

Industrial Automation Headquarters

Delta Electronics, Inc. Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd. Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, P.R.C. 215200 TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd. 238 Min-Xia Road, Pudong District, ShangHai, P.R.C. 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc. Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. 1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'I (S) Pte Ltd. 4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd. Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas Delta Products Corporation (USA) Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A. Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: 55 11 3568-3855 / FAX: 55 11 3568-3865

Europe

Deltronics (The Netherlands) B.V. Eindhoven Office De Witbogt 20, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

DVP-0051720-02

*We reserve the right to change the information in this manual without prior notice.

DVP201/202/211LC-SL Load Cell Module Operation Manual

DVP201/202/211LC-SL Load Cell Module Operation Manual

Revision History

Version	Revision	Date
1 st	The first version was published. 2014/09	
2 nd	 CH1: update resolution information CH2: update indicator information CH4: add CR#20-21, CR#95-98, CR#106-143 and update CR#2, CR#7, CR#27-28, CR#48-49, CR#52-53, CR#104-105, and CR#109 	2019/02/20

DVP201/202/211LC-SL Load Cell Module

Operation Manual

Table of Contents

Chapter 1 Introduction

1.1	Principle of a Load Cell	1-2
1.2	Introduction of a Load Cell	1-2
1.3	Functional Specifications	1-2

Chapter 2 Dimensions and Profile

2.1	Dimensions2	-2
2.2	Profile2	-2
2.3	Arrangement of the Terminals2	-3
2.4	Description of the Indicators2	-3

Chapter 3 Installation and Wiring

3.1	Inst	tallation	3-2
3.1	.1	Connecting a Load Cell Module to a DVP-SV series PLC	3-2
3.1	.2	Installing a DVP-SV series PLC and a Load Cell Module on a DIN	
		rail	3-2
3.2	Con	nmunication	3-3
3.3	3 External Wiring		
3.4	Selecting a Load Cell Sensor		

Chapter 4 Control Registers

4.1	Tab	le of Control Registers	4-2
4.2	Des	criptions of the Control Registers	
4.3	Des	criptions of Functions	4-14
4.3	3.1	Measuring a Net Weight	
4.3	3.2	Stability Check	
4.3	3.3	Determining Zero	
4.3	3.4	Filtering out Weights	
4.3	3.5	Correspondence between Current Outputs and Weights .	

Chapter 5 Making Adjustment

5.1	Steps in Adjusting Points	5-3
5.2	Example 1	5-4
5.3	Example 2	5-5

Chapter 1 Introduction

Table of Contents

1.1	Principle of a Load Cell1-2
	Introduction of a Load Cell1-2
1.3	Functional Specifications1-2

Thanks for using the load cell module DVP201/202/211LC-SL. To ensure that the product is correctly installed and operated, users need to read the operation manual carefully before they use DVP201/202/211LC-SL.

- ✓ The operation manual provides functional specifications, and introduces installation, basic operation and setting, and the usage of DVP201/202/211LC-SL.
- ✓ DVP201/202/211LC-SL is an OPEN-TYPE device. It should be installed in a control cabinet free of airborne dust, humidity, electric shock and vibration. To prevent non-maintenance staff from operating DVP201/202/211LC-SL, or to prevent an accident from damaging DVP201/202/211LC-SL, the control cabinet in which DVP201/202/211LC-SL is installed should be equipped with a safeguard. For example, the control cabinet in which DVP201/202/211LC-SL is installed can be unlocked with a special tool or key. DO NOT touch any terminal when DVP201/202/211LC-SL is powered up.
- ✓ In order to prevent the product from being damaged, or prevent staff from being hurt, users need to read the operation manual carefully, and follow the instructions in the manual.

1.1 Principle of a Load Cell

If a metallic material undergoes tension or strain, it will become thin, and its electrical impedance will increase. If a metallic material is compressed, its electrical impedance will become small. A strain gauge adopting this principle is called a load cell. Such sensing device is able to convert physical pressure into electrical signals, and therefore it is widely used on occasions on which loads, tension and pressure need to be converted into electrical signals.

1.2 Introduction of a Load Cell

A load cell module provides 4-wire or 6-wire load cells with various eigenvalues. Therefore, its response time can be adjusted according to users' requirements. On this basis, the requirements of load application markets can be easily met. Besides, a DVP series PLC* can read data in a load cell module or write data to a load cell module by means of the instruction FROM/TO.

*: DVP-SV series PLCs, DVP-EH2-L series PLCs, DVP-SA2 series PLCs, and DVP-SX2 series PLCs support left-side extension modules.

1.3 Functional Specifications

DVP201/202/211LC-SL		
Load cell module Voltage output		
Rated supply voltage/Power consumption	24 V DC (-15 to +20%)/5 W	
Static minimum/maximum voltage	20.4 V/28.8 V DC	
Dynamic minimum/maximum voltage	18.5 V/30.2 V DC	
Maximum current consumption	150 mA	
Input signal range	±200 mV DC	
Sensibility	+5 V DC +/-5%	
Resolution	Data output: 32 bits	
Highest precision 0.04%		
Communication interface	RS-232, RS-485	
Applicable sensor type 4-wire or 6-wire load cell		
Expanding a temperature coefficient	≤ ± 20 ppm/K v. E	
Reducing a temperature coefficient to zero	≤ ± 0.1 µV/K	
inearity error ≤ 0.015%		
Response time	2.5, 10, 16, 20, 50, 60, 100, 200, and 400ms	
Eigenvalue applicable to a load cell	ad 0~1, 0~2, 0~4, 0~6, 0~20, 0~40 and 0~80 mV/V	

DVP201/202/211LC-SL		
Load cell module	Voltage output	
Maximum distance for	100 meters	
connecting a load cell		
Maximum output current	5 V DC * 300 mA	
Allowable load	40~4,010 Ω	
Averaging weights	100	
Common-mode rejection ratio (CMRR @50/60 Hz) ≥100 dB		
	Between a digital circuit and the ground: 500 V AC	
Isolation	Between an analog circuit and the ground: 500 V AC	
	Between an analog circuit and a digital circuit: 500 V AC	
	Load cell modules can be connected to the left side of a PLC. The	
Connecting to a DVP series PLC	modules connected to a PLC are numbered from 100 to 107 according to	
	the closeness to the PLC.	
Operation/Storage	Operation: 0~55°C (temperature), 5~95% (humidity), pollution degree 2	
Operation/Storage	Storage: -25~70°C (temperature), 5~95% (humidity)	
Vibration/Shock resistance	International standards: IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2	
	& IEC 68-2-27 (TEST Ea)	

$\begin{tabular}{ c c c c c c } \hline terminals & terminals \\ \hline Input/Output terminal & X0, X1 & Y0, Y1, Y2, Y3 \\ \hline Input $Imped$ Transistor & Digital input & Transistor \\ \hline Form & DC (sinking or sourcing) & \\ \hline Specifications & Input current: 24 V DC, 5 mA & Voltage specifications: 5~30 V DC $1 \\ \hline Input impedance & 4.7 K\Omega & \\ \hline Maximum switch frequency & 10 kHz & 1 kHz \\ \hline Action level & Off $$ On $$ > 15 V DC & \\ \hline On $$ Off $$ On $$ > 15 V DC & \\ \hline Response & Off $$ On $$ < 20 $$ µs & < 100 $$ µs \\ \hline ime & On $$ Off $$ < 50 $$ µs & < 150 $$ µs \\ \hline Resistive load & & 0.5 A/output (4 A/COM)$$$ $2 \\ \hline \end{tabular}$			DVP211LC-SL	
$\begin{tabular}{ c c c c } \hline Type & Digital input & Transistor \\ \hline Form & DC (sinking or sourcing) & \\ \hline Specifications & Input current: 24 V DC, 5 mA & Voltage specifications: 5~30 V DC #1 \\ \hline Input impedance & 4.7 K\Omega & \\ \hline Maximum switch frequency & 10 kHz & 1 kHz \\ \hline Action level & Off \rightarrow On $>$15 V DC & \\ \hline On \rightarrow Off $<$<5 V DC & \\ \hline On \rightarrow Off $<$<5 V DC & \\ \hline On \rightarrow Off $<$<5 V DC & \\ \hline On \rightarrow Off $<$<5 V DC & \\ \hline On \rightarrow Off $<$<5 0 µs $<$$$ $<$100 µs $ \\ \hline on \rightarrow Off $<$<50 µs $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$				Electrical specifications for output terminals
$\begin{tabular}{ c c c c c } \hline Form & DC (sinking or sourcing) & & \\ \hline Specifications & Input current: 24 V DC, 5 mA & Voltage specifications: 5~30 V DC #1 \\ \hline Input impedance & 4.7 K\Omega & & \\ \hline Input impedance & 10 kHz & 1 kHz & \\ \hline Action level & Off \rightarrow On $>15 V DC & & \\ \hline On \rightarrow Off $< < 5 V DC & & \\ \hline On \rightarrow Off $< < 5 V DC & & \\ \hline On \rightarrow Off $< < 50 \ \mu s & < 100 \ \mu s & \\ \hline ime & On \rightarrow Off $< < 50 \ \mu s & < 150 \ \mu s & \\ \hline Maximum & Resistive load & & 0.5 \ A/output (4 \ A/COM)^{#2} & \\ \hline \end{tabular}$	Input/Output terminal		X0, X1	Y0, Y1, Y2, Y3
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Туре		Digital input	Transistor
$\begin{tabular}{ c c c c c } \hline Input impedance & 4.7 \ K\Omega & \\ \hline Maximum switch frequency & 10 \ kHz & 1 \ kHz \\ \hline Maximum switch frequency & 10 \ kHz & 1 \ kHz \\ \hline Off \rightarrow On & > 15 \ V \ DC & \\ \hline On \rightarrow Off & < 5 \ V \ DC & \\ \hline On \rightarrow Off & < 5 \ V \ DC & \\ \hline On \rightarrow Off & < 50 \ \mu s & < 100 \ \mu s \\ \hline On \rightarrow Off & < 50 \ \mu s & < 150 \ \mu s \\ \hline Maximum & Resistive load & & 0.5 \ A/output \ (4 \ A/COM)^{\#2} \\ \hline \end{tabular}$	Form		DC (sinking or sourcing)	
Maximum switch frequency10 kHz1 kHzAction levelOff \rightarrow On> 15 V DCOn \rightarrow Off< 5 V DC	Specifications		Input current: 24 V DC, 5 mA	Voltage specifications: 5~30 V DC #1
Action levelOff \rightarrow On> 15 V DCOn \rightarrow Off< 5 V DCResponse timeOff \rightarrow On< 20 µs< 100 µsOn \rightarrow Off< 50 µs< 150 µsResistive load0.5 A/output (4 A/COM)#2	Input impedance		4.7 ΚΩ	
Action levelOn \rightarrow Off< 5 V DC	Maximum switch frequency		10 kHz	1 kHz
On \rightarrow Off< 5 V DC	Action loval	$Off \rightarrow On$	> 15 V DC	
timeOn \rightarrow Off< 50 µs	Action level	$On \rightarrow Off$	< 5 V DC	
Resistive load 0.5 A/output (4 A/COM) ^{#2}	Response	$Off \rightarrow On$	< 20 µs	< 100 µs
Maximum	time	$On \rightarrow Off$	< 50 µs	< 150 µs
	Maximum load	Resistive load		0.5 A/output (4 A/COM) ^{#2}
Inductive load 15 W (30 V DC)		Inductive load		15 W (30 V DC)
Bulb 2.5 W (30 V DC)		Bulb		2.5 W (30 V DC)

Note: In order to meet DIN 1319-1, an error needs to be less than or equal to 0.05% at 20 °C + 10 K. #1: UP and ZP should be connected to a 24 V DC power supply. The current that an output terminal consumes

is approximately 1 mA.

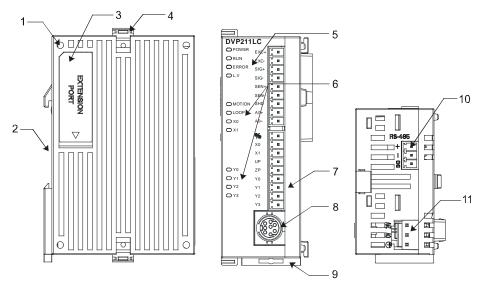
#2: In an NPN mode, ZP is used. In a PNP mode, UP is used.

MEMO

Chatper 2 Dimensions and Profile

Table of Contents

2.1	Dimensions	.2-2
2.2	Profile	.2-2
2.3	Arrangement of the Terminals	.2-3
2.4	Description of the Indicators	.2-3


2.1 Dimensions

Unit: mm

2.2 Profile

1. Mounting hole	2. Mounting groove (35mm)
3. Extension port	4. I/O module clip
5. Status indicator (refer to section 2.4 for details)	Functional status indicator (refer to section 2.4 for 6.
	details)
7. I/O terminals	8. RS-232 port
9. DIN rail clip	10. RS-485 port
11. Power input	

2.3 Arrangement of the Terminals

EXC+ EXC- SIG+ SIG- SEN+ SEN- SHD • •

DVP201LC-SL

EXC+ EXC- SIG+ SIG- SEN+ SEN- SHD • EXC+ EXC- SIG+ SIG- SEN+ SEN- SHD • •

DVP202LC-SL

EXC+ EXC- SIG+ SIG- SEN+ SEN- SHD AO+ AO- S/S X0 X1 UP ZP Y0 Y1 Y2 Y3

DVP211LC-SL

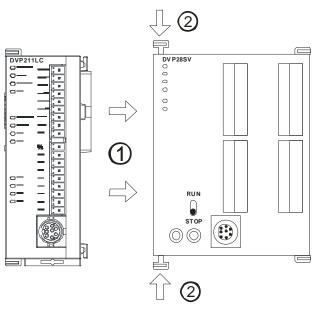
2.4 Description of the Indicators

Name	Color	Function	
POWER indicator	Green	Displaying power	
RUN indicator	Green	Displaying the status of the module	
ERROR indicator	Red	Displaying an error	
L.V indicator	Red	Showing that the voltage of the an external power is low	
LOOP indicator	Green	Loop control	
MOTION indicator	Orange	Showing that measurement is stable	
X0 indicator/X1 indicator	Red	Showing that X0/X1 is On/Off	
Y0~3 indicator	Red	Showing that Y0/Y1/Y2/Y3 is On/Off	
NET indicator	Orange	Net/Gross weight indicator	
ZERO indicator	Orange	Once the weight value is in the zero point range, this indicator is ON.	
MAX indicator	Orange	Maximum weight indicator	

MEMO

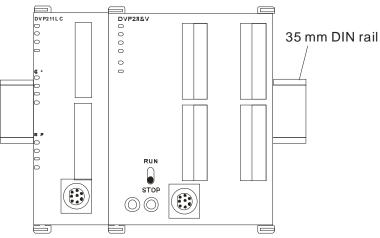
Chapter 3 Installation and Wiring

Table of Contents


3.1	Ins	tallation	3-2
3.1	.1	Connecting a Load Cell Module to a DVP-SV series PLC	3-2
3.1	.2	Installing a DVP-SV series PLC and a Load Cell Module on a	DIN
		rail	3-2
3.2	Cor	mmunication	3-3
3.3	Ext	ernal Wiring	3-4
		ecting a Load Cell Sensor	

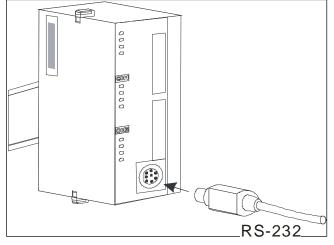
3.1 Installation

3.1.1 Connecting a Load Cell Module to a DVP-SV series PLC

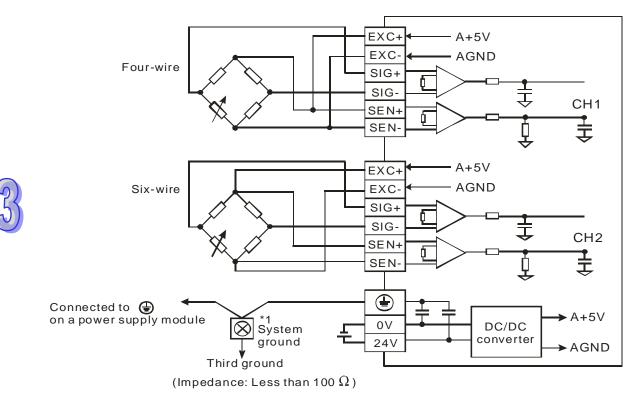

- Pull the I/O module clips on a DVP-SV series PLC. Insert the points in the corner of a load cell module into the four holes in the DVP-SV series PLC. Please see step ① in the figure below.
- Press the I/O module clips on the DVP-SV series PLC, and make sure that the load cell module is tightly connected to the DVP-SV series PLC. Please see step ② in the figure below.

3.1.2 Installing a DVP-SV series PLC and a Load Cell Module on a DIN rail

- Please use a 35 mm DIN rail.
- Pull the DIN rail clips on a DVP-SV series PLC and a load cell module. Install the DVP-SV series PLC and the load cell module on the DIN rail.
- Press the DIN rail clips on the DVP-SV series PLC. Please see the figure below.


3.2 Communication

• Please wire a load cell module according to the definitions of the pins in a communication connector.


PC COM Port 9 PIN D-SUB female	\longleftrightarrow	DVP211LC COM Port 8 PIN MINI DIN
Rx 2 Tx 3 GND 5 - 7 - 8 - 1 - 4 - 6		5 Tx 2 1 4 Rx 5 4 3 8 GND 8 7 1,2 5V 7

- There are 2 communication interfaces in a load cell module which can communicate with a PC or other devices. COM1 is an RS-232 port, and COM2 is an RS-485 port. Both ports meet the standard MODBUS protocol. A PC can directly communicate with a load cell module through COM1.
- Delta power supply modules are highly recommended.

3.3 External Wiring

- Multiple load cells connected in parallel are connected to a single load cell module.

Note 1: Please connect on a power supply module and on the load cell module to a system ground, and then ground the system ground or connect the system ground to a distribution box.
 Note 2: If multiple load cells are connected in parallel, the total impedance should be greater than 40 Ω.

3.4 Selecting a Load Cell Sensor

1. Exciting voltage:

An excitation voltage is external power provided for a load cell sensor. The maximum voltage that a sensor can accept is specified in the specifications for the sensor. The exciting voltage that a load cell module provides is +5 V, and therefore a sensor which can accept a voltage greater than 5 V can be used.

2. Eigenvalue

A load cell sensor uses a bridge circuit. If a load cell is under pressure, SIG+ and SIG- will output voltages which are in proportion to force. An eigenvalue determines the characteristics of the output of a load cell sensor. The unit used is mV/V. If a load cell receives external force, it will output low voltage. Output a sensor: (Force/Maximum rated load)×(Exciting voltage×Eigenvalue)

Example: The eigenvalue of a sensor is 2 mV/V, and the maximum rated load of the sensor is 10 kg. The voltage provided by a module is 5 V. The voltage to which the maximum rated load corresponds is 10 mV. If the load of the sensor is 1 kg, the voltage that the sensor outputs will be 1 mV. The eigenvalue that the module can support is 80 mV/V. The sensors whose eigenvalues are less than 80 mV/V can be used.

3. Maximum rated load

When users select a load cell module, they have to consider factors such as loads, tares, vibrations, and shocks. The closer the load on a load cell sensor is to the maximum rated load specified in the specifications for the load cell sensor, the more accurately the load is measured.

4. Four-wire configuration/Six-wire configuration

There are two ways to wire a load cell sensor. They are a four-wire configuration and a six-wire configuration. A load cell module provides power for a load cell sensor by means of EXC+/EXC-. However, there is impedance between the load cell module and the sensor. The voltage that the sensor actually receives is less than the voltage provided by the module. The output terminals SIG+ and SIG- on a sensor have relations with the voltages received. If the distance between a module and a sensor is short, the impedance between the module and the sensor will be small, and a four-wire configuration can be adopted. If the distance between a module and a sensor is long, a six-wire configuration can be used to reduce the error resulting from the impedance between the module and the sensor.

5. Estimating precision

The precision of a load cell module is 0.04%. The maximum rated load of a load cell sensor multiplied by 0.04% is the maximum precision that a load cell module can resolve. (The measurement time set by default is 50 milliseconds.) If the measurement time set is longer, the precision presented will increase. When users select a load cell sensor, they have to check whether the conversion time of the load cell sensor and the precision of the load cell sensor meet their requirements.

Chapter 4 Control Registers

Table of Contents

4.1 ·	Table of Control Registers	4-2
	Descriptions of the Control Registers	
	Descriptions of Functions	
4.3.1	1 Measuring a Net Weight	4-14
	2 Stability Check	
4.3.3	3 Determining Zero	4-16
4.3.4	4 Filtering out Weights	4-16
4.3.5	5 Correspondence between Current Outputs and Weights	

4.1 Table of Control Registers

CR#	Address	Att	ribute	Register name	Expla	nation
#0	H1000	0	R	Model name	The model code of a load the module's system. DVP201LC-SL's model co DVP202LC-SL's model co DVP211LC-SL's model co	ode=H'5206
#1	H1001	0	R	Firmware version	Hexadecimal value The current firmware vers is displayed.	ion of a load cell module
#2	H1002	0	R/W	Characteristic value	CH1: Bit 0~bit 7; CH2: Bit Mode 0: 1 mV/V; Mode 4: Mode 1: 2 mV/V; Mode 5: Mode 2: 4 mV/V; Mode 6: Mode 3: 6 mV/V	20 mV/V 40 mV/V
#3	H1003	0	R/W	Reaction time for measurement	CH1: bit0~bit7; CH2: bit8- Mode 0: 2.5ms; Mode 5: (Mode 1: 10ms; Mode 6: 1 Mode 2: 16ms; Mode 7: 2 Mode 3: 20ms; Mode 8: 4 Mode 4: 50ms (factory se	60ms 00ms 00ms 00ms
#6	H1006	x	R/W	Returning to zero/Subtracting a tare	K1: Subtracting the tare measured by CH1 K2: Not subtracting the tare measured by CH1 K3: Restoring the weight measured by CH1 to zero	K4: Subtracting the tare measured by CH2 K5: Not subtracting the tare measured by CH2 K6: Restoring the weight measured by CH2 to zero
#7	H1007	0	R/W	Displaying a gross weight/net weight	CH1: Bit 0~bit 7; CH2: Bit K0: Displaying a gross we K1: Displaying a net weig	eight
#8	H1008	x	R/W	Tare measured by CH1 (Low word)		
#9	H1009	x	R/W	Tare measured by CH1 (High word)	Displaying a tare	

CR#	Address	Att	ribute	Register name	Explanation
#10	H100A	x	R/W	Tare measured by CH2 (Low word)	
#11	H100B	x	R/W	Tare measured by CH2 (High word)	
#12	H100C	x	R	Weight measured by CH1 (Low word)	
#13	H100D	x	R	Weight measured by CH1 (High word)	Displaying a weight
#14	H100E	x	R	Weight measured by C2 (Low word)	
#15	H100F	x	R	Weight measured by C2 (High word)	
#16	H1010	0	R/W	Number of weights measured by CH1 in a stability range	Setting range: K1~K500 (Factory setting: K5)
#17	H1011	0	R/W	Number of weights measured by CH2 in a stability range	Setting range: K1~K500 (Factory setting: K5)
#18	H1012	0	R/W	Stability range for CH1	Setting range: K1~K10000 (Factory setting: K10)
#19	H1013	0	R/W	Stability range for CH2	Setting range: K1~K10000 (Factory setting: K10)
#20	H1014	0	R/W	Lower limit of the zero return for CH1	Once the weight is in this setting range K-1 ~
#21	H1015	0	R/W	Lower limit of the zero return for CH2	K-32768, the status is on-load on the load cell. (Factory setting: K-10)
#25	H1019	0	R/W	Total number of points which need to be adjusted	Setting range: K2~K20 (Factory setting: K2)
#26	H101A	x	R/W	Adjustment command	CH1: K1~K20 CH2: K21~K40
#27	H101B	x	R/W	Selecting a point which needs to be adjusted for CH1	K1~K19
#28	H101C	x	R/W	Selecting a point which needs to be adjusted for CH2	К1~К19
#29	H101D	0	R/W	Digital value given to a point which needs to be adjusted for CH1 (Low word)	Digital value given to a point which needs to be
#30	H101E	0	R/W	Digital value given to a point which needs to be adjusted for CH1 (High word)	adjusted
#31	H101F	0	R/W	Digital value given to a point which needs to be adjusted	Digital value corresponding to a weight needs to be

DVP201/202/211LC-SL Load Cell Module Operation Manual

CR#	Address	Attribute		Register name	Explanation	
				for CH2 (Low word)	adjusted	
#32	H1020	0		Digital value given to a point which needs to be adjusted for CH2 (High word)		
#33	H1021	0	R/W	Weight of a point which needs to be adjusted for CH1 (Low word)		
#34	H1022	0	R/W	Weight of a point which needs to be adjusted for CH1 (High word)	Weight of a weight	
#35	H1023	0	R/W	Weight of a point which needs to be adjusted for CH2 (Low word)		
#36	H1024	0	R/W	Weight of a point which needs to be adjusted for CH2 (High word)		
#37	H1025	0	R/W	Maximum which can be measured by CH1 (Low word)		
#38	H1026	0	R/W	Maximum which can be measured by CH1 (High word)	Users can specify the maximum weight which can be measured by CH1/CH2. If a weight measured	
#39	H1027	0	R/W	Maximum which can be measured by CH2 (Low word)	exceeds the maximum weight, an error code will be stored.	
#40	H1028	0	R/W	Maximum which can be measured by CH2 (High word)		
#41	H1029	x	R/W	Storing all setting values (H'5678)	Storing all setting values, and writing them to the flash memory in the load cell module used H0: No action (factory setting) H'FFFF: All setting values are stored successfully. H'5678: Writing all setting values to the flash memory in the load cell module used	
CR#41: If the value in CR#41 is H'5678, all setting values will be stored in the flash memory. After the setting values are stored, the value in CR#41 will become H'FFFF. If the value written to CR#41 is not H'5678, it will automatically become H'0. For example, if H1 is written to CR#41, it will become H1. (After the adjustment of points is complete, please use CR#41 to make adjustment parameters retentive.)						
#42	H102A	, р Х		Restoring all settings to	Restoring all settings to factory settings (H'55AA)	
				-		

CR#	Address	s Attribute		Register name	Explanation
				factory settings	
#43	H102B	x	R/W	Way in which weights measured by CH1 are filtered out	K0: Not filtering weights (factory setting)
#44	H102C	x	R/W	Way in which weights measured by CH2 are filtered out	K1: Filtering out the maximum weight measured K2: Averaging weights
#45	H102D	x	R/W	Filter parameter for CH1	Filtering out the maximum weight measured:
#46	H102E	x	R/W	Filter parameter for CH1	K0~K8 Averaging weights: The number of weights which need to be averaged should be in the range of K1 to K100.
#48	H1030	0	R/W	Upper limit for determining whether the digital value corresponding to a weight measured by CH1 is 0 grams	If the digital value corresponding to a weight measured by CH1/CH2 is in the range specified, bit 5/bit 10 in CR#51 will be set (the weight measured
#49	H1031	0	R/W	Upper limit for determining whether the digital value corresponding to a weight measured by CH2 is 0 grams	is will be counted as 0 grams). Default value: K10 Setting range: K0~K32767
#51	H1033	x	R/W	Status code	The status of the load cell module used is stored in this register. Please refer to the status table below for more information. Factory setting: H'0000
#52	H1034	0	R/W	RS-232 station address	The default value in CR#52/CR#54 is K1. The
#53	H1035	0	R/W	RS-232 communication format	setting values in CR#52 and CR#54 should be in the range of K1 to K255. The default value in
#54	H1036	0	R/W	RS-485 station address	CR#53/CR#55 is H'0000 (ASCII, 9600 bps, 7 data
#55	H1037	0	R/W	RS-485 communication format	bits, even parity bit, one stop bit). Please refer to the communication format table below for more information.
#95	H105F	0	R/W	Zero point tracking range of CH1	Setting range: 0 ~ 30000; when set the setting to 0, it indicates zero point tracking is disabled.
#96	H1060	0	R/W	Zero point tracking time of CH1	Setting range: 5 ~ 1000; unit: 0.1 s
#97	H1061	0	R/W	Zero point tracking range of	Setting range: 0 ~ 30000; when set the setting to 0,

CR#	Address	Att	ribute	Register name	Explanation	
				CH2	it indicates zero point tracking is disabled.	
#98	H1062	0	R/W	Zero point tracking time of CH2	Setting range: 5 ~ 1000; unit: 0.1 s	
#100	H1064	0	R/W	Current output	Setting range: K0~K4000	
#101	H1065	x	R	Digital input terminal	Bit 0: X0; Bit 1: X1	
#102	H1066	x	R/W	Digital output terminal	Bit 0: Y0; Bit 1: Y1; Bit 2: Y2; Bit 3: Y3	
#103	H1067	0	R/W	Way of outputting a current	 K0: Digital value corresponding to a current output in the range of 0 mA to 20 mA (factory setting) K1: Digital value corresponding to a current output in the range of 4 mA to 20mA K2: Weight corresponding to a current output in the range of 0 mA to 20mA K3: Weight corresponding to a current output in the range of 4 mA to 20mA 	
#104	H1068	o	R/W	Way in which a digital input terminal operates	 X0: Bit 0~bit 7; X1: Bit 8~bit 15 H0: General digital input terminal (factory setting) H1: If a digital input terminal is ON, a weight will be restored to zero, H2: If a digital input terminal is ON, a tare will be measured. H3: If a digital input terminal is ON, a tare will be subtracted. H4: If a digital input terminal is OFF, a net weight will be measured. H6: If a digital input terminal is ON, zero will be adjusted. H7: If a digital input terminal is ON, the first point will be adjusted. H'8: rising edge triggered; open outputs Y20 ~ Y27 falling edge triggered: close outputs Y20 ~ Y27 falling edge triggered: open outputs Y20 ~ Y27 H'A: rising edge triggered; hold outputs Y20 ~ Y27 	

CR#	Address	Att	ribute	Register name		Explan	ation	
					falling edge t	riggered: ope	n outputs Y2	.0 ~ Y27
					H'B: rising ed	dge triggered;	open output	s Y20 ~ Y27
					falling edge t	riggered: hold	d outputs Y20) ~ Y27
					H'A and H'B:	:		
					 When the test 	he status is H	old, the statu	is of Y0-Y3
						anged; CR#1		
					 When the table 	he status is O	pen, output t	he status of
					the modified	Y0-Y3.		
					Bit 15~bit 12	Bit 11~bit 8	Bit 7~bit 4	Bit 3~bit 0
					Y3	Y2	Y1	Y0
					H0: General	digital output	terminal (fac	tory setting)
					H1: If no wei	ght is measur	ed, a digital o	output
					terminal will	be ON.		
					H2: If no wei	ght is measur	ed, a digital o	output
					terminal will	be OFF.		
					H3: If a weig	ht measured i	is greater tha	in the
					maximum we	eight specified	l, a digital ou	tput terminal
					will be ON.			
					H4: If a weig	ht measured i	is greater tha	in the
			R/W	Way in which a digital output	maximum we	eight specified	l, a digital ou	tput terminal
#105	H1069	0		terminal operates	will be OFF.			
					H5: If an exc	itation voltage	e is abnormal	l, a digital
					output termir	nal will be ON		
					H6: If an exc	itation voltage	is abnormal	, a digital
					output termir	nal will be OFI	F.	
						ht measured i		, ,
					specified, a c	digital output t	erminal will b	e ON.
					-	ht measured i		
						digital output t		
					-	ht measured	-	
					-	that is set to	output, a digi	tal output
					terminal will			
					H'A: If a weig	ght measured	is greater the	an t the

CR#	Address	Attribute		Attribute Register name		Register name	Explanation
					weight value that is set to output, a digital output terminal will be OFF.		
#106	H106A	0	R/W	Weight changing of CH1	Default: K0; setting range: K0 ~ K32767		
#107	H106B	0	R/W	Weight changing of CH2	Default: K0; setting range: K0 ~ K32767		
#109	H106D	x	R/W	Status of Y point	 Work with CR#104 and Y points 0: Y point output enabled (default) 1 : Y point output closed (the status of Y0-Y3 is OFF) 2: Y point output on hold (the status of Y0-Y3 cannot be changed) 		
#110	H106E	0	R/W	Y0 weight output setting value (Low word)			
#111	H106F	0	R/W	Y0 weight output setting value (High word)			
#112	H1070	0	R/W	Y1 weight output setting value (Low word)			
#113	H1071	0	R/W	Y1 weight output setting value (High word)	When the weight is greater than the weight value		
#114	H1072	0	R/W	Y2 weight output setting value (Low word)	that is set to output, you can set the Y point output to ON or OFF.		
#115	H1073	0	R/W	Y2 weight output setting value (High word)			
#116	H1074	0	R/W	Y3 weight output setting value (Low word)			
#117	H1075	0	R/W	Y3 weight output setting value (High word)			
#118	H1076	0	R/W	Y0 delay output time	Default: 0; setting range: 0 ~ 300; unit: 10 ms		

CR#	Address	Attribute		Register name	Explanation
#119	H1077	0	R/W	Y1 delay output time	
#120	H1078	0	R/W	Y2 delay output time	
#121	H1079	0	R/W	Y3 delay output time	
#130	H1082	0	R/W	Diameter of a pulley	Setting range: 0 ~ 32767 mm
#131	H1083	0	R/W	Number of pulses per revolution (PPR) for a speed sensor	Number of pulses per revolution Setting range: 0 ~ 32767 mm
#132	H1084	0	R/W	Length of a conveyor belt	Setting range: 0 ~ 32767 mm
#133	H1085	x	R	Flow rate of a conveyor belt (Low word)	
#134	H1086	x	R	Flow rate of a conveyor belt (Low word)	Unit: weight/second
#135	H1087	x	R	Accumulated weight (Low word)	
#136	H1088	x	R	Accumulated weight (High word)	Write the command K7 in CR#6 to clear the value
#140	H108C	x	R	Flow rate of CH1 (Low word)	
#141	H108D	x	R	Flow rate of CH1 (High word)	Flow rate is to measure the changing weight in a
#142	H108E	x	R	Flow rate of CH2 (Low word)	specific period, for example the weight changed in one second. Unit: weight/second
#143	H108F	x	R	Flow rate of CH2 (High word)	

4.2 Descriptions of the Control Registers

CR#0: Model name

[Description] DVP201LC-SL's model code=H'5106 DVP202LC-SL's model code=H'5206 DVP211LC-SL's model code=H'5906

CR#1: Firmware version

[Description]

High byte: Number at the left side of the decimal point in a version number Low byte: Number at the right side of the decimal point in a version number Example: $V1.01 \rightarrow CR#=H'0101$

CR#2: Eigenvalue

[Description]

The specifications for load cells vary from brand to brand. Users need to set an eigenvalue according to the specification for the load cell used.

Eigenvalue							
Specifications for the eigenvalue in a load cell	Selection of an eigenvalue	Setting value in CR#2					
0 mV/V < Eigenvalue≦1 mV/V	1m V/V	H'0000					
0 mV/V < Eigenvalue≦2 mV/V	2m V/V	H'0001 (Default setting)					
0 mV/V < Eigenvalue≦4 mV/V	4m V/V	H'0002					
0 mV/V < Eigenvalue≦6 mV/V	6m V/V	H'0003					
0 mV/V < Eigenvalue≦20 mV/V	20m V/V	H'0004					
0 mV/V < Eigenvalue≦40 mV/V	40m V/V	H'0005					
0 mV/V < Eigenvalue≦80 mV/V	80m V/V	H'0006					
Eigenvalue > 80 mV/V	Not supp	orted					

CR#3: Reaction time for measurement

[Description]

Users can set the time which needs to elapse before a weight is sampled. The shorter the time set is, the shorter the time it takes to filter weights. The weights measured are not in a stability range. If the time set is the maximum time which can be set, the weights measure will be in a stability range.

Reaction time for measurement				
Input value Description				
Mode 0: H'0000	2.5 ms			
Mode 1: H'0001	10 ms			
Mode 2: H'0002	16 ms			

Mode 3: H'0003	20 ms
Mode 4: H'0004	50ms (Default setting)
Mode 5: H'0005	60 ms
Mode 6: H'0006	100 ms
Mode 7: H'0007	200 ms
Mode 8: H'0008	400 ms

CR#6: Returning to zero/Subtracting a tare

[Description]

Users can use CR#6 to restore the weight measured to zero.

Input value	Description
K1	Subtracting the tare measured by CH1
K2	Not subtracting the tare measured by CH1
К3	Restoring the weight measured by CH1 to zero
K4	Subtracting the tare measured by CH2
K5	Not subtracting the tare measured by CH2
K6	Restoring the weight measured by CH2 to zero

CR#7: Displaying a gross weight/net weight

[Description]

Users can choose to display a gross weight or a net weight. The channel which is not used can be disabled.

Bit 15~bit 8	Bit 7~bit 0				
CH2	CH1				
K0: Displaying a gross weight					
K1: Displaying a net weight					

CR#8~11: Tare measured by CH1/CH2

[Description]

Tares are displayed in CR#8~CR#11. Users can write tares to CR#8~CR#11, or use CR#8~CR#11 to read tares.

CR#12~15: Weight measured by CH1/CH2

[Description]

Weights are displayed in CR#12~CR#15.

CR#16~17: Number of weights measured by CH1 in a stability range

[Description] Factory setting: K5 Setting range: K1~K500 Please refer to section 4.3.2 for more information.

CR#18~19: Stability range for CH1/CH2

[Description] Factory setting: K10 Setting range: K1~K10,000 Please refer to section 4.3.2 for more information.

CR#25: Total number of points which need to be adjusted

[Description] Factory setting: K2 Setting range: K2~K20 Users generally adjust two points, but they can adjust several points. The maximum number of points which can be adjusted is 20.

CR#26: Adjustment command

[Description]

An adjustment command is stored in CR#26.

(4	J L
	υ,

Command value	Description of CR#26				
	K1: The command value is used when no				
	weight is measured by CH1.				
K1~K20	K2~K20: The command values are used when				
	point 1~point 19 which are measured				
	by CH1 need to be adjusted.				
	K21: The command value is used when no				
	weight is measured by CH2.				
K21~40	K22~K40: The command values are used when				
	point 1~point 19 which are measured				
	by CH2 need to be adjusted.				

CR#27~28: Selecting a point which needs to be adjusted for CH1/CH2

[Description]

Command value	Description
K1~K19	Selecting point 1~point 19 for CH1
K1~K19	Selecting point 1~point 19 for CH2

CR#29~32: Digital value given to a point which needs to be adjusted for CH1/CH2

[Description]

The digital values given to points which need to be adjusted are displayed in CR#29~CR#32.

CR#33~36: Weight of a point which needs to be adjusted for CH1/CH2

[Description]

The weights of points which need to be adjusted are written to CR#33~CR#36.

CR#37~40: Maximum weight which can be measured by CH1/CH2

[Description]

Users can specify the maximum weight which can be measured by CH1/CH2. If the weight measured by

CH1/CH2 exceeds the maximum weight specified, bit 4/bit 9 in CR#51 will be set to 1.

CR#41: Storing all setting values

[Description]

CR#41 is used to store all setting values, and write them to the flash memory in the load cell module used. Factory setting: 0

If the value in CR#41 is H'5678, all setting values will be stored in the flash memory in the load cell module used. After the setting values are stored, the value in CR#41 will become H'FFFF. If the value written to CR#41 is not H'5678, it will automatically become H'0. For example, if H'1 is written to CR#41, it will become H'0.

Description	H'0	H'FFFF	H'5678
Setting	No action	All setting values are stored successfully.	Writing all setting values to the flash memory in the load cell module used

CR#43~44: Way in which weights measured by CH1/CH2 are filtered out

[Description]

Users can set a way in which weights measured by CH1/CH2 are filtered out according to their requirements.

K0: Not filtering weights (factory setting)

K1: Filtering out the maximum weight measured

K2: Averaging weights

CR#45~46: Filter parameter for CH1/CH2

[Description]

Filtering out the maximum weight measured: K0~K8

Averaging weights: The number of weights which need to be averaged should be in the range of K1 to K100.

CR#48~49: Range for determining whether the digital value corresponding to a weight measured by CH1/CH2 is 0 grams

[Description]

If the digital value corresponding to a weight measured by CH1/CH2 is in the range specified, bit 5/bit 10 in CR#51 will be set to 1.

CR#51: Status code

[Description]

Bit number	Value	Description
Bit 0	H'0001	Abnormal power
Bit 1	H'0002	Hardware failure
Bit 2	H'0004	The weight measured by CH1 exceeds the maximum weight which can be measured, or the voltage of SEN is incorrect.
Bit 3	H'0008	CH1 is adjusted incorrectly.
Bit 4	H'0010	The weight measured by CH1 exceeds the maximum weight which can be measured.
Bit 5	H'0020	No weight is measured by CH1.
Bit 6	H'0040	A weight measured by CH1 is in the stability range specified.

Bit number	Value	Description
Bit 7	H'0080	The conversion of a weight measured by CH2 into a digital value is incorrect, or the voltage of SEN is incorrect.
Bit 8	H'0100	CH2 is adjusted incorrectly.
Bit 9	H'0200	The weight measured by CH2 exceeds the maximum weight which can be measured.
Bit 10	H'0400	No weight is measured by CH2.
Bit 11	H'0800	A weight measured by CH2 is in the stability range specified.
Bit 12~bit 15		Reserved

CR#52~55: Setting RS-232/RS-485 communication												
[Description]												
Bit 15	Bit 14~Bit 8	Bit 7 Bit 6 Bi		Bit	5	Bit 4	Bit 3		Bit 2		Bit 1	Bit 0
ACSII/RTU	Reserved	Seria	al transm	nissio	on s	speed Data length S		Stop bit		Parity bit		
			0	Desc	ript	ion						
Bit 15	ACSII/RTU				0	ACSII			1	RT	U	
					0	9,600 bps			1	19,200 bps		
Bit 7~bit 4	Serial transm	ission s	peed		2	38,400 bps			3	57,600 bps		
					4	115,200 bps			5	5 Reserved		
Bit 3	Data length (RTU=8 bits)				0	7			1	1 8		
Bit 2	Stop bit				0	1 bit		1	2 bits			
			0	Even			1	1 Odd				
Bit 1~bit 0	Parity bit				2	Reserv	ved		3	Re	served	

Example: If RS-232 communication format is "115200, 7, E, 1, ASCII", the value in CR#53 will be H'0400.

4.3 Descriptions of Functions

4.3.1 Measuring a Net Weight

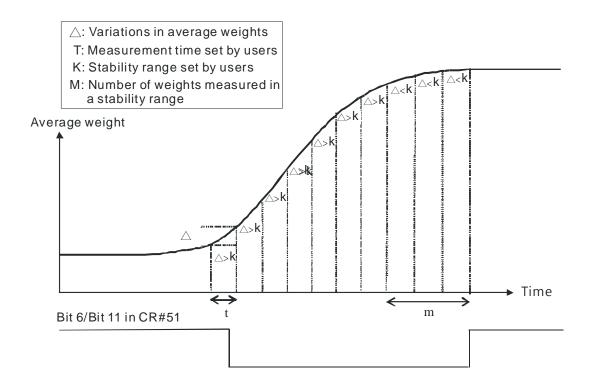
Users can choose to measure the net weight or the gross weight of an object. A net weight is the weight of a product, that is, the actual weight of a product without its package. The weight of a package is a tare. A gross weight is a total weight, namely a net weight plus a tare.

- Tare: A tare is the weight of a package
- Net weight: A net weight is the weight of a product, that is, the actual weight of a product without its package.
- Gross weight: A gross weight is a total weight, namely the weight of a product itself (a net weight) plus the weight of a package (a tare).
- Gross weight=Net weight+Tare

Example: A product weighs 10 kilograms, and the carton in which the product is packed weighs 0.2 kilograms. The total weight gotten is 10 kilograms. Net weight=10 kg

Tare=0.2 kg

Gross weight=10.2 kg

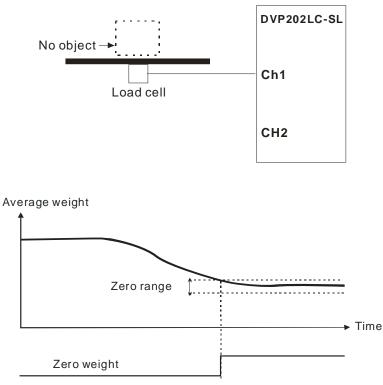

- Relevant control registers
 - CR#6: Returning to zero/Subtracting a tare
 - CR#7: Displaying a gross weight/net weight
 - CR#8~11: Tare measured by CH1/CH2

4.3.2 Stability Check

When an object is put on a load cell, users can check whether the present weight of the object is in a stability range specified.

- If a weight measured is in a stability range specified by users (CR#18/CR#19), bit 6/bit 11 in CR#51 will be set to 1.
- If a weight measured exceeds a range specified by users (CR#18/CR#19), bit 6/bit 11 in CR#51 will be set to 0. Bit 6/Bit 11 in CR#51 will not be set to 1 until the number of weights measured in a stability range reaches the value in CR#16/CR17.

Example: The measurement time set is 10 milliseconds, the number of weights measured in a stability range is 10, and the stability range set is 1000 grams. If a variation exceeds 1000 grams, bit 6/bit 11 in CR#51 will be set to 0. If the variations in 100 milliseconds (10×10 ms) are within 1000 grams, bit 6/bit 11 in CR#51 will be set to 1. (Users should judge whether the present weight measured is in the stability range set before they perform control.)



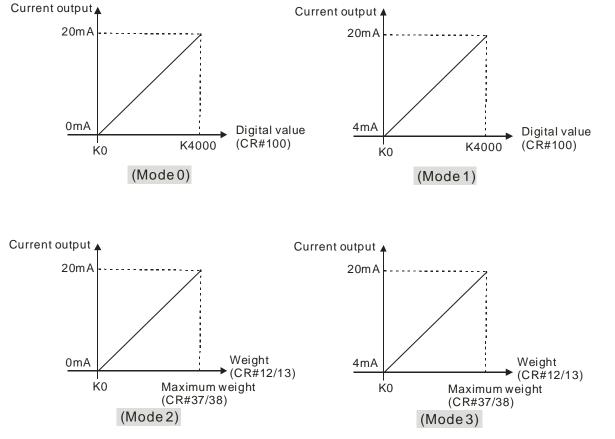
- Relevant control registers
 - CR#16/CR#17: Number of weights measured by CH1/CH2 in a stability range
 - CR#18/CR#19: Stability range for CH1/CH2

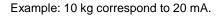
4-15

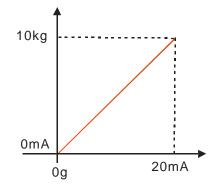
4.3.3 Determining Zero

If an object is removed from the load cell used, bit 6/bit 11 in CR#51 will be set to 1, bit 5/bit 10 in CR#51 will be set to 1, and users can perform the next control. (If a weight measured is in the zero range specified, bit 5/bit 10 in CR#51 will be set to 1.)

- Relevant control registers
 - CR#48/CR#49: Range for determining whether a weight measured by CH1/CH2 is 0 grams


4.3.4 Filtering out Weights


There are two ways to filter out weights.


- Filtering out the maximum/minimum weight measured: If there is a maximum weight or a minimum weight, CR#45/CR#46 can be used to filter out the maximum weight or the minimum weight. If the value in CR#45/CR#46 is bigger, more weights will be filtered out. Setting range: K0~K8
- Averaging weights: The values read are averaged so that a steady value is obtained. There may be peak values due to unavoidable external factors, and the average value obtained changes accordingly. The maximum number of values which can be averaged are 100.

4.3.5 Correspondence between Current Outputs and Weights

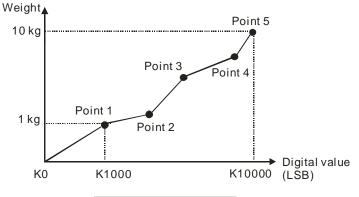
Currents outputs directly correspond to weights. Currents vary with weights. Users can set a current output mode by means of CR#103.

A load cell module is directly connected to the left side of a DVP series PLC. The instruction TO is used to set parameters.

CR#103 is set to K2, and CR#37/CR#38 is set to K10000. Please see the WPLSoft program shown below.

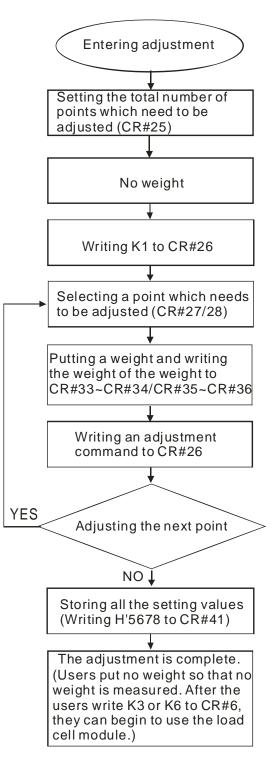
	\vdash				то	K100	K103	K2	K1
		DTO	K100	K37		K10000		K1	

Chapter 5 Making Adjustment


Table of Contents

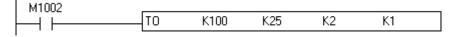
5.1	Steps in Adjusting Points	5-3
	Example 1	
5.3	Example 2	5-5

The purpose of making adjustment is to make the weight measured by a cell correspond to the digital value displayed in a load cell module. Generally, two points are adjusted. After a system is set up, users can put no load on the scale. The weight measured is 0 grams when no load is put on the scale. The users can put a given weight on the scale, and set a digital value corresponding to the weight. The two points are adjusted. For example, if a load cell sensor which can measure a maximum weight of 10 kg is used, and 1 kg correspond to K1000, the curve presented will be like the one shown below.


In addition to the adjustment of two points, a load cell supports the adjustment of multiple points (20 points at most). A characteristic curve is shown below.

Adjusting multiple points

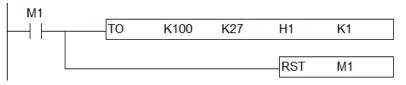
5.1 Steps in Adjusting Points

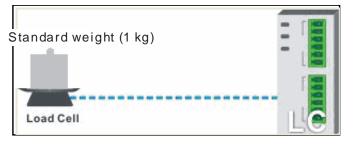


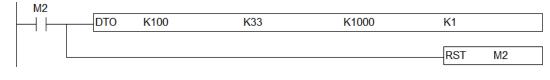
5.2 Example 1

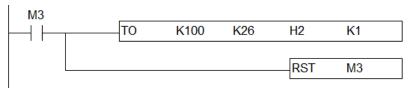
Example: One point is adjusted. (A weight which weighs 1 kg corresponds to 1000 lsb.) A load cell module is directly connected to the left side of a DVP series PLC. The instruction TO is used to make adjustment. The steps in making adjustment are as follows.

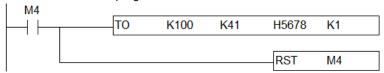
Step 1: Write K2 to CR#25. Please see the WPLSoft program shown below.


Step 2: Connect a load cell to a module, and put no load on the load cell.


Step 3: Write H'0001 to CR#26. Please see the WPLSoft program shown below.

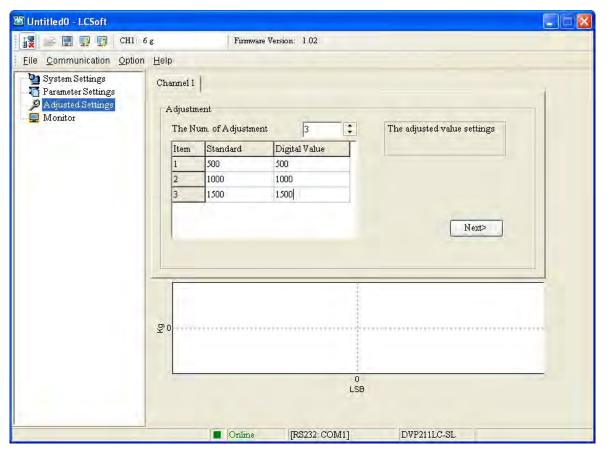

Step 4: Select point 1 (default setting), and write H1 to CR#27. Please see the WPLSoft program shown below.


Step 5: Put a standard weight which weighs 1000 g on the load cell.


Step 6: Write K1000 (1000 g) to CR#33.

Step 7: Write H2 to CR#26.

Step 8: Make sure that the value displayed is correct, and make the adjustment retentive. Write H'5678 to CR#41. Please see the WPLSoft program shown below.



5.3 Example 2

Example: Three points are adjusted.

A load cell module is used independently. The steps in making adjustment are as follows.

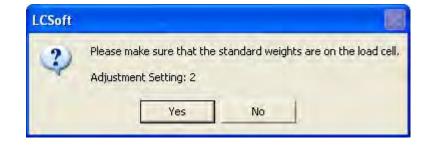
Step 1: Select **3** in the **The Num. of Adjustment** box. The weight of the first weight is 500 g. It corresponds to 500 lsb. The weight of the second weight is 1000 g. It corresponds to 1000 lsb. The weight of the third weight is 1500 g. It corresponds to 1500 lsb. Please see the figure below.

🛎 Untitled0 - LCSoft			
🙀 📄 📰 🐺 🗊 Сні	6g	Firmware Version: 1.02	
Eile Communication Option	on <u>H</u> elp		
System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 Adjustme Load C	Cell with out any load on it.	
	G 0	Channel 1 0 LSB	
		Online [RS232: COM1] DVP211LC-SL	

Step 2: Put no load on the load cell used. Please see the figures below.

Step 3: Put a standard weight which weighs 500 g on the load cell used, and click **Next**. Please see the figure below.

🗷 Untitled0 - LCSoft		
🙀 📄 📰 😨 🛐 🕻 CH1:	510 g Firmware Version: 1.02	
Eile Communication Optio	in Help	
System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 Adjustment Add standard weights on load cell. Load Cell Cell Cell Cell Cell Cell	
	Channel 1	
	D O LSB	
	Online [RS232: COM1] DVP211LC-SL	


Step 4: Type "500" in the **Wight value of weights** box, type "500" in the **Digital value of weights** box, and click **Next**. Please see the figures below.

🖺 Untitled0 - LCSoft			
🙀 📄 🖪 💀 🗊 🕻 CH1:	507 g	Firmware Version: 1.02	
<u>File</u> <u>Communication</u> <u>Option</u>	n <u>H</u> elp		
System Settings Parameter Settings Adjusted Settings Monitor	Weigh	weight value of weights and the ding digital value. value of weights 500 g value of weights 500	Cancel <back next=""></back>
	m0	Channel 1	
		0 LSB	
		Online [RS232: COM1]	DVP211LC-SL

Step 5: Put a standard weight which weighs 1000 g on the load cell used. Type "1000" in the **Wight value of** weights box, type "1000" in the **Digital value of weights** box, and click **Next**. Please see the figures below.

🗷 Untitled0 - LCSoft		
🙀 📄 📰 💀 🗊 CH1: S	00 g Firmware Version: 1.02	
Eile Communication Option	Help	
System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 A djustment A djustment Setting Weight value of weights 1000 g Digital value of weights 1000 < Back Next>	
	Channel 1 500	
	500 400 300 200	
	100 0 0 0 50 100 150 200 250 300 350 400 450 500 LSB	
	Online [RS232: COM1] DVP211LC-SL	

Step 6: Put a standard weight which weighs 1500 g on the load cell used. Type "1500" in the **Wight value of** weights box, type "1500" in the **Digital value of weights** box, and click **Next**. Please see the figures below.

🖥 Untitled0 - LCSoft								
🙀 📄 📰 😨 🗊 🕅 CH1:	921 g	Firmware Versi	on: 1.02					
<u>File</u> <u>Communication</u> <u>Option</u>	in <u>H</u> elp							
System Settings Parameter Settings Adjusted Settings Monitor		t Setting value of weights alue of weights	1500 1500	g	Cance < Bac		>	
	1,000		Ch	annel 1			1,0 (1,0	
	600 400 200 0 200	100 200	300 400	500	600	700 800	900 1,0	
		Online	[RS232: CON	LSB		1LC-SL	300 1,0	

Step 7: The adjustment made is complete, and a curve is displayed. Please see the figures below.

📄 🔜 💀 🛐 CH1: 1	1499 g	Firmware	Version: 1.02	
Communication Option	Help	10.0		
System Settings Parameter Settings Adjusted Settings Monitor	Channel 1 Adjustment The Num.	of A djustmen	t 3 🗘	The adjusted value settings
	Item S	tandard	Digital Value	
	1 5	00	500	
	2 1	000	1000	
	3 1	500	1500	
	4 500		Channel	1,50
	1,500		Channel *	1,50 1,000
	1,000 ප 500		Channel ' 500 X	
	1,000 පා	200		1,000 800 1,000 1,200 1,400

MEMO

