245 PR positioning timeout	
Trigger condition and cause	Condition: PR positioning function is triggered.
	Cause: the time for executing positioning is too long.
Checking method and corrective action	Check if the conditions for completing the PR commands are not set or not
	triggered, causing the PR command incomplete.
How to clear the alarm?	DI.ARST or cycle power on the servo drive.

AL249 PR path number is out of range	
Trigger condition and cause	Condition: the number of the triggered PR path exceeds the maximum.
	Cause: the number of the triggered PR path exceeds 99.
Checking method and corrective action	Check if the PR command jumps to a path exceeding the range.
	2. Check if the PR command format is correct.
How to clear the alarm?	DI.ARST or cycle power on the servo drive.

AL283 Software positive limit	
Trigger condition and cause	Condition: the feedback position exceeds the software positive limit.
	Cause: the software positive limit is triggered.
Checking method and corrective action	Software positive limit triggering is determined by the feedback position. Set an
	appropriate deceleration time to achieve the desired effect. For more information,
	refer to the description of P5.003.
How to clear the alarm?	The alarm is automatically cleared after the motor moves away from the limit.

AL285 Software negative limit	
Trigger condition and cause	Condition: the feedback position exceeds the software negative limit.
	Cause: the software negative limit is triggered.
Checking method and corrective action	Software negative limit triggering is determined by the feedback position. Set an
	appropriate deceleration time to achieve the desired effect. For more information,
	refer to the description of P5.003.
How to clear the alarm?	The alarm is automatically cleared after the motor moves away from the limit.

AL289 Position counter overflows	
Trigger condition and cause	Position counter overflows.
Checking method and corrective action	 Set the gear ratio according to the actual application requirements and the total traveling distance of the absolute motor to avoid overflow of the feedback counter. If P2.069.Z is set to 1 (enabling the function of preventing the rotary axis position loss when overflow occurs), set P2.070 [Bit 2] to 1 (no overflow warning).
How to clear the alarm?	DI.ARST

AL305 SYNC period error	
Trigger condition and cause	Condition: CANopen 301 OD 1006h Data Error.
	Cause: SYNC period is in error.
Checking method and corrective action	Check the value of OD 1006h. If it is smaller than or equal to 0, this alarm occurs.
How to clear the alarm?	NMT: reset node or OD 6040h [Bit 7] (Fault reset).

AL35F Emergency stop during deceleration	
Trigger condition and cause	This alarm occurs when DI.PFQS (0x47) is rising-edge triggered. Then the motor decelerates to 0 and triggers AL3CF.
Checking method and corrective action	Check if any of the parameters P2.010 - P2.017 and P2.036 - P2.040 is set to 0x47, and is triggered.
How to clear the alarm?	Cycle power on the servo drive.

AL380 Position offset alarm for DO.MC_OK	
Trigger condition and cause	DO.MC_OK is on and then goes off.
Checking method and corrective action	Refer to the description of P1.048. After DO.MC_OK is on, DO.MC_OK then goes
	off because DO.TPOS turns off. There might be an external force causing the
	position offset of the motor after positioning is complete. Disable this alarm by
	setting P1.048.Y to 0.
How to clear the alarm?	DI.ARST

AL3CF Emergency stop	
Trigger condition and cause	After AL35F is triggered and the motor has decelerated to 0, this alarm occurs.
Checking method and corrective action	Check if any of the parameters P2.010 - P2.017 and P2.036 - P2.040 is set to
	0x47, and is triggered.
How to clear the alarm?	DI.ARST

AL3E2 Communication synchronization signal is sent too soon	
Trigger condition and cause	Condition: the synchronization signal is received too early.
	Cause: the communication synchronization signal is sent too soon.
Checking method and corrective action	Make sure the setting of communication cycle period (OD 1006h) is identical
	to that of the controller.
	2. Ensure the correct time sequence of sending packets from the controller. A
	drift or delay in packet sending time causes synchronization failure.
How to clear the alarm?	NMT: reset node or OD 6040h [Bit 7] (Fault reset).

AL3F1 Absolute position command of the communication type servo drive is in error	
Trigger condition and cause	Condition: when the bus communication type (EtherCAT) servo drive is used with
	an incremental motor and the position overflow occurs with the absolute origin
	position not yet established, the absolute positioning command is issued.
	Cause:
	The absolute origin position is not established.
	2. Overflow occurs since the motor keeps rotating in the same direction.
Checking method and corrective action	Establish the absolute origin position.
How to clear the alarm?	Establish the absolute origin position.

AL400 Rotary axis position setting error	
Trigger condition and cause	Condition: the position offset of the motor in 1 ms exceeds the setting of P2.052 (Rotary axis position scale). Cause: the value of P2.052 is set too small.
Checking method and corrective action	Check if P2.052 is set according to the specifications in the manual.
How to clear the alarm?	DI.ARST

-	
-	1

AL401 NMT reset command is received when servo is on		
Trigger condition and cause	NMT reset command is received when the servo is on.	
Checking method and corrective action	Check if the NMT reset command is received when the servo is on.	
How to clear the alarm?	NMT: reset node, OD 6040h [Bit 7] (Fault reset), or DI.ARST.	

AL404 PR special filter setting value is too great	
Trigger condition and cause	The value of the PR command special filter (P1.022) is set too great, causing the
	following error of the internal position to exceed the allowable range.
Checking method and corrective action	Check the setting of P1.022. If the value is too great, the following error exceeds
	the allowable range in a short time. Properly adjust the value of P1.022.
How to clear the alarm?	DI.ARST

AL422 Write-in failed caused by power supply cut-off		
	Condition: if P2.069.Z is set to 1 (enabling the function of preventing the rotary axis	
	position loss when overflow occurs) and the power supply is cut off, the motor fails	
	to store the current position.	
	Cause:	
Trigger condition	1. The load is over the rated range and the servo drive is in a continuous	
and cause	overload condition.	
	2. After firmware update, the internal variables vary from versions.	
	3. The servo drive hardware EEPROM is abnormal.	
	4. The hardware of the servo drive is short-circuited.	
	5. AL520 occurred and causes malfunction of the servo drive.	
Checking method and corrective action	1. Set P0.002 to 12 for monitoring if the average load rate [%] is continuously	
	over 100%. If so, increase the motor capacity or reduce the load. Refer to	
	Appendix A for Graph of load and operating time.	
	2. If the issue persists, send your servo drive back to the distributor or contact	
	Delta.	
How to clear the alarm?	Cycle power on the servo drive.	

AL510 Internal parameter update program of the servo drive is abnormal	
Trigger condition and cause	Internal parameter update program of the servo drive is abnormal.
Checking method and corrective action	Cycle power on the servo drive and re-execute the operation which is prior to the
	occurrence of this alarm.
How to clear the alarm?	Cycle power on the servo drive.

AL520 Calculation program timeout		
Trigger condition and cause	Servo drive calculation program timeout.	
Checking method and corrective action	Cycle power on the servo drive.	
	2. If the alarm persists, disable the vibration elimination function by setting [Bit 8]	
	and [Bit 9] of P2.094 to 0.	
How to clear the alarm?	N/A	

AL521 Vibration elimination parameter error	
	Condition: the input value for the vibration elimination parameter is not appropriate.
	Cause:
Trigger condition and cause	1. Your input value for the vibration elimination parameter is not appropriate.
	2. The Bode plot is in error due to other factors when the System Analysis tool of
	ASDA-Soft is in operation.
Checking method	Perform system analysis again and correctly set the value for the vibration
and corrective action	elimination parameter.
How to clear the alarm?	1. Perform system analysis again and correctly set the value for the vibration
	elimination parameter.
	2. If the issue persists, disable the vibration elimination function by setting [Bit 8]
	and [Bit 9] of P2.094 to 0.

AL555 System failure	
Trigger condition and cause	Servo drive DSP is in error.
Checking method and corrective action	If this alarm occurs, send your servo drive directly back to Delta without making any modification.
How to clear the alarm?	N/A

ASDA-E3 Troubleshooting

AL809 PR motion setting error or command decoding error	
Trigger condition and cause	Condition: an error occurs when the servo drive decodes the motion command.
	Cause: incorrect motion command or abnormal software compiling may cause
	error in the PR program.
Checking method and corrective action	If this alarm occurs when the servo is not in the PR mode, save the parameter file and provide it to the distributor.
	2. For advanced users: save the scope screenshot when the alarm occurs. Set
	P5.007 and P0.001 for the two channels and save the oscillogram.
How to clear the alarm?	Cycle power on the servo drive.

1	2

ALC31 Motor power cable disconnection	
Trigger condition and cause	Condition: disconnection of the motor power cable (U, V, W) and ground (GND).
	Cause: disconnection of the motor power cable (U, V, W) and ground (GND). The
	switch for disconnection detection is set by P2.065 [Bit 9], which is enabled by
	default.
Checking method and corrective action	Check if the motor power cable (U, V, W) and ground (GND) are firmly connected.
	Follow the instructions in this user manual to properly connect the motor power
	cable and ground wire.
How to clear the alarm?	Cycle power on the servo drive.

ALCDB Servo drive model type error		
Trigger condition and cause	Servo drive model type error.	
Checking method and corrective action	 Update the firmware again. If the issue persists after the firmware is updated, send your servo drive back to Delta. 	
How to clear the alarm?	Cycle power on the servo drive.	

Troubleshooting ASDA-E3

(This page is intentionally left blank.)

Specifications Appendix A

A.1 AS	DA-E3 series servo drive·····A-2
A.1.1	Specifications of the ASDA-E3 servo drive ·······A-2
A.1.2	Dimensions of the servo drive ······A-5
A.2 EC	CM-E3 series servo motor······A-7
A.2.1	ECM-E3 series servo motorA-9
	Motor frame size: 80 mm and below ······A-9
	Motor frame size: 130 mm & 180 mm
A.2.2	Torque features (T-N curves) of the E3 motors A-13
	Motor frame size: 80 mm and below ······ A-13
	Motor frame size: 130 mm ······ A-14
	Motor frame size: 180 mm ······ A-14
A.2.3	Power derating curves of the E3 motors
A.2.4	Overload features
A.2.5	Dimensions of ECM-E3 series servo motor ······ A-17
	Motor frame size: 80 mm and below ······ A-17
	Motor frame size: 130 mm & 180 mm

A.1 ASDA-E3 series servo drive

A.1.1 Specifications of the ASDA-E3 servo drive

ASDA-E3		100 W	200 W	400 W	750 W	1 kW	1.5 kW	2 kW	3 kW	
		01	02	04	07	10	15	20	30	
_	Ph	ase / Voltage		Single	e- / Three	-phase 22	0 V _{AC}		Three- 220	•
Main circuit power	Pern	nissible voltage	Single	- / Three-	phase 200) - 230 V _A (_c , -15% to	+10%	Three-phase 200 - 230 V _{AC} , -15% to +10%	
it powe		t current (3PH) Unit: Arms	0.82	1.26	2.0	3.33	5.25	5.8	8.1	10.9
9	Input current (1PH) Unit: Arms		1.51	2.28	3.7	6.37	10.0	11.3	-	-
Continuous output current Unit: Arms			0.9	1.55	2.65	5.1	7.3	8.3	13.4	19.4
Max.	Max. instantaneous output current Unit: Arms 3.88 7.07 10.6 14.14 21.21 24.3			24.3	38.3	53.03				
R	Built-in	Resistance (Ohm)	-	-	-	100	100	100	20	20
egenerat resistor	Built-in	Capacity (Watt)	-	-	-	40	40	40	80	80
Regenerative resistor	Minimum allowable resistance value for external resistors (Ohm)		60	60	60	60	30	30	15	15
	Coolin	g method	А	ir convect	tion coolin	g		Fan co	ooling	

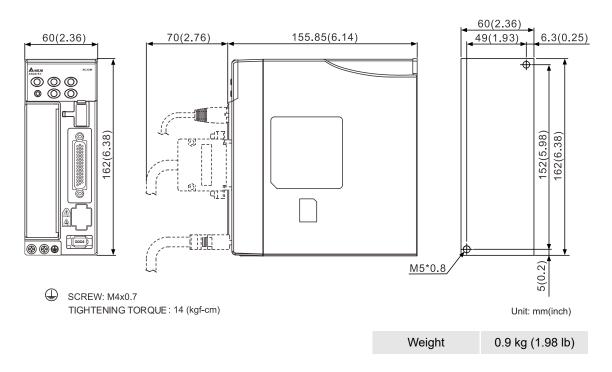
Note:

- The input current is the actual value measured when the servo drive is under the rated output condition with an AC power supply at 220V.
- 2. When an electronic transformer is used, the output of the servo drive will be derated to 70%.

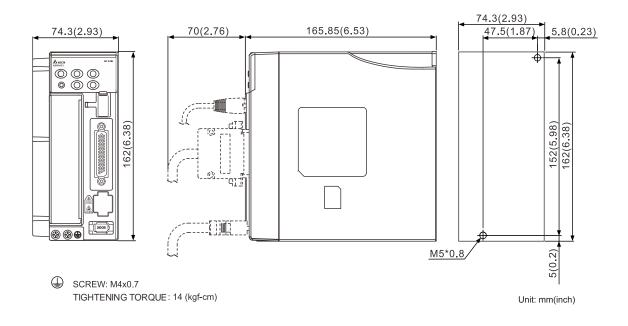
Specification table

	Item		Specification			
	Servo driv	e resolution	24-bit (16777216 p/rev)			
	Main circuit control		SVPWM control			
	Tuning mode		Manual / Auto			
	Р	ulse type	Pulse + symbol, CCW pulse + CW pulse, A phase + B phase			
Position control mode	Max. inpu	t pulse frequency	Pulse + symbol: 4 Mpps CCW pulse + CW pulse: 4 Mpps A phase + B phase: single-phase 2 Mpps Open collector: 200 Kpps			
n contr	Comi	mand source	External pulse Register (not supported by E3-L)			
<u>o</u>	Smoo	thing method	Low-pass filter; S-curve filter; moving filter			
ode	E-	Gear ratio	E-Gear ratio: N/M times; 1 ≤ N/M ≤ 262144			
	To	orque limit	Parameter settings			
	Feedforwa	ard compensation	Parameter settings			
		Voltage range	-10 to +10 V _{DC}			
	Analog command input	Resolution	12-bit			
		Input impedance	1 ΜΩ			
		Time constant	25 μs			
Spe	Speed control range*1		1 : 6000			
ed co	Comi	mand source	External analog command / Register			
Speed control mode	Smoo	thing method	Low-pass filter; S-curve filter; moving filter			
mode	To	rque limit	Parameter settings / Analog input			
W	В	andwidth	2.5 kHz			
			Max. ±0.01% at 0% to 100% load fluctuation			
	Speed c	alibration ratio*2	Max. ±0.01% at ±10% power fluctuation			
			Max. ±0.01% at operating temperature between 0°C to 45°C (32°F to 113°F)			
	Analog	Voltage range	-10 to +10 V _{DC}			
Torqu	command	Input impedance	1 ΜΩ			
Torque control mode	input	Time constant	25 µs			
ntrol :	Comi	mand source	External analog command / Register			
node	Smoo	thing method	Low-pass filter			
	SI	peed limit	Parameter settings / Analog input			
	Analog mor	nitoring output	Monitoring signal can be set by parameters (voltage output range: ±8V); resolution: 10-bit			
	Digital input		-L models: 9 DI points; -E models: 6 DI points.			

	Item	Specification				
	Digital output	-L models: 6 DO points; -E models: 3 DO points. Refer to Table 8.2 Digital output (DO) descriptions in Chapter 8 for the function settings.				
	Protection function	Overcurrent, Overvoltage, Undervoltage, Abnormal temperature, Regeneration error, Overload, Excessive deviation of Speed command, Excessive deviation of Position command, CN2 communication failed, Calibration error, Emergency stop, Positive / negative limit error, Serial communication timeout, RST power error, Serial communication timeout, Short-circuit protection for terminals LV, W, and so on.				
	Communication interface	-L models: RS-485 / RS-232 -E models: Mini USB / EtherCAT				
	Installation site	Indoors (avoid direct sunlight), no corrosive vapor (avoid fumes, flammable gases, and dust)				
	Altitude	Less than 2,000 m above sea level				
	Atmospheric pressure	86 kPa - 106 kPa				
ш	Operating temperature	0°C to 45°C (32°F to 113°F) If the operating temperature is above 45°C (113°F), derate 10% at every temperature increase of 5°C (41°F). Also, forced cooling is required).				
nviro	Storage temperature	-20°C to +65°C (-4°F to +149°F)				
Environment	Humidity	0 - 90% RH (non-condensing)				
큐	Vibration	< 20 Hz: 9.80665 m/s ² (1 G) 20 Hz to 50 Hz: 5.88 m/s ² (0.6 G)				
	IP rating	IP20				
	Power system	TN system*3*4				
	Approvals	IEC/EN 61800-5-1				


Note:

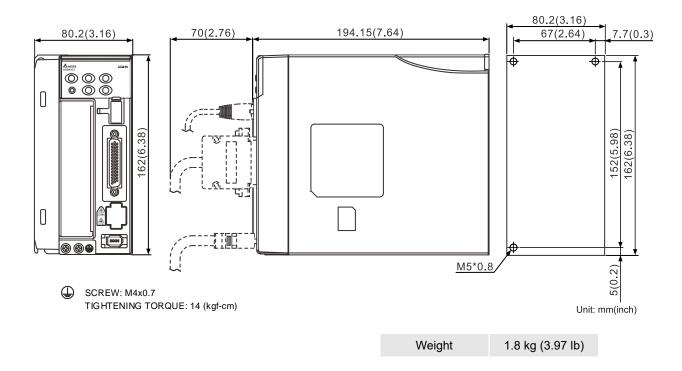
- 1. Within the rated load, the speed ratio is: the minimum speed (smooth operation) / rated speed.
- Within the rated speed, the speed calibration ratio is: (rotation speed with no load rotation speed with full load) / rated speed.
- 3. TN system: the neutral point of the power system connects directly to the ground. The exposed metal components connect to the ground through the protective ground conductor.
- 4. Use a single-phase three-wire power system for models using a single-phase power supply.
- 5. Scan the QR code or go to Delta's website for the CE certificate.



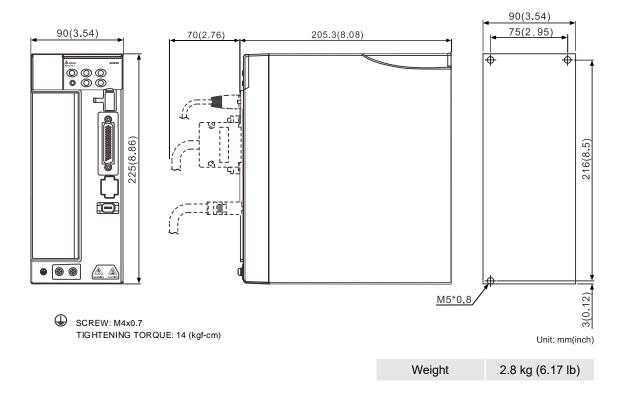
A.1.2 Dimensions of the servo drive

100 W / 200 W / 400 W

750 W



Weight 1.2 kg (2.65 lb)



1 kW / 1.5 kW

2 kW / 3 kW

Note:

- 1. Dimensions and weights of the servo drives may be updated without prior notice.
- The values in imperial units in the preceding illustrations are for reference only. Refer to the values in metric units.

A.2 ECM-E3 series servo motor

ECM-E3 series servo motor

 $\frac{\mathsf{ECM}}{(1)} \ \ \overset{-}{\underbrace{\mathsf{E}}} \ \frac{3}{(2)} \ \frac{\mathsf{M}}{(3)} \ \overset{-}{\underbrace{\mathsf{M}}} \ \overset{-}{\underbrace{\mathsf{C}}} \ \frac{2}{(6)} \ \frac{06}{(7)} \ \frac{04}{(8)} \ \frac{\mathsf{R}}{(9)} \ \frac{\mathsf{S}}{(10)} \ \frac{\mathsf{E}}{(11)}$

(1) Product name

ECM: electronically commutated motor

(2) Servo type

E: basic type servo motor

(3) Series

3: 3rd series

(4) Inertia

M: medium inertia

L: low inertia

(5) Rated voltage and speed

C: 220V and 3,000 rpm

E: 220V and 2,000 rpm

F: 220V and 1,500 rpm

(6) Encoder type

A: 22-bit absolute optical encoder

(resolution of single turn: 22-bit; number of revolutions: 16-bit)

2: 22-bit incremental optical encoder (single-turn absolute)

P: 17-bit absolute magnetic encoder

(resolution of single turn: 17-bit; number of revolutions: 16-bit)

M: 17-bit incremental magnetic encoder (single-turn absolute)

Note:

- The E3-L servo drive does not support the absolute function (including the single-turn absolute function). Therefore, the E3-L servo drive can only operate all motors as incremental type motors.
- 2. Number of revolutions means the maximum number of turns the encoder can record.

(7) Motor frame size

Code	Specification	Code	Specification
04	40 mm	13	130 mm
06	60 mm	18	180 mm
08	80 mm	-	-

(8) Rated power output

Code	Specification	Code	Specification
01	100 W	10	1.0 kW
02	200 W	15	1.5 kW
04	400 W	20	2.0 kW
07	750 W	30	3.0 kW

(9) Shaft type and oil seal

	w/o brake with oil seal	with brake with oil seal
Keyway (with fixed screw holes)	R	S

(10) Shaft diameter and connector type

S: standard shaft diameter and standard connectors

(11) Special code

E: standard products

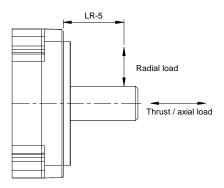
Note: the model codes listed here are only for demonstration of the naming convention; some combinations of the model codes are not available. Contact the distributors for the model numbers available for purchase.

A.2.1 ECM-E3 series servo motor

Motor frame size: 80 mm and below

ECM-	E3L-C2040134E	E3M-C2060234E	E3M-C2060434E	E3M-C2080734E
Rated power (kW)	0.1	0.2	0.4	0.75
Rated torque (N-m)*1	0.32	0.64	1.27	2.4
Max. torque (N-m)	1.12	2.24	4.45	8.4
Rated speed (rpm)		30	00	
Max. speed (rpm)		60	00	
Rated current (Arms)	0.857	1.42	2.40	4.27
Max. instantaneous current (Arms)	3.44	6.62	9.47	15.8
Change of rated power (kW/s)	34.25	29.05	63.50	53.83
Change of rated power (kW/s) (with brake)	32.51	27.13	61.09	50.97
Rotor inertia (x 10 ⁻⁴ kg·m ²)	0.0299	0.141	0.254	1.07
Rotor inertia (x 10 ⁻⁴ kg·m ²) (with brake)	0.0315	0.151	0.264	1.13
Mechanical time constant (ms)	0.50	0.91	0.52	0.54
Mechanical time constant (ms) (with brake)	0.53	0.97	0.54	0.57
Torque constant-KT (N-m/A)	0.374	0.45	0.53	0.56
Voltage constant-KE (mV/rpm)	13.8	16.96	19.76	20.17
Armature resistance (Ohm)	8.22	4.71	2.04	0.55
Armature inductance (mH)	19.1	12.18	6.50	2.81
Electrical time constant (ms)	2.32	2.59	3.19	5.11
Weight (w/o brake) (kg)	0.5	0.9	1.2	2.34
Weight (with brake) (kg)	0.7	1.3	1.6	3.15
Max. radial load (N)*5	78	245	245	392
Max. axial load (N)*5	54	74	74	147
Brake operating voltage		24 V _{DC}	± 10%	
Brake holding torque [N-m (Min)] ^{*2}	0.3	1.3	1.3	2.5
Brake power consumption (at 20°C (68°F))[W]	6.1	7.6	7.6	8
Brake release time [ms (Max)]	20	20	20	20
Brake pull-in time [ms (Max)]	35	50	50	60
Derating rate with oil seal (%)	10	10	5	5
Insulation class		Class	B (CE)	
Insulation resistance		100 MΩ min.	. (at 500 V _{DC})	
Insulation strength	1.8 kV _{AC} , 1 sec			
Vibration grade		V	15	
Operating temperature		-20°C to +60°C (-4°F to +140°F)*3	
Storage temperature	-20°C to +80°C (-4°F to +176°F)			
Operating and storage humidity	20 - 90% RH (non-condensing)			

\neg


ECM-	E3L-C2040134E E3M-C2060234E E3M-C2060434E E3M-C2080734E					
Vibration capacity	2.5 G					
IP rating	IP65 (not including power cables and signal cables)					
Approvals	CE					

Note:

 The rated torque is the continuous permissible torque when the servo motor mounted with the heat sink of the following dimensions is operating in a temperature range of 0°C - 40°C (32°F - 104°F).
 F40, F60, and F80: 250 mm x 250 mm x 6 mm

Material: aluminum

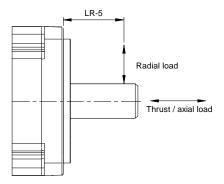
- The built-in servo motor brake is only for keeping the object installed on the motor in a stopped state.Do not use it for deceleration or as a dynamic brake.
- If the operating temperature is over 40°C (104°F), refer to Section A.2.3 Power derating curves of the E3 motors.
- 4. In the servo motor model number, ② represents the encoder type, ③ represents the brake or keyway / oil seal type, and ④ represents the shaft diameter and connector type.
- 5. Follow the load specification for the motor shaft during operation. The load for the motor shaft is defined as follows.

Motor frame size: 130 mm & 180 mm

ECM-	E3M-E2131034E	E3M-E2131534E	E3M-E2132034E	E3M-F2183034E		
Rated power (kW)	1	1.5	2	3		
Rated torque (N-m)*1	4.77	7.16	9.55	19.1		
Max. torque (N-m)	14.3	21.48	28.65	57.29		
Rated speed (rpm)		2000		1500		
Max. speed (rpm)		30	00			
Rated current (Arms)	5.96	8.17	10.59	18.21		
Max. instantaneous current (Arms)	19.9	26.82	34.20	58.9		
Change of rated power (kW/s)	29.21	45.69	62.25	68.02		
Change of rated power (kW/s) (with brake)	28.66	45.09	61.62	66.45		
Rotor inertia (x 10 ⁻⁴ kg⋅m ²)	7.79	11.22	14.65	53.63		
Rotor inertia (x 10 ⁻⁴ kg·m ²) (with brake)	7.94	11.37	14.8	54.9		
Mechanical time constant (ms)	1.46	1.10	1.03	1.21		
Mechanical time constant (ms) (with brake)	1.49	1.12	1.04	1.24		
Torque constant-KT (N-m/A)	0.80	0.88	0.90	1.05		
Voltage constant-KE (mV/rpm)	29.30	31.69	32.70	37.9		
Armature resistance (Ohm)	0.419	0.260	0.198	0.086		
Armature inductance (mH)	4	2.81	2.18	1.52		
Electrical time constant (ms)	9.55	10.81	11.01	17.67		
Weight (w/o brake) (kg)	4.9	6.0	7.0	13.9		
Weight (with brake) (kg)	6.3	7.4	8.5	17.6		
Max. radial load (N)*5	490	686	980	1470		
Max. axial load (N)*5	98	343	392	490		
Brake operating voltage		24 V _{DC}	± 10%			
Brake holding torque [N-m (Min)] ^{*2}	10	10	10	25		
Brake power consumption (at 20°C (68°F))[W]	21.5	21.5	21.5	31		
Brake release time [ms (Max)]	50	50	50	30		
Brake pull-in time [ms (Max)]	110	110	110	120		
Derating rate with oil seal (%)	5	5	5	5		
Insulation class		Class	B (CE)			
Insulation resistance		100 MΩ min.	(at 500 V _{DC})			
Insulation strength		1.8 kV _A	_C , 1 sec			
Vibration grade		V15				
Operating temperature	-20°C to +60°C (-4°F to +140°F)*3					
Storage temperature		-20°C to +80°C	(-4°F to +176°F)			
Operating and storage humidity		20 - 90% RH (n	on-condensing)			
Vibration capacity		2.5	5 G			
IP rating	IP6	67 (for models using	shaft seals or oil sea	als)		
Approvals		C	ϵ			

Note:

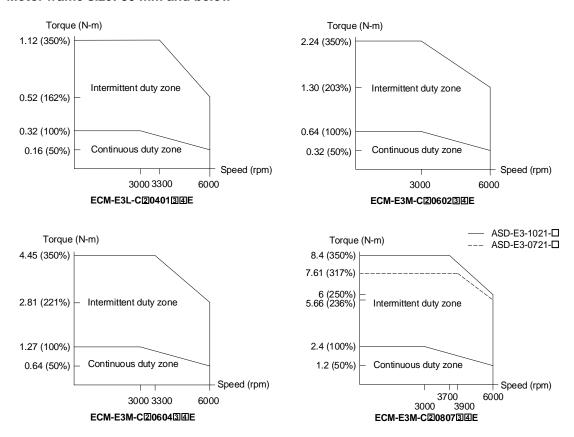
1. The rated torque is the continuous permissible torque when the servo motor mounted with the heat sink of the following dimensions is operating in a temperature range of 0°C - 40°C (32°F - 104°F).


F130: 400 mm x 400 mm x 20 mm

F180: 550 mm x 550 mm x 30 mm

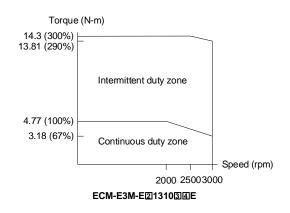
Material: aluminum

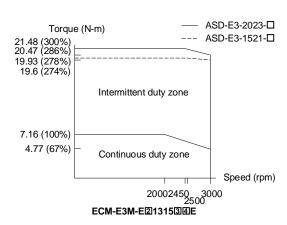
2. The built-in servo motor brake is only for keeping the object in a stopped state. Do not use it for deceleration or as a dynamic brake.

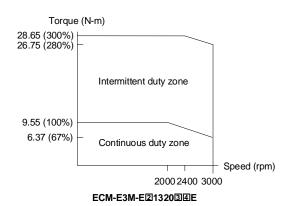

- 3. If the operating temperature is over 40°C (104°F), refer to Section A.2.3 Power derating curves of the E3 motors.
- 4. In the servo motor model number, ② represents the encoder type, ③ represents the brake or keyway / oil seal type, and ④ represents the shaft diameter and connector type.
- 5. Follow the load specification for the motor shaft during operation. The load for the motor shaft is defined as follows.

A.2.2 Torque features (T-N curves) of the E3 motors

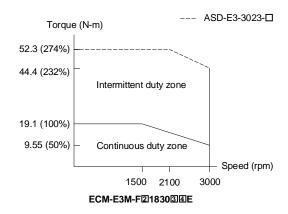
Motor frame size: 80 mm and below

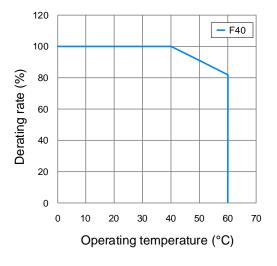


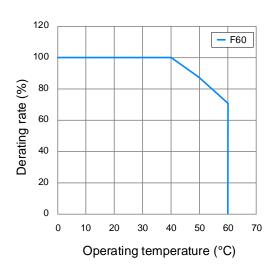

Note: in the servo motor model number, ② represents the encoder type, ③ represents the brake or keyway / oil seal type, and ④ represents the shaft diameter and connector type.

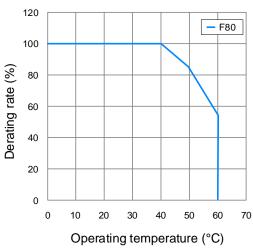


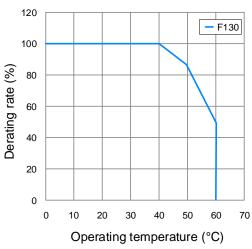
Motor frame size: 130 mm

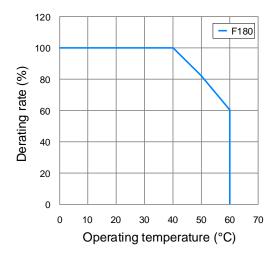



Note: in the servo motor model number, ② represents the encoder type, ③ represents the brake or keyway / oil seal type, and ④ represents the shaft diameter and connector type.


Motor frame size: 180 mm

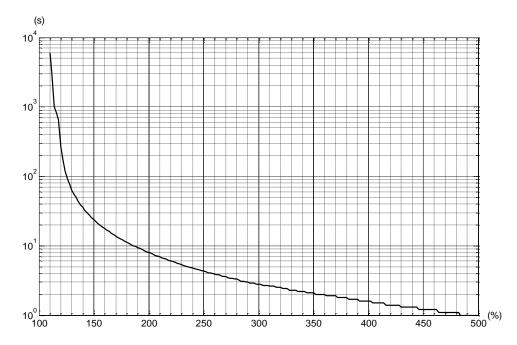



Note: in the servo motor model number, ② represents the encoder type, ③ represents the brake or keyway / oil seal type, and ④ represents the shaft diameter and connector type.


A.2.3 Power derating curves of the E3 motors

A.2.4 Overload features

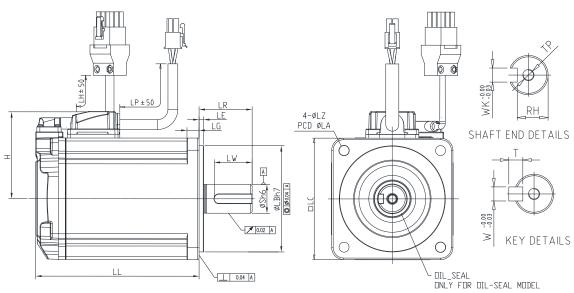
Definition of overload protection


The overload protection prevents the motor from overheating.

A

Causes of overload

- 1. The motor's operating torque exceeds the rated range and the operating time is too long.
- 2. The inertia ratio is too high and the motor frequently accelerates and decelerates.
- 3. Incorrect wiring of the power and encoder cables.
- 4. Incorrect servo gain setting causes resonance in the motor.
- 5. A motor with a built-in brake operates without the brake released.

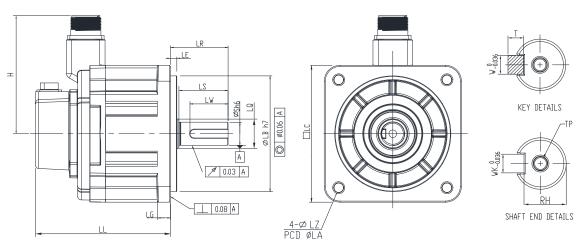

Graph of load ratio and operating time

Load ratio	120%	140%	160%	180%	200%	220%	240%
Operating time	263.8 s	35.2 s	17.6 s	11.2 s	8 s	6.1 s	4.8 s
Load ratio	260%	280%	300%	350%	400%	450%	500%
Operating time	3.9 s	3.3 s	2.8 s	2.1 s	1.6 s	1.2 s	1.0 s

A.2.5 Dimensions of ECM-E3 series servo motor

Motor frame size: 80 mm and below

Unit: mm


ECM-	E3L-C2040134E	E3M-C2060234E	E3M-C2060434E	E3M-C2080734E	
LC	40	60	60	80	
LZ LA S	4.5 46 8(⁺⁰ _{-0.009})	5.5 70 14(+0 -0.011)	5.5 70	6.6 90 19(+0 -0.013)	
			LB		
LL (w/o brake)	77.6	72.5	91	105.2	
LL (with brake)	111.7	109.4	127.9	144.8	
LH	300	300	300	300	
LP	300	300	300	300	
Н	37.5	47.5	47.5	57.5	
LR	25	30	30	35	
LE	2.5	3	3	3	
LG	5	7.5	7.5	8	
LW	16	20	20	25	
RH	6.2	11	11	15.5	
WK	3	5	5	6	
W	3	5	5	6	
Т	3	5	5	6	
TP	M3 Depth 8	M4 Depth 15	M4 Depth 15	M6 Depth 20	

Note: in the servo motor model number, ② represents the encoder type, ③ represents the brake or keyway / oil seal type, and ④ represents the shaft diameter and connector type.

Motor frame size: 130 mm & 180 mm

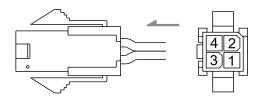
Unit: mm

ECM-	E3M-E2131034E	E3M-E2131534E	E3M-E2132034E	E3M-F2183034E	
LC	130	130	130	180	
LZ LA S	9 145 22(⁺⁰ _{-0.013})	9 145 22(⁺⁰ -0.013)	9	13.5 200 35(⁺⁰ _{-0.016}) 114.3(⁺⁰ _{-0.035})	
			145		
			22(⁺⁰ _{-0.013})		
LB	110(⁺⁰ _{-0.035})	110(⁺⁰ _{-0.035})	110(⁺⁰ -0.035)		
LL (w/o brake)	127.9	139.9	151.9	160.5	
LL (with brake)	168.5	180.5	192.5	212.5	
Н	115	115	115	139	
LS	47	47	47	73	
LR	55	55	55	79	
LQ	28	28	28	45	
LE	6	6	6	4	
LG	12.5	12.5	12.5	18	
LW	36	36	36	63	
RH	18	18	18	30	
WK	8	8	8	10	
W	8	8	8	10	
Т	7	7	7	8	
TP	M6 Depth 12	M6 Depth 12	M6 Depth 12	M12 Depth 25	

Note: in the servo motor model number, ② represents the encoder type, ③ represents the brake or keyway / oil seal type, and ④ represents the shaft diameter and connector type.

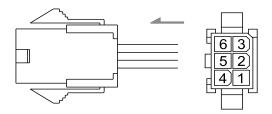
Accessories Appendix

This chapter only provides model numbers or part numbers of the accessories, refer to the servo drive catalog for choosing the suitable models.


B.1	Pov	ver connector	B-2		
В	.1.1	F40 - F80 motors	B-2		
В	.1.2	F100 - F130 motors	В-3		
В	.1.3	F180 motors ·····	B-4		
В	.1.4	Brake connector for F100 - F180 motors	B-5		
B.2	Pov	ver cable·····	В-6		
В	.2.1	F40 - F80 motors	В-6		
В	.2.2	F100 - F130 motors	B-7		
В	.2.3	F180 motors ·····	B-9		
В	.2.4	Brake cable for F100 - F180 motors	B-11		
B.3	End	coder connector ·····	B-12		
В	.3.1	F40 - F80 motors	B-12		
В	.3.2	F100 - F180 motors	B-13		
B.4	End	coder cable (incremental type)·····	B-14		
В	.4.1	F40 - F80 motors	B-14		
В	.4.2	F100 - F180 motors	B-15		
B.5	End	coder cable (absolute type)·····	B-16		
В	.5.1	F40 - F80 motors	B-16		
В	.5.2	F100 - F180 motors	B-17		
B.6	Bat	tery box cable ·····	B-18		
B.7	Bat	tery box ·····	B-19		
B.8	CN	1 connector ·····	B-20		
B.9	CN	1 quick connector	B-20		
B.10) C1	N1 terminal block module·····	B-21		
B.11	E3	3 / B2 conversion cable ·····	B-22		
B.12	2 C1	N3 Modbus communication cable ······	B-23		
B.13	3 C1	N4 Mini USB communication module ······	B-24		
B.14	- Op	otional accessories ·····	B-25		
F40 - F80 motors					
F100 - F130 motorsB-26					
	F180 motors B-27				

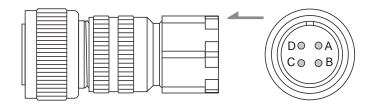
B.1 Power connector

B.1.1 F40 - F80 motors


Standard connector for E3 non-brake motors

Delta model number: ACS3-CAPW1000

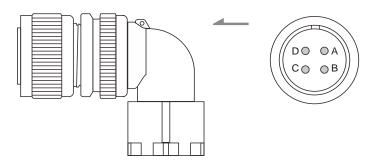
Standard connector for E3 brake motors


Delta model number: ACS3-CAPW2000

B.1.2 F100 - F130 motors

Straight military connector for E3 non-brake motors

Delta model number: ACS3-CAPWA000

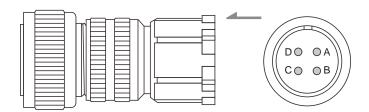


Note:

- 1. Refer to Section 3.1.7 Wiring for IP67 waterproof connectors for more information.
- 2. For the brake motors, you need to purchase this connector and the brake connector for F100 F180 motors listed in Section B.1.4.

Right angle military connector for E3 non-brake motors

Delta model number: ACS3-CRPWA000

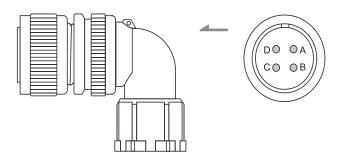

Note:

- 1. Refer to Section 3.1.7 Wiring for IP67 waterproof connectors for more information.
- 2. For the brake motors, you need to purchase this connector and the brake connector for F100 F180 motors listed in Section B.1.4.

B.1.3 F180 motors

Straight military connector for E3 non-brake motors

Delta model number: ACS3-CAPWC000

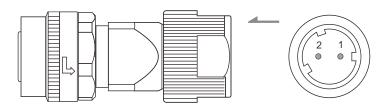


Note:

- 1. Refer to Section 3.1.7 Wiring for IP67 waterproof connectors for more information.
- 2. For the brake motors, you need to purchase this connector and the brake connector for F100 F180 motors listed in Section B.1.4.

Right angle military connector for E3 non-brake motors

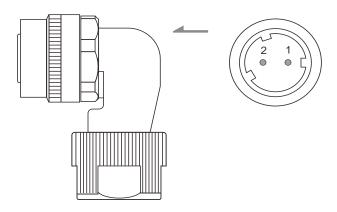
Delta model number: ACS3-CRPWC000



- 1. Refer to Section 3.1.7 Wiring for IP67 waterproof connectors for more information.
- 2. For the brake motors, you need to purchase this connector and the brake connector for F100 F180 motors listed in Section B.1.4.

B.1.4 Brake connector for F100 - F180 motors

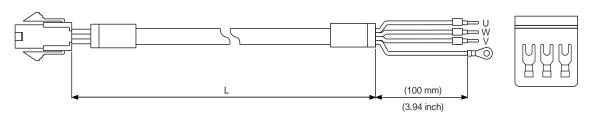
Straight military connector for E3 motors


Delta model number: ACS3-CABRA000

Note: refer to Section 3.1.7 Wiring for IP67 waterproof connectors for more information.

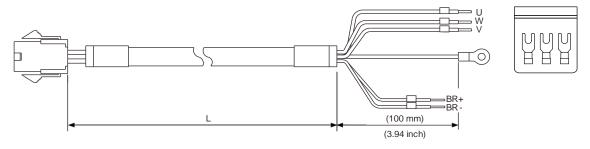
Right angle military connector for E3 motors

Delta model number: ACS3-CRBRA000



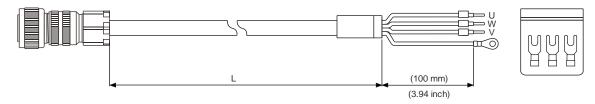
Note: refer to Section 3.1.7 Wiring for IP67 waterproof connectors for more information.

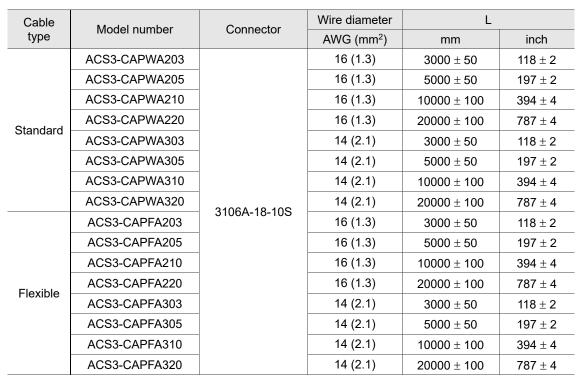
B.2 Power cable


B.2.1 F40 - F80 motors

Cable with standard connector for or E3 non-brake motors

Cable	Model number	UVW wire diameter	L	
type		AWG (mm ²)	mm	inch
	ACS3-CAPW1103	18 (0.82)	3000 ± 50	118 ± 2
Standard	ACS3-CAPW1105	18 (0.82)	5000 ± 50	197 ± 2
Standard	ACS3-CAPW1110	18 (0.82)	10000 ± 100	394 ± 4
	ACS3-CAPW1120	18 (0.82)	20000 ± 100	787 ± 4
	ACS3-CAPF1103	18 (0.82)	3000 ± 50	118 ± 2
Flexible	ACS3-CAPF1105	18 (0.82)	5000 ± 50	197 ± 2
Flexible	ACS3-CAPF1110	18 (0.82)	10000 ± 100	394 ± 4
	ACS3-CAPF1120	18 (0.82)	20000 ± 100	787 ± 4

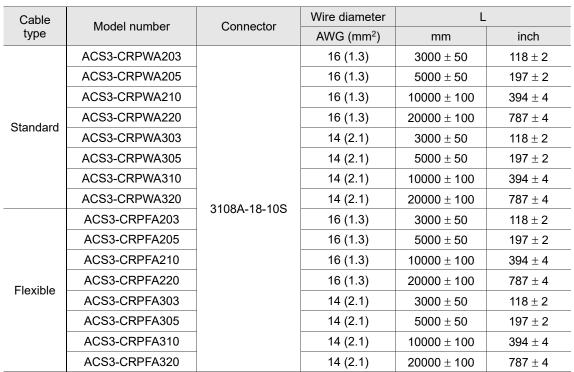

Cable with standard connector for E3 brake motors



Cable	Model number		Brake wire diameter	I	-
type		AWG	(mm²)	mm	inch
	ACS3-CAPW2103	18 (0.82)	22 (0.3)	3000 ± 50	118 ± 2
Standard	ACS3-CAPW2105	18 (0.82)	22 (0.3)	5000 ± 50	197 ± 2
Stanuaru	ACS3-CAPW2110	18 (0.82)	22 (0.3)	10000 ± 100	394 ± 4
	ACS3-CAPW2120	18 (0.82)	22 (0.3)	20000 ± 100	787 ± 4
	ACS3-CAPF2103	18 (0.82)	22 (0.3)	3000 ± 50	118 ± 2
Flexible	ACS3-CAPF2105	18 (0.82)	22 (0.3)	5000 ± 50	197 ± 2
Flexible	ACS3-CAPF2110	18 (0.82)	22 (0.3)	10000 ± 100	394 ± 4
	ACS3-CAPF2120	18 (0.82)	22 (0.3)	20000 ± 100	787 ± 4

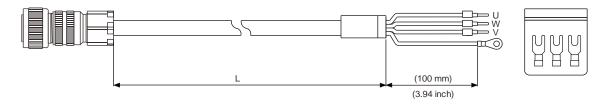
B.2.2 F100 - F130 motors

Cable with straight military connector for E3 non-brake motors



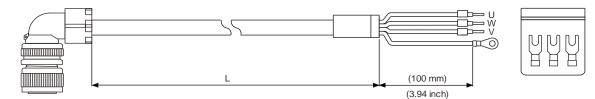
Note: brake cables are sold separately. Refer to Section B.2.4 for more information.

Cable with right angle military connector for E3 non-brake motors



Note: brake cables are sold separately. Refer to Section B.2.4 for more information.

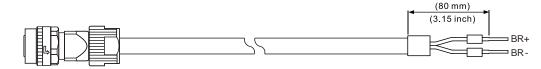
B.2.3 F180 motors

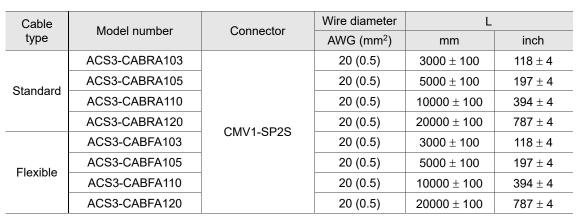

Cable with straight military connector for E3 non-brake motors

Cable	Model number	Connector	Wire diameter	L	
type	Woder Humber	Connector	AWG (mm ²)	mm	inch
	ACS3-CAPWC303		14 (2.1)	3000 ± 50	118 ± 2
	ACS3-CAPWC305		14 (2.1)	5000 ± 50	197 ± 2
	ACS3-CAPWC310		14 (2.1)	10000 ± 100	394 ± 4
	ACS3-CAPWC320		14 (2.1)	20000 ± 100	787 ± 4
	ACS3-CAPWC403		12 (3.3)	3000 ± 50	118 ± 2
	ACS3-CAPWC405		12 (3.3)	5000 ± 50	197 ± 2
	ACS3-CAPWC410		12 (3.3)	10000 ± 100	394 ± 4
Standard	ACS3-CAPWC420		12 (3.3)	20000 ± 100	787 ± 4
Staridard	ACS3-CAPWC503		10 (5.3)	3000 ± 50	118 ± 2
	ACS3-CAPWC505		10 (5.3)	5000 ± 50	197 ± 2
	ACS3-CAPWC510		10 (5.3)	10000 ± 100	394 ± 4
	ACS3-CAPWC520		10 (5.3)	20000 ± 100	787 ± 4
	ACS3-CAPWC603		8 (8.4)	3000 ± 50	118 ± 2
	ACS3-CAPWC605		8 (8.4)	5000 ± 50	197 ± 2
	ACS3-CAPWC610		8 (8.4)	10000 ± 100	394 ± 4
	ACS3-CAPWC620	3106A-22-22S	8 (8.4)	20000 ± 100	787 ± 4
	ACS3-CAPFC303	3100A-22-220	14 (2.1)	3000 ± 50	118 ± 2
	ACS3-CAPFC305		14 (2.1)	5000 ± 50	197 ± 2
	ACS3-CAPFC310		14 (2.1)	10000 ± 100	394 ± 4
	ACS3-CAPFC320		14 (2.1)	20000 ± 100	787 ± 4
	ACS3-CAPFC403		12 (3.3)	3000 ± 50	118 ± 2
	ACS3-CAPFC405		12 (3.3)	5000 ± 50	197 ± 2
	ACS3-CAPFC410		12 (3.3)	10000 ± 100	394 ± 4
Flexible	ACS3-CAPFC420		12 (3.3)	20000 ± 100	787 ± 4
TICKIDIC	ACS3-CAPFC503		10 (5.3)	3000 ± 50	118 ± 2
	ACS3-CAPFC505		10 (5.3)	5000 ± 50	197 ± 2
	ACS3-CAPFC510		10 (5.3)	10000 ± 100	394 ± 4
	ACS3-CAPFC520		10 (5.3)	20000 ± 100	787 ± 4
	ACS3-CAPFC603		8 (8.4)	3000 ± 50	118 ± 2
	ACS3-CAPFC605		8 (8.4)	5000 ± 50	197 ± 2
	ACS3-CAPFC610		8 (8.4)	10000 ± 100	394 ± 4
	ACS3-CAPFC620		8 (8.4)	20000 ± 100	787 ± 4

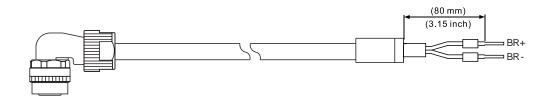
Note: brake cables are sold separately. Refer to Section B.2.4 for more information.

Cable with right angle military connector for E3 non-brake motors



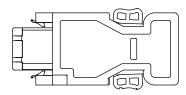


Note: brake cables are sold separately. Refer to Section B.2.4 for more information.


B.2.4 Brake cable for F100 - F180 motors

Cable with straight military connector for E3 motors

Cable with right angle military connector for E3 motors

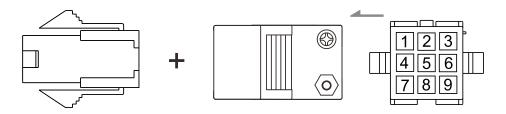


Cable	Model number	Connector	Wire diameter	L	
type	Model Humber	Connector	AWG (mm ²)	mm	inch
	ACS3-CRBRA103	CMV1-AP2S	20 (0.5)	3000 ± 100	118 ± 4
Standard	ACS3-CRBRA105		20 (0.5)	5000 ± 100	197 ± 4
Standard	ACS3-CRBRA110		20 (0.5)	10000 ± 100	394 ± 4
	ACS3-CRBRA120		20 (0.5)	20000 ± 100	787 ± 4
	ACS3-CRBFA103		20 (0.5)	3000 ± 100	118 ± 4
Flexible	ACS3-CRBFA105		20 (0.5)	5000 ± 100	197 ± 4
riexible	ACS3-CRBFA110		20 (0.5)	10000 ± 100	394 ± 4
	ACS3-CRBFA120		20 (0.5)	20000 ± 100	787 ± 4

B.3 Encoder connector

Servo drive end

Delta model number: ACS3-CNENC200

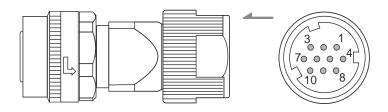


B.3.1 F40 - F80 motors

The following is the connector for the motor end, which need to be used with the connector (ACS3-CNENC200) for the servo drive end.

Standard connector for E3 motors

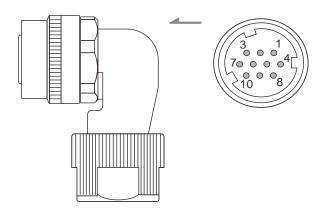
Delta model number: ACS3-CAEN0000



B.3.2 F100 - F180 motors

The following are connectors for the motor end, which need to be used with the connector (ACS3-CNENC200) for the servo drive end.

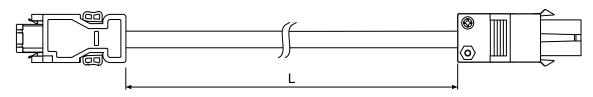
Straight military connector for E3 motors


Delta model number: ACS3-CAENA000

Note: refer to Section 3.1.7 Wiring for IP67 waterproof connectors for more information.

Right angle military connector for E3 motors

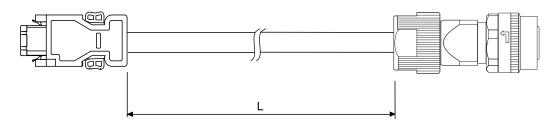
Delta model number: ACS3-CRENA000



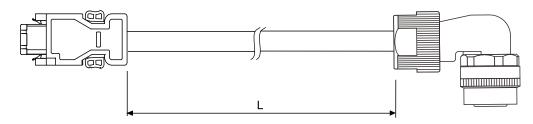
Note: refer to Section 3.1.7 Wiring for IP67 waterproof connectors for more information.

B.4 Encoder cable (incremental type)

B.4.1 F40 - F80 motors


Cable with standard connector for E3 motors

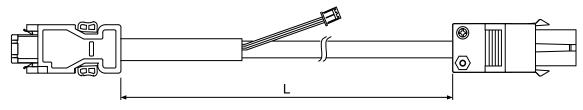
Cable type	Model number	L		
Cable type	Model Hullibel	mm	inch	
	ACS3-CAEN0103	3000 ± 50	118 ± 2	
Standard	ACS3-CAEN0105	5000 ± 50	197 ± 2	
Standard	ACS3-CAEN0110	10000 ± 100	394 ± 4	
	ACS3-CAEN0120	20000 ± 100	787 ± 4	
	ACS3-CAEF0103	3000 ± 50	118 ± 2	
Flexible	ACS3-CAEF0105	5000 ± 50	197 ± 2	
riexible	ACS3-CAEF0110	10000 ± 100	394 ± 4	
	ACS3-CAEF0120	20000 ± 100	787 ± 4	


B.4.2 F100 - F180 motors

Cable with straight military connector for E3 motors

Cable	Model number	del number Connector		-
type	Woder Humber	Connector	mm	inch
	ACS3-CAENA103		3000 ± 50	118 ± 2
Standard	ACS3-CAENA105		5000 ± 50	197 ± 2
ACS3-CAENA110 ACS3-CAENA120		10000 ± 100	394 ± 4	
	ACS3-CAENA120	CMV1-SP10S	20000 ± 100	787 ± 4
	ACS3-CAEFA103		3000 ± 50	118 ± 2
Flexible	ACS3-CAEFA105		5000 ± 50	197 ± 2
riexible	ACS3-CAEFA110		10000 ± 100	394 ± 4
	ACS3-CAEFA120		20000 ± 100	787 ± 4

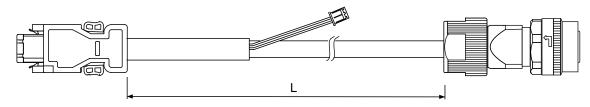
Cable with right angle military connector for E3 motors



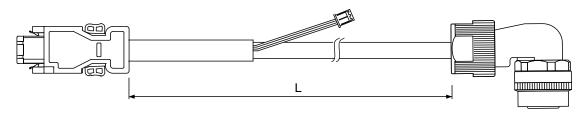
Cable	Model number	Connector	L	_
type	Wodel Humber	Connector	mm	inch
	ACS3-CRENA103		3000 ± 50	118 ± 2
Standard	ACS3-CRENA105		5000 ± 50	197 ± 2
ACS3-CRENA110 ACS3-CRENA120	CMV1-AP10S	10000 ± 100	394 ± 4	
		20000 ± 100	787 ± 4	
	ACS3-CREFA103	CMIV 1-AP 105	3000 ± 50	118 ± 2
Flexible	ACS3-CREFA105		5000 ± 50	197 ± 2
AC	ACS3-CREFA110		10000 ± 100	394 ± 4
	ACS3-CREFA120		20000 ± 100	787 ± 4

B.5 Encoder cable (absolute type)

B.5.1 F40 - F80 motors


Cable with standard connector for E3 motors

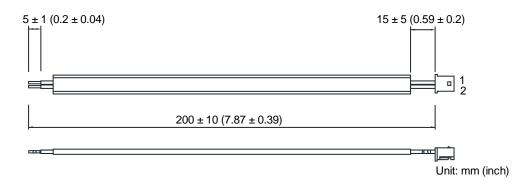
Cable type	Model number	L		
Cable type	Model Humber	mm	inch	
	ACS3-CAEA0103	3000 ± 50	118 ± 2	
Standard	ACS3-CAEA0105	5000 ± 50	197 ± 2	
Standard	ACS3-CAEA0110	10000 ± 100	394 ± 4	
	ACS3-CAEA0120	20000 ± 100	787 ± 4	
	ACS3-CAEB0103	3000 ± 50	118 ± 2	
Flexible	ACS3-CAEB0105	5000 ± 50	197 ± 2	
Flexible	ACS3-CAEB0110	10000 ± 100	394 ± 4	
	ACS3-CAEB0120	20000 ± 100	787 ± 4	


B.5.2 F100 - F180 motors

Cable with straight military connector for E3 motors

Cable	Model number	Connector	L	
type	Model number Connector		mm	inch
	ACS3-CAEAA103		3000 ± 50	118 ± 2
Standard	ACS3-CAEAA105		5000 ± 50	197 ± 2
Stanuaru	ACS3-CAEAA110	CMV1-SP10S	10000 ± 100	394 ± 4
	ACS3-CAEAA120		20000 ± 100	787 ± 4
	ACS3-CAEBA103	CWW 1-3F 103	3000 ± 50	118 ± 2
Flexible	ACS3-CAEBA105		5000 ± 50	197 ± 2
	ACS3-CAEBA110		10000 ± 100	394 ± 4
	ACS3-CAEBA120		20000 ± 100	787 ± 4

Cable with right angle military connector for E3 motors

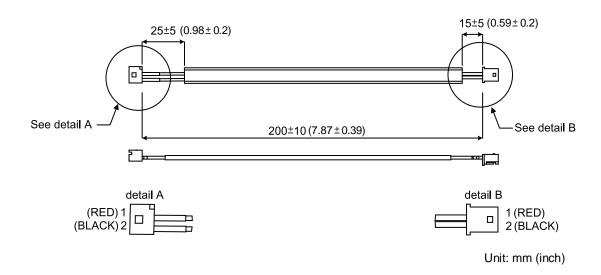


Cable	Model number	Connector	I	<u>L</u>
type	Model Humber	Connector	mm	inch
	ACS3-CREAA103		3000 ± 50	118 ± 2
Standard	ACS3-CREAA105		5000 ± 50	197 ± 2
Standard	ACS3-CREAA110		10000 ± 100	394 ± 4
	ACS3-CREAA120	CMV1-AP10S	20000 ± 100	787 ± 4
	ACS3-CREBA103	CIVIV 1-AP 103	3000 ± 50	118 ± 2
Flexible	ACS3-CREBA105		5000 ± 50	197 ± 2
riexible	ACS3-CREBA110		10000 ± 100	394 ± 4
	ACS3-CREBA120		20000 ± 100	787 ± 4

B.6 Battery box cable

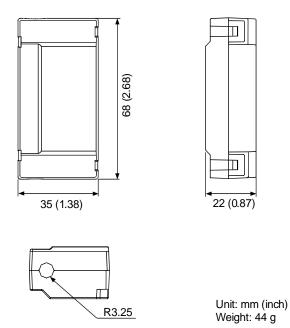

Battery box cable for customized wiring

Delta part number: 3864850600

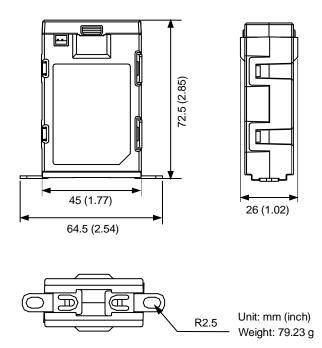

Battery box cable that connects to the encoder cable (male to male)

Delta part number: 3864811901

Battery box cable that connects to the encoder cable (male to female)

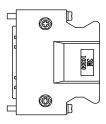

Delta part number: 3864573700

B.7 Battery box

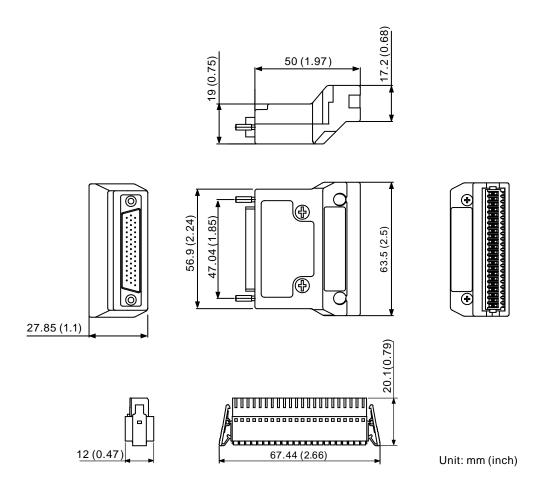

Single battery box

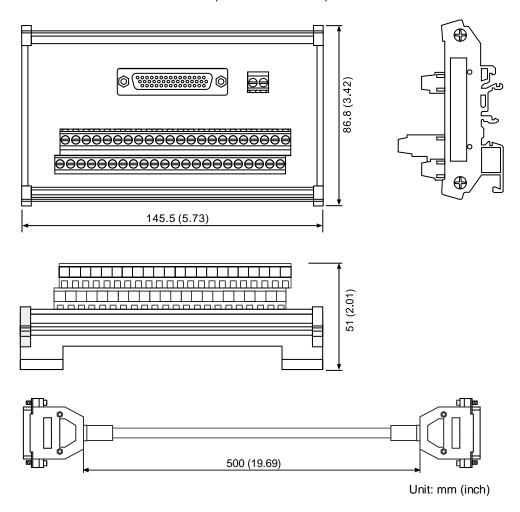
Delta model number: ASD-MDBT0100

Dual battery box

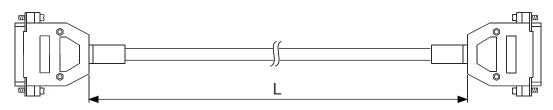

Delta model number: ASD-MDBT0200

B.8 CN1 connector

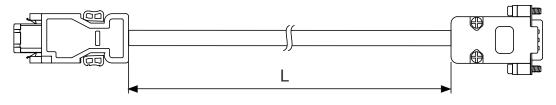

Delta model number: ASDBCNDS0044 (for -L servo drives)


B.9 CN1 quick connector

Delta model number: ACS3-IFSC4444 (for -L servo drives)

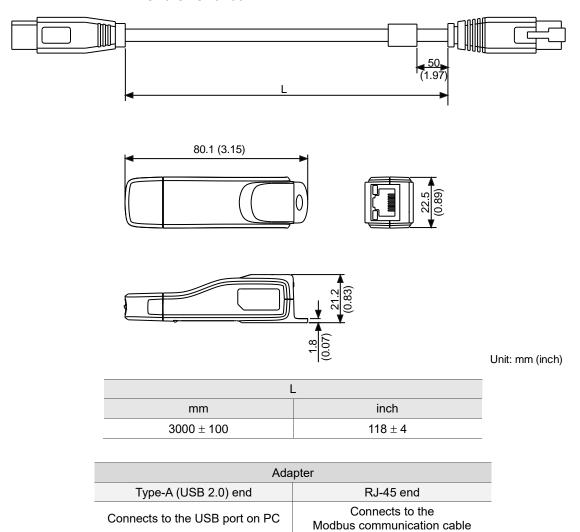

B.10 CN1 terminal block module

Delta model number: ACS3-MDTB4400 (for -L servo drives)


B.11 E3 / B2 conversion cable

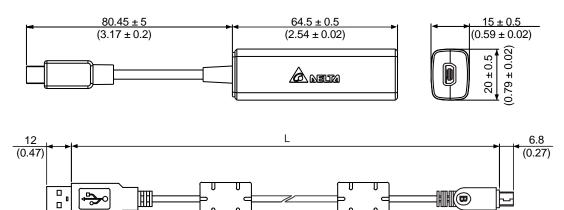
CN1 conversion cable (for -L servo drives)

Model number		L
	mm	inch
ACS3-CABDC1	500 ± 50	19.69 ± 1.97


CN2 conversion cable

Model number		L
	mm	inch
ACS3-CABDC2	150	5.91

B.12 CN3 Modbus communication cable

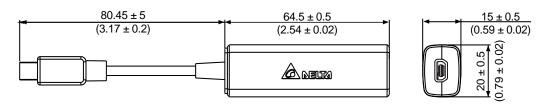

Delta model number: ACS3-CNUS0A08

Note: ASD-CNUS0A08 and ACS3-CNUS0A08 are the same product; you only need to purchase either one of them.

B.13 CN4 Mini USB communication module

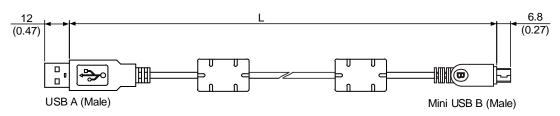
USB cable and isolator included

Unit: mm (inch)


Mini USB B (Male)

Model number	L		
woder number	mm	inch	
UC-PRG015-01B	1500 ± 100	59 ± 4	
UC-PRG030-01B	3000 ± 100	118 ± 4	

USB isolator


Delta model number: UC-ADP01-A

USB A (Male)

Unit: mm (inch)

USB cable

Unit: mm (inch)

Madal number	L		
Model number	mm	inch	
UC-PRG015-01A	1500 ± 100	59 ± 4	
UC-PRG030-01A	3000 ± 100	118 ± 4	

Optional accessories

F40 - F80 motors

Cable			Servo drive	100 W	200 W	400 W	750 W	1 kW
type	Connector type		Servo motor (ECM-E3)	100 W	200 W	400 W	750 W	750 W
-	Non- waterproof	-	Encoder connector (servo drive end)	ACS3-CNENC200				
		f Standard	Power connector (without brake)	ACS3-CAPW1000				
- wa	Non- waterproof		Power connector (with brake)	ACS3-CAPW2000				
			Encoder connector (motor end)	ACS3-CAEN0000		000		
		of Standard	Power cable (without brake)	ACS3-CAPW11XX				
Standard Non- waterproo	Non-		Power cable (with brake)	ACS3-CAPW21XX				
	waterproof		Encoder cable (incremental type)	ACS3-CAEN01XX				
			Encoder cable (absolute type)		AC	S3-CAEA01	XX	
Flexible Non-waterproo			Power cable (without brake)		AC	S3-CAPF11	XX	
	Non- waterproof	Standard	Power cable (with brake)	ACS3-CAPF21XX				
			Encoder cable (incremental type)	ACS3-CAEF01XX		·		
			Encoder cable (absolute type)		AC	S3-CAEB01	XX	

- XX indicates the cable length. 03 = 3 m; 05 = 5 m; 10 = 10 m; 20 = 20 m. E3-L model does not support the absolute function, so an absolute encoder cable is not required.

F100 - F130 motors

ı)
ı	
н	

0.11			Servo drive	1 kW	1.5 kW	2 kW
Cable type	Connector type		Servo motor (ECM-E3)	1 kW	1.5 kW	2 kW
-	Non- waterproof	-	Encoder connector (servo drive end)	ACS3-CNENC200		1
		Military	Power connector (without brake)	ACS3-CAPWA000		
		connector - straight	Brake connector	ACS3-CABRA000		
_	Waterproof		Encoder connector (motor end)		ACS3-CAENA000	
	Valorproof		Power connector (without brake)	ACS3-CRPWA000		
		Military connector - right angle	Brake connector		ACS3-CRBRA000	
			Encoder connector (motor end)		ACS3-CRENA000	
			Power cable (without brake)	ACS3-0	CAPWA2XX	ACS3-CAPWA3XX
		Military	Brake cable		ACS3-CABRA1XX	
		straight	Encoder cable (incremental type)		ACS3-CAENA1XX	
Standard	Waterproof		Encoder cable (absolute type)		ACS3-CAEAA1XX	
Otandard	Vvaterproof		Power cable (without brake)	ACS3-0	CRPWA2XX	ACS3-CRPWA3XX
		Military connector - right angle	Brake cable		ACS3-CRBRA1XX	
			Encoder cable (incremental type)		ACS3-CRENA1XX	
			Encoder cable (absolute type)		ACS3-CREAA1XX	
		Military connector - straight	Power cable (without brake)	ACS3-	CAPFA2XX	ACS3-CAPFA3XX
	Waterproof		Brake cable		ACS3-CABFA1XX	
Flexible V			Encoder cable (incremental type)		ACS3-CAEFA1XX	
			Encoder cable (absolute type)		ACS3-CAEBA1XX	
		Military connector - right angle	Power cable (without brake)	ACS3-	CRPFA2XX	ACS3-CRPFA3XX
			Brake cable		ACS3-CRBFA1XX	
			Encoder cable (incremental type)		ACS3-CREFA1XX	
			Encoder cable (absolute type)	ACS3-CREBA1XX		

- XX indicates the cable length. 03 = 3 m; 05 = 5 m; 10 = 10 m; 20 = 20 m. E3-L model does not support the absolute function, so an absolute encoder cable is not required.

F180 motors

Cable			Servo drive	3 kW
type	Connector type		Servo motor (ECM-E3)	3 kW
-	Non- waterproof	-	Encoder connector (servo drive end)	ACS3-CNENC200
			Power connector (without brake)	ACS3-CAPWC000
		Military connector - straight	Brake connector	ACS3-CABRA000
	Motorproof		Encoder connector (motor end)	ACS3-CAENA000
-	Waterproof		Power connector (without brake)	ACS3-CRPWC000
		Military connector - right angle	Brake connector	ACS3-CRBRA000
		rigin arigio	Encoder connector (motor end)	ACS3-CRENA000
			Power cable (without brake)	ACS3-CAPWC4XX
		Military connector - straight	Brake cable	ACS3-CABRA1XX
			Encoder cable (incremental type)	ACS3-CAENA1XX
Standard	Waterproof		Encoder cable (absolute type)	ACS3-CAEAA1XX
Stariuaru	waterproor	Military connector -	Power cable (without brake)	ACS3-CRPWC4XX
			Brake cable	ACS3-CRBRA1XX
		right angle	Encoder cable (incremental type)	ACS3-CRENA1XX
			Encoder cable (absolute type)	ACS3-CREAA1XX
		Military connector straight	Power cable (without brake)	ACS3-CAPFC4XX
Flexible	Waterproof		Brake cable	ACS3-CABFA1XX
			Encoder cable (incremental type)	ACS3-CAEFA1XX
			Encoder cable (absolute type)	ACS3-CAEBA1XX
		Military connector - right angle	Power cable (without brake)	ACS3-CRPFC4XX
			Brake cable	ACS3-CRBFA1XX
			Encoder cable (incremental type)	ACS3-CREFA1XX
			Encoder cable (absolute type)	ACS3-CREBA1XX

- XX indicates the cable length. 03 = 3 m; 05 = 5 m; 10 = 10 m; 20 = 20 m. E3-L model does not support the absolute function, so an absolute encoder cable is not required.

(This page is intentionally left blank.)

Revision History

Release date	Version	Chapter	Revision contents
June, 2023	V1.0		
	(First edition)	-	-

For relevant information about [ASDA-E3], please refer to:

(1) ASDA-B2 User Manual

Revision History ASDA-E3

(This page is intentionally left blank.)