

Температурные контроллеры серия DT3

Руководство по эксплуатации / Паспорт

СОДЕРЖАНИЕ

1. C	СНОВНЫЕ СВЕДЕНИЯ ОО ИЗДЕЛИИ	4
1	.1. Назначение	4
1	.2. Основные сведения	4
2 (Основные технические данные	5
	.1. Меры предосторожности	
	.2. Особенности термоконтроллеров серии DT3	
	.3. Базовая структура системы	
	.4. Дисплей, светодиодные индикаторы и клавиши	
	.3. Маркировка и упаковка	
	.5. Спецификация	
	.6. Порядок работы	
	.7. Настройка параметров	
	.8. Начальная установка параметров	
	.9. Настройка дисплея	
	.10. Задание верхнего/нижнего предела температуры	
	.11. Настройка входного фильтра PV и коррекция входного сигнала	
	.12. Настройка аналогового сигнала по напряжению и току	
	.13. Отключение компенсации холодного спая термопары	
	.14. Настройка диапазона значений аналогового выхода	
	.15. Настройка ретрансляционного (пропорционального) выхода и компенсации	
	.16. Проверка версии прошивки и типа выходов	
	.17. Выбор режима: Нагрев/Охлаждение/Двухконтурное управление (нагрев/охлажден	
	варийный сигнал 3	
2	18. Настройки режима управления заданным значением SV	. 24
2	.19. Настройка метода управления	. 28
	.20. Установка нескольких ПИД наборов	
2	.21. Функция автонастройки ПИД-регулятора	. 32
2	.22. Задание инверсии управляющих выходов	. 33
2	.23. Ограничение выходного сигнала	. 33
	.24. Функция токового трансформатора (СТ)	
2	.25. Дополнительные дискретные входы управления (EVENT)	. 34
	.26. Пределы температурного диапазона	
2	.27. Пользовательские настройки функциональных клавиш F1, F2	. 35

2.28. Редактирование пользовательских экранных меню	35
2.29. Сброс на заводские настройки	37
2.30. Функция блокировки клавиш	37
2.31. Выходы аварийной сигнализации	38
2.32. Список параметров коммуникации по RS-485	41
3. Комплектность	48
4. Индивидуальные особенности изделия	49
5. Срок службы (годности) изделия	49
6. Сроки замены (восстановления) или критерии предельного со частей изделия, при которых их эксплуатация допустима	
7. Гарантийные обязательства	49
8. Свидетельство об упаковывании	50
9. Свидетельство о приемке и продаже	50
10. Сведения о цене и условиях приобретения изделия	50
Приложение А. Опциональные платы	51
Приложение В. Габаритные и установочные размеры DT3	52
Приложение С. Монтаж и установка кронштейна	53
Приложение D. Схемы подключения и меры предосторожности	55
Схемы подключения для моделей с питанием постоянным током	56
Схемы подключения для моделей с питанием переменным током	56

1. Основные сведения об изделии

1.1. Назначение

Температурные контроллеры серии DT3 предназначены для регулирования температуры путем управления процессами нагрева или охлаждения в автоматическом режиме, а также для поддержания температуры на заданном уровне.

1.2. Основные сведения

Наименование изделия Обозначение изделия Наименование

изготовителя

Температурные контроллеры DT3

КОД ТН ВЭД ТС 9032 89 000 0

«Delta Electronics, Inc.».

Место нахождения: 86 Ruey Kuang Road. Neihu, Taipei 11491. Тайвань (Китай). Фактический адрес: 86 Ruey Kuang Road, Neihu, Taipei 11491, Тайвань (Китай).

Филиалы завода-изготовителя: «Delta Electro-Optics (Wujiang) LTD» Место нахождения: No.1688, Jiangxing East Road, Wujiang Economic Development Zone, Wujiang City, Jiangsu Province, Китайская Народная Республика. Фактический адрес: No.1688, Jiangxing East Road, Wujiang Economic Development Zone, Wujiang City, Jiangsu Province, Китайская Народная Республика. «Delta Electronics, Inc.» Место нахождения: 18 Xinglong Road, Таоуиап City, Taoyuan County 33068. Тайвань (Китай). Фактический адрес: 18 Xinglong Road, Taoyuan County

,

Заводской номер изделия (серии)

Адрес изготовителя

(заполняется вручную)

Сведения о

сертификации изделия

Номер сертификата

Дата выдачи

Срок действия сертификата Сертификат соответствия (ЕАС Таможенный союз)

TC RU C-TW.AУ04.B.05440, Серия RU №0707993

15.06.2018

до 04.04.2022 включительно

33068, Тайвань (Китай).

Орган, выдавший сертификат Орган по сертификации Общество с ограниченной ответственностью «Сертификация и экспертиза». Место нахождения: 109202, Российская Федерация, город Москва, улица Басовская, дом 16, строение 1, этаж 6, помещение IX, комната № 43. Адрес места осуществления деятельности: 117420, Российская Федерация, город Москва, улица Профсоюзная, дом 57. Телефон: +7 (495) 506-11-60, адрес электронной почты: info@certexp.ru. Аттестат аккредитации регистрационный № РОСС RU.0001.10AУ04 выдан 13.03.2018 года

 протокол испытаний от 14.06.2018 года № 00648-01/2018-06 Испытательной лаборатории (центра) продукции народного потребления Общества с ограниченной ответственностью «Межрегиональный центр исследований и испытаний», регистрационный номер аттестата аккредитации № RA.RU.21A047;

Основание для выдачи

- акт анализа состояния производства от 14.06.2018 года № 3775;
- руководство по эксплуатации;

Схема сертификации: 1с

Стандарты, международные правила, иные официальные документы, содержащие перечень стандартов, на соответствие которым производилась сертификация

ТР ТС 004/2011 «О Безопасности Низковольтного Оборудования»

TP TC 020/2011 «Электромагнитная Совместимость Технических Средств»

2. Основные технические данные

2.1. Меры предосторожности

ПРЕДУПРЕЖДЕНИЕ!

Соблюдайте меры предосторожности, указанные в данном руководстве. Невыполнение этих требований может привести к неправильной работе контроллера или периферийных устройств или даже к серьезным ситуациям, таким как пожар, поражение электрическим током или повреждение устройства.

ВНИМАНИЕ! ОПАСНО! Опасность поражения электрическим током!

- 1. Во избежание поражения электрическим током не прикасайтесь к клеммам во время подачи питания на устройство.
- 2. Не вскрывайте прибор, не убедившись в отсутствии на клеммах напряжения питания.

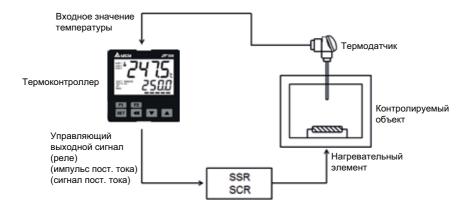
ВНИМАНИЕ!

DT3 является устройством открытого исполнения, т.е. не имеет защиты от попадания твердых тел и проникновения влаги (IP00). В связи с этим он должен быть установлен в месте, защищенном от воздействия высоких температур, влажности, капель воды, пыли, коррозионно-опасных материалов, электрических разрядов и вибраций. При установке DT3 в шкафу шкаф должен запираться, но обеспечивать доступ для проведения техобслуживания оборудования в случае необходимости.

Этот контроллер не снабжен автоматическим выключателем или предохранителем, поэтому в системе, включающей данное устройство, должен быть предусмотрен предохранитель или автоматический выключатель. Предохранитель или автоматический выключатель должны находиться поблизости и быть легко доступными для оператора, и на них должны быть нанесена маркировка для данного устройства.

- 1. Для имеющихся соединений без применения пайки всегда используйте изолированные вильчатые клеммы (винт М3, ширина 6 мм) с контролем усилия затяжки. Убедитесь в правильной полярности подключения клемм.
- 2. Во избежание возникновения неисправностей не допускайте попадания пыли или металлической стружки внутрь устройства. Не вносите изменений и не удаляйте платы в DT3. Не используйте свободные клеммы без необходимости.
- 3. Во избежание помех, не используйте вблизи источников электромагнитного и другого высокочастотного излучения. Не используйте в средах, содержащих:

- (а) пыль или агрессивные газы; (b) высокую влажность или высокую радиацию; (c) ударные нагрузки и вибрацию.
- 4. При подключении или замене устройства необходимо отключать питание.
- 5. При установке плат расширения убедитесь, что питание базового блока отключено и установите плату расширения в соответствующий слот.
- 6. Убедитесь в использовании соответствующих компенсационных проводов при подключении термопар или термометров сопротивления.
- Для предотвращения помех используйте, по возможности, короткие провода для подключения нагрузки (термопар, ТС), проследите, чтобы провода питания не проходили рядом с проводами подключения нагрузки.
- 8. Убедитесь, что провода питания и провода подключения нагрузки подключены в соответствующие им клеммы, в противном случае, возможно возникновение серьезных неисправностей.
- 9. Не касайтесь контактов и не проводите ремонт устройства при подключенном питании, это может привести к поражению электрическим током.
- 10. После отключения питания перед выполнением работ с устройством подождите не менее 1 мин. Это время требуется для полной разрядки конденсаторов.
- 11. Во избежание повреждения DT3 не прикасайтесь к клеммам при включении/ выключении устройства.
- 12. Размещайте DT3 на необходимом расстоянии от других источников тепла (например, блоков питания и т.п.).
- 13. Не используйте кислоты и щелочи для чистки устройства, пользуйтесь мягким материалом для ухода за DT3.
- 14. При обслуживании контроллера сначала отключите питание и протрите поверхность сухой тканью. Не открывайте корпус и не прикасайтесь к внутренним цепям, чтобы избежать их разрушения или неисправности.
- 15. Не используйте острые предметы для нажатия кнопок управления. Это может привести к повреждению поверхности кнопки или даже к поражению электрическим током при случайном доступе к внутренней цепи.
- 16. При измерении тока используйте внешний трансформатор тока (ТТ).
- 17. При использовании этого устройства СТ обратите внимание, что трансформатор тока не должен находиться под разомкнутой цепью.
- 18. При использовании устройства СТ убедитесь, что шина питания на вторичной стороне трансформатора тока заблокирована и прикреплена к устройству, чтобы предотвратить падение шины во время использования, которое может повредить устройство.
- 19. При использовании трансформатора тока с устройством для обеспечения безопасности используйте трансформатор, соответствующий стандарту IEC-61010-2-032.
- 20. При измерении тока необходимо использовать трансформатор тока вместе с устройством.
- 21. Используйте только медные провода.


2.2. Особенности термоконтроллеров серии DT3

Серия DT3 — это новый термоконтроллер с оптимальным соотношением цена/качество. Это значительно снижает затраты и время на проектирование систем регулирования, а также улучшает функционал систем контроля температуры. Благодаря ЖК-панели с высоким разрешением оператор может легко контролировать температуру в любой среде для различных применений.

- ЖК-панель с высоким разрешением: высококонтрастная и настраиваемая графика для удобства пользователя.
- Время высокоскоростной выборки 100 мс: Высокая скорость выборки для измерения внешней температуры и быстрый выходной отклик для требований производительности высокоточного контроля.
- Определяемые пользователем функциональные клавиши и гибкость модульного расширения.
- Соответствует международной сертификации безопасности СЕ.

2.3. Базовая структура системы

DT3 получает значение температуры от термодатчика и отправляет измеренные значения в электронный процессор. После вычисления и при фиксированном цикле управления он пропорционально отправляет сигнал управления нагревом через различные выходные устройства или интерфейсы, такие как реле, импульсы напряжения или сигнал постоянного тока. Подавая питание на нагреватель и повышая температуру, DT3 будет затем контролировать изменение температуры в пределах заданного диапазона.

2.4. Дисплей, светодиодные индикаторы и клавиши

PV: Текущее значение

SV: Заданное значение

°C,°F:Градусы по Цельсию/Фаренгейту (светодиод)

ALM1~ ALM3: Аварийные выходы (светодиод)

AT: Автонастройка (светодиод) MAN: Ручной режим (светодиод) OUT1/OUT2: Выходы (светодиод)

REMOTE: Дистанционное управление (светодиод)

EV: Событие (светодиод)

2.3. Маркировка и упаковка

DT3 1 2 3 4 - 5 6 7 8

Наименование серии	DT3: температурные контроллеры Delta серии 3		
12 Размер лицевой панели (ШхВ)	20: 4848 1/16 DIN Ш48 В48 мм 30: 7272 Ш72 В72 мм	40: 4896 1/8 DIN Ш48 В96 мм 60: 9696 1/4 DIN Ш96 В96 мм	
3 Тип управляющего выхода 1	R: Релейный выход, 250 В перемен V: Импульсный выход по напряжен C: Токовый выход, 4 ~ 20 мА пост. т L: Линейный выход по напряженик	нию, 12 B ±10% гока	
4 Питание	А: Переменный ток 80 ~ 260 В D: Постоянный ток 24 В (кроме мо,	дели DT330 7272)	
5 Тип управляющего выхода 2	0: Нет R: Релейный выход, 250 В перемен V: Импульсный выход по напряжен C: Токовый выход, 4 ~ 20 мА пост. т L: Линейный выход по напряженик	нию, 12 B ±10% гока	
6 Событийный вход / Трансформатор тока (опция 1)	0: Нет 1: Дискретный вход управления 3 (2: Связь по RS-485 (кроме модели DT330 7272)	(событийный вход EVENT3)	
7 Событийный вход / Трансформатор тока / Доп. выход (опция 2)	0: Нет 1: Дискретный вход управления 2 : 2: Измерительный вход трансфорі 3: Ретрансляционный выход входн (кроме модели DT330 7272)	матора тока (CT) 2	
8 Событийный вход / Трансформатор тока (опция 3)	0: Нет 1: Дискретный вход управления 1 2: Измерительный вход трансфорг 3: Вход для удаленного задания ус (кроме модели DT330 7272)	матора тока (СТ) 1	

При изготовлении на прибор наносятся:

- наименование прибора
- товарный знак предприятия-изготовителя
- заводской номер
- год изготовления
- номинальное напряжение питания и потребляемая мощность
- схема подключения
- степень защиты корпуса

Серийный номер:

Упаковка прибора производится в потребительскую тару, выполненную из гофрированного картона.

2.5. Спецификация

	80 ~ 260 В переменного тока, 50/60 Гц±10%;	
Напряжение питания	24 В переменного тока, 50/60 Гц±10%;	
	24 В постоянного тока ±10%	
Потребляемая мощность	8 ВА макс.	
Индикация	ЖК-дисплей. Текущее значение (PV): Желтый, Заданное значение (SV): Зеленый	
	Термопара: K, J, T, E, N, R, S, B, L, U, ТХК	
	(Не подключайте место измерения термопары непосредственно к источнику питания)	
Входной сигнал	Платиновое термосопротивление: Pt100, JPt100	
	Сопротивление: Cu50, Ni120	
	Аналоговый входной сигнал: 0 ~ 5 B, 0 ~ 10 B, 0 ~ 20 мА, 4 ~ 20 мА, 0 ~ 50 мВ	
Режим управления	ПИД, программируемый ПИД (Ramp (нагрев или охлаждение)/ Soak (выдержка) управление), нечеткая логика (FUZZY), самонастройка, ручной и ВКЛ/ВЫКЛ	

	Релейный выход: макс. нагрузка 250 В перем. тока, 5 А резистивная нагрузка		
Управляющие выходы	Импульсный выход по напряжению: 12 В пост. тока, макс. выходной ток 40 мА		
	Токовый выход: 4 ~ 20 мА (сопротивление нагрузки: < 500Ω)		
	Аналоговый выход по напряжению: 0 ~ 10 В (сопротивление нагрузки: 1к Ω ~ 2М Ω)		
Аварийный выход	Релейный выход: макс. нагрузка 250 В перем. тока, 3 А резистивная нагрузка		
Точность отображения	0 или 1 знак после десятичной запятой (настраивается)		
Частота дискретизации	Аналоговый вход: 0.1 с/скан; Термопара или ТС: 0.1 с/скан		
Виброустойчивость	10 ~ 55 Гц, 10 м/с² в течение 10 минут по каждой из трех осей		
Ударопрочность	Макс. 300 м/с², 3 раза по каждой из трех осей в 6 направлениях		
Рабочая температура	0°C ~ +50°C		
Температура хранения	-20°C ~ +65°C		
Высота установки	Макс. 2000 м над уровнем моря		
Влажность воздуха	35% ~ 80% (без выпадения конденсата)		
Степень загрязнения	2		

2.6. Порядок работы

- ❖ Режимы: работа, настройка и начальная установка параметров. DT3 входит в «рабочий режим» автоматически после включения. Нажмите для входа в «режим регулирования». Если нажать и удерживать в течение 3 сек, то произойдет вход в «режим начальной установки параметров». При однократном нажатии клавиши в режимах регулирования и начальной установки параметров произойдет возврат в рабочий режим.
- → Настройка: Во всех трех режимах используйте
 ✓ для выбора параметра, клавиши
 ✓ для сохранения настройки.

Схема переключения режимов и настройки параметров:

2.7. Настройка параметров

ГРАБОЧИЙ РЕЖИМ 1

Обознач.	Описание	Заводская установка
1234	Используйте	

Обознач.	Описание	Заводская установка
R-5	RUN/STOP: управление ВКЛ/ВЫКЛ	RUN
PERN	PATTERN: номер начального набора уставок (задается в режиме программного управления)	0
SEEP	STEP: номер начального шага в наборе уставок (задается в режиме программного управления)	0
SP	SELECT POINT: позиция десятичной запятой (0: целое число; 1: один знак после запятой)	1
LoE	LOCK: Режим блокировки (LOCK1: все; LOCK2: все, кроме SV и клавиш F1/F2)	OFF
AL IH	ALARM1 HIGH: верхний предел для аварийной сигнализации 1 (ото- бражается в режиме ALARM)	4.0
AL IL	ALARM1 LOW: нижний предел для аварийной сигнализации 1 (отображается в режиме ALARM)	4.0
AL 2H	ALARM2 HIGH: верхний предел для аварийной сигнализации 2 (ото- бражается в режиме ALARM)	4.0
AL2L	ALARM2 LOW: нижний предел для аварийной сигнализации 2 (отображается в режиме ALARM)	4.0
AL 3H	ALARM3 HIGH: верхний предел для аварийной сигнализации 3 (выход OUT2 с функцией ALARM будет отображать состояние в соответствии с настройками режима ALARM)	4.0
AL 3L	ALARM3 LOW: нижний предел для аварийной сигнализации 3 (выход OUT2 с функцией ALARM будет отображать состояние в соответствии с настройками режима ALARM)	4.0
A IHP	ALARM1 HIGH PEAK: Верхнее пиковое значение для аварийной сигнализации 1	
RILP	ALARM1 LOW PEAK: Нижнее пиковое значение для аварийной сигна- лизации 1	
R2KP	ALARM2 HIGH PEAK: Верхнее пиковое значение для аварийной сигнализации 2	
R2LP	ALARM2 LOW PEAK: Нижнее пиковое значение для аварийной сигнализации 2	
R3HP	ALARM3 HIGH PEAK: Верхнее пиковое значение для аварийной сигнализации 3 (выход OUT2 с функцией ALARM будет отображать состояние в соответствии с настройками режима ALARM)	
R3LP	ALARM3 LOW PEAK: Нижнее пиковое значение для аварийной сигна- лизации 3 (выход OUT2 с функцией ALARM будет отображать состоя- ние в соответствии с настройками режима ALARM)	
oUt I	OUT1: Отображение и настройка значения сигнала управляющего выхода 1	0.0
oUt2	OUT2: Отображение и настройка значения сигнала управляющего выхода 2 (отображается при работе выхода OUT2 в режиме нагрев/охлаждение)	0.0
o IMA	OUT1 MAX: Верхний предел в % для управляющего выхода 1 (выполняется повторное вычисление линейной зависимости)	100.0

Обознач.	Описание	Заводская установка
o IMC	OUT1 MIN.: Нижний предел в % для управляющего выхода 1	0.0
o2MR	OUT2 MAX: Верхний предел в % для управляющего выхода 2 (отображается при работе выхода OUT2 в режиме нагрев/охлаждение)	100.0
o2MI	OUT2 MIN: Нижний предел в % для управляющего выхода 2 (отображается при работе выхода OUT2 в режиме нагрев/охлаждение)	0.0
EE I	СТ1: Отображение текущего сигнала СТ1 (отображается, когда внешний трансформатор тока (СТ) подключен к СТ1)	
[F2	СТ2: Отображение текущего сигнала СТ2 (отображается, когда внешний СТ подключен к СТ2) нажмите	

[РЕЖИМ НАЧАЛЬНОЙ УСТАНОВКИ ПАРАМЕТРОВ]

Обознач.	Описание	Заводская установка
INPL	INPUT: Настройка типа входного сигнала (в меню "Temperature Sensor Type & Temperature Range Chart" (Установка типа температурного датчика и диапазона температур) для выбора термопары или термо- метра сопротивления)	PT
LPUN	TEMP. UNIT: Выбор единицы измерения $/$ не отображается в режиме аналогового ввода	
ŁP-H	TEMP. HIGH: Верхний предел диапазона температуры (верхний предел диапазона температур неодинаков для разных типов датчиков)	850.0
ŁP-L	TEMP. LOW: Нижний предел диапазона температуры (нижний предел диапазона температур неодинаков для разных типов датчиков)	-200.0
EERL	CONTROL: Выбор метода управления. Доступны 5 методов: ON- OFF(ВКЛ-ВЫКЛ), PID (ПИД), MANU (РУЧНОЙ), FUZZY(НЕЧЕТКАЯ ЛОГИКА) и 2PID (ПИД)	PID
CERS.	CONTROL SV: Выбор режима управления заданным значением SV: CONS (Постоянное SV); PROG (программный режим); SLOP (Линейно изменяющееся SV) и REMO (удаленное управление). Режим REMO доступен при активации функции дистанционного управления REMOTE	CONS
WESI'	WAIT SV: Допустимое отклонение температуры (отображается в режиме программирования)	
W-FW	WAIT TIME: Время ожидания достижения температуры (отображается в режиме программирования)	
SLoP	SLOP: Задание скорости выхода на температуру первого шага циклограммы (отображается в режиме программирования)	
PALN	РАТТЕRN: Выбор номера редактируемого набора уставок температуры и времени. Отображается в режиме программирования. Доступны 16 наборов уставок по 16 шагов в каждом. Значения: ОFF (ВЫКЛ), SAVE (COXP.), 0~F.	OFF

Обознач.	Описание	Заводская установка
LUNE	TUNE: Выбор метода автоматической настройки ПИД: автонастройка (AT) или самонастройка (ST) (отображается в режиме ПИД регулирования (PID/2PID)	АТ
5-H[SELECT HEAT/COOL: Выбор функции нагрева, охлаждения, двухконтурного управления (нагрев/охлаждение) или аварийного сигнала 3	H1H2
ALA I	ALARM1 SET: Вариант режима аварийной сигнализации 1 (см. раздел "Alarm Output" - Выходы аварийной сигнализации)	0
AL lo	ALARM1 OPTION: Настройка опций аварийной сигнализации 1 (см. раздел "Alarm Output" - Выходы аварийной сигнализации)	0
AL 14	ALARM1 DELAY: Настройка задержки для режима аварийной сигнализации 1 (см. раздел "Alarm Output" - Выходы аварийной сигнализации)	0
ALA2	ALARM2 SET: Вариант режима аварийной сигнализации 2 (см. раздел "Alarm Output" - Выходы аварийной сигнализации)	0
AL Zo	ALARM2 OPTION: Настройка опций аварийной сигнализации 2 (см. раздел "Alarm Output" - Выходы аварийной сигнализации)	0
AL 24	ALARM2 DELAY: Настройка задержки для режима аварийной сигнализации 2 (см. раздел "Alarm Output" - Выходы аварийной сигнализации)	0
ALA3	ALARM3 SET: Вариант режима аварийной сигнализации 3 (см. раздел "Alarm Output" - Выходы аварийной сигнализации) (отображается при настройке выхода OUT2 в режиме ALARM)	0
AL 30	ALARM3 OPTION: Настройка опций аварийной сигнализации 3 (см. раздел "Alarm Output" - Выходы аварийной сигнализации) (отображается при настройке выхода OUT2 в режиме ALARM)	0
RL 3d	ALARM3 DELAY: Настройка задержки для режима аварийной сигнализации 3 (см. раздел "Alarm Output" - Выходы аварийной сигнализации) (отображается при настройке выхода OUT2 в режиме ALARM)	0
Pl/E	PV Color Change Function (смена цвета индикации PV): Задание аварийной сигнализации при которой будет изменяться цвет индикации текущего значения PV. (см. раздел "Alarm Output" - Выходы аварийной сигнализации)	OFF
Pasw	Изменение температуры в режиме 2PID (отображается в режиме 2PID)	1.0
PdRE	Сброс температуры в режиме 2PID (отображается в режиме 2PID)	0.5
RMEP	REMOTE TYPE: Задание типа сигнала дистанционного управления (отображается при заданном в режиме REMO) (V0: 0~5B; V1: 1~5B; V10: 0~10B; MA0: 0~20мA; MA4: 4~20мA)	MA4
EXEC	Опции параметров 1 (см. настройку режима управления заданной величиной SV, отключение компенсации холодного спая термопары, настройку ретрансляционного (пропорционального) выхода)	0
E * E 2	Опции параметров 2 (см. настройку режима управления заданной величиной SV, отключение компенсации холодного спая термопары, настройку ретрансляционного (пропорционального) выхода)	0

Обознач.	Описание	Заводская установка
Eo5H	COMMUNICATION WRITE: Включение/отключение возможности изменения параметров по коммуникационному протоколу.	OFF
[-SL	COMMUNICATION SELECT: Выбор формата передачи: ASCII или RTU	ASCII
[-No	COMMUNICATION NO.: Задание коммуникационного адреса	1
<i>ЪР</i> 5	BPS: Задание скорости передачи данных	9600
LEN	LENGTH: Задание длины пакета связи	7
StoP	STOP: Задание стоп-бита	1
PREY	PARITY: Установка бита проверки на четность нажмите	E

[РЕЖИМ РЕГУЛИРОВАНИЯ]

Обознач.	Описание	Заводская установка
RŁ	AT: Включение автоматической настройки параметров (отображается при выборе Ctrl = PID/FUZZY/2PID, TUNE = AT, R-S=RUN Нажмите	
SŁ	ST: Включение самонастройки параметров (отображается при выборе Ctrl = PID, TUNE = ST)	OFF
Pīd	PID NO.: Выбор номера группы настроек ПИД-регулирования (n=0~5) или AUTO. При задании режима AUTO номер группы настроек выбирается автоматически в зависимости от заданной температуры. (Отображается при Ctrl=PID)	0
SV 0 SV 5	PID SV NO.: Задание значения уставки температуры SV для наборов параметров (n=0~5) ПИД-регулятора. Это позволяет системе осуществлять автоматический выбор подходящего набора параметров в режиме AUTO. (Отображается при Ctrl = /FUZZY/2PID).	100
P0 ~ P5	Р: Задание пропорционального коэффициента ПИД-регулятора (n=0~5). (Отображается при Ctrl = PID/FUZZY/2PID; параметр задается автоматически при TUNE=AT.)	47.6
~ ~ ~	I: Задание интегрального коэффициента ПИД-регулятора (n=0~5). (Отображается при Ctrl = PID/FUZZY/2PID; параметр задается автоматически при TUNE=AT.)	260

Обознач.	Описание	Заводская установка
_d0 ~ d5	D: Задание дифференциального коэффициента ПИД-регулятора (n=0~5). (Отображается при Ctrl = PID/FUZZY/2PID; параметр задается автоматически при TUNE=AT.)	41
ZoFO ZoFS	I OFFSET: Ограничение интегрирования для набора параметров n=0~5. (Отображается при Crtl=PID/FUZZY/2PID; параметр задается автоматически при TUNE=AT.)	0
PdoF	PD OFFSET: Величина статической ошибки регулирования при П- и ПД-регулировании (Ti=0)	0
F Z - R	Задание коэффициента усиления Fuzzy (при Ctrl=FUZZY)	4
FZdb	Задание зоны нечувствительности Fuzzy (при Ctrl=FUZZY)	0
o I-5	OUT1 HYSTERESIS: Регулировка гистерезиса выходного сигнала 1 (в режиме ВКЛ/ВЫКЛ (ON/OFF))	0
o2-5	OUT2 HYSTERESIS: Регулировка гистерезиса выходного сигнала 2 (в режиме ВКЛ/ВЫКЛ (ON/OFF))	0
o I-H	OUT1 HEAT: Период следования управляющих импульсов при нагреве (цикл ПИД- регулирования), управляющий выход 1 (при Ctrl = PID/FUZZY/MANUAL/2PID)	
o I-E	OUT1 COOL: Период следования управляющих импульсов при охлаждении (цикл ПИД- регулирования), управляющий выход 1 (при Ctrl = PID/FUZZY//MANUAL/2PID)	Выбор для выхода: С; V; S:
o2-H	OUT2 HEAT: Период следования управляющих импульсов при нагреве (цикл ПИД- регулирования), управляющий выход 2 (при Ctrl = PID/ FUZZY/MANUAL/2PID)	5, v, з. 5 сек. R: 20 сек
o2-E	OUT2 COOL: Период следования управляющих импульсов при охлаждении (цикл ПИД- регулирования), управляющий выход 2 (при Ctrl = PID/FUZZY/MANUAL/2PID)	
CoEF	СОЕF: Коэффициент для П-составляющей ПИД регулятора для управляющего выхода 2 при двухконтурном управлении (при Ctrl= PID/FUZZY/2PID)	1.00
dERd	DEAD: Настройка зоны нечувствительности (в двухконтурном режиме, кроме Ctrl = MANUAL)	0
Pl' - F	PV FILTER: Задание коэффициента входного фильтра PV	1
Pl' - R	PV RANGE: Отклонение входного сигнала для включения входного фильтра PV	1.00
Pl'oF	PV OFFSET: Смещение входной характеристики PV	0.0
Pl/5R	PV GAIN: Коэффициент коррекции наклона характеристики PV	0.000

Обознач.	Описание	Заводская установка
SI'SL	SV SLOPE: Задание скорости изменения уставки (при CRTS = SLOP)	
A IMA	ANALOG OUT1 MAX.: Смещение верхнего предела сигнала аналогового выхода 1 (1 шаг = 1 μ A; 1 шаг = 1 мB)	0
A MC	ANALOG OUT1 MIN.: Смещение нижнего предела сигнала аналогового выхода 1 (1 шаг = 1 μ A; 1 шаг = 1 мB)	0
A2MA	ANALOG OUT2 MAX.: Смещение верхнего предела сигнала аналогового выхода 2 (1 шаг = 1 μ A; 1 шаг = 1 мB)	0
A2MC	ANALOG OUT2 MIN.: Смещение нижнего предела сигнала аналогового выхода 2 (1 шаг = 1 μ A; 1 шаг = 1 мB)	0
REMA	RETRANSMISSION MAX.: Смещение верхнего предела сигнала ретрансляционного выхода (1 шаг = 1 µA) (отображается при подключенной к DT3 ретрансляционной плате)	0
REME	RETRANSMISSION MIN.: Смещение нижнего предела сигнала ретрансляционного выхода (1 шаг = 1 µA) (отображается при подключенной к DT3 ретрансляционной плате)	0
RM-6	REMOTE GAIN: Настройка усиления сигнала дистанционного управления (при CRTS = REMO)	0
RM-F	REMOTE GAIN: Настройка смещения сигнала дистанционного управления (при CRTS = REMO)	0
RM-L	REMOTE LOW: Нижний предел уставки при дистанционном управлении (при CRTS=REMO)	0
RM-H	REMOTE HIGH: Верхний предел уставки при дистанционном управлении (при CRTS=REMO)	100
El'E I	EVENT1: Настройка функции дискретного входа управления (событийный вход EVENT1) (отображается при установленной плате EVENT1)	OFF
El/F2	EVENT2: Настройка функции дискретного входа управления (событийный вход EVENT1) (отображается при установленной плате EVENT2)	OFF
El/ E 3	EVENT3: Настройка функции дискретного входа управления (событийный вход EVENT1) (отображается при установленной плате EVENT3)	OFF

Режим ПИД: Вы можете в ручном режиме выбрать любую из 6 групп настроек ПИД-регулятора или в автоматическом режиме (AUTO) термоконтроллер в зависимости от заданной температуры будет использовать группу параметров, наиболее близкую по своему значению SV к заданной температуре.

Выберите группу настроек ПИД-регулятора 0~5 и выполните автонастройку параметров, система автоматически определит значения параметров P; I; D и IOF и запишет их в выбранную группу.

Выбор номера группы настроек ПИД-регулятора (n = 0 ~ 5)								
нажать								
5 / О Задание значения уставки температуры SV 0го набора параметров	51/ 1 51/4	51/5 Задание значения уставки температуры SV 5го набора параметров						
Задание пропорционального коэффициента в 0м наборе параметров	P 1 ~ P4	3адание пропорционального коэффициента в 5м наборе параметров						
Задание интегрального ко- эффициента Ті в 0м наборе параметров	~ ~ ~	3адание интегрального ко- эффициента Ті в 5м наборе параметров						
Задание дифференциального коэффициента Тd в 0м наборе параметров	d l ~	Задание дифференциального коэффициента Тd в 5м наборе параметров						
Задание ограничения интегрирования (при I не равном 0) в 0м наборе параметров нажать для настройки параметров в режиме регулирования	CoF I	Задание ограничения интегрирования (при I не равном 0) в 5м наборе параметров нажать для настройки параметров в режиме регулирования						

Редактирование программы: Задайте параметр **EERL** как **PEd** или **FUZZ** и параметр **EERS** как **PRo5**.

5РОБ Задание температуры шага 15 набора уставок 0	SP IF ~	5РББ Задание температуры шага 15 набора уставок 15
Задание времени шага 15 набора уставок 0	Łζ IF∼	ЕГГГ Задание времени шага 15 набора уставок 15
Р550 Задание количества выполняемых шагов в наборе уставок 0	PSY 1~	РБУГ Задание количества выполняемых шагов в наборе уставок 15
Задание количества повторных циклических выполнений (0~199) набора уставок 0	[46]~	СЧЕБ Задание количества повторных циклических выполнений (0~199) набора уставок 15
Задание набора уставок, который будет выполняться следующим (0~F, END; STOP)	LEN I~	Задание набора уставок, который будет выполняться следующим
нажать		нажать

2.8. Начальная установка параметров

- 1. При первоначальном включении DT3, нажмите и удерживайте более 3 секунд до появления на дисплее , далее выберите тип температурного датчика. От корректности задания типа датчика зависит правильность отображения значения PV (см. таблицу ниже).
- При настройке типа температурного датчика с помощью RS-485, запишите значение (в диапазоне 0~19) в регистр 1004H.
- 3. Для выбора токового входа откройте крышку температурного контроллера и замкните JP8 (см. схему ниже).

• Температурные датчики и диапазоны измерения

Тип температурного датчика	Индикация	Значение регистра	Диапазон измерения	Тип температурного датчика	Индикация	Значение регистра	Диапазон измерения
Термопара тип К	H	0	-200 ~ 1300°C	Термопара тип ТХК	EXH	10	-200 ~ 800°C
Термопара тип J	J	1	-100 ~ 1200°C	Платиновый ТС (JPt100)	JPŁ	11	-20 ~ 400°C
Термопара тип T	t	2	-200 ~ 400°C	Платиновый ТС (Pt100)	የŁ	12	-200 ~ 850°C
Термопара тип Е	Ε	3	0 ~ 600°C	Термосопротивле- ние (Ni120)	NL	13	-80 ~ 300°C

Тип температурного датчика	Индикация	Значение регистра	Диапазон измерения	Тип температурного датчика	Индикация	Значение регистра	Диапазон измерения
Термопара тип N	H	4	-200 ~ 1300°C	Термосопротивле- ние (Cu50)		14	-50 ~ 150°C
Термопара тип R	R	5	0 ~ 1700°C	Аналоговый вход (0∼5В)	<i>V</i> 5	15	-999 ~ 9999
Термопара тип S	5	6	0 ~ 1700°C	Аналоговый вход (0~10B)	VI 0	16	-999 ~ 9999
Термопара тип В	Ь	7	100 ~ 1800°C	Аналоговый вход (0~20мА)	MAD	17	-999 ~ 9999
Термопара тип L	1	8	-200 ~ 850°C	Аналоговый вход (4~20мА)	MRY	18	-999 ~ 9999
Термопара тип U	IJ	9	-200 ~ 500°C	Аналоговый вход (0~50мВ)	MI	19	-999 ~ 9999

• Настройка токового входа

Откройте крышку контроллера и замкните контакты JP8 с помощью перемычки. Перемычка JP8 находится в зоне входа датчиков на печатной плате.

Вход по напряжению (заводская установка)

Токовый вход (4 ~ 20мА, 0 ~ 20мА)

ПЕРЕМЫЧКА

КОНТАКТНЫЙ РАЗЪЕМ

Заводская настройка

2.9. Настройка дисплея

Используйте нижеприведенные параметры для настройки отображения значений PV и SV, выбора разрядности и единицы измерения: °C/F.

- ◆ В рабочем режиме При SP=1 на дисплее будет отображаться число с одним знаком после запятой (например, 25.5 град.); SP=0 отображается целое число (например: 25 град.).
- ◆ В режиме начальной установки параметров Выбор, в каких единицах будет отображаться температура °C/°F. (°F = °C * 9/5 + 32)

2.10. Задание верхнего/нижнего предела температуры

◆ Задание верхнего предела диапазона температуры: Параметр задается в режиме начальной установки параметров верхний предел не должен превышать значений, указанных в таблице "Температурные датчики и диапазоны измерения".

- Задание нижнего предела диапазона температуры: Параметр задается в режиме начальной установки параметров резульных в таблице "Температурные датчики и диапазоны измерения"
- ◆ Задание SV: Параметр устанавливается в рабочем режиме, значение SV должно находиться в диапазоне верхнего/нижнего пределов температуры. SV нельзя задать в режиме программирования ("Program Mode") или в режиме дистанционного управления ("Remote Mode").

2.11. Настройка входного фильтра РV и коррекция входного сигнала

В режиме регулирования параметры PV - F и PV - F используются для настройки фильтра сигнала PV.

- **PV-F**: Коэффициент фильтра (возможные значения = 0~50; заводское значение = 8). При малом значении коэффициента значение PV будет близко к измеренному значению, при большом значении параметра изменение PV происходит медленно. Для отключения действия фильтра установите его коэффициент = 0.
- ◆ PV -R : Отклонение входного сигнала для включения входного фильтра. Если измеренное значение PV отличается (в любую сторону) от предыдущего на величину большую, чем значение данного параметра (возможные значения = 0.10~10.00°C/°F., заводское значение = 1), то термоконтроллер присваивает PV = (Пре<u>дыдущ</u>ее значение PV <u>* n + Текущее</u> измеренное значение PV)/ (n+1), где n - это PV - F. Малое значение PV - R и большой коэффициент фильтра приводят к замедлению реакции термоконтроллера на быстрое изменение входной величины. Поэтому при низком уровне помех или при работе с быстро меняющимися процессами рекомендуется увеличить значение данного параметра или установить малый коэффициент фильтра вплоть до 0. При работе в условиях сильных помех для устранения их влияния на работу необходимо уменьшить данный параметр и установить соответствующий коэффициент фильтра.

Если полученное PV отличается от ожидаемого, можно настроить функцию коррекции входного сигнала: параметры PV о и PV Б в режиме регулирования.

► РУ-Б : Смещение входного сигнала (возможные значения = -99.9 ~ +99.9):
 РV = Значение входного сигнала + Смещение.

Пример: Значение вх. сигнала = 25.0; Смещение = 1.2; Полученное значение PV = 26.2.

◆ Коэффициент коррекции наклона характеристики PV (возможные значения = 0~0.999). PV = Значение входного сигнала * (1 + Коэффициент коррекции/1.000) + Смещение.

Пример: Измеренное значение входного сигнала = 25.0; Смещение входного сигнала = 0.100. Откорректированное значение PV= 25.0 * (1 + 0.100 / 1.000) = 27.5.

Если температурное отклонение одинаково при любом значении температуры (вх. сигнала), то его можно компенсировать с помощью смещения. Если температурное отклонение неодинаково при разных значениях температуры (вх. значения), то вычислите линейное отклонение и компенсируйте его с помощью коэффициента коррекции и смещения.

2.12. Настройка аналогового сигнала по напряжению и току

По умолчанию диапазон значений для аналоговых входов: -999...9999. Для примера, когда выбран вход 0~5В: -999 будет соответствовать 0В, а 9999 будет соответствовать 5В. Если изменить (в параметрах рети и прех знаках после запятой и входном напряжении на входе = 2,5 В на дисплее будет отображаться 2,500. Расчет значения на дисплее = (Верхний предел диапазона температуры - Нижний предел диапазона температуры)*(Уровень аналогового сигнала – Нижний предел аналогового сигнала)/(Верхний предел аналогового сигнала) + Нижний предел диапазона температуры.

2.13. Отключение компенсации холодного спая термопары

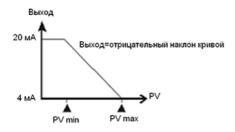
Обычно данная функция включена, но есть возможность ее отключить. В режиме начальной настройки в параметре первая цифра (Y) числа Yxxx отвечает за отключение функции (Y=0 включает функцию, а Y=1 отключает ее).

2.14. Настройка диапазона значений аналогового выхода

При использовании аналогового выхода по току (4~20мА) или напряжению (0~10В) пользователь может задать (в режиме регулирования) необходимое смещение пределов значений сигнала на аналоговом выходе. Так, для аналогового выхода 1 параметр задает смещение верхнего предела, а налогового с помощью клавиши «Вверх/вниз» на термоконтроллере. При каждом нажатии клавиши значение увеличивается или уменьшается на 1мкА и 1мВ.

Например: Для изменения диапазона выходного тока с 4~20мА на 3.9~20.5мА задайте параметру значение 500 (20.5-20 = 0.5мА; 0.5мА/1мкА = 500) и параметру значение -100 (3.9-4 = -0.1мА; -0.1мА/1мкА = -100).

Порядок настройки:


- Перейдите в ручной режим управления выходом: Задайте параметр **EERL** как **МЯНЫ** в [Режиме начальной установки параметров].
- ◆ Установите выход в 0%: Задать параметр ошь как то (для выхода 1) или ошь с как то (для выхода 2) в [Рабочем режиме].
- ◆ Настройте нижний предел аналогового выхода: Подайте на вход терморегулятора необходимый нижний уровень сигнала, подсоедините к выходу амперметр и в [Режиме регулирования] настройте с помощью параметров (для выхода 1) или (для выхода 2) необходимое значение на выходе (например, для диапазона 4~20 мА, настраиваемое аналоговое значение будет 4 мА).
- ◆ Установите выход в 100%: Задать параметр обыт (для выхода 1) = 1000 или обыт (для выхода 2) = 1000 в [Рабочем режиме].
- Настройте верхний предел аналогового выхода: Подайте на вход терморегулятора необходимый верхний уровень сигнала, подсоедините к выходу амперметр и в [Режиме регулирования] настройте с помощью параметров
 (для выхода 1) или

(для выхода 2) необходимое значение на выходе (например, для диапазона 4~20 мА, настраиваемое аналоговое значение будет 20 мА).

2.15. Настройка ретрансляционного (пропорционального) выхода и компенсации

Термоконтроллер DT3 может быть оснащен ретрансляционным выходом, сигнал на котором пропорционален входному измеренному значению. Сигнал на ретрансляционном выходе может быть с положительным или отрицательным наклоном кривой. Например, когда входной сигнал (с заданным диапазоном верхний~нижний предел = 100.0~0) = 0, на ретрансляционном выходе будет сигнал 4 мА (0В). Когда на входе значение 100, на выходе будет сигнал 20 мА (10В). Это характеристика с положительным наклоном. При характеристике с отрицательным наклоном при входном сигнале (с заданным диапазоном верхний~нижний предел = 100.0~0) = 0 на выходе будет 20мА; а если 100, то 4мА. См. диаграммы ниже.

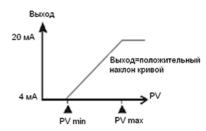


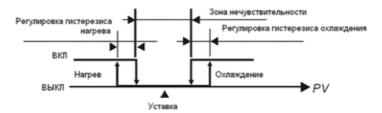
рис. 1 Пропорциональная выходная диаграмма

- ◆ Настройка нижнего предела ретрансляции:
 - а. Убедитесь в положительном наклоне кривой.
 - b. В [Режиме начальной установки параметров] задайте значение параметра *EP-L* больше, чем экранное PV.
 - с. Подключите к ретрансляционному выходу амперметр и в [Режиме регулирования] настройте параметр так, чтобы на ретрансляционном выходе был минимальный требуемый уровень сигнала. Например, для диапазона 4~20 мА, это значение будет 4 мА.
- Настройка верхнего предела ретрансляции:
 - а. Убедитесь в положительном наклоне кривой.
 - b. В [Режиме начальной установки параметров] задайте значение параметра EP-H меньше, чем отображаемое PV.
 - с. Подключите к ретрансляционному выходу амперметр и в [Режиме регулирования] настройте параметр так, чтобы на ретрансляционном выходе был максимальный требуемый уровень сигнала. Например, для диапазона 4~20 мА, это значение будет 20 мА.

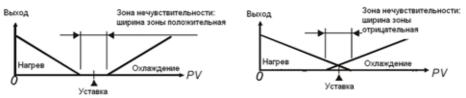
2.16. Проверка версии прошивки и типа выходов

При включении температурного контроллера вместо PV и SV в течение 3 сек. на дисплее отображаются версия прошивки, тип выходов и подключенные опции.

- ◆ PV (первые 3 знака) показывают версию прошивки. Например, 110 означает версию V1.10.
- ◆ PV (4й знак) показывает функцию опции 1.
 - С: Связь по RS485 Е: Событийный вход 3 (EVENT3)
- SV (первые 2 знака) показывают тип управляющих выходов ОUT1 и ОUT2.
 - N: Heт / V: Импульсный выход по напряжению / R: Релейный выход / C: Токовый выход
 - L: Линейный выход по напряжению / S: SSR
- ◆ SV (3й знак) показывает функцию опции 2.
 - N: Heт / C: Вход трансформатора тока 1 / E: Событийный вход 1 (EVENT1) / R: Вход удаленного управления (REMOTE)
- ◆ SV (4й знак) показывает функцию опции 3.
 - N: Heт / C: Вход трансформатора тока 2 / E: Событийный вход 2 (EVENT2) / R: Выход ретрансляции (RETRANSMISSION)


2.17. Выбор режима: Нагрев/Охлаждение/Двухконтурное управление (нагрев/охлаждение)/Аварийный сигнал 3

Серия DT3 имеет 1 встроенный управляющий выход (OUT1) и 2 аварийных выхода (ALARM1 и ALARM2). Дополнительно может быть заказан 2[®] управляющий выход (OUT2) или 3[®] аварийный выход (ALARM3).


- Использование одного управляющего выхода (одноконтурное управление):
- В [Режиме начальной установки параметров] настройте 5-НС на нагрев (Н1) или охлаждение (С1).
- Использование двух управляющих выходов (двухконтурное управление):
 - ◆ Для использования 2[™] управляющего выхода (OUT2) в качестве 3[™] аварийного выхода (ALARM3) в [Режиме начальной установки параметров] установите 5-HL как Нагрев + Аварийный вход 3 (H1A2) или Охлаждение + Аварийный вход 3 (C1A2).
 - Выход OUT2 типа релейный, импульсный по напряжению, аналоговый токовый, линейный по напряжению и SSR может быть использован для включения/отключения аварийного сигнала. Например, если OUT2 является аналоговым токовым выходом, то он может выдавать 20мА при включении аварийной сигнализации и 4мА при отключении.
 - ◆ Когда 2^{ой} управляющий выход (OUT2) используется в качестве управляющего выхода, задайте в режим: оба выхода нагрев (H1H2); оба выхода охлаждение (C1C2); нагрев/охлаждение (H1C2) или охлаждение/нагрев (C1H2) в [Режиме начальной установки параметров].
 - Учет зоны нечувствительности автоматически включается, когда термоконтроллер находится в режиме двухконтурного управления. См. диаграмму ниже. Цель зоны нечувствительности состоит в сокращении потерь энергии при частых операциях нагрева/охлаждения. Например, если SV = 100 град. и = 2.0, то сигнала на управляющих выходах 1 и 2 не будет в диапазоне температур 99~101°C.

Учет зоны нечувствительности **дено** при режиме управления ВКЛ/ВЫКЛ (Ctrl=ON-OFF):

Учет зоны нечувствительности **ВЕЯВ** при режиме управления ПИД (Ctrl=PID):

Когда контроллер находится в режиме двухконтурного ПИД регулирования, параметр задает коэффициент для П-составляющей ПИД регулятора для управляющего выхода 2, т.е. П(вых.2) = П(вых.1) х Говфициенты ПИД для управляющего выхода 1 генерируется при TUNE= AT, но пользователь может их самостоятельно задать. Интегральная и дифференциальная составляющие будут в обоих контурах одинаковыми.

2.18. Настройки режима управления заданным значением SV

Возможны 4 режима управления заданным значением SV: Постоянное SV, Линейно изменяющееся SV, Программное и Удаленное задание.

- Постоянное SV: управляет температурой непосредственно до достижения заданной

 - Установка заданной температуры: Задайте необходимое значение SV в [Рабочем режиме]
- Линейно изменяющееся SV: Изменение значения SV до заданного будет происходить линейно с установленным углом наклона (ед. изм.: °С/мин).

Например, если параметр установлен на значение 1, установите линейный наклон 0,5 и задайте SV значение 200.0 °C; это означает, что температура повышается на 0,5 °C каждую минуту от комнатной температуры до 200.0 °C.

Если параметр установлен на значение 0, установите линейный наклон 5 и задайте SV значение 200°C; это означает, что температура повышается на 5 °C каждую минуту от комнатной температуры до 200°C.

- > Задание скорости изменения уставки (ед. изм.: °С/мин или °С/с): Ввести значение в параметр 51/51 в [Режиме регулирования]
- > Установка заданной температуры: Задайте необходимое значение SV в [Рабочем

режиме]

- ➤ Настройка единиц скорости изменения уставки (ед. изм.: °С/мин или °С/с): в параметре в [Режиме начальной установки параметров] второе число справа (Y) в ххҮх определяет единицу скорости (Y= 0: °С/мин; Y=1: °С/с).
- Программное задание: В этом режиме заданная температура SV не фиксирована, а автоматически изменяется по заданной циклограмме (по заданным значениям температуры и времени на каждом шаге) с использованием ПИД-регулятора. Для формирования циклограммы работы в терморегуляторе имеется 16 наборов уставок по 16 шагов в каждом, возможность повтора наборов уставок, задание частичного выполнения набора параметров и т.п. операции. Каждый шаг имеет 2 параметра (значение температуры и время). Если время первого шага = 0, то температура повысится до заданного уровня линейно с заданной скоростью выхода на температуру первого шага циклограммы.

Некоторые термины и понятия:

- а. **Начальный набор уставок**: Термоконтроллер начнет свою циклограмму работы с заданного номера шага в наборе уставок, который обозначен как начальный набор уставок.
- Скорость выхода на температуру первого шага циклограммы: Если задано время начального шага циклограммы = 0, то задайте скорость выхода на температуру начального шага.
- с. Шаг: Для каждого шага задается 2 параметра значение температуры X и время выполнения шага T, которые определяют заданное значение (SV) в каждый момент времени. Если уставка температуры в выбранном шаге равна уставке в предыдущем шаге, то будет происходить выдержка температуры в течение времени шага (T). Если уставка температуры в выбранном шаге больше или меньше уставки в предыдущем шаге, то будет происходить плавный нагрев/охлаждение в течение времени шага (T).
- d. Ссылка: Этот параметр используется для задания номера набора уставок, который будет выполняться следующим после выполнения текущего набора уставок. Если задан END, то программное выполнение закончится, но поддержание последней заданной температуры сохранится; если задан STOP, то управляющие выходы термоконтроллера выключатся.
- **e. Количество циклов повтора**: Количество повторных циклических выполнений текущего набора уставок. Например, если задано количество повторов 1, то набор уставок выполнится 2 раза.
- f. Количество шагов: Количество выполняемых шагов в данном наборе уставок.
- g. Время и допустимое отклонение температуры: В конце каждого шага, если текущая температура находится вне диапазона «заданная температура ± допустимое отклонение температуры», то перед переходом на следующий шаг будет начат отсчет времени ожидания достижения температуры. Если время превысит допустимую величину, то будет выдан аварийный сигнал.

h. Выполнение:

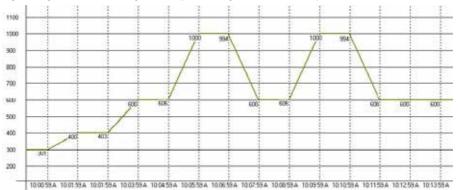
При включении режима программного задания SV термоконтроллер начнет выполнение с начального шага в начальном наборе уставок.

В режиме остановки (STOP) программа прекратит работу, и управляющие выходы термоконтроллера выключатся.

В режиме окончания (END) выполнение программы будет остановлено, регулирование температуры на это время будет осуществляться на уставке предшествующей остановке.

После возврата в рабочий режим выполнение программы начнется с начального шага начального набора уставок.

В режиме паузы (HOLD) выполнение программы будет остановлено, регулирование температуры на это время будет осуществляться на уставке предшествующей остановке. После возврата в рабочий режим выполнение программы будет продолжено (с текущего шага).


і. Пример:

Набор уставок 0: Шаг 0: SV00 = 30.0, T00 = 1; шаг 1: SV01 = 30.0, T01 = 1; шаг 2, SV02 = 40.0, T02 = 1; шаг 3: SV03 = 40.0, T03 = 1; шаг 4: SV04 = 60.0, T04 = 1; шаг 5: SV05 = 60.0, T05 = 1; шаг 6: SV06 = 80.0, T06 = 1; шаг 7: SV07 = 80.0, T07 = 1.

Номер шага в наборе уставок, с которого начнется выполнение программы STEP = 1; Количество выполняемых шагов в наборе уставок 0 PSY1 = 5; количество повторов набора уставок 0 CYC0=0; набор уставок, выполняемый следующим LiN1 = 1.

Набор уставок 1: Шаг 0: SV10 = 100.0, T10 = 1; шаг 1: SV11 = 100.0, T11 = 1; шаг 2: SV12 = 60.0, T12 = 1; шаг 3: SV13 = 60.0, T13 = 1; шаг 4: SV14 = 50.0, T14 = 1; шаг 5: SV15 = 50.0, T15 = 1; шаг 6: SV16 = 40.0, T16 = 1; шаг 7: SV17 = 40.0, T17 = 1;

Количество выполняемых шагов в наборе уставок 1 PSY1 = 4; количество повторов набора уставок 1 CYC1=1; набор уставок, выполняемый следующим LiN1 = End (выполнение программы будет остановлено, регулирование температуры на это время будет осуществляться на уставке предшествующей остановке).

- Задание номера начального набора уставок: В [Рабочем режиме] задайте параметр для выбора набора уставок, с которого начнется циклограмма.
- > Задание начального шага циклограммы: В [Рабочем режиме]задайте параметр для выбора шага в наборе уставок, с которого начнется циклограмма.
- Редактирование набора уставок температуры и времени: В [Режиме начальной установки параметров] задайте в параметре номер редактируемого набора уставок. Обозначим это номер как «х».

в данном наборе уставок; "СҮС'х' " задает количеством повторных циклических выполнений данного набора уставок; "LiN'x'" – задает следующий набор уставок, который будет выполняться после данного набора.

- > Задание скорости выхода на первую заданную температуру: Задается параметром в [Режиме начальной установки параметров] (ед. изм.: 0.1°С/мин или 0.1°С/с)
- Допустимое отклонение температуры: Задается параметром начальной установки параметров].
- ➤ Задание времени ожидания достижения температуры (Ед. изм.: мин): Задается параметром В [Режиме начальной установки параметров].
- >> Задание единицы измерения: в параметре в [Режиме начальной установки параметров] второе число справа (Y) в ххҮх определяет единицу скорости (Y= 0: °C/мин; Y=1: °C/c).

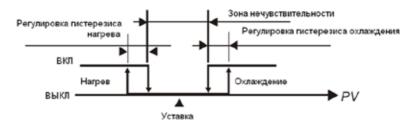
- Примечание: При изменении параметров или применении настроек проводите процедуру сохранения изменений в термоконтроллере так, как в противном случае, при отключении питания изменения будут потеряны. ПРОЦЕДУРА СОХРАНЕНИЯ:
 - ✓ Выберите в меню и клавишами выберите выберите всех изменений. Пункт отображается только, когда изменения/настройки были выполнены.
 - ✓ Для сохранения параметров по RS485 интерфейсу запишите значение 1 по адресу 1129H
- Режим дистанционного управления: В этом режиме аналоговый сигнал (напряжение или ток) на входе терморегулятора является сигналом задания температуры, т.е. значение уставки можно изменять, меняя уровень аналогового сигнала. Возможен положительный или отрицательный наклон кривой преобразования сигнала задания в значение уставки:
 - а. Дистанционное управление с положительным наклоном кривой: Значение уставки температуры увеличивается при увеличении аналогового входного сигнала. Значение уставки = (Верхний предел уставки при дистанционном управлении Нижний предел уставки при дистанционном управлении)*(Уровень аналогового входного сигнала Нижний предел аналогового сигнала)/(Верхний предел аналогового сигнала Нижний предел аналогового сигнала) + Нижний предел уставки при дистанционном управлении. Например, аналоговый сигнал = 1~5 В, верхний предел уставки = 5000, Нижний предел уставки = 1000, разрядность индикации на дисплее = 0; Тогда при сигнале 5В, на экране отобразится 5000, а при сигнале 2 В, отобразится 2000.
 - Дистанционное управление с отрицательным наклоном кривой: Значение уставки температуры увеличивается при увеличении аналогового входного сигнала. Значение уставки = Верхний предел уставки при дистанционном управлении - (Верхний предел уставки при дистанционном управлении - Нижний предел уставки при дистанционном управлении)*(Уровень аналогового входного сигнала - Нижний предел аналогового

сигнала)/(Верхний предел аналогового сигнала — Нижний предел аналогового сигнала). Например, аналоговый сигнал = $1\sim5$ В, верхний предел уставки = 5000, Нижний предел уставки = 1000, разрядность индикации на дисплее = 0; Тогда при сигнале 5В, на экране отобразится 1000, а при сигнале 2 В, отобразится 4000.

- > Задайте параметр **LERS** как **REMO** в [Режиме начальной установки параметров] Примечание: Данный режим работает при установленной плате входа удаленного задания уставки. Если используется аналоговый ТОКОВЫЙ сигнал, необходимо замкнуть контакты JP8 перемычкой. Если сигнал ПО НАПРЯЖЕНИЮ, контакты остаются незамкнутыми.
- > Задайте тип сигнала удаленного задания уставки: Устанавливается в параметре в [Режиме начальной установки параметров] аналоговый токовый 0~20 мА или 4~20 мА или аналоговый по напряжению 0~5 В или 1~5 В или 0~10 В
- ➤ Настройка положительного/отрицательного наклона кривой сигнала дистанционного управления: В [Режиме начальной установки параметров] задайте в параметре вторую цифру слева (Y) числа хYхх (Y=0 для положительного наклона; Y=1 для отрицательного).
- Задайте смещение сигнала дистанционного управления: Подайте необходимый нижний уровень сигнала на входе дистанционного управления и настройте параметр
 В [Режиме регулирования]
- Задание усиления сигнала дистанционного управления: Подайте необходимый верхний уровень сигнала на вход дистанционного управления и настройте параметр
 В [Режиме регулирования]
- ≻ Нижний предел уставки при дистанционном управлении: Задается параметром РМ-1 в [Режиме регулирования]
- Верхний предел уставки при дистанционном управлении: Задается параметром РТ-Н в [Режиме регулирования]

2.19. Настройка метода управления

Доступны 4 метода управления: ON-OFF (ВКЛ-ВЫКЛ), PID (ПИД), MANU (РУЧНОЙ) и FUZZY(HEЧЕТКАЯ ЛОГИКА).


• Режим ВКЛ/ВЫКЛ:

При нагреве управляющий выход ВЫКЛЮЧЕН, когда сигнал на входе больше заданного, и ВКЛЮЧЕН, когда сигнал на входе меньше, чем (заданное значение – гистерезис).

При охлаждении управляющий выход ВКЛЮЧЕН, когда сигнал на входе больше, чем (заданное значение + гистерезис), и управляющий выход ВЫКЛЮЧЕН, когда сигнал на входе меньше заданного значения.

При двухконтурном управлении зона нечувствительности определяется следующим образом:

Управление в режиме ВКЛ/ВЫКЛ с зоной нечувствительности

- Задайте гистерезис: Параметр 1-5 (для выхода 1) и 2-5 (для выхода 2) в [Режиме регулирования]
- ➤ Задайте зону нечувствительности: Параметр dERd в [Режиме регулирования]
- Режим ПИД: И при нагреве и при охлаждении используется ПИД-регулятор, который сравнивает сигнал на входе со значением уставки и генерирует необходимый сигнал на выходе для управления температурой. ПИД-регулятор может работать по одному из шести различных наборов параметров Р, I, D, IOF, которые задаются вручную или могут быть сгенерированы с помощью режима автонастройки (АТ).
 - а. Всего доступно 6 наборов параметров ПИД-регулятора. Требуемый набор настроек может быть фиксировано задан или автоматически выбираться исходя из значения текущей уставки температуры (будет браться ближайший по значению уставки температуры набор). Каждый набор параметров имеет значение уставки температуры (SV), к которому привязаны параметры ПИД. Параметры ПИД-регулятора могут задаваться вручную или с помощью функции автонастройки (АТ). Например, для 6 наборов параметров ПИД, показанных ниже, SV уставка. Выберем 4й набор параметров ПИД: P=40, I=220, D=55, IOF=30%. Если при текущей уставке температуры = 230 выбрать режим автонастройки, то автоматически будет выбран 2-й набор параметров ПИД-регулятора.

	0	1	2	3	4	5
SV	80	160	240	320	400	480
Р	120	46	70	60	40	50
I	100	140	180	200	220	240
D	25	35	45	50	55	60
IOF	20	10	30	20	30	21

b. Задание параметров ПИД-регулятора и периода следования управляющих импульсов (цикл ПИД-регулятора): Параметры ПИД-регулятора могут быть заданы вручную или определены автоматически с помощью режима автонастройки (АТ). Интегральная составляющая позволяет быстро достигать заданного значения; Ограничение интегрирования ІОГ выражается в % от макс. значения; Компенсация статической ошибки регулирования при П- и ПД-регулировании (Ті=0) позволяет снизить отклонение от заданной температуры. Цикл ПИД-регулятора - это частота, с которой ПИД-регулятор производит новый расчет и обновляет значение управляющего сигнала, например, каждые 10 сек. Для систем с малой инерционностью (высокой скоростью нагрева или

охлаждения) цикл ПИД-регулятора не должен быть слишком большим. Увеличение цикла ПИД-регулятора (периода следования управляющих импульсов) позволяет при использовании электромагнитных реле или пускателя продлить срок службы силовых контактов, но может ухудшить качество регулирования.

- с. При двухконтурном управлении добавляются коэффициент CoEF и зона нечувствительности (один вход работает на нагрев, а второй на охлаждение). Соеf -это коэффициент для Π -составляющей Π ИД регулятора для управляющего выхода 2, т.е. Π (вых.2) = Π (вых.1) х CoEF (Coef= $0.01 \sim 99.99$).
- > Задайте управление нагревом или охлаждением: В [Режиме начальной установки параметров] в параметре выберите необходимую функцию. Если плата выхода 2 не установлена, выбор осуществляется следующим образом: Н1, С1 (Н для нагрева, С для охлаждения, 1 − для выхода 1). Если терморегулятор оснащен выходом 2, то выбор осуществляется следующим образом: Н1Н2, С1Н2... Н1А2(Н для нагрева, С для охлаждения, 1 − для выхода 1, 2 − для выхода 2, А − для выхода аварийной сигнализации 3)
- > Выберите номер набора и установка параметры ПИД: В [Режиме регулирования] выберите 0~5 или параметре рсф, в параметре рсф, затем нажмите для задания значений параметров ПИД: "SV'x", "P'x", "I'x", "d'x" и "ioF'x", где 'x' это номер набора параметров (0~5). "SV'x" значение уставки температуры; "P'x", "I'x", "d'x", "ioF'x" соответствуют коэффициентам Р. I. D и IOF.
- > Задайте время цикла ПИД-регулятора: В [Режиме регулирования] задайте параметры "о'х'-'у'", где 'х' = 1(выход 1) или 2 (выход 2), 'у' это Н(нагрев) или С (охлаждение) (отображаются в РV).
- > Задайте коэффициент для П-составляющей ПИД-регулятора для 2 выходов (Coef):
 Задается параметром Гоер в [Режиме регулирования]
- Задайте зону нечувствительности для обоих выходов: Задается параметром [Режиме регулирования]
- Включите рабочий режим: Параметр
 Включите рабочем режиме] установить как
- > Задайте режим автонастройки (АТ): Задайте параметр как в регулирования]. Параметры ПИД-регулятора выбранного номера набора будут настроены автоматически. После этого параметры ПИД-регулятора записываются в память и на экране появится.

Примечание: При автонастройке вся система должна быть собрана, установлен и настроен датчик на входе, выход подключен к нагревательному или охладительному элементу.

- РУЧНОЙ режим: Позволяет непосредственно задать выходное значение сигнала. Обычно используется в комбинации с режимом ПИД.
 - а. Переключение из режима ПИД в РУЧНОЙ: При переключении из режима ПИД в РУЧНОЙ выходной сигнал останется таким же, что был до переключения, например, выходной сигнал в режиме ПИД был 20%, после переключения в РУЧНОЙ режим это значение также останется 20%. После переключения пользователь может вручную задать новое значение выходного сигнала, например 40%.
 - b. Переключение из РУЧНОГО режима в ПИД: Если в РУЧНОМ режиме выходной сигнал был 40%, то при переключении в ПИД режим эти 40% будут взяты за входное значение

при подсчете ПИД-регулятора.

- с. Примечание: Если питание термоконтроллера будет отключено во время ручного режима, то после включения выходной сигнал будет таким же, как до отключения.
- Задайте параметр [LERL] как МЯНЦ в [Режиме начальной настройки]
- > Задайте время цикла ПИД-регулятора: В [Режиме регулирования] задайте параметры "о'х'-'у'", где 'х' = 1(выход 1) или 2 (выход 2), 'у' это Н(нагрев) или С (охлаждение) (отображаются в РV).
- Задайте значение выходного сигнала (%): В [Рабочем режиме] задайте параметры "oUt'x", 'x' = 1 (выход 1) или 2 (выход 2) (отображаются в PV).
- **Режим FUZZY** (нечеткая логика): Содержит 2 части параметров: параметры ПИД и специальные параметры Fuzzy. Управление в режиме Fuzzy осуществляется на основе расчета ПИД-регулятора с заданными значениями коэффициентов P,I,D. Пользователь может самостоятельно задать значения параметров ПИД или выполнить их автонастройку (АТ). Помимо параметров ПИД, в режиме Fuzzy используются еще 2 собственных параметра.
 - а. Коэффициент усиления Fuzzy: Определяет вклад нечеткой логики в общий результат вычисления регулятора. Увеличение этого значения напрямую повышает влияние Fuzzy; уменьшение понижает влияние. Для систем с медленной реакцией системы нагрева/ охлаждения рекомендуется уменьшать коэффициент, а в системах с быстрой реакцией увеличивать.
 - b. Настройка зоны нечувствительности Fuzzy (FZDB): При нахождении значении PV в диапазоне SV-FZDB

 PV<SV+FZDB коэффициент нечеткой логики не учитывается.
 - ➤ Задайте параметр СЕЯТ как ЕШТТ в [Режиме начальной установки параметров].
 - Задайте коэффициент усиления Fuzzy: Введите значение в параметр В [Режиме регулирования].
 - ➤ Задайте зону нечувствительности Fuzzy: Введите значение в параметр в [Режиме регулирования].

2.20. Установка нескольких ПИД наборов

ПИД-регулятор может работать с одним из шести различных наборов параметров P, I, D, IOF, которые задаются вручную или могут быть сгенерированы с помощью режима автонастройки (АТ). В каждый момент времени используется только один набор ПИД. При использовании нескольких уставок температуры (SV) один фиксированный набор параметров ПИД может оказаться не достаточно точным, поэтому пользователь может настроить несколько наборов ПИД для различных уставок температуры, которые будут автоматически использоваться в зависимости от текущей уставки SV.

• Настройка единственного набора параметров ПИД:

В [Режиме регулирования] задайте параметр РСВ равным 0 (РІD 0, первый набор) и параметр Как ОN; в это время начинается автонастройка ПИД параметров. При работе функции автонастройки на лицевой панели горит индикатор АТ. После генерирования РV-сигналом 2-х кривых колебания температуры в зависимости от значения SV процесс АТ выполнен и индикатор АТ гаснет. Полученные параметры ПИД запишутся в

<u>ГО</u> и СоГО, и могут быть просмотрены пользователем.

В [Режиме регулирования] задайте параметр
установит <u>е требу</u> емое значение уставки температуры SV (например, 100 градусов) и задайте
параметр как ON; в процессе автонастройки термоконтроллер определит параметры
5/10 =100, P0, 00 и СоF0, и выведет их значения на экран.
Задайте параметр РСС равным 1 (PID 1, второй набор), установите требуемое значение
уставки температуры SV (например, 150 градусов) и задайте параметр
уставки температуры SV (например, 150 градусов) и задайте параметр нь как ON; в процессе автонастройки термоконтроллер определит параметры:
СП

Автоматическое переключение между несколькими наборами параметров ПИЛ:

Так же настраиваются и наборы ПИД PID2~PID5.

Задайте параметр как AUTO, термоконтроллер будет автоматически выбирать набор параметров ПИД, у которого значение SV ближе всего к текущему значению уставки температуры SV. Т.е., в примере выше, если SV=110, то ПИД-регулятор будет работать с параметрами SV=140, с параметрами

2.21. Функция автонастройки ПИД-регулятора

Терморегулятор поддерживает 2 способа автоматического генерирования параметров ПИДрегулятора: Автонастройка - Auto_Tuning и Самонастройка - Self_Tuning. Функции работают только в режиме ПИД-регулирования.

- **Auto_Tuning**: Используя полную мощность нагрева или охлаждения, терморегулятор осуществляет колебания температуры вверх и вниз, и по полученной амплитуде и периоду колебаний температуры, терморегулятор рассчитает параметры P, I, D, IOF, а также сохранит значения уставок температуры для автоматического выбора подходящего набора параметров ПИД-регулятора. После Auto_Tuning ПИД-регулирование будет выполняться автоматически.
- Запустите автонастройку (АТ): Задайте параметр
 как
 в [Режиме регулирования]
- Self_Tuning: Используя полную мощность нагрева или охлаждения, терморегулятор строит временно-температурную кривую системы и определяет максимальную скорость изменения температуры и задержку реакции системы, по которым рассчитывает параметры Р, І, D, IOF. Самонастройка может проводиться в режимах RUN и STOP. В режиме RUN параметры ПИД будут обновляться при работе устройства; в режиме STOP будут получены параметры ПИД-регулятора для значения SV.

 - > Запустите самонастройку ST: Задайте параметр 5₺ как № № в [Режиме регулирования]

2.22. Задание инверсии управляющих выходов

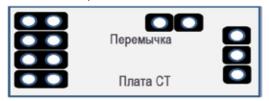
- Задание инверсии выхода 1: В [Режиме начальной установки параметров] установите в параметре оследнюю цифру (Y) числа хххY (Y=0 прямой выход; Y=1 инверсный выход).
- ➤ Задание инверсии выхода 2: В [Режиме начальной установки параметров] установите в параметре вторую цифру справа (Y) в ххҮх (Y=0 прямой выход; Y=1 инверсный выход).

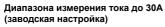
2.23. Ограничение выходного сигнала

Максимальную и минимальную мощность выхода можно ограничить; Если максимальная выходная мощность это 100%, а минимальная 0%, возможно ввести ограничения, например, максимальная мощность 80%, а минимальная 20%.

- Задание нижнего предела: Задайте значение параметров (выход 1), (выход 2) в [Рабочем режиме].

2.24. Функция токового трансформатора (СТ)


Термоконтроллер поддерживает максимум 2 токовых трансформатора (СТ1 и СТ2) для измерения тока на выходе 1 и выходе 2; Для использования токовых трансформаторов необходимо, чтобы в термоконтроллере была установлена соответствующая плата расширения (опция). С помощью трансформаторов тока можно контролировать обрыв цепи нагревательного или охлаждающего элемента или превышения выходным током предельного значения.


- Проверьте наличие установленных опциональных плат трансформаторов тока 1 и/или 2
- Задайте аварийному выходу режим контроля тока: см. значения 11 и 12 в "Выходы аварийной сигнализации".
- Настройте верхний предел аварийной сигнализации СТ (ед. изм.: 0.1A): см. "Выходы аварийной сигнализации".
- Настройте нижний предел тревожного сигнала СТ (ед. изм.: 0.1A): см. "Выходы аварийной сигнализации".
- Чтение текущего значения СТ1, СТ2: Текущее значение см. в параметрах в [Рабочем режиме].

Выбор диапазона измерения СТ:

- ➤ Настройка СТ1 100А: В [Режиме начальной установки параметров] задайте значение цифры (Y) в ххҮх параметра (В 2 для диапазона до 30А или в 1 для диапазона до 100А.
- Настройка СТ2 100А: В [Режиме начальной установки параметров] задайте значение цифры (Y) в хҮхх параметра [в 0 для диапазона до 30А или в 1 для диапазона до 100А.

Для диапазона измерения тока до 100A замкните контакты на плате CT с помощью перемычки.

Диапазона измерения тока до 100А

2.25. Дополнительные дискретные входы управления (EVENT)

Контроллер поддерживает максимум 3 дополнительных дискретных входа управления (EVENT) (EV1~EV3). Функция каждого входа настраивается. Возможные функции приведены в **таблице <1>**. Например, если входу EV1 присвоена функция Run/Stop, то при разомкнутом контакте на входе EV1 контроллер имеет статус RUN (происходит измерение температуры и управление выходами), а при замкнутом контакте на входе EV1 контроллер имеет статус STOP (происходит измерение температуры, но не происходит управление выходами).

Номер функции	0	1	2	3	4
Описание функции	Нет	Run/Stop	SV1/SV2	Auto/ Manual	Run/ Hold

Таблица <1> Настройки EV

Run/Stop: Эта функция аналогична параметру r-S.

SV1/SV2: Эта функция используется для переключения между уставками температуры SV1 и SV2

Auto/Manual: Эта функция используется для переключения между режимами управления (ПИД или РУЧНОЙ).

Run/Hold: Эта функция используется для переключения состояния контроллера (RUN и HOLD (пауза)) в ходе выполнения программы.

- Проверьте наличие установленных опциональных плат в слотах Option1 или Option2 или наличие встроенного входа EV3.
- В [Режиме регулирования] задайте функции входов EV согласно Таблице <1> в параметрах ЕУЕЛ ЕУЕЛ.

Примечание: Выбор "Evt'x" должен совпадать с номером используемого слота расширения; если используется только Option1, то отображается соответственно "Evt1".

2.26. Пределы температурного диапазона

Различные датчики имеют различные температурные диапазоны (например: тип J имеет диапазон -100 ~ 1200°C), это настраивается параметрами

р-Н (верхний предел) /

р-L (нижний предел) в [Режиме начальной установки параметров].

Например, при задании диапазона 0-200°C:

- ➤ Значение SV может находиться в диапазоне 0~200°C
- В режимах управления ON-OFF, PID, FUZZY и в режиме автоматической настройки управляющий выход выключится при выходе значения PV за пределы диапазона (но выход аварийной сигнализации своего состояния не изменит).

2.27. Пользовательские настройки функциональных клавиш F1, F2

Для вывода списка возможных функций для клавиши F1 или F2 в рабочем режиме (когда на дисплее отображаются значения PV/SV) нажмите и удерживайте функциональную клавишу в течение 3 сек.; Выбор функции осуществляется клавишами

Функция	Описание
MENU	Когда отображаемое на экране меню отличается от PV/SV режима, нажатие и удержание клавиш F1/F2 сохраняет настройки экрана для быстрого перехода к ним. (Появление на экране надписи KEY SAVE сигнализирует, что меню экрана сохранилось)
AT	F1 / F2 используются для быстрого включения/выключения функции автонастройки (AT)
R-S	F1 / F2 используются для переключения между состояниями RUN/STOP.
PROG	F1 / F2 используются для переключения между состояниями RUN/HOLD.
ATMT	F1 / F2 используются для переключения между ПИД и РУЧНЫМ режимами управления.
ALRS	F1 / F2 используются для сброса удержания сигнала аварийной сигнализации.
SV2	F1 / F2 используются для переключения между SV1/SV2.

Для сброса функции F1/F2, войдите в режим [MENU] и выйдите из него без сохранения меню экрана.

2.28. Редактирование пользовательских экранных меню

Скрытие настроек меню: Заблокируйте все клавиши параметром в гечение 3 сек. в [Рабочем режиме]. Одновременно нажмите и клавишу в течение 3 сек. до появления на экране и рябо, введите цифру 1 как пароль. На экране отобразится номер подменю подменю, см. таблицу ниже. Выберите "Hide" чтобы скрыть подменю.

Настройка подменю: Заблокируйте все клавиши параметром в течение 3 сек. до появления на экране **1985**, введите цифру 2 как пароль. На экране отобразится номер подменю

шш, см. таблицу ниже. Возможные действия: NOR = отображение подменю; ADJ= настройка подменю; SET= выбор подменю.

Сброс настроек: Заблокируйте все клавиши параметром в течение 3 сек. до появления на экране режиме]. Одновременно нажмите и клавишу в течение 3 сек. до появления на экране в течение 3 сек. до появления (сброс настроек подменю), выберите для сброса настроек подменю и возврата к заводским значениям.

	Подменю рабочего режима		Іодменю регулирования	Подменю режима настройки		
№ подменю	Соответствующее подменю	№ подменю	Соответствующее подменю	№ подменю	Соответствующее подменю	
M101	1234	M201	RŁ	M301	ENPL	
M102	R-5	M202	5Ł	M302	EPUN	
M103	PERN	M203	Pīd	M303	ŁP-H	
M104	SEEP	M204	5V 0	M304	ŁP-L	
M105	SP	M205	PO	M305	E E R L	
M106	LoE	M206	ΞĐ	M306	EŁRS	
M107	AL IH	M207	Оb	M307	WESI'	
M108	AL IL	M208	∑oF0	M308	W-FW	
M109	RL2H	M209	PdoF	M309	SLoP	
M110	RL2L	M210	F Z - R	M310	PREN	
M111	RL 3H	M211	FZdb	M311	FUNE	
M112	RL 3L	M212	o I-5 o I-E	M312	S-HE	
M113	R IHP	M213	a2-5 a2-E	M313	ALA I	
M114	A ILP	M214	o I-H	M314	RL lo	
M115	R2KP	M215	a-5	M315	AL 19	
M116	R2LP	M216	$\mathcal{L}_{o} \mathcal{E} \mathcal{F}$	M316	RLR2	
M117	R3HP	M217	dERd	M317	AL 20	
M118	R3LP	M218	PV - F	M318	AL 24	
M119	oUt I	M219	PV - R	M319	ALR3	
M120	oUE2	M220	PV oF	M320	RL 3o	
M121	o IMR	M221	PV 6R	M321	RL 3d	

Подменю рабочего режима		Подменю режима регулирования		Подменю режима настройки	
№ подменю	Соответствующее подменю	№ подменю	Соответствующее подменю	№ подменю	Соответствующее подменю
M122	o IMC	M222	SV SL	M322	PVE
M123	o2MR	M223	A IMA	M323	oŁĪN
M124	02ME	M224	A IME	M324	RMEP
M125	EE 1	M225	R2MR	M325	PdSH
M126	£F5	M226	R2MC	M326	PdRE
		M227	REMA	M327	EXEC
		M228	REME	M328	E * E 2
		M229	RM-6	M329	E₀5H
		M230	RM-F	M330	[-5L
		M231	RM-L	M331	E-No
		M232	RM-H	M332	ЬPS
		M233	EVE I	M333	LEN
		M234	EVE2	M334	StoP
		M235	EVE3	M335	PRES

2.29. Сброс на заводские настройки

2.30. Функция блокировки клавиш

Заблокируйте все клавиши параметром LoL, настроенным как LoL в [Рабочем режиме]; установка значения LoL позволяет только регулировать настройки SV и использовать функциональные клавиши F1/F2.

• Разблокирование клавиатуры:

Одновременно нажмите клавиши и в заблокированном режиме до появления на экране параметра и введите пароль для разблокирования. Пароль по умолчанию -

0000.

- Для изменения пароля:
- 1. При индикации на экране **КЕУР** нажмите клавишу **ч** для перехода к полю смены пароля **ЕНБР**.
- 2. Введите текущий пароль в поле **116**. Если пароль корректный, будет предложено ввести новый пароль в разделе **116**. Если пароль неправильный, экран вернется к отображению значений PV/SV.
- 3. Введите пароль два раза в разделе **НЕНР**, экран вернется к отображению значений PV/ SV с разблокированной клавиатурой. Если пароли, введенные 2 раза, не совпадают, см. шаг 2.
- Если вы не можете вспомнить пароль, то для разблокировки произведите возврат к заводским настройкам, но при этом все текущие значения параметров и настройки будут потеряны.

2.31. Выходы аварийной сигнализации

Температурный контроллер DT3 имеет 2 аварийных (тревожных) выхода с возможностью расширения до 3-х. Каждый из них можно запрограммировать на 19 независимых типов реакции (тревожных сценариев), как показано в таблице ниже. Дополнительно настраиваются задержка срабатывания сигнализации, режим готовности, удержание сигнала сигнализации, инверсия аварийного выхода, запись пикового значения сигнала, а именно:

- настройка задержки срабатывания сигнализации: Вы можете задать время задержки переключения выхода аварийной сигнализации. При возникновении условий срабатывания аварийной сигнализации и сохранении их в течение заданного времени задержки аварийный выход переключится.
- b. Режим готовности: Мониторинг аварийной ситуации будет происходить только при нахождении значения в диапазоне ± 5 % от заданного значения, что должно препятствовать срабатыванию сигнализации при включении, когда еще возможно наличие условий для ложного срабатывания аварийной сигнализации.
- с. Удержания сигнала сигнализации: Аварийный сигнал будет удерживаться на выходе даже после пропадания условий, вызвавших срабатывание сигнализации.
- d. Настройка инверсии аварийного выхода: Возможно задать нормальное состояние выхода - Н/3 или Н/О.
- е. Настройка записи пикового значения сигнала при аварии.

Знач.	Аварийный режим	Действие на аварийном выходе
0	Нет	
1	Выход за границы верхнего и нижнего пределов температуры: Аварийный выход включится, когда текущее значение температуры PV станет выше SV +(AL-H) или ниже SV – (AL-L).	OFF SV-(AL-L) SV SV+(AL-H)

Знач.	Аварийный режим	Действие на аварийном выходе
2	Выход за границу верхнего предела температуры: Аварийный выход включится, когда текущее значение температуры PV станет выше SV +(AL-H).	ON OFF SV SV+(AL-H)
3	Выход за границу нижнего предела температуры: Аварийный выход включится, когда текущее значение температуры PV станет ниже SV – (AL-L).	ON OFF SV-(AL-L) SV
4	Выход за границы верхнего и нижнего пределов температуры по абсолютному значению. Выход включится, когда текущее значение температуры PV станет выше AL-H или ниже AL-L.	OFF AL-L AL-H
5	Выход за границы верхнего предела температуры по абсолютному значению. Выход включится, когда текущее значение температуры PV станет выше AL-H.	ON OFF AL-H
6	Выход за границы нижнего предела температуры по абсолютному значению. Выход включится, когда текущее значение температуры PV станет ниже AL-L.	ON OFF AL-L
7	Выход за границу верхнего предела с гистерезисом. Выход включится, когда текущее значение температуры PV станет выше значения уставки SV+(AL-H), а выключится при значении температуры PV ниже значения уставки SV+(AL-L).	ON OFF SV SV+(AL-L) SV+(AL-H)
8	Выход за границу нижнего предела с гистерезисом. Выход включится, когда текущее значение температуры PV станет ниже значения уставки SV-(AL-H), а выключится при значении температуры PV выше значения уставки SV-(AL-L).	ON OFF SV-(AL-H) SV-(AL-L) SV
9	Нет подключения датчика: Выход активируется, если датчик был некор- ректно подключен или отключен.	
10	Превышение времени ожидания достижения температуры	
11	Выход за границы верхнего и нижнего пределов датчика тока (СТ1): Аварийный выход включится при текущем значении тока СТ ниже AL-L или выше AL-H.	ON
12	Выход за границы верхнего и нижнего пределов датчика тока (СТ2): Аварийный выход включится при текущем значении тока СТ ниже AL-L или выше AL-H.	OFF AL-L AL-H

Знач.	Аварийный режим	Действие на аварийном выходе
13	Выход будет включен в течение процесса выдержки заданной температуры (SOAK) при программном управлении.	
14	Выход будет включен в течение процесса нагрева (RAMP UP) при программном управлении.	
15	Выход будет включен в течение процесса охлаждения (RAMP DOWN) при программном управлении.	
16	Выход будет включен в течение работы режима программного управления (режим RUN).	
17	Выход будет включен в режиме HOLD (пауза) при программном управлении.	
18	Выход будет включен при нахождении в режиме STOP.	
19	Выход включится, когда закончится выполнение программы (END).	

- Для задания верхнего предела аварийной сигнализации: Используйте параметры НС НП в [Рабочем режиме]
- Для задания времени задержки срабатывания сигнализации (ед. изм.: сек.): Используйте параметры
 В 10, В 20, В 30 в [Режиме начальной установки параметров]
- ▶ Для настройки инверсии аварийного сигнала: Используйте параметры НСТО, НССО, РЕЗО В [Режиме начальной настройки]. Значением бита Y в ххҮх задается инверсия (при Y=0: выход H.O., Y=1: выход H.З.)
- ▶ Для задания аварийной сигнализации 3: Аварийный выход 3 функционирует при установке соответствующей платы на место выхода 2. Используйте параметр В [Режиме начальной настройки], клавишами Выберите среди значений параметра Н1Н2, С1Н2... Н1А2 (где Н нагрев, С охлаждение, А аварийный сигнал 3, 1 выход 1, 2 выход 2) значение х1А2 (где х = Н или С), что задаст аварийную сигнализацию 3.
- Для включения функции режима готовности: Используйте параметры ДСТО, ДССО, В [Режиме начальной настройки]. Значение бита Y в хххY вкл./выкл. использование режима готовности (Y=0: выкл., Y=1: вкл.).
- Для включения удержания сигнала сигнализации: Используйте параметры **ВЕТО**, **ВЕТО**, **ВЕТО** в [Режиме начальной установки параметров]. Значение бита Y в хҮхх вкл./выкл. удержание сигнала (Y=0: выкл., Y=1: удержание вкл.).
- \succ Для записи пикового значения сигнала при аварии: Используйте параметры R

в [Режиме начальной установки параметров]. Значение знака Y в Yxxx вкл./выкл. запись (при Y=0: выкл., Y=1: запись вкл.).

Примечание: см. таблицу

Бит3	Бит2	Бит1	Бит0
Запись пиковых значений	Удержание	Инверсия	Режим готовности

Смена цвета индикации значения PV: Термоконтроллеры DT3 могут изменять цвет отображения значения PV на экране при срабатывании аварийной сигнализации.
 Используйте параметр (смена цвета отображения PV) в [Режиме начальной настройки] и задайте, при какой аварийной сигнализации должна произойти смена цвета.
 Возможные значения:

2.32. Список параметров коммуникации по RS-485

- 1. Поддержка скорости передачи: 2400, 4800, 9600, 19200, 38400 бит/с
- 2. Не поддерживаются форматы: 7, N, 1 или 8, O, 2 или 8, E, 2
- 3. Протокол связи: Modbus (ASCII или RTU)
- 4. Коды функций: 03H для чтения содержимого регистра (максимум 8 слов), 06H для записи 1 слова в регистр; 02H для чтения битовых данных (максимум 16 бит), 05H для записи 1 бита в регистр.
- 5. Адреса и содержимое регистров данных:

Адрес	Содержание	Описание
		Разрешение 0.1 град., обновление - каждые 0.1 сек.
1000H	Текущее значение (PV)	Ошибки при считывании текущего значения: 8002Н: Процесс инициализации (значение температуры еще не получено) 8003Н: Датчик температуры не подсоединен 8004Н: Ошибка сигнала датчика температуры (неверный тип датчика) 8006Н: Значение температуры не получено, ошибка АЦП, возможно измеренное значение температуры выходит за заданный диапазон 8007Н: Ошибка чтения/записи памяти
1001H	Значение уставки (SV)	Ед. измерения: 0.1, °С или °F
1002H	Верхний предел температурного диапазона	Ограничение значений уставки в верхнем пределе, не должно быть выше температурного диапазона датчика
1003H	Нижний предел температурного диапазона	Ограничение значений уставки в нижнем пределе, не должно быть ниже температурного диапазона
1004H	Тип датчика температуры	См. "Установка типа температурного датчика и диапазона температур"

Адрес	Содержание	Описание
1005H	Метод управления	0: ПИД 1: ВКЛ/ВЫКЛ 2: РУЧНОЙ 3: НЕЧЕТКАЯ ЛОГИКА
1006H	Выбор управления нагревом/ охлаждением	0: H1H2 1: C1H2 2: H1C2 3: C1C2 6: H1 7: C1 Значение регистра представлено в десятичном формате.
1007H	Период следования управляющих импульсов (цикл ПИД- регулирования) при нагреве/охлаждении для управляющего выхода 1	Возможные значения: 1~990 Шаг 0.1 сек.
1008H	Период следования управляющих импульсов (цикл ПИД- регулирования) при нагреве/охлаждении для управляющего выхода 2	Когда выходом является реле, минимальны цикл равен 5 сек.
1009H	Пропорциональный коэффициент ПИД-регулятора	Возможные значения: 0.1 ~ 999.9
100AH	Интегральный коэффициент (Ті) ПИД-регулятора	Возможные значения: 0~9 999
100BH	Дифференциальный коэффициент (Td) ПИД-регулятора	Возможные значения: 0~9 999
100CH	Ограничение интегрирования	Возможные значения: 0 ~ 100% Шаг: 0.1%
103CH	Управление работой ТК	0: СТОП 1: РАБОТА (по умолчанию) 2: КОНЕЦ ПРОГРАММЫ 3: ПАУЗА
100DH	Величина статической ошибки регулирования при П - и ПД-регулировании (Ті=0)	Возможные значения: 0 ~ 100% Шаг: 0.1%
100EH	Коэффициент для П-составляющей ПИД- регулятора для управляющего выхода 2 при двухконтурном управлении (COEF)	Возможные значения: 0.01 ~99.99 Шаг: 0.01
100FH	Зона нечувствительности при двухконтурном управлении	Возможные значения: -999 ~ 9 999
1010H	Гистерезис управляющего выхода 1	Возможные значения: 0~9 999

Адрес	Содержание	Опис	сание
1011H	Гистерезис управляющего выхода 2	Возможные значения: 0~9 999	
1012H	Чтение сигнала на выходе 1	Шаг: 0.1%	
1013H	Чтение сигнала на выходе 2	Шаг: 0.1%	
1014H	Запись значения на выход 1	Шаг: 0.1%, операция за в режиме ручной настро	писи происходит только ойки
1015H	Запись значения на выход 2	Шаг: 0.1%, операция за в режиме ручной настро	писи происходит только ойки
1016H	Смещение входной характеристики	Возможные значения: - : Шаг: 0.1	99.9 ~ +99.9.
1017H	Количество знаков после запятой при аналоговом задании	Возможные значения: 0	~ 3
101CH	Выбор набора параметров ПИД	Возможные значения: 0	~5/AUTO
101DH	Опорное значение уставки для выбора группы коэффициентов ПИД-регулятора	Может использоваться только внутри доступного диапазона, шаг: 0.1	
1020H	Режим аварийной сигнализации 1	См. раздел «Выходы ав	арийной сигнализации»
1021H	Режим аварийной сигнализации 2	См. раздел «Выходы аварийной сигнализации	
1022H	Режим аварийной сигнализации 3	См. раздел «Выходы аварийной сигнализации	
1024H	Верхний предел для включения аварийной сигнализации 1	См. раздел «Выходы аварийной сигнализации	
1025H	Нижний предел для включения аварийной сигнализации 1	См. раздел «Выходы аварийной сигнализации	
1026H	Верхний предел для включения аварийной сигнализации 2	См. раздел «Выходы ав	арийной сигнализации»
1027H	Нижний предел для включения аварийной сигнализации 2	См. раздел «Выходы ав	арийной сигнализации»
1028H	Верхний предел для включения аварийной сигнализации 3	См. раздел «Выходы ав	арийной сигнализации»
1029H	Нижний предел для включения аварийной сигнализации 3	См. раздел «Выходы аварийной сигнализации	
102AH	Чтение состояния светодиодных индикаторов	b0: ALM3 b1: ALM2 b2: oF b3: oC	b4: ALM1 b5: OUT2 b6:OUT1 b7: AT
102BH	Чтение состояния клавиш	b1: F2 b2: Up (верх) b3: Loop (Выбор) b5: F1	b6: Down (вниз) b7: Set (задание 0: Нажато
102CH	Состояние блокировки клавиш	0: нет блокировки 1: все заблокированы 2: все, кроме SV и клав	иш F1/F2

Адрес	Содержание	Описание	
102FH	Версия прошивки	V1.00 отображантся как 0х100	
1030H	Номер начального набора уставок	Возможные значения: 0 ~ F	
1032H	Оставшееся время выполнения шага (секунды)	Только чтение	
1033H	Оставшееся время выполнения шага (минуты)	Только чтение	
1034H	Номер текущего выполняемого шага	Только чтение	
1035H	Номер текущего выполняемого шаблона	Только чтение	
1036H	Чтение динамического значения в программном управлении	Только чтение	
1039H	Запись по коммуникационному протоколу	0: Запрещена (по умолчанию) 1: Разрешена	
103AH	Выбор единиц измерения температуры	0: °F, 1: °C / аналоговый вход (по умолчанию)	
103BH	Функция автонастройки параметров ПИД-регулятора (АТ)	0: ВЫКЛ (по умолчанию) 1: ВКЛ	
103CH	Управление выполнением программы	0: STOP 1: RUN (по умолчанию) 2:END (программный режим) 3: HOLD (программный режим)	
101FH	Номер начального шага	Возможные значения: 0 ~ F	
1200H ~13FFH	Уставки температуры для шагов 00~15 (четные адреса) Время длительности каждого шага (нечетные адреса)	Возможные значения температуры: -999 ~ 9999 Возможные значения времени: 0 ~ 900 (с шагом 1 мин.)	
1400H ~140FH	Количество выполняемых шагов в соответствующем наборе уставок	0 ~ F = N, где N — это количество выполняемых шагов в наборе уставок, начиная с шага 0	
1410H ~141FH	Количество повторных циклических выполнений соответствующего набора уставок	Возможные значения: 0 ~ 99, Если задан 1 повтор, то набор уставок выполнится 2 раза.	
1420H ~142FH	Набор уставок, который будет выполняться следующим после данного набора уставок	Значения 0 ~ 15 обозначают номер набора уставок, который будет выполняться следующим; 16 - конец программы и сохранение последний шаг; 17 - останов выполнения программ. 0~15 показывает номер циклограммы, выполняемой после текущей	
1100H	Коррекция характеристики PV		
1101H	Отклонение входного сигнала для включения входного фильтра PV	Возможные значения: 10~1000, ед. изм.: 0.01 °C, по умолчанию: 100 (1.0°C)	

Адрес	Содержание	Описание
1102H	Коэффициент фильтра PV	Возможные значения: 0~50, по умолчанию: 8
1103H	Инверсия выходов	Бит 1: выход 2 Бит 0: выход 1
1104H	Скорость изменения уставки	Ед. изм.: 0.1град./мин или 0.1 град./сек (см. адрес 1124H)
1105H	Тип сигнала дистанционного управления	0: 0~20 MA 3: 1~5 B 1: 4~20 MA 4: 0~10 B 2: 0~5 B
1106H	Выбор метода автоматической настройки	0: АТ (автонастройка) 1: ST(самонастройка)
1107H	Инверсия входа дистанционного управления	0: Прямой вход 1: Инверсный вход
1108H	Опции аварийной сигнализации 1	Бит3: Запись пиковых значений
1109H	Опции аварийной сигнализации 2	Бит2: Удержание Бит1: Инверсия
110AH	Опции аварийной сигнализации 3	Бит0: Режим готовности
110BH	Задержка аварийной сигнализации 1	
110CH	Задержка аварийной сигнализации 2	Ед. изм.: сек. Диапазон: 0~100 сек
110DH	Задержка аварийной сигнализации 3	
110EH	Верхний предел сигнала управляющего выхода 1	Диапазон значений: нижний предел сигнала ~ 100% Ед. изм. 0.1%
110FH	Нижний предел сигнала управляющего выхода 1	Диапазон значений: 0∼верхний предел сигнала Ед. изм.0.1%
1110H	Верхний предел сигнала управляющего выхода 2	Диапазон значений: нижний предел сигнала ~ 100% Ед. изм.0.1%
1111H	Нижний предел сигнала управляющего выхода 2	Диапазон значений: 0~верхний предел сигнала Ед. изм.0.1%
1112H	Допустимое отклонение температуры	Диапазон значений: 0~1000 (100.0 град.)
1113H	Время ожидания достижения температуры	Ед. изм.: мин Диапазон: 0~900
1114H	Скорость выхода на температуру первого шага циклограммы	Ед. изм.: 0.1 град./мин или 0.1 град/сек (см. адрес 1124H); Диапазон: 0~1000
1115H	Режим тестирования	

Адрес	Содержание	Описание
1116H	Смещение верхнего предела сигнала аналогового выхода 1	
1117H	Смещение нижнего предела сигнала аналогового выхода 1	
1118H	Смещение верхнего предела сигнала аналогового выхода 2	
1119H	Смещение нижнего предела сигнала аналогового выхода 2	Для токового сигнала: 1 шаг=1µA Для сигнала по напряжению: 1 шаг=1 мВ
111AH	Смещение верхнего предела сигнала ретрансляционного выхода	
111BH	Смещение нижнего предела сигнала ретрансляционного выхода	
111CH	Выбор функции дискретного входа управления (Event) EV1	0: Нет 1: Run/Stop
111DH	Выбор функции дискретного входа управления (Event) EV2	2: переключение SV1/SV2 3: переключение ПИД/РУЧНОЙ
111EH	Выбор функции дискретного входа управления (Event) EV3	4: переключение RUN/HOLD в программном режиме
111FH	Метод управления PV	0: ПИД 1: ВКЛ/ВЫКЛ 2: РУЧНОЙ 3: НЕЧЕТКАЯ ЛОГИКА
1120H	Режим управления заданным значением SV	0: Постоянное SV 1: Линейно изменяющееся SV 2: Программный режим 3: Дистанционное управление
1121H	Смещение сигнала дистанционного управления	Диапазон значений: -999~999
1122H	Усиление сигнала дистанционного управления	Диапазон значений: -999~999
1123H	Наклон кривой сигнала дистанционного управления	0: Положительный 1: Отрицательный
1124H	Единица скорости повышения/ понижения температуры	0: °С/мин 1: °С/с
1125H	Компенсация «холодного спая» термопары	0: ВКЛ, 1: ВЫКЛ
1126H	Возврат в рабочее состояние программного режима после отключения питания	0: Нет 1: Статус RUN программного режима сохраняется при пропадании питания. При включении питания термоконтроллер вернется в состояние RUN программного режима.
1127H	Коэффициент усиления Fuzzy	Диапазон: 1~10
1128H	Зона нечувствительности Fuzzy	Диапазон: 0.0 ~ пропорциональный коэффициент ПИД-регулятора

Адрес	Содержание	Описание
1129H	Сохранение программируемых параметров в памяти	0:Нет 1: Сохранение
1182H	Чтение значения сигнала токового трансформатора CT1	Шаг: 0.1 А
1183H	Чтение значения сигнала токового трансформатора CT2	Шаг: 0.1 А

6. Формат передачи данных: Командный код - 03H для чтения содержимого регистра (максимум 8 слов), 06H для записи 1 слова в регистр

Режим ASCII

Команда чтения		Ответное с	ообще	ние	Команда записи		Ответное сообщение		цение		
STX	': '	·: ·	STX	': '	': '	STX	': '	': '	STX	': '	·: ·
ADR 1	'0'	'0'	ADR 1	'0'	'0'	ADR 1	'0'	'0'	ADR 1	'0'	'0'
ADR 0	'1'	'1'	ADR 0	'1'	'1'	ADR 0	'1'	'1'	ADR 0	'1'	'1'
CMD 1	'0'	'0'	CMD 1	'0'	'0'	CMD 1	'0'	'0'	CMD 1	'0'	'0'
CMD 0	'3'	'2'	CMD 0	'3'	'2'	CMD 0	'6'	'5'	CMD 0	'6'	'5'
	'1'	'0'	Количество	'0'	'0'		'1'	·0'	Адрес данных	'1'	·0'
Адрес начальных	'0'	'8'	данных (в байтах)	'4'	'2'	Адрес данных	'0'	'8'		'0'	'8'
данных	'0'	'1'	Содержание данных по адресу 1000H/	'0'	'1'		'0'	'1'		'0'	'1'
	'0'	'0'		'1'	'7'		'1'	'0'		'1'	'0'
	'0'	'0'		'F'	'0'		'0'	'F'		'0'	'F'
Количество	3 0 0 00 XII 4 1 3	Содер- жание	'3'	'F'	Содер-	'3'	'F'				
данных (слово/бит)	'0'	'0'	Содержание	'0'		жание данных	'E'	'0'	жание данных	'E'	'0'
	'2'	'9'	данных	'0'			'8'	'0'		'8'	'0'
LRC 1	'E'	'D'	по адресу	'0'		LRC1	'F'	'E'	LRC1	'F'	'E'
LRC 0	'A'	,C,	1001H	'0'		LRC 0	ʻD'	'3'	LRC 0	,D,	'3'
END 1	CR	CR	LRC 1	'0'	'E'	END 1	CR	CR	END 1	CR	CR
END 0	LF	LF	LRC 0	'3'	'3'	END 0	LF	LF	END 0	LF	LF
			END 1	CR	CR						
			END 0	LF	LF						

LRC (продольная проверка избыточности): суммируются значение байтов от ADR1 до последнего символа данных и вычитается из 100H.

Для примера: 01H+03H+47H+00H+00H+02H=4DH, LRC = 100H - 4DH = B3H.

Режим RTU

Команда чтения		Ответное с	ообщен	ние	Команда записи		Ответное сообщение				
ADR	01H	01H	ADR	01H	01H	ADR	01H	01H	ADR	01H	01H
CMD	03H	02H	CMD	03H	02H	CMD	06H	05H	CMD	06H	05H
Адрес	10H	08H	Количество			Адрес	10H	08H	Адрес	10H	08H
начальных данных	00H	10H	данных (в байтах)	04H	02Н данных	01H	10H	данных	01H	10H	
Количество	00H	00H	Содержа-	01H	17H	— Содер- жание	03H	FFH	Содер- жание данных	03H	FFH
данных (слово/бит)	02H	09H	ние данных по адресу 1000H/081xH	F4H	01H		20H	00H		20H	00H
CRC 1	C0H	BBH	Содержание	03H		CRC 1	DDH	8FH	CRC 1	DDH	8FH
CRC 0	СВН	А9Н	данных по адресу	20H		CRC 0	E2H	9FH	CRC 0	E2H	9FH
				BBH	77H						
			CRC 0	15H	88H						

CRC (циклическая проверка избыточности) рассчитывается следующим образом:

- 1. Загрузка 16-bit регистра (называемого CRC регистром) с FFFFH.
- 2. Исключающее ИЛИ первому 8-bit байту из командного сообщения с байтом младшего порядка из 16-bit регистра CRC, помещение результата в CRC регистр.
- 3. Сдвиг одного бита регистра CRC вправо с MSB нулевым заполнением. Извлечение и проверка LSB.
- 4. Если LSB CRC регистра равно 0, повторите шаг 3, в противном случае исключающее ИЛИ CRC регистра с полиномиальным значением A001H.
- 5. Повторяйте шаг 3 и 4, до тех пор, пока восемь сдвигов не будут выполнены. Затем, полный 8-bit байт будет обработан.
- 6. Повторите шаг со 2 по 5 для следующих 8-bit байтов из командного сообщения. Продолжайте пока все байты не будут обработаны. Конечное содержание CRC регистра CRC значение. При передаче значения CRC в сообщении, старшие и младшие байты значения CRC должны меняться, то есть сначала будет передан младший байт.

3. Комплектность

Термоконтроллер DT3	1 шт
Комплект крепежных элементов	1 шт
Паспорт и руководство по эксплуатации	1 шт
Гарантийный талон	1 шт
Инструкция на англ. и китайском языках	1 шт
Наклейка для обозначения подключаемых клемм	1 шт

4. Индивидуальные особенности изделия

Температурные контроллеры DT3 не имеют каких-либо индивидуальных особенностей, которые необходимо учитывать при его эксплуатации и ремонте, не содержит радиоактивных и токсичных веществ, работа с которыми требует особых мер безопасности.

Указания по мерам безопасности согласно главе 2.1 данного руководства.

5. Срок службы (годности) изделия

Температурные контроллеры DT3 не представляют опасности для жизни, здоровья человека и не могут причинить вред его имуществу по истечении какого-либо определенного периода времени, в этой связи срок службы, годности или сохраняемости DT3 не ограничены.

6. Сроки замены (восстановления) или критерии предельного состояния составных частей изделия, при которых их эксплуатация допустима

Температурные контроллеры DT3 не содержат составных частей, способных привести к критическим отказам*¹, представляющим опасность для жизни, здоровья человека и его имущества по истечении какого-либо определенного периода времени, в этой связи сроки замены (восстановления) или критерии предельного состояния составных частей, при которых их эксплуатация допустима, не определены.

7. Гарантийные обязательства

Перевод и адаптация: Компания «СТОИК»

Изготовитель гарантирует соответствие прибора температурных контроллеров DT3 при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

- Гарантийный срок эксплуатации 18 месяцев со дня продажи.
- В случае выхода прибора из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.
- В случае необходимости гарантийного и постгарантийного ремонта продукции пользователь может обратиться в сервисный центр поставщика, адрес которого приведен на сайте компании: www.stoikltd.ru и в гарантийном талоне.

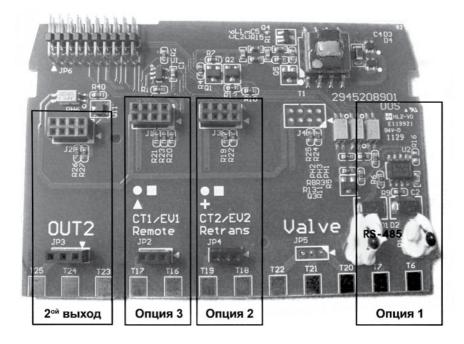
Внимание! Гарантийный талон не действителен без штампа даты продажи и штампа продавца.

^{*1} Отказ, который может привести к тяжелым последствиям: травмированию людей, значительному материальному ущербу или неприемлемым экологическим последствиям [из п. 67 ГОСТ Р 53480-2009]

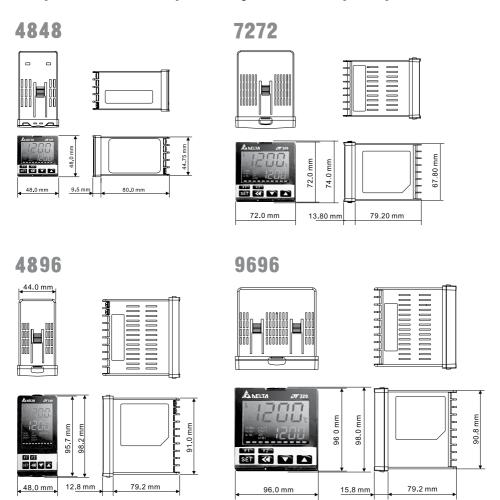
8. Свидетельство об упаковывании

Температурный контроллер	о серии DT3 №	
2 1 2 1 2 1 2 1		заводской номер
Упакован		
	наименование или код изг	готовителя
согласно требованиям, пред	дусмотренным в действующе	й технической документации.
должность	личная подпись	расшифровка подписи
год, месяц, число		
9. Свидетельство о	приемке и продаже	
Температурный контроллер	о серии DT3 №	заводской номер
соответствует требованиям	ТУ 3434-0200-46526536-99 и	признан годным к эксплуатации.
Дата выпуска	Дата продажи	_
Штамп OTK		
Elami on	личная подпись	расшифровка подписи
	-	Отметка продавца

10. Сведения о цене и условиях приобретения изделия


Цена договорная.

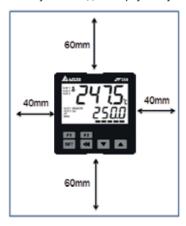
Температурные контроллеры могут быть приобретены в компании ООО "СТОИК ЛТД" или у ее официальных партнеров.


Приложение А. Опциональные платы*

DT3-C	Опциональная плата токового выхода (4-20 мА)
DT3-CT100A	Датчик тока до 100А
DT3-CT30A	Датчик тока до 30А
DT3-CTI	Опциональная плата входа для измерительного датчика тока
DT3-EVENT	Плата расширения для DT3, дискретный вход
DT3-L	Опциональная плата потенциального выхода (0-10 В)
DT3-R	Опциональная плата релейного выхода
DT3-REMOTE	Плата расширения для DT3, вход для удалённого задания уставки аналоговым сигналом
DT3-RETRANS	Опциональная плата ретрансляции текущей температуры на аналоговый выход
DT3-V	Опциональная плата выхода по напряжению (импульсы 12 В)

^{*}Модели типа DT330xx являются нерасширяемыми.

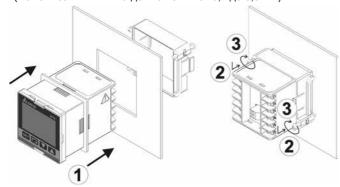
Приложение В. Габаритные и установочные размеры DT3


Размеры установочных окон в панели

Модель	Установочное окно (Ш * B)	Модель	Установочное окно (Ш * B)
4848 (DT320)	45 мм * 45 мм	7272 (DT330)	68 мм * 68 мм
4896 (DT340)	44.5 мм * 91.5 мм	9696 (DT360)	91 мм * 91 мм

• При установке терморегулятора необходимо обеспечить определенное окружающее пространство (как показано на рисунке ниже), чтобы обеспечить необходимое охлаждение и легкий демонтаж устройства в случае необходимости.

• Необходимые зазоры: минимум 60 мм для сверху/снизу и 40 мм слева/справа.


Приложение С. Монтаж и установка кронштейна

Серия DT320:

Шаг 1: Вставьте термоконтроллер в окно на панели.

Шаг 2: Поместите гайку M3*0,5 в отверстие в верхней части монтажного кронштейна и вставьте крепежный винт M3*0,5*30 мм в монтажный кронштейн. Вставьте монтажный кронштейн в монтажный паз справа и слева от термоконтроллера и сдвиньте монтажный кронштейн вперед до упора в кронштейн на панели.

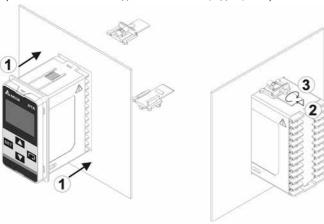
Шаг 3: Затяните винты на кронштейне, чтобы зафиксировать термоконтроллер на месте (момент затяжки винта должен быть от 0,4 до 0,5 Нм).

Серия DT330:

Шаг 1: Вставьте термоконтроллер в окно на панели.

Шаг 2: Поместите гайку M3*0,5 в отверстие в верхней части монтажного кронштейна и вставьте крепежный винт M3*0,5*30 мм в монтажный кронштейн. Вставьте монтажный кронштейн в монтажный паз сверху и снизу от термоконтроллера и сдвиньте монтажный кронштейн вперед до упора в кронштейн на панели.

Шаг 3: Затяните винты на кронштейне, чтобы зафиксировать термоконтроллер на месте (момент затяжки винта должен быть от 0,4 до 0,5 Нм).

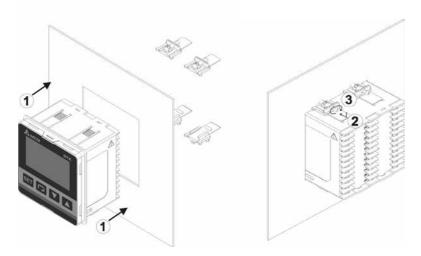


Серия DT340:

Шаг 1: Вставьте термоконтроллер в окно на панели.

Шаг 2: Поместите гайку M3*0,5 в отверстие в верхней части монтажного кронштейна и вставьте крепежный винт M3*0,5*30 мм в монтажный кронштейн. Вставьте монтажный кронштейн в монтажный паз сверху и снизу от термоконтроллера и сдвиньте монтажный кронштейн вперед до упора в кронштейн на панели.

Шаг 3: Затяните винты на кронштейне, чтобы зафиксировать термоконтроллер на месте (момент затяжки винта должен быть от 0.4 до 0.5 Hm).

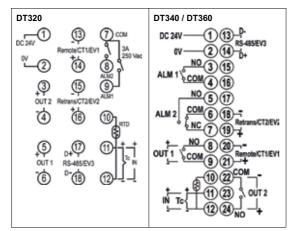


Серия DT360:

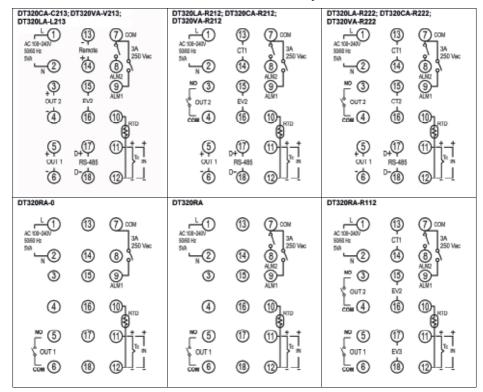
Шаг 1: Вставьте термоконтроллер в окно на панели.

Шаг 2: Поместите гайку M3*0,5 в отверстие в верхней части монтажного кронштейна и вставьте крепежный винт M3*0,5*30 мм в монтажный кронштейн. Вставьте монтажный кронштейн в монтажный паз сверху и снизу от термоконтроллера и сдвиньте монтажный кронштейн вперед до упора в кронштейн на панели.

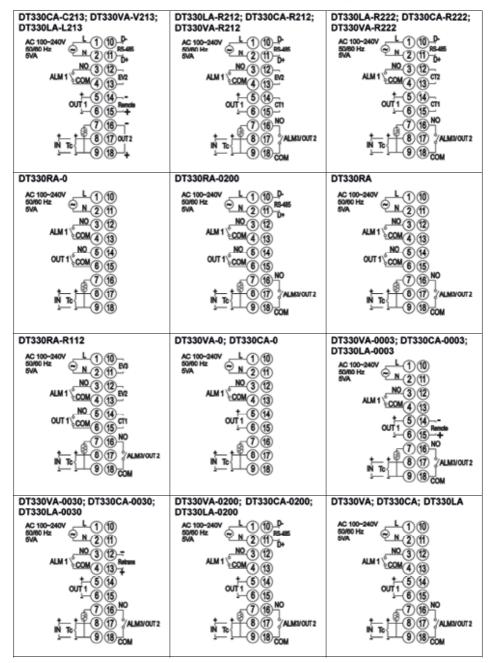
Шаг 3: Затяните винты на кронштейне, чтобы зафиксировать термоконтроллер на месте (момент затяжки винта должен быть от 0,4 до 0,5 Нм).



Приложение D. Схемы подключения и меры предосторожности


- Затяжка винтов осуществляется с моментом от 0,4 до 0,5 Н.м.
- Чтобы избежать помех, рекомендуется, чтобы кабель питания и сигнальный кабель монтировались отдельно.
- Используйте сплошные провода размером между 14AWG / 2C и 22AWG / 2C. С характеристиками максимум 300 В и номинальной температурой до 105°C для клемм питания.
- Предупреждающий символ на корпусе указывает на входы питания 1 и 2. Если источник питания подключен к другим клеммам, термоконтроллер сгорит, что может привести к травме персонала или пожару.
- Используйте релейные выходы в пределах номинальной нагрузки. В противном случае кабель и контакт провода могут нагреваться из-за перегрузки. Когда температура превышает 50°C, контакт может перегореть.
- Используйте контакт провода с размером максимум 5,8 мм.

Схемы подключения для моделей с питанием постоянным током


Схемы подключения для моделей с питанием переменным током

DT320VA-0; DT320CA	4-0		DT320VA-0003; DT320LA-0003	DT320CA-	0003;	DT320VA-0030; DT320LA-0030	DT320CA-	0030;
AC 108-348V	3	(7) CON 3A	AC 108-348V	①3 Remote	7 CON 3 3A	AC 108-348V	(13)	7 COM
5060 Hz 50A N	4	3 % Wec	5060 Hz 56A N	14	o 250 Vac	5060 Hz 56A N	(4)	o\ 250 Vec
3 (5	9 J	3	(5)		3	(15) Retrans	
4 6	6	101 RTD	4	16	(1) Kin	4	16	(1) (8)
(5) (6)	D	ۺ ٳ ڔٙڗؙ	(5) OUT 1	17	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	(5) OUT 1	17	10
	1	@∐ <u>Ţ</u>	6	18)		6	18)	
DT320VA-0200; DT32 DT320LA-0200	0CA-	0200;	DT320VA; DT32	0CA; DT32	OLA	DT320VA-R011; DT320LA-R011	DT320CA	R011;
AC 108-348V	3	7) CON 3) 3A	AC 108-348V	13	7 con 1 3A	AC 108-348V	(3)	⑦ con ¶ 3A
5060 Hz 50A	4	o 250 Vac	5368 Hz 56A N	(4)	3 1 250 vsc 3 1	5060 Hz 56A N	EV1 1 4	(1) (250 vsc (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
3 (3	(1) (1) (2) (3)	3	(15)	ALME J	, outs	(5) Ev2	ALME ALME
4 6	6	(1) KIII	4	16)	(1) (8)	(m) (4)	16	(1) KIII
(5) D+0	(T) 1485	الْمُرِينَ الْسُالِ	(5) our 1	1	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	(5) OUT 1	1	الْمُرِينَّ الْمُ
1	130	يَـلِي	6	18)	يَـالِ	6	18)	آ_آل
DT320VA-R200; DT32 DT320LA-R200	OCA-	R200;	DT320VA-R211; DT320LA-R211	DT320CA	R211;	DT320VA-V231; DT320LA-L231	DT320CA	C231;
AC 108-348V	3	⑦ con 3 3A	AC 108-34EV	(13) EVI	⑦ con ③ 3A	AC 108-348V	(3)	⑦ con ③ 3A
5060 Hz 50A N	4	o 250 Vac	SDEB H2 SNA N	4	9 1 9 1 9	5060 Hz 56A N	EV1	3 %
1	3		\rac{\rac{1}{2}}{3}	(§) EV2	<u></u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(5) Retrans	ALMI ALMI
COM (4)	6	O RID	CON (4)	16	(1) _{RID}	4	16	(1) (8)
	P	1	5	р+Ф	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	(5)	Φ+0	∰ંાં
P	1485	اِ اِ اِلْ	6	R5-465 D-18	اً اِللَّ	6	RS-485 D-18	
L			1			1		

DT330VA-R011; DT330CA-R011; DT330LA-R011 AC 100-240V	DT330VA-R211; DT330CA-R211; DT330LA-R211 AC 190-240V	DT330VA-V231; DT330CA-C231; DT330LA-L231 AC 100-240V
DT340CA-C213; DT360CA-C213; DT340VA-V213; DT360VA-V213 AC 100-340V	DT340LA-R212; DT360VA-R212; DT340VA-R212; DT340VA-R212 AC 100-30V	DT340LA-R222; DT360VA-R222; DT340CA-R222; DT360CA-R222; DT340VA-R222 AC 190-240V N 2 (14) 85-45 99/4 10 10 10 10 10 10 10 10 10 10 10 10 10
DT340RA-0 AC 100-340V	DT340RA; DT360RA AC 100-340V	DT340RA-R112; DT360RA-R112 AC 100-3NW 1 1 3 po 900 Nz

DT340VA-0; DT340CA-0	DT340VA-0003; DT360VA-0003; DT340CA-0003; DT360CA-0003; DT340LA-0003	DT340VA-0030; DT360VA-0030; DT340CA-0030; DT360CA-0030; DT340LA-0030
AC 190-240V	AC 188-340V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AC 180-340V N 2 14 5040 Hz SNA 1 COM 4 16 6 10 - 7 10 1 10 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DT340VA-0200; DT360VA-0200; DT340CA-0200; DT360CA-0200; DT340LA-0200	DT340VA; DT340CA; DT340LA; DT360VA; DT360CA	DT340VA-R011; DT360VA-R011; DT340CA-R011; DT360CA-R011; DT340LA-R011
AC 100-240V	AC 100-240V N 2 (4) SN00 Hz N 3 (15) ALM 1 COM 4 (6) ALM 2 6 (8) OUT 1 9 (2) N 1 2 (4)	AC 100-240V N 2 14 SOUR RE N 2 15 SOUR RE N 2
DT340VA-R200; DT360VA-R200; DT340CA-R200; DT360CA-R200; DT340LA-R200	DT340VA-R211; DT360VA-R211; DT340CA-R211; DT360CA-R211; DT340LA-R211	DT340VA-V231; DT360VA-V231; DT340CA-C231; DT360CA-C231; DT340LA-L231
AC 110-340V N 2 110 ps-415 shall sha	AC 100-240V N 2 14 Ps-445 SNA N 2 14 Ps-45 SNA N 3 15 ALM 1 COM 4 16 S 17 ALM 2 8 8 EV OUT 1 9 27 N TE 1 2 4 COM	AC 100-240V N 2 (14) PS-445 SNA 2 (14) D+ ALM 1 COM 6 (6) ALM 2 FT 6 (8) FT OUT 1 9 (2) N TE 1 (2) (4) D+ 10 (2) TT N TE 1 (2) (4) D+